Razvoj modela za održavanje i intervencije na građevinskim objektima i putevima

Link to this page

info:eu-repo/grantAgreement/MESTD/MPN2006-2010/16018/RS//

Razvoj modela za održavanje i intervencije na građevinskim objektima i putevima (en)
Развој модела за одржавање и интервенције на грађевинским објектима и путевима (sr)
Razvoj modela za održavanje i intervencije na građevinskim objektima i putevima (sr_RS)
Authors

Publications

Modeliranje procesa erozije nasutih objekata izloženih prelivanju

Jovanović, Miodrag

(1987)

TY  - THES
AU  - Jovanović, Miodrag
PY  - 1987
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/1797
AB  - U ovom radu su prikazani rezultati razvoja matematičkog modela erozije nasutih objekata izloženih prelivanju. Prelivanje i erozija se u ovom mo- delu tretiraju kao ravanski fenomeni. Analizira se iskljucivo dubinska erozija nasutog objekta izgradjenog od koherentnog materijala homogenog sastava. Matematički model se sastoji od dve komponente: "hidraulicke, koja služi za proracun ravanskog ubrzanog tečenja preko preliva proizvoljne forme, i "erozione", koja sluzi za proracun pronosa erodiranog materijala i deformacije. Proracun se obavlja u kvazi-ustaljenim uslovima - po unapred zada- tim vremenskim intervalima, pri čemu se za proracun deformacije koriste rezulta­ ti hidraulickog proračuna. Kako prelivanje spada u kategoriju tokova sa dominantnim inerci- jalnim uticajima, to je proracun hidraulickih karakteristika toka: linije nivoa, brzina i pritisaka, baziran na teoriji potencijalnih strujanja sa slobodnom po- vrsinom. Dobijeni rezultati su pokazali da je ova teorija generalno primenljiva za analizu kratkih gravitacionih tokova sa izrazenom zakrivljenošću strujnica. Za proracun potencijalnog strujanja sa slobodnom povrsinom moze se uspešno koristiti Metoda graničnih elemenata. Odredjivanje položaja slobodne povrsine je u numerickom smislu slozeno, jer podrazumeva resavanje nelineamog problema. U tu svrhu mogu se koristiti Newton—Raphson-ova iterativna metoda i gradijentna metoda. Računski postupak je verifikovan na nekoliko primera iz pra- kse. Proracun deformacije nasutog objekta izlozenog prelivanju mora se bazirati na rezultatima laboratorijskih ispitivanja erozije vezanih materijala, jer ne postoji opšti analitički pristup kada je u pitanju ovaj fenomen. Ispiti- vanje erozionog procesa obavljeno je pomocu fizickih modela, u laboratorijskom kanalu duzine 22 m i širine 0,6 m. Fizicki model! visine 0,3 m izgradneni su od ekvivalentnog vezanog materijala, čiji je sastav usvojen u skladu sa precizno definisanim uslovima slicnosti.
Eksperimentalno je utvrdjeno da se zavisnost izmedju protoka vode na prelivu (Q) i pronosa erodiranog materijala (G) moze analiticki iskazati ekspo- nencijalnom funkcijom oblika: Q = C e G ® C2E, pri čemu je vremenska dimenzija erozionog procesa sadržana u parametru - odnosu erodirane i pocetne zapremine objekta. Ovaj parameter je tako pokazatelj trenutnog erozionog stanja nasutog objekta. Za eksperimentalne uslove pod kojima IL su sprovedeni opiti, utvrdjene su vrednosti regresionih konstanti = 1,6 i = 4,5. Konstatovano je takodje da se pri datim uslovima brzina dubinske ero- zije može smatrati konstantnom. Imajuci u vidu da se, obzirom na efekte razmere, rezultati labora- ■ torijskih ispitivanja mogu smatrati pouzdanim samo ako razmera nije manja od t:10, dobijeni rezultati se mogu ekstrapolovati na objekte u prirodi čija visina ne pre- lazi 3-4 m, a koji su izgradjeni od homogenog, vezanog materijala sa vrednošću kohezije od 1 0 - 2 0 kPa. Ovo znaci da su konkretni rezultati primenljivi na niske nasute objekte, kao sto su male brane na mikroakumulacijama, recni nasipi i si- gumosni prelivi. Ustanovljena zavisnost izmedju protoka vode i pronosa erodiranog materijala predstavlja osnovu za proracun deformacije objekta. Deformacija se racuna po unapred zadatim racunskim presecima, a u funkciji srednje brzine pre- livnog mlaza u ovim presecima. Na taj način se moze u svakom računskom koraku dobiti krivilinijska prelivna kontura. Ovi računski prelivni profili su po svom obliku u skladu sa erozionim profilima snimljenim na fizickim modelima. U tom smislu predloženi model ima prednost u odnosu na neke dosadašnje racunske modele, po kojima se uzduzni profil brese shematizuje na odredjeni nacin, a tecenje opisuje jednacinom nepotopljenog prelivanja preko širokog praga. Razvijeni matematički model erozije nasutih objekata, kao i odgovarajuči program! za racunar, verifikovani su na jednom od laboratorijskih eksperimenata. Dobijeno je dobro slaganje rezultata. Predloženi model predstavlja solidnu osnovu za dalji razvoj u ovoj oblasti, posebno u pravcu modeliranja trodimenzionalnog tecenja i bočne erozij e.
AB  - This dissertation presents the results of investigations undertaken
in order to develop a mathematical model of erosion of earth dams and embankments
exposed to overtopping. The flow over the crest of a dam and the resulting erosion
are treated by this model as two-dimensional phenomena. The earth structures made of
homogenous, cohesive material are considered.
The proposed mathematical model consists of two components: the
"hydraulic" component is used for calculation of 2D accelerated flow over a
spillway of arbitrary shape, while the "erosive" component is used for calculation
of the flow rate of the eroded material and deformation of the dam. The quasi­
steady flow conditions are assumed, thus the calcualtion is performed for given
time increments. The resulting deformation of the earth structure is computed
using the results of the preceding hydraulic calculation.
The flow over a dam is a free-surface curvilinear gravity flow
dominated by inertial effects, thus the evaluation of the hydraulic characteristics:
water surface profile, velocities and pressures, can be based upon the potential
flow theory. The obtained results confirm the general applicability of this theory.
The Boundary Element Method can be efficiently used for calculating
the free-surface potential flows. The determination of the free-surface is numerical­
ly difficult due to the nonlinear nature of the problem. The solution is based on
the Newton-Raphson iterative method, or the gradient method. The numerical
procedure has been verified by several case studies.
The calculation of deformation must be based upon laboratory
investigations of erosive behaviour of cohesive materials, since there is no
analytical approach to this phenomenon. The investigations have been carried out
using physical models placed in a laboratory flume 22 m long and 0,6 m wide. The
0,3 m high models have been constructed using equivalent cohesive material,
composed according to the precise laws of similitude.
The experimentally determined relation between the flow rates
of water (Q) and eroded material (G) can be expressed in the form:
Q = C e
G
C2Er
where time is implicitly taken into account by the parameter (E^) ~ the ratio
of the eroded volume to the initial dam volume. This parameter is thus
representative of the temporal state of dam erosion. The values of the regression
11
constants = 1.6, and = 4,5, have been determined for the specific
experimental conditions. The erosion rate has been found to be constant for the
same conditions.
Considering the scale effects, the obtained experimental results
are valid for scales not smaller than 1:10. Thus, the extrapolation of these
results to nature implies that they are valid for prototype earth structures
up to 3-4 m high, constructed of homogenous cohesive material, with cohesion
values of 10-20 kPa. This means that the results are applicable to small
structures, such as small earth dams, dykes, embankments, and emergency spillways.
The determined relationship between the flow rates of water and
the eroded material is the basis for computing the deformation. The calculation
is carried out for chosen cross-sections along the flow, and the deformation is
locally proportional to the mean cross-sectional water velocity. As the result
of calculation, a curvilinear solid boundary profile is obtained at each
comutational step. Such profiles agree in shape with the erosion profiles filmed
on the laboratory models. In this way the proposed mathematical model is a step
further in respect to some of the existing ones, in which the longitudinal
profile of the breach is shematized in various ways, and the flow is determined
by the broad-crested weir formula.
The developed mathematical model, and the corresponding computer
codes, have been verified by one of the laboratory experiments. A good agreement
between calculation and measurements has been obtained.
The proposed model provides a sound basis for further developments,
particularly in the field of mathematical modelling of 3D breach flows and the
lateral erosion.
T1  - Modeliranje procesa erozije nasutih objekata izloženih prelivanju
UR  - https://hdl.handle.net/21.15107/rcub_grafar_1797
ER  - 
@phdthesis{
author = "Jovanović, Miodrag",
year = "1987",
abstract = "U ovom radu su prikazani rezultati razvoja matematičkog modela erozije nasutih objekata izloženih prelivanju. Prelivanje i erozija se u ovom mo- delu tretiraju kao ravanski fenomeni. Analizira se iskljucivo dubinska erozija nasutog objekta izgradjenog od koherentnog materijala homogenog sastava. Matematički model se sastoji od dve komponente: "hidraulicke, koja služi za proracun ravanskog ubrzanog tečenja preko preliva proizvoljne forme, i "erozione", koja sluzi za proracun pronosa erodiranog materijala i deformacije. Proracun se obavlja u kvazi-ustaljenim uslovima - po unapred zada- tim vremenskim intervalima, pri čemu se za proracun deformacije koriste rezulta­ ti hidraulickog proračuna. Kako prelivanje spada u kategoriju tokova sa dominantnim inerci- jalnim uticajima, to je proracun hidraulickih karakteristika toka: linije nivoa, brzina i pritisaka, baziran na teoriji potencijalnih strujanja sa slobodnom po- vrsinom. Dobijeni rezultati su pokazali da je ova teorija generalno primenljiva za analizu kratkih gravitacionih tokova sa izrazenom zakrivljenošću strujnica. Za proracun potencijalnog strujanja sa slobodnom povrsinom moze se uspešno koristiti Metoda graničnih elemenata. Odredjivanje položaja slobodne povrsine je u numerickom smislu slozeno, jer podrazumeva resavanje nelineamog problema. U tu svrhu mogu se koristiti Newton—Raphson-ova iterativna metoda i gradijentna metoda. Računski postupak je verifikovan na nekoliko primera iz pra- kse. Proracun deformacije nasutog objekta izlozenog prelivanju mora se bazirati na rezultatima laboratorijskih ispitivanja erozije vezanih materijala, jer ne postoji opšti analitički pristup kada je u pitanju ovaj fenomen. Ispiti- vanje erozionog procesa obavljeno je pomocu fizickih modela, u laboratorijskom kanalu duzine 22 m i širine 0,6 m. Fizicki model! visine 0,3 m izgradneni su od ekvivalentnog vezanog materijala, čiji je sastav usvojen u skladu sa precizno definisanim uslovima slicnosti.
Eksperimentalno je utvrdjeno da se zavisnost izmedju protoka vode na prelivu (Q) i pronosa erodiranog materijala (G) moze analiticki iskazati ekspo- nencijalnom funkcijom oblika: Q = C e G ® C2E, pri čemu je vremenska dimenzija erozionog procesa sadržana u parametru - odnosu erodirane i pocetne zapremine objekta. Ovaj parameter je tako pokazatelj trenutnog erozionog stanja nasutog objekta. Za eksperimentalne uslove pod kojima IL su sprovedeni opiti, utvrdjene su vrednosti regresionih konstanti = 1,6 i = 4,5. Konstatovano je takodje da se pri datim uslovima brzina dubinske ero- zije može smatrati konstantnom. Imajuci u vidu da se, obzirom na efekte razmere, rezultati labora- ■ torijskih ispitivanja mogu smatrati pouzdanim samo ako razmera nije manja od t:10, dobijeni rezultati se mogu ekstrapolovati na objekte u prirodi čija visina ne pre- lazi 3-4 m, a koji su izgradjeni od homogenog, vezanog materijala sa vrednošću kohezije od 1 0 - 2 0 kPa. Ovo znaci da su konkretni rezultati primenljivi na niske nasute objekte, kao sto su male brane na mikroakumulacijama, recni nasipi i si- gumosni prelivi. Ustanovljena zavisnost izmedju protoka vode i pronosa erodiranog materijala predstavlja osnovu za proracun deformacije objekta. Deformacija se racuna po unapred zadatim racunskim presecima, a u funkciji srednje brzine pre- livnog mlaza u ovim presecima. Na taj način se moze u svakom računskom koraku dobiti krivilinijska prelivna kontura. Ovi računski prelivni profili su po svom obliku u skladu sa erozionim profilima snimljenim na fizickim modelima. U tom smislu predloženi model ima prednost u odnosu na neke dosadašnje racunske modele, po kojima se uzduzni profil brese shematizuje na odredjeni nacin, a tecenje opisuje jednacinom nepotopljenog prelivanja preko širokog praga. Razvijeni matematički model erozije nasutih objekata, kao i odgovarajuči program! za racunar, verifikovani su na jednom od laboratorijskih eksperimenata. Dobijeno je dobro slaganje rezultata. Predloženi model predstavlja solidnu osnovu za dalji razvoj u ovoj oblasti, posebno u pravcu modeliranja trodimenzionalnog tecenja i bočne erozij e., This dissertation presents the results of investigations undertaken
in order to develop a mathematical model of erosion of earth dams and embankments
exposed to overtopping. The flow over the crest of a dam and the resulting erosion
are treated by this model as two-dimensional phenomena. The earth structures made of
homogenous, cohesive material are considered.
The proposed mathematical model consists of two components: the
"hydraulic" component is used for calculation of 2D accelerated flow over a
spillway of arbitrary shape, while the "erosive" component is used for calculation
of the flow rate of the eroded material and deformation of the dam. The quasi­
steady flow conditions are assumed, thus the calcualtion is performed for given
time increments. The resulting deformation of the earth structure is computed
using the results of the preceding hydraulic calculation.
The flow over a dam is a free-surface curvilinear gravity flow
dominated by inertial effects, thus the evaluation of the hydraulic characteristics:
water surface profile, velocities and pressures, can be based upon the potential
flow theory. The obtained results confirm the general applicability of this theory.
The Boundary Element Method can be efficiently used for calculating
the free-surface potential flows. The determination of the free-surface is numerical­
ly difficult due to the nonlinear nature of the problem. The solution is based on
the Newton-Raphson iterative method, or the gradient method. The numerical
procedure has been verified by several case studies.
The calculation of deformation must be based upon laboratory
investigations of erosive behaviour of cohesive materials, since there is no
analytical approach to this phenomenon. The investigations have been carried out
using physical models placed in a laboratory flume 22 m long and 0,6 m wide. The
0,3 m high models have been constructed using equivalent cohesive material,
composed according to the precise laws of similitude.
The experimentally determined relation between the flow rates
of water (Q) and eroded material (G) can be expressed in the form:
Q = C e
G
C2Er
where time is implicitly taken into account by the parameter (E^) ~ the ratio
of the eroded volume to the initial dam volume. This parameter is thus
representative of the temporal state of dam erosion. The values of the regression
11
constants = 1.6, and = 4,5, have been determined for the specific
experimental conditions. The erosion rate has been found to be constant for the
same conditions.
Considering the scale effects, the obtained experimental results
are valid for scales not smaller than 1:10. Thus, the extrapolation of these
results to nature implies that they are valid for prototype earth structures
up to 3-4 m high, constructed of homogenous cohesive material, with cohesion
values of 10-20 kPa. This means that the results are applicable to small
structures, such as small earth dams, dykes, embankments, and emergency spillways.
The determined relationship between the flow rates of water and
the eroded material is the basis for computing the deformation. The calculation
is carried out for chosen cross-sections along the flow, and the deformation is
locally proportional to the mean cross-sectional water velocity. As the result
of calculation, a curvilinear solid boundary profile is obtained at each
comutational step. Such profiles agree in shape with the erosion profiles filmed
on the laboratory models. In this way the proposed mathematical model is a step
further in respect to some of the existing ones, in which the longitudinal
profile of the breach is shematized in various ways, and the flow is determined
by the broad-crested weir formula.
The developed mathematical model, and the corresponding computer
codes, have been verified by one of the laboratory experiments. A good agreement
between calculation and measurements has been obtained.
The proposed model provides a sound basis for further developments,
particularly in the field of mathematical modelling of 3D breach flows and the
lateral erosion.",
title = "Modeliranje procesa erozije nasutih objekata izloženih prelivanju",
url = "https://hdl.handle.net/21.15107/rcub_grafar_1797"
}
Jovanović, M.. (1987). Modeliranje procesa erozije nasutih objekata izloženih prelivanju. .
https://hdl.handle.net/21.15107/rcub_grafar_1797
Jovanović M. Modeliranje procesa erozije nasutih objekata izloženih prelivanju. 1987;.
https://hdl.handle.net/21.15107/rcub_grafar_1797 .
Jovanović, Miodrag, "Modeliranje procesa erozije nasutih objekata izloženih prelivanju" (1987),
https://hdl.handle.net/21.15107/rcub_grafar_1797 .