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Summary: Although the lattice-Boltzmann method (LMB) originates from the kinetic 

theory of gases, it can be adopted for many practical engineering uses. This paper 

explores the potential of the LBM in computational hydraulics. The discrete lattice-

Boltzmann equation is implemented using the appropriate equilibrium distribution 

function to simulate flow in a simple open channel. Numerical tests are conducted in 

order to assess the ability of the numerical model based on the LBM to reproduce steady 

state situations, slip and no-slip boundary conditions on impermeable walls, upstream 

and downstream boundary conditions commonly used in hydraulic engineering. The 

paper also presents the results of unsteady flow simulations, as well as flow simulations 

over a non-uniform channel bed. 
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1. INTRODUCTION 
 

The Boltzmann equation is a kinetic equation that deals with the motion of fluids in 

meso-scale and it relies on statistical mechanics. Statistical mechanics predicts the way 

in which atoms and molecules (microscopic scale) determine the macroscopic properties 

of fluids, such as viscosity, pressure, etc. However, the Boltzmann equation replaces 

tagging each fluid particle with a distribution function, i.e. it describes the propagation of 

a distribution function instead of the propagation of each and every particle in a mass of 

fluid. This is the essence of describing fluid flow in meso-scale [1,2].  

The lattice-Boltzmann method was developed from the lattice-gas automata [3]. The 

core principle of the lattice-Boltzmann method is the indirect solution of the fluid motion 

equations, by solving something else, something much simpler. Therefore, simple 
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arithmetic calculations can generate accurate solutions to the complex partial differential 

equations that describe fluid flow. This paper presents a lattice-Boltzmann model for the 

shallow water equations commonly used in computational hydraulics. 

 

 

2. GOVERNING EQUATIONS 
 

The Boltzmann equation is a kinetic equation that describes the propagation of the 

distribution function and it is given as [3] 

 

 
c

f F
c f f f

t 


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
, (1) 

 

where f  denotes the distribution function, t  is the time parameter, c  is the fluid 

particle velocity vector,   marks the gradient in physical space, 
c

  is the gradient in 

velocity space, F  is the external force vector,   marks the fluid density, while ( )f  

denotes the particle collision operator. 

Unlike when solving partial differential equations using traditional numerical 

procedures, the Boltzmann equation has to be discretized both in physical and velocity 

space. Therefore, a lattice pattern is introduced, which has two functions: defining 

computational points (i.e. computational mesh size) and determining the fluid particles’ 

velocities. In this paper a 9-speed square lattice is used (Fig. 1), where ci, i = 0,1,...,8 

denote discrete particle velocities. 

 

c0c5 c1

c3 c2c4

c7c6 c8
 

 

Figure 1. Lattice pattern 

 

On this lattice pattern, each fluid particle moves one lattice unit at its velocity along the 

eight links (indexes 1 through 8 on Fig. 1) during each computational time step, while 

index 0 indicates the rest particle with zero speed. Therefore, the particle velocity vector 

can be defined as 
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where   is the lattice index consistent with notation in Fig. 1. Since the fluid particles 

move one lattice unit in each time step, the particle velocity intensity in Eqs. (2) is 

defined as 

 

x
c

t





, (3) 

 

where x and t respectively denote the computational space- and time-steps. 

Consequently, after discretizing the Boltzmann equation (1) both in physical and 

velocity space, and after implementing the Bhatangar, Gross and Krook (BGK) 

approximation on the particle collision operator, one can derive the lattice-Boltzmann 

equation 
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where f (0) is the equilibrium distribution function,   is the relative relaxation time, index 

i marks the summation index consistent with Einstein’s notation, and N denotes the 

lattice number defined as 
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The problem now boils down to determining the appropriate equilibrium distribution 

function in such a way that the lattice-Boltzmann equation (4) can recover the 

macroscopic shallow water equations. The theory of the lattice-gas automata clearly 

states that an appropriate function for this role is the Maxwell-Boltzmann equilibrium 

distribution function [3]. However, the use of this equilibrium function in Eq. (4) implies 

that the lattice-Boltzmann equation can recover only the Navier-Stokes equations. Thus, 
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an alternative approach is to assume an equilibrium function as a power series of the 

macroscopic velocity 
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    , (6) 

 

where ui marks the macroscopic fluid velocity, while coefficients A, B, C and D remain 

to be determined. Since the equilibrium function has the same symmetry as the lattice 

pattern (Fig. 1), there must be 
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and similar expressions for coefficients B, C and D. The aforementioned coefficients in 

Eq. (6) can be determined using the constraints imposed on the equilibrium distribution 

function (mass and momentum conservation). For the shallow water equations, these 

constraints are given as  
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where h is the water depth, g is the gravitational acceleration, and ij denotes the 

Kronecker symbol. Substituting Eq. (6) into Eqs. (8), while using expressions similar to 

Eq. (7), finally yields the equilibrium distribution function for Eq. (4) that enables the 

recovery of the shallow water equations. 
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In order to prove that the water depth and velocities computed from Eqs. (8), using the 

values of the distribution function yielded by Eq. (4), are indeed the solution of the 

shallow water equations, the Chapmann-Enskog expansion is performed. This procedure 

utilizes taking the Taylor expansion in time and physical space of the first term on the 

left hand side of Eq. (4), as well as the expansion of the distribution function around its 

equilibrium according to perturbation theory. After this, by grouping the terms of the 

same order of magnitude, one can recover the continuity equation for shallow water flow 
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as well as the momentum equation for shallow water flow 
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where the kinetic viscosity is defined as 

 

 2
2 1 6c t   , (12) 

 

while the force term is 
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In Eq. (13) zb denotes the bed elevation, and b is the friction on the bed surface. It 

should be noted that Eq. (12) demonstrates a peculiar property of the lattice-Boltzmann 

method. Namely, the viscosity is dependent on the time step, as well as the mesh size 

(through the lattice velocity intensity c). Therefore, while performing numerical 

simulations, the relative relaxation time  should be adjusted so that Eq. (12) gives the 

desired viscosity for a given mesh size and computational time step. 

 

 

3. NUMERICAL RESULTS 
 

Using the governing equations given in Section 2, a computer code for simulation of 

shallow water flow in a simple straight channel was developed using the lattice-

Boltzmann method. Some numerical tests, performed in order to asses the developed 

code, are presented in this section. 
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Figure 2. 2-D plots of steady flow in a channel with uniform bed elevation 
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The first group of numerical tests is based on steady flow simulations in a straight 

channel with uniform bed elevation. The computational domain was 100m in the x 

coordinate direction and 50m in the y coordinate direction. The computational mesh is 

uniform with x=1m, while the computational time step was selected in accordance with 

the stability conditions given in Ref. [4]. The computer code was developed in a way 

that enables the implementation of slip and no-slip boundary conditions on impermeable 

walls using the bounce-back scheme as described in Ref. [4,5].  

 

 
 

Figure 3. Velocity distribution and stabilization time 

 

The firs simulation in this group utilizes the periodic boundary condition on the 

upstream and downstream ends, along with the no-slip boundary condition on the 

domain walls. A 2-D plot of this computation is presented on Fig. 2a. In this case the 

flow pattern consists of zero velocity on the impermeable walls (no-slip b.c.) and 

maximum velocities at the midpoint of any cross-section (straight line perpendicular to 

the x-coordinate direction, i.e. x=const.). The ability of the model to reproduce the same 

velocity distribution for different computational time step was also investigated. Figure 

3a demonstrates that there is no significant difference in numerical results even if the 

computational time step is decreased more than 120%. Since the purpose of this 

simulation was to achieve a steady state flow, the evolution of fluid velocity through 

time was also investigated (Fig. 3b). It should be noted that, after achieving a steady 

state, the continuity error was reduced to practically zero (i.e. machine precision). The 

aforementioned properties indicate a certain consistency of the model. 
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In practical hydraulic computations the upstream boundary condition is often a known 

discharge, while a known water surface elevation is imposed on the downstream end. 

The developed computer code also enables these boundary conditions on the upstream 

and downstream ends of the computational domain, respectively. Therefore, the first 

simulation was repeated with known discharge at the upstream end and known depth on 

the downstream end, while implementing the no-slip boundary condition on 

impermeable walls. A 2-D plot of this computation is presented on Fig. 2b. It is clear 

that the model redistributes the imposed discharge, which also indicates a good 

qualitative behavior of the model. Finally, a steady state computation was performed 

with a slip boundary condition on impermeable walls and imposed discharge and water 

surface level on upstream and downstream boundaries. A 2-D plot of this computation is 

presented on Fig. 2c. It can be clearly observed that the simulation resulted in a uniform 

velocity distribution throughout the domain, as expected. 

The second group of numerical test aimed to assess the ability of the model to perform 

unsteady flow computations. Using the domain and boundary conditions as on Fig. 2b, 

an unsteady flow simulation was conducted. A synthetic hydrograph was implemented at 

the upstream end, while a constant water surface elevation was maintained at the 

downstream end. The velocity change through time for a computational point at x=50m, 

y=25m is presented on Fig. 4. It can be concluded that after the stabilization time (1800 

sec) the hydrograph is propagated through the domain with negligible numerical 

oscillations. The continuity error was monitored during the simulation, and it stayed 

under 4·10-5%. Figures 4b and 4c present, in some detail, the numerical oscillations 

during the stabilization time and when the hydrograph reached its maximum value. 

 

 
 

Figure 4. Unsteady flow computation 
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The third, and final group of numerical tests consisted of flow simulations in a channel 

with non-uniform bed elevation. In the interior of the computational domain the bed 

elevation is somewhat higher in comparison with the surrounding area, thus creating an 

obstacle to the flow. A 2-D plot of this computation is presented on Fig. 5a. Since a no-

slip boundary condition was implemented on domain walls, the velocity is zero on the 

wall itself and it increases towards the interior of the domain. The velocity is 

significantly higher over the elevated bed area, as expected. Figure 6a presents the 

velocity distribution within a cross-section at the beginning (x=24m), at the middle 

(x=50m) and at the end (x=70m) of the obstacle. The existence of a v-velocity 

component indicates the tendency of the flow to bypass the elevated bed area, since it 

presents a restriction to the flow (higher bed friction, etc.). 

 

 
 

Figure 5. 2-D plots of steady flow in a channel with non-uniform bed elevation 
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The second simulation in this group was identical to the first, except for the impermeable 

wall boundary condition which was set to a slip boundary condition. A 2-D plot of this 

computation is presented on Fig. 5b, while the appropriate cross-section velocity 

distributions are given on Fig. 6b. The results are similar as in the previous case, with the 

exception that the flow is now more explicitly redirected toward the domain walls. This 

is also an expected behavior of the model, since the velocity on the impermeable 

boundary is not set to be zero. Therefore, the fluid is not additionally slowed down in the 

vicinity of the domain walls. 

 

 
 

Figure 6. Velocity distribution for flow simulation in a channel with non-uniform bed 

elevation 

 

 

4. CONCLUSION 
 

Unlike the traditional numerical models in computational hydraulics that directly solve 

the shallow water equations, the lattice-Boltzmann method utilizes an indirect way to 

solve these equations. The method’s trademark is a simple calculation procedure and 

easy implementation of boundary conditions.  

This paper describes a numerical model for shallow water flow simulations using the 

lattice-Boltzmann method. The presented numerical tests were conducted in order to 
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assess the basic properties of the numerical model as its' ability to achieve steady state 

flow conditions, unsteady flow simulations as well as the capacity to simulate flow over 

a non-uniform bed. It has been shown that the lattice-Boltzmann method is a very 

promising computational method that could be implemented in various aspects of 

hydraulic engineering. The main conveniences of the presented method are the 

following: only simple arithmetic calculations are used, the model uses only a single 

scalar variable, and finally, the governing equations are explicit which is ideal for 

parallel programming. 
Although the developed code is capable of simulating only relatively simple flow fields, 

the authors believe that further research on this subject would be most advantageous. 
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ПОТЕНЦИЈАЛ LATTICE-BOLTZMANN МЕТОДЕ У 

НУМЕРИЧКОЈ ХИДРАУЛИЦИ 

 
Резиме: Иако lattice-Boltzmann-ова метода (ЛБМ) потиче из кинетичке теорије 

гасова, она се може применити и за практичне инжењерске прорачуне. Овај рад 

истражује потенцијал примене ЛБМ у рачунској хидраулици. Дискретна lattice-

Boltzmann-ова једначина се примењује на течењу у једноставном отвореном 

каналу користећи одговарајућу равнотежну функцију расподеле. Спроведени су 

нумерички тестови у циљу стицања увида у могућности нумеричког модела да 

репродукује устаљено течење, граничне услове на непропусним зидовима са 

клизањем и без клизања, као и најчешће коришћене узводне и низводне граничне 

услове у хидротехници. Рад такође приказује резултате симулација неустаљеног 

струјања, као и резултате симулација течења преко неуниформног корита. 

 

Кључне речи: lattice-Boltzmann метода, нумеричка хидраулика, нумерички 

тестови 

 

 

 


