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Abstract. We discuss the extension of inequalityRA ≥ c
a rb+

b
a rc to the plane of triangle△ABC.

Based on the obtained extension, in regard to all three vertices of the triangle, we get the exten-
sion of Erdös-Mordell inequality, and some inequalities of Erdös-Mordell type.

1. Introduction

Let triangle△ABC be given in Euclidean plane. Denote byRA, RB and RC the
distances from the arbitrary pointM in the interior of△ABC to the verticesA, B and
C respectively, and denote byra, rb and rc the distances from the pointM to the sides
BC,CA andAB respectively (Figure 1).

Figure 1: Erdös-Mordell inequality

Then Erdös-Mordell inequality is true:

RA+RB+RC ≥ 2(ra+ rb+ rc) (1)

whereat equality holds if and only if triangleABC is equilateral andM is its center.
This inequality was conjectured by P. Erdös as Amer. Math. Monthly Problem 3740
in 1935. [9], after his experimental conjecture in 1932. [13]. It was proved by L.J.
Mordell in 1935. (in Hungarian, according to [13]), and as the solution of the Problem
3740 in 1937. [22].
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Considering the Erdös-Mordell inequality (1) the goal of this research is to de-
termine areas in the plane of the triangle, where the following three inequalities are
valid:

RA ≥ c
a

rb+
b
a

rc (2)

RB ≥ c
b

ra+
a
b

rc (3)

RC ≥ b
c

ra+
a
c

rb (4)

wherea= |BC| , b= |CA| , c= |AB| .
In this paper we determine a set of pointsE for which

RA+RB+RC ≥
(

c
b
+

b
c

)
ra+

( c
a
+

a
c

)
rb+

(
a
b
+

b
a

)
rc (5)

is valid. It is known that the triangular area of△ABC is contained in the setE [3], [4],
[11], [13], [14], [26]. Here we show that the setE is greater than the triangle△ABC,
and we give a geometric interpretation of the setE.

The proofs of Erdös-Mordell inequality are often based on different proofs of in-
equality (2), as given in [4], [6], [7], [11], [12], [23], [26]. N. Derigades in [8] proved
the inequality (5) valid in the whole plane of the triangle, where ra, rb and rc , are
signed distances. A similar result was given by B. Malešević [20], [21].

Note that V. Pambuccian [24] recently proved that the Erdös-Mordell inequality
is equivalent to non-positive curvature. Overview of recent results on Erdös-Mordell
inequalities and related inequalities is given in [1] - [3],[5], [8], [10], [13] - [21], [24],
[25], [27] - [30] .

2. The Main Results

In this section we analyze only the inequality (2). Let△ABC be a triangle with
verticesA(0, r) , B(p,0) ,C(q,0) , p 6= q, r 6= 0. Without diminishing generality, let
p < q. We denote byM (x,y) an arbitrary point in the plane of the triangle△ABC.
The distance from the pointM to the pointA, and the distance from the pointM to the
straight linesb andc are given by functions:

RA =

√
x2+(y− r)2 (6)

rb =
|−qy− rx+qr|√

r2+q2
(7)

rc =
|py+ rx− pr|√

r2+ p2
(8)

respectively. Consider the inequality (2) related to the vertex A. The analytical notation
of this inequality is:

√
x2+(y− r)2 ≥

√
r2+ p2

|q− p|
|−qy− rx+qr|√

r2+q2
+

√
r2+q2

|q− p|
|py+ rx− pr|√

r2+ p2
, (9)
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i.e.

|q− p|
√

r2+ p2
√

r2+q2
√

x2+(y− r)2 ≥
(
r2+ p2

)
|−qy− rx+qr|

+
(
r2+q2

)
|py+ rx− pr|.

(10)

Let y= kx+ r, k∈ R , then the inequality (10) reads as follows:

|x| |q−p|
√

r2+p2
√

r2+q2
√

1+k2 ≥ |x|
((

r2+p2)|−qk−r|+
(
r2+q2)|pk+r|

)
(11)

For x= 0, the previous inequality is reduced to an equality which solution is the
point A(0, r) . For x 6= 0 we obtain inequality by a single variablek:

|q−p|
√

r2+p2
√

r2+q2
√

1+k2 ≥
(
r2+ p2)|−qk−r|+

(
r2+q2)|pk+r| . (12)

Solution of the inequality (12) reduces to four cases per parameterk:

(α1) :

{
pk+ r ≥ 0

−qk− r ≥ 0,
(13)

(α2) :

{
pk+ r < 0

−qk− r ≥ 0,
(14)

(α3) :

{
pk+ r ≥ 0

−qk− r < 0,
(15)

(α4) :

{
pk+ r < 0

−qk− r < 0.
(16)

Note that the valuek corresponds to the points(x,y) ∈R2 located on the straight
line y= kx+ r . With its values, the mentioned parameter of the liney= kx+ r decom-
posesR2 on four corner areas. Inquiring the existence of parameterk (i.e. the pencil
of lines y = kx+ r through the vertexA) depending on the signs of parametersp, q
and r , we provide the following table of existing corner areas(α1)− (α4) :

p q r (α1) (α2) (α3) (α4)
1. >0 >0 >0 + + + -

2. <0 >0 >0 + - + +

3. <0 <0 >0 - + + +

4. >0 >0 <0 - + + +

5. <0 >0 <0 + + - +

6. <0 <0 <0 + + + -

7. = 0 >0 >0 + - + -

8. = 0 >0 <0 - + - +

9. < 0 = 0 >0 - - + +

10. < 0 = 0 <0 + + - -

Table 1: The existence of the corner area depending on the parameters p, q and r
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The corner areas(α1) and (α4) are always in the interior of∢BAC and its cross
angle, while the areas(α2) and (α3) are in the interior of its supplementary angle
(Figure 2).

Figure 2: Existence of the corner area for the vertex A (Cases1. to 6. in the Table 1)

Let us consider the equation:

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =
(
r2+p2) |−qk− r|+

(
r2+q2) |pk+ r| . (17)

I) Let k fulfill (α1) or (α4) . Then the previous equation can be rewritten in a way
that follows, with positive sign (+) in the case of area(α1) and negative sign (-) in the
case of area(α4)

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =±
(
(−qk− r)

(
r2+p2)+(pk+ r)

(
r2+q2)) (18)

i.e.

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =±(q− p)
(
r (q+p)+ k

(
pq− r2)) (19)

abbreviated written as
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λ
√

1+ k2 =±βk± γ =

{
βk+ γ, k∈ (α1)

−βk− γ, k∈ (α4)
(20)

where at:

λ = (q− p)
√

r2+ p2
√

r2+q2 and λ > 0 (21)

β =
(
pq− r2) (q− p) (22)

γ = r
(
q2− p2) . (23)

As p< q, the equation (19) can be divided byq− p 6= 0 and then squared:

(
r2+p2)(r2+q2)(1+ k2)=

(
r (q+ p)+ k

(
pq− r2))2

(24)

which transforms into (
r (p+q)k−

(
pq− r2))2

= 0. (25)

Based on the above equation, we conclude that there exists the unique solution:

k1 =
pq− r2

r (p+q)
(26)

only if, for k= k1 :
±βk± γ ≥ 0 (27)

is valid.

Hence, the straight liney= k1x+ r is in the interior of∢BAC and its cross angle,
or it doesn’t exist. The cases where valuesk1 from the formula (26) does not meet the
condition (27) are presented in theTable 1with:

in the case 1:k1>− r/q⇐⇒ p
(
q2+r2

)
>0 ;

in the case 3:k1>− r/p⇐⇒ (−q)
(
p2+r2

)
>0;

in the case 4:k1<− r/q⇐⇒ p
(
q2+r2

)
>0 ;

in the case 6:k1<− r/p⇐⇒ (−q)
(
p2+r2

)
>0.

LEMMA 1. For k∈ (α1) ∪ (α4) inequality(12) is valid, where equality holds for
k= k1 if (27) is fulfilled.

Proof. (12)⇐⇒
(
r (p+q)k−

(
pq− r2

))2 ≥ 0. ✷

COROLLARY 1. Inequality(12) is valid for linesb andc.

II) Let k fulfill (α2) or (α3) . Then equation (17) can be rewritten in a way that
follows, with negative sign (-) in the case of area(α2) and positive sign (+) in the case
of area(α3)

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =±
(
(qk+ r)

(
r2+p2)+(pk+ r)

(
r2+q2)) (28)
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or abbreviated written as

λ
√

1+ k2 =±δk± ε =

{
δk+ ε, k∈ (α3)

−δk− ε, k∈ (α2)
(29)

with parameters:

λ = (q− p)
√

r2+ p2
√

r2+q2 and λ > 0

δ =
(
r2+ pq

)
(q+ p) (30)

ε = r
(
2r2+q2+ p2). (31)

The equation (29) is considered under the following condition:

± δk± ε ≥ 0. (32)

By squaring the equation (29) we obtain

P(k) = λ 2(1+ k2)− (±δk± ε)2 =
(
λ 2− δ 2)k2−2δεk+

(
λ 2− ε2)= 0. (33)

For the square trinomial
P(k) = Â k2+ B̂k+ Ĉ (34)

coefficientsÂ, B̂, Ĉ are determined by:

Â = λ 2− δ 2 = (q− p)2
(
r2+p2)(r2+q2)−

(
r2+ pq

)2
(q+ p)2 (35)

B̂ =−2δε =−2r
(
r2+ pq

)(
q+ p

)(
2r2+q2+ p2) (36)

Ĉ= λ 2− ε2 =
(
r2+ pq

)((
pq− r2)(q− p)2−2r2(2r2+q2+ p2)

)
. (37)

Let us consider the equation:

Â =−4pqr4+
(
p4+q4−4pq3−4p3q−2p2q2)r2−4p3q3 = 0. (38)

It has real solutions forr in the following form:




r1,2 =
1

4
√

pq

(
(q− p)2 ±

√
(q− p)4−16p2q2

)
> 0

r3,4 =− 1

4
√

pq

(
(q− p)2 ±

√
(q− p)4−16p2q2

)
< 0

(39)

iff (
p≥ 0 ∧ q≥ (3+2

√
2)p
)

∨
(

p< 0 ∧ q≤ (3−2
√

2)p
)
. (40)

REMARK 1. When p < 0 and q > 0 then Â = 4|p|qr4 +
(
q2−p2

)2
r2 + 4|p|q(

p2+q2
)
r2 + 4|p|3 q3 > 0 is valid. Note that the equation̂A = 0 is not considered

for p= 0 or q= 0
(
because we obtain the contradictions:p= 0, q 6= 0: Â = r2q4 =

0 =⇒ r = 0; i.e. p 6= 0, q= 0: Â = r2p4 = 0 =⇒ r = 0
)
.
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We distinguish the cases:

a) Let r = r j for some j = 1, 2, 3, 4, thenÂ = 0. In this case,̂B 6= 0, becauser2+
pq 6= 0 andq+ p 6= 0

(
in the case of equilateral triangle, there will be validq+ p= 0

and thenr = ±pi, i =
√
−1
)
. Therefore, by solving the linear equation̂Bk+ Ĉ= 0

we find that:

k2 =− Ĉ

B̂
=

λ 2− ε2

2δε
=

(q− p)2
(
r2+ p2

)(
r2+q2

)
− r2

(
2r2+q2+ p2

)2

2r (q+ p)(2r2+q2+ p2)
. (41)

For p < 0 and q > 0 the casea) is not considered
(
becauseÂ > 0

)
. Let us

examine when the valuek2 meet the condition (32). It is valid that:

±δk2± ε ≥ 0 ⇐⇒ ±(δk2+ ε) =±
(

δ
λ 2− ε2

2δε
+ ε
)
=±

(
λ 2+ ε2

2ε

)
≥ 0.

Based onε = r
(
2r2+q2+ p2

)
we conclude:

if r > 0 thenδk2+ε ≥ 0 is fulfilled, wherebyk2 fulfills condition (32) andk2 ∈ (α3) ;

if r < 0 then−δk2−ε ≥0 is fulfilled, wherebyk2 fulfills condition (32) andk2 ∈ (α2) .

In this case, the liney= k2x+ r is in the exterior of∢BAC and its cross angle.

b) Let r 6= r j for each j = 1, 2, 3, 4, then Â 6= 0 and in this case, by solving the
quadratic equation (33), we find the values:

k2,3=
−δε ±

√
λ 2 (δ 2+ε2−λ 2)

δ 2−λ 2

=
r(p+q)(r2+ pq)(q2+p2+2r2)±2

(
r2+p2

)(
r2+q2

)
(q−p)

√
r2+ pq

(q−p)2 (r2+p2) (r2+q2)− (r2+ pq)2 (q+p)2
.

(42)

If r2 + pq≥ 0 then existsk2,3 ∈ R . Incidence ofk2,3 ∈ R to the area(α3) , as to
the area(α2) is determined by the inequality (32). The expressionδk2,3 + ε exists
for δ 6= ±λ , whereby the expressionδk2,3+ ε is either positive or negative (because
δk2,3+ ε = 0=⇒ δ =±λ ).

Based on the Corollary 1, the straight linesy= ksx+ r,(s= 2, 3) are in the exterior of
∢BAC and its cross angle (Figure 3).

Consider the limiting case fork2,3 when r → r j . Note thatÂ = λ 2−δ 2−→
r→r j

0 is valid,

whereat from

k2,3 =
−ε

(δ −λ )(δ +λ )
·
(

δ ∓|λ |
√

1+
δ 2−λ 2

ε2

)

follows
lim
r→r j

k2 =
−ε

(δ +λ )
∧ lim

r→r j
k3 = ∞.
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Figure 3: The existence of the lines y= ksx+r, (s=2,3)

depending on the parameter̂A

Related to the∢BAC we distinguish the cases:

1. ∢BAC< π/2⇐⇒ r2+ pq> 0 and if Â 6= 0 then there are two real and different
values ofk2 andk3 . In this case, the following lemma is valid:

LEMMA 2. For ∢BAC< π/2, k∈ (α2)∪ (α3) the inequality(12) is valid, just in
the cases:

1. Â > 0 ∧ k∈ [−∞, k2]∪ [k3,+∞] \
(
(α1)∪ (α4)

)
;

2. Â = 0 ∧ k∈ [−∞, k2]\
(
(α1)∪ (α4)

)
;

3. Â < 0 ∧ k∈ [k2, k3]\
(
(α1)∪ (α4)

)
;

where the equality holds for k= k2 or k= k3 .

2. If ∢BAC= π/2⇐⇒ r2 + pq= 0 thenÂ = −qp(q− p)4 , B̂ = 0 andĈ = 0, ac-
cording to the equation (42) thatk2,3 = 0. Hence is valid:

LEMMA 3. For ∢BAC= π/2 and k∈ (α2)∪ (α3) the inequality(12) is valid.
The equality is valid only for k= 0.

Proof. (12)⇐⇒ Â k2+ B̂k+ Ĉ≥ 0⇐⇒−qp(q− p)4k2 ≥ 0. ✷

8



3. ∢BAC> π/2⇐⇒ r2+ pq< 0. In this case, for:r2 <−pq and for the coefficient̂A:

Â > 4r6+
(
p4+q4

)
r2+4

(
p2+q2

)
r4−2r6+4p2q2r2

= 2r6+4
(
p2+q2

)
r4+

(
p4+q4+4p2q2

)
r2 > 0

is valid. Sincek2,3 ∈C andÂ > 0 the inequality (12) is valid, which proves the claim:

LEMMA 4. For ∢BAC> π/2 and k∈ (α2)∪ (α3) the inequality(12) is valid in
the strict form.

Based on the previous considerations inI) andII) , follows:

STATEMENT 1. The inequality(12)holds in following cases:

k∈ (α1)∪ (α4)

or

k∈ (α2)∪ (α3) for ∢BAC≥ π/2

i.e.

k∈ [−∞, k2]∪ [k3,+∞]\
(
(α1)∪ (α4)

)
∧ Â > 0

k∈ [−∞, k2]\
(
(α1)∪ (α4)

)
∧ Â = 0

k∈ [k2, k3]\
(
(α1)∪ (α4)

)
∧ Â < 0,

for ∢BAC< π/2.

3. Conclusion

For the vertexA, let us define

EA =
{
(x,y) |RA ≥ c

a
rb+

b
a

rc

}
,

and for the verticesB andC, let us define

EB =
{
(x,y) |RB ≥ c

b
ra+

a
b

rc

}
,

EC =
{
(x,y) |RC ≥ b

c
ra+

a
c

rb

}
,

respectively. Based on the analysis of the inequalities (2), (3) and (4), the inequality (5)
is valid in the intersection of the areas:

E = EA∩EB∩EC. (43)

Therefore follows

STATEMENT 2. Erdös-Mordell inequality is valid in the areaE .

Let us define the setM by the intersection of the corner areas formed fromEA ,
EB andEC , containing the initial triangle. Then the set of pointsM is quadrilateral or
hexagonal shape, and is contained the areaE (Figure 4).
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Figure 4: Extension of the triangle ABC to the areaM ⊂ E

Let us define Erdös-Mordell curve in the plane of triangle, by the following equa-
tion:

RA+RB+RC = 2(ra+ rb+ rc) , (44)

where

RA =

√
x2+(y− r)2 , RB =

√
(x− p)2+ y2 , RC =

√
(x−q)2+ y2 ,

ra =
|y(q− p)|√
(q− p)2

= |y| , rb =
|−q(y− r)− rx|√

r2+q2
, rc =

|−p(y− r)− rx|√
r2+ p2

.

The curve (44) is a union of parts of algebraic curves of ordereight (Figure 5).

 

 

Figure 5: Erdös-Mordell curve and the areaE
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Let us denote byE’ the part of the planeR2 bounded by the Erdös-Mordell’s
curve and consisting the triangle△ABC. Thus, according to the fact that inequality
(5) is valid in the area of the triangle△ABC, and based on continuity, it follows that
inequality (5) is valid in the areaE’. Remark that the areaE’ allows us to precise when,
except for the inequality (5), some of the inequalities (2),(3) and/or (4) are true. For
example, in the area(E’\EA)∩EB∩EC the inequalities (5), (4), (3) are true and (2) is
not true. At end of this section let us emphasize that the following statement is true.

STATEMENT 3. All geometric inequalities based on the inequalities(2), (3) and
(4) can be extended from the triangle interior to the areaE .

EXAMPLE 1. In the areaE , the inequality of Child [7] is valid:

RA ·RB ·RC ≥ 8 · ra · rb · rc (45)

because, based on inequality between arithmetic and geometric mean, follows:

a ·RA ≥ b · rc+ c · rb ≥ 2
√

b ·c · rb · rc (46)

b ·RB ≥ c · ra+a · rc ≥ 2
√

c ·a · rc · ra (47)

c ·RC ≥ a · rb+b · ra ≥ 2
√

a ·b · ra · rb. (48)

Hence, by multiplying the left and right sides of inequalities (46) - (48), we get the
inequality (45) in the areaE . ✷

At the end of this paper, let us set up an open problem (proposed by anonymous
reviewer): prove or disprove that there exist a positive number ε such that the area of
E’ is bigger than 1+ε times the area of the triangle for every triangle. Thus, we set a
conjecture: for the finite area ofE’ the valueε is determined in the case of equilateral
triangle.

ACKNOWLEDGMENT. The authors would like to thank anonymous reviewer for
his/her valuable comments and suggestions, which were helpful in improving the paper.
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