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Abstract. In the present paper, the Preisach model of hysteresis is extended to structural analysis of 
trusses damaged under cyclic loading in plastic range. Parameters for the Preisach model of cyclic 
plasticity are obtained from uniaxial loading experiment. Damage, as a consequence of micro 
cracks appearance due to alternating loading in plastic domain, is modeled using brittle elements 
according to Preisach procedure. Results of this research are compared with the already existing in 
the literature. In the paper examples of trusses under various cyclic loadings are presented.  

Introduction 

Since there are numerous examples of hysteresis phenomena occurring in physical processes 
(hysteresis in continuum mechanics, in ferromagnetism, in filtration through porous media etc.), 
appropriate modeling of hysteresis is of great interest for engineers and physicists. One of the most 
powerful scalar model of hysteresis, among those that are known so far, was proposed by the 
physicist F. Preisach in 1935 [1] to represent scalar ferromagnetism. Application of the Preisach 
model to cyclic behavior of elasto-plastic material was introduced in 1993 by [2,3]. One of the most 
important properties of the Preisach operator is the so-called memory map [4,14], but in addition  it 
is shown in [2] that suggested (Preisach) model also possesses congruency and wiping out property, 
which makes this model [2,3,4,6]  appropriate to describe hysteretic behavior of elasto-plastic 
material. Although there are numerous well known models of cyclic plasticity defined [8,11], as is 
shown in [5], in this paper for uniaxial stress state, hysteresis will be defined, based on experimental 
data, in one particular rigorously mathematical form and implemented in finite element equations 
for trusses. In this paper, damage will be included in the analysis of trusses subjected to cyclic 
loading using two approaches. While in the first method, damage is incorporated in the three-
element unit [2,5] by adding damage element, in the second approach, damage is included in 
elastoplastic analysis by taking into account basic concepts of continuum damage mechanics. In this 
paper analysis is limited to a small deformations and quasi-static problems for uniaxial stress state.   

Using finite element method, equilibrium equations for structural analysis of trusses are obtained 
and algorithm for numerical solution is defined in C++ code. Several numerical examples will be 
analyzed and results obtained by suggested models will be presented. The second part of this paper 
contains basic outline of the Preisach model and its application of modeling ductile materials 
subjected to cyclic loading, as explained in [2,3,4]. In the third part, two different approaches, for 
including damage in the analysis of cyclic plasticity using the Preisach model, are presented. In the 
fourth part, finite element equations for static nonlinear analysis of trusses subjected to cyclic 
loading will be shown. In the fifth part, numerical examples are presented and results, obtained by 
this model, are analyzed and compared. 

Preisach model for cyclic plasticity  

According to Mayergoyz [9], the Preisach model implies the mapping of an input u(t) on the output  
f(t) in the integral form: 
 

( ) ( ),( ) ,  .                                                                                                       (1)α βf t P α β G u t dαdβ= ∫∫
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where Gα,β is an elementary hysteresis operator given in Fig. 1a. Parameters  α and β are up and 
down switching values of the input, while P(α,β) is the Preisach function, i.e., a weight (Greens) 
function of the hysteresis nonlinearity to be represented by the Preisach model. The domain of 
integration of integral in the Eq. 1 is right triangle in the α,β plane, with α = β being the hypotenuse 
and (α0 , β 0 = - α 0 ) being the triangular vertex (Fig. 1b).   
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   Fig.1 a Elementary hysteresis operator                 Fig. 1b Staircase line in the Preisach triangle 

History of loading corresponds to staircase line L(t), which divides triangle into two parts [2]. 
Elastic-linearly hardening material behavior, characterized by the stress–strain curve shown in Fig. 
2a. (E and Eh are elastic and hardening moduli, respectively), can be modeled by a three-element 
unit shown in Fig. 2b. 
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   Fig. 2a Elastic-linearly hardening stress-strain       Fig. 2b Three-element unit reproducing the  
   behavior with elastic modulus E, initial yield                     stress-strain behavior in (a) 
        stress Y and hardening modulus Eh.  

One-dimensional hysteretic behavior of elastoplastic material can be successfully described by the 
Preisach model [2,3,4]. In the case when strain is used as an input function, for a system consisting 
of infinitely many of three-element units, connected in a parallel and with uniform yield strength 
distribution within the range Ymin ≤ Y ≤ Ymax, the total stress is 
 

( ) ( )
0

0

, ,
max min

1
( )                                                   (2)
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h
α α α β
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E EE
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Y Y−

 −
= − 

−  
∫ ∫ ∫  

Comparison of results obtained via the Preisach and the Bouc-Wen  model of hysteresis [14,15] 
were presented in  [5]. 

Modeling of damage 

In the present paper, beside the elastoplastic behavior, damage is also incorporated in the material 
response defined via the Preiach model of hysteresis. There will be two approaches of damage 
incorporation. In the first approach for including damage into cyclic plasticity of trusses, principle 
used in [2,3], for the  Preisach model of plastic hysteresis is used, resulting analytical solution in 
closed form for material behavior that includes both plasticity and damage in the uniaxial stress 
state. In the second approach, material behavior is defined by combination of a plasticity theory 
formulated using the Preisach model of hysteresis and an isotropic damage theory formulated in 

Applied Mechanics and Materials Vol. 784 69



strain space. In this case, basic concepts of continuum damage mechanics are used, and solution is 
therefore obtained in the incremental-iterative procedure. In both approaches, microcracks closure 
effect in compression is taken in to account in such a way that the damage can increase only in 
tension. In this way this model is suitable for the quasi-brittle materials. 

Preisach model for cyclic plasticity and damage. Damage can be included in three element unit 
[2,3], using damage element with rupture limit YD, as shown in Fig.3b. Corresponding elastoplasic 
behavior is shown in Fig.3a. When tension stress in material reaches limit YD, complete failure of 
element is achieved. 
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Fig. 3a Elastic-linearly hardening stress–strain         Fig. 3b Three-element unit reproducing the 
behavior with elastic modulus E, initial yield  stress–strain behavior in Fig. 3a with stress 

          stress Y and hardening modulus Eh.                                  limit for damage YD. 

Preisach function P(α,β) can be determined in this case in the same manner as presented in [2,3]: 
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After determination of the Preisach function, output (stress) function can be expressed as a function 
of input (strain) function: 
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Dirac function under the corresponding limit of each integral determines where corresponding 
integral expression can exist. For a system consisting of infinitely many three-element units 
(Fig.2.b), connected in parallel, with uniform yield strength distribution Ymin ≤Y≤Ymax, and 

 
with 

uniform damage strength distribution YD1 ≤ YD ≤ YDN, (Fig.4) total stress can be calculated as: 
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Fig. 4a Stress–strain behavior of material modeled  Fig. 4b Parallel connection of infinite number 
        by parallel connection of infinite number of   of three-element units 
                            three-element units.  
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After further derivation, final expression for stress will be: 
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Where A2,A3  represent domains of integration and therefore, by geometrical interpretation, 
corresponding areas in the Preisach triangles (Fig. 5), while A1, A4 and A5 denote only limits for 
integration: 

1:  ;         4 :  ,  2 / ,  / ;         5:  ,  /  .             (10) dam dam damA α β A α β α β Y E α Y E A α β α Y E≥ ≥ − ≥ ≥ ≥ ≥  

Preisach triangle for domain of integration A2 determines elastoplastic behavior as it is shown in 
[2,3,4], and by geometrical interpretation, second part on the right hand side in (9) actually 
represents difference of positive and negative sets, A

+ and A
-. Preisach triangle for domain of 

integration A3 determines damage by degradation of moduli Eh and E. Limit of damage initiation is 
defined by /  init

dam
Y E (D=0), but this limit is increased by subsequent higher values of strain, that 

results in translation of lower limiting line in Fig.5.b. It can  be said that D is scalar damage variable 
[15,16] that represents relation of number of ruptured elements n, and number of all elements N, 
(D=n/N) in material defined by elements in Fig.4.b. Since this concept of damage refers only to 
tension stress, decreasing vertical line of the Preisach triangle does not have an effect on domain of 
integration A3, therefore areas in corresponding Preisach triangle do not change in the case of 
compression. 
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Fig. 5a Preisach triangle for domain of  Fig. 5b Preisach triangle for domain of 

integration A2                                                         integration A3 

Although damage variable D is constant through each step of loading in this approach, damage 
growth is achieved by accounting changes in the corresponding members of Eq.9.To illustrate this 
approach an example will be presented for uniaxial cyclic elastoplastic-damage behavior. For 
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material properties and strain input history of load shown in Fig.6.a, resulting stress-strain curve is 
presented in Fig.6.b. In the first load step material is subjected to input strain level of 6Y/E, which, 
according to (9) results in output stress: 
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Level of strain at the end of the first step indicates 50% of damage in material (D=0.5). In the 
second load step material is subjected to reversal strain to the level of -4Y/E. Degradation of both 
elastic and hardening modulus is obtained in stress-strain curve on Fig. 6b. Stress at the end of this 
step is: 
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    Fig. 6a Strain history for numerical example 1     Fig. 6b Stress-strain curve for the  first 

numerical example  

In the third load step material is subjected to strain level of complete damage 8Y/E. Stress at the end 
of this step is: 
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Preisach model for cyclic plasticity coupled with  CDM approach. In the following analysis 
basic concepts of macroscopic damage is introduced. Simple isotropic damage theory is 
implemented by introducing scalar damage measure in form of scalar variable ω   that evolves from 
0 (undamaged material) to 1 (fully damaged material): 
 

( ) ˆ1  .                                                                                                                                 (14)σ ω σ= −
  

where σ̂  represents effective stress of undamaged body (in the case of elastic or elastoplastic 
analysis) and σ  represents actual stress caused by damage. Effective strain of undamaged body ε̂  is 
considered to be equal to effective strain of damaged body ε . Since in the presented paper, uniaxial 
stress state is analyzed, with homogenous behavior of each element (bar) of structure (truss), local 
damage definition is sufficient and well suited for implementation since it is considered that damage 
is constant throughout each element of truss structure. Damage growth is only induced by tension 
stress. In this approach for including damage into analysis, the plasticity formulation remains based 
on the Preisach model of hysteresis [3]. Algorithm for elastoplastic analysis including damage can 
be defined as explained in [17] where this algorithm is used for gradient theories and for more 
complex stress state: 
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where Dep  represents elastoplastic matrix of material in multiaxial stress state or tangent modulus in 

presented unixial case. Hence Dep
dε represents elastoplastic stress increment. Note that ( )1ˆ i

σ
+  and 

( )ˆ i
σ represent effective stress of undamaged body in elastoplastic analysis at time increments i+1 
and i respectively, and they can be determined as presented in the second paragraph. Ductile 

damage variable ω  can be defined as function of damage history parameter  dκ  and it grows from 

zero to one as the parameter dκ  grows from threshold oκ  to its ultimate value uκ . Damage 

evolution can be defined as function that limits elastoplastic behavior in stress space and determines 
initiation of damage: 
 

 .                                                                                                                                   (19)d df ε κ= −
  

where measure ε  is the equivalent strain measure. It can be adopted as a function of elastic strains, 
or it could include plastic strains, which is more realistic and results in coupling of theories that 
include damage and plasticity (Fig.7.a.). It is important to emphasize that this algorithm Eq. 15-18 
is incremental procedure, unlike procedure used in the first approach, where solution for damage in 
cyclic plasticity is defined as analytical solution in the closed form. The damage growth function 
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governs damage variable evolution and it can be determined experimentally [18] in linear, power 
law or other form as shown in Fig.7b. In the following numerical analysis, modified power law 
form of damage variable evolution is used:  
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where ,γ β  represent material parameters. By varying these parameters, large number of failure 
modes induced by damage can be defined. 
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Fig. 7a Uniaxial elastoplastic behavior coupled      Fig. 7b Damage evolution law for damage 

with damage                                                                variable ω 

Finite element equations for trusses subjected to cyclic loading in plastic and damage domain  

Using principle of virtual displacements, equations for finite element procedures can be obtained. If 
only truss elements are considered, (body forces and surface forces are zero), only concentrated 
loads at nodes, as externally applied load are possible. In the finite element analysis we approximate 
the structure (in this case truss) as the assemblage of the discrete finite elements interconnected at 
the nodal points on the element boundaries. The expression for principle of virtual displacements 
then becomes:
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point i of applied loads, iu denotes virtual displacements,ε  corresponding virtual strains and m= 

1,2…k, where k is the number of elements (bars). As it was presented in [5], if only one element m 
of structure is analyzed, substituting equation (9) into (21), it is obtained: 
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If the second approach is used for defining damage, algorithm is presented in Eq. 15-18 and 
effective stress is calculated by accounting only first two elements of Eq.22. 
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As it was shown in [5], second and third part in Eq.9 represent difference of integrals over positive 
and negative area A+

(t) and A
-
(t) in corresponding Preisach triangle. It is obvious that area A+

(t) is 
consisted of sum of N trapezes whose vertices have coordinates equal to past input extrema [2], and 
therefore it represents function of predominant input strain data values (εt

x
, ε t

y
) (Fig.5.a): 

 

( )( )* *
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( ) / 2
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x x y y y y

t t t t t t

t

A t ε ε ε ε ε ε
+

+ + +
=

 = − − + − ∑
 
                                                                          (23) 

 
Other parts on the left hand side of Eq.22 are linear functions of strain and they can easily be 
calculated in corresponding integration limits. Considering that displacement-based finite element 
method is used, it is necessary to exchange strain variable ε with bar length change ∆u, and because 
of Eq.23, A+

(t) will therefore represent function of predominant input bar length change data values 
∆u. It is considered that this problem would not require large displacement and large strain analysis, 
and if strain displacement matrix B is introduced, elastic nodal force vector and plastic (with 
damage) nodal force vector are defined [5]:
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Where elements u(m)

A2  to u(m)
A5  represent corresponding changes in domains of integration of each  

part.  For the finite element assemblage, expression in Eq.25 becomes: 
 

el pdR R R− = .                                                                                                                              (26) 

 
It is important to emphasize that elements of vectors Rpd represent both plastic and damage nodal 
forces transformed in the global system, by accounting elements on the left hand side of Eq.24. For 
solving problem of nonlinear static analysis, iterative procedure using Newton-Raphson initial 
stress method can be applied: 
 

( ) ∆ ∆ ( 1)∆ i t t t t i

elK U R F+ + −= −  
∆ ( ) ∆ ( 1) ( )∆t t i t t i iU U U+ + −= +                                                                                                       
∆ ( ) ∆ ( ) ∆ ( )  .                                                                                                               (27)t t i t t i t t i

el dpF K U R+ + += +
 

Procedure for iteration i in Eq. 27 is repeated until convergence is achieved. According to defined 
procedures for numerical analysis from Eq. 27, algorithm for elastoplastic and damage analysis of 
trusses subjected to cyclic loading was defined in C++ code. During every step and iteration in 
expressions given by Eq. 23 to Eq. 27, in every bar of truss structure, plastic and damage part from 
Eq. 26 is being calculated according to current state of corresponding bar and then assembled in 
global matrix in Eq. 26. In static analysis, if material has very small or no strain hardening (Eh≈0), 
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in order to provide some indication of when both the displacements and the forces are near their 
equilibrium values, it is recommended [7] that convergence criteria should be based on energy 
tolerance condition as shown in Eq. 28. In every iteration increment of internal energy is compared 
to initial internal energy increment: 
 

( ) ( )( )( ) ∆ ∆ ( 1) (1) ∆∆ ∆i T t t t t i T t t t
EU R F U R F+ + − +− ≤∈ − .                                                                (28) 

 
In the cases when load is displacement input history function, negative stiffness occurring in 
particular truss elements demands that convergence criteria should be based on both force and  
displacement tolerance condition. In the cases when load is force input history function, negative 
stiffness occurring in particular truss elements leads to divergence of numerical procedure.  

Numerical analysis 

For the numerical analysis, material property for structures is defined from the results of experiment 
for cyclic loading in stable cycle loop [10], which is used to determine analytical solution based on 
the Preisach model as shown in [5]. Different models used in the numerical analysis are shown  in 
Fig.8,  where parameters for damage models are adopted arbitrarily. Beside elastoplastic behavior 
defined using the Preisach model of hysteresis without damage, two models for incorporating 
damage in elastoplastic analysis are used. In the first approach, the Preisach model of hysteresis is 
also used to define damage in material as presented above in the first and the second approach. 
Paremeters  κo, κu, α, γ  are determined to match model of damage defined using the Preisach model 
of hysteresis as shown in Fig.8.b. It is adopted that the equivalent strain measure is based on total 
strain measure. 
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Fig. 8a Time history function of displacement Fig. 8b Resulting hysteretic loops for different  
                                                                                                                         models    

In order to emphasize the possibilities of presented models, in the first example, one bar (area 
0.02m2) was subjected to cyclic loading in plastic domain, where input functions for loading were 
displacement (Fig.8.a) and force history functions. When displacement history function is used for 
loading to the maximum damage limit, complete degradation of both elastic and hardening modulus 
is occurred. In the case where the Preisach model of hysteresis is used for defining damage, 
resulting bounding stress-strain curve can be obtained with single increment in each step, while 
algorithm defined in the second approach (CDM coupled with plasticity) demands high number of 
increments to achieve convergence of solution. When the force history function is used for loading, 
analysis is possible only until the strain limit of negative stiffness.  Summary of the analysis 
conducted in the first numerical example is shown in the Table 1. 
In the second numerical example, truss structure shown in the Fig.10. is subjected cyclic loading, 
where time history functions were displacement functions. Material property is identical as in the 
first numerical example. Each bar of truss structure has cross sectional area equal to 0.02m2.  
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Table 1. Overview of the Analysis in the first numerical example 

Analysis 
No.Ex.1 - Load u(t) No.Ex.1 - Load R(t) 

num. of 
iterations 

num. of 
increments 

CPU 
time [s] 

num. of 
iterations 

num. of 
increments 

max displ. 
[m]   

EP An. w/o Dam. 1 11 0.4 1074 11 0.020498 
EP An. w/ Pr.Dam. 1 11 0.5 3932 11 0.024588 

EP An. w/ CDM.Dam. 1 1579 7.47 10738 33 0.024458 
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19 20 21 22 23 24 25 26
5 6 7 8
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Fig. 10 Truss structure in the second numerical example 

     
Time history function for displacement in the second example is shown in Fig. 11.a and resulting 
hysteretic loops for some of the characteristic bars are presented in the Fig. 11b. Model of damage 
defined using the Preisach model of hysteresis demands in this case iterations to perform 
redistribution of forces in truss structure, while model defined with coupling CDM approach with 
plasticity demands higher number of increments and consequently demands higher number of 
iterations to achieve convergence of solution. Summary of the analysis conducted in the second 
numerical example is shown in the Table 2. 
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Fig. 11a Time history function of  displacement    Fig. 11b Resulting hysteretic loops obtained 

in the second numerical example                            via Preisach model for damage 

Table 2. Overview of the Analysis in the second numerical example 

Analysis 
No.Ex.2 - Load u(t) 

num. of 
iterations 

num. of 
increments

CPU time 
[s] 

max damage [%]  
bars 1 and 8 

max damage [%]  
bars 29 and 33   

EP An. w/o Dam. 576 6 5.716 - - 
EP An. w/ Pr.Dam. 2263 9 21.6 18.52 11.58 

EP An. w/ CDM.Dam. 64169 594 55.1 17.5 11.16 

Conclusion 

In the present paper, the elastoplastic analysis of trusses subjected to cyclic loading is extended by 
taking damage into account. In the first approach, the Preisach model of hysteresis was used for 
defining both plasticity and damage in material, while in the second damage was defined by using 
basic concepts of continuum damage mechanics in the isotropic material. Although, the second 
approach enables various different failure modes obtained using different exponential parameters, 
for numerical analysis of truss structures, the first approach uses solution for material behavior, 
defined in closed form, leading to higher computational efficiency. For numerical analysis, critical 
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points are those in which negative stiffness occurs, leading to redistribution of forces in opposite 
direction. In general case, energy, force and displacement criteria for convergence must be satisfied 
in order for solution to converge. 
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