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Summary: Although the lattice-Boltzmann method (LMB) originates from the Kkinetic
theory of gases, it can be adopted for many practical engineering uses. This paper
explores the potential of the LBM in computational hydraulics. The discrete lattice-
Boltzmann equation is implemented using the appropriate equilibrium distribution
function to simulate flow in a simple open channel. Numerical tests are conducted in
order to assess the ability of the numerical model based on the LBM to reproduce steady
state situations, slip and no-slip boundary conditions on impermeable walls, upstream
and downstream boundary conditions commonly used in hydraulic engineering. The
paper also presents the results of unsteady flow simulations, as well as flow simulations
over a non-uniform channel bed.
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1. INTRODUCTION

The Boltzmann equation is a kinetic equation that deals with the motion of fluids in
meso-scale and it relies on statistical mechanics. Statistical mechanics predicts the way
in which atoms and molecules (microscopic scale) determine the macroscopic properties
of fluids, such as viscosity, pressure, etc. However, the Boltzmann equation replaces
tagging each fluid particle with a distribution function, i.e. it describes the propagation of
a distribution function instead of the propagation of each and every particle in a mass of
fluid. This is the essence of describing fluid flow in meso-scale [1,2].

The lattice-Boltzmann method was developed from the lattice-gas automata [3]. The
core principle of the lattice-Boltzmann method is the indirect solution of the fluid motion
equations, by solving something else, something much simpler. Therefore, simple
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arithmetic calculations can generate accurate solutions to the complex partial differential
equations that describe fluid flow. This paper presents a lattice-Boltzmann model for the
shallow water equations commonly used in computational hydraulics.

2. GOVERNING EQUATIONS

The Boltzmann equation is a kinetic equation that describes the propagation of the
distribution function and it is given as [3]

of F
—+C-Vi+—-V_f=0Q(f), (1)
ot p

where f denotes the distribution function, t is the time parameter, ¢ is the fluid
particle velocity vector, V marks the gradient in physical space, V_ is the gradient in

velocity space, F is the external force vector, p marks the fluid density, while Q(f)

denotes the particle collision operator.

Unlike when solving partial differential equations using traditional numerical
procedures, the Boltzmann equation has to be discretized both in physical and velocity
space. Therefore, a lattice pattern is introduced, which has two functions: defining
computational points (i.e. computational mesh size) and determining the fluid particles’
velocities. In this paper a 9-speed square lattice is used (Fig. 1), where ¢i, i = 0,1,...,.8
denote discrete particle velocities.
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Figure 1. Lattice pattern

On this lattice pattern, each fluid particle moves one lattice unit at its velocity along the
eight links (indexes 1 through 8 on Fig. 1) during each computational time step, while
index O indicates the rest particle with zero speed. Therefore, the particle velocity vector
can be defined as
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where « is the lattice index consistent with notation in Fig. 1. Since the fluid particles
move one lattice unit in each time step, the particle velocity intensity in Egs. (2) is
defined as

Ax
=—, @)
At

where Ax and At respectively denote the computational space- and time-steps.
Consequently, after discretizing the Boltzmann equation (1) both in physical and
velocity space, and after implementing the Bhatangar, Gross and Krook (BGK)
approximation on the particle collision operator, one can derive the lattice-Boltzmann
equation

f (X+C, At t+At)- fa(i,t)z—l(fa - fa(°))+%c F, )
T c

where f© is the equilibrium distribution function, z is the relative relaxation time, index
i marks the summation index consistent with Einstein’s notation, and N denotes the
lattice number defined as

1
=—2.C.C.. (5)

ai " ai
c a

The problem now boils down to determining the appropriate equilibrium distribution
function in such a way that the lattice-Boltzmann equation (4) can recover the
macroscopic shallow water equations. The theory of the lattice-gas automata clearly
states that an appropriate function for this role is the Maxwell-Boltzmann equilibrium
distribution function [3]. However, the use of this equilibrium function in Eq. (4) implies
that the lattice-Boltzmann equation can recover only the Navier-Stokes equations. Thus,

| 3BOPHNK PAOOBA MEBYHAPOOHE KOH®EPEHLIMJE (2016) |



t
4 INTERNATIONAL CONFERENCE

Contemporary achievements in civil engineering 22. April 2016. Subotica, SERBIA

an alternative approach is to assume an equilibrium function as a power series of the
macroscopic velocity

£ =A +B c,u+C,c,c, uu +D uu, (6)

where u; marks the macroscopic fluid velocity, while coefficients A, B, C and D remain
to be determined. Since the equilibrium function has the same symmetry as the lattice
pattern (Fig. 1), there must be

A=A=A=A=A A=A=A=A=A, ()

and similar expressions for coefficients B, C and D. The aforementioned coefficients in
Eq. (6) can be determined using the constraints imposed on the equilibrium distribution
function (mass and momentum conservation). For the shallow water equations, these
constraints are given as

> 1O (x,t)=h(%1),

a

Zc fO>%,t)=h(%t)u (%1), @®

al Taj a

¢ ¢ f(D)(X,t)zéghz(X,t)(Sij+h(>?,t)ui(>?,t)uj(>i,t),

where h is the water depth, g is the gravitational acceleration, and &; denotes the
Kronecker symbol. Substituting Eq. (6) into Egs. (8), while using expressions similar to
Eqg. (7), finally yields the equilibrium distribution function for Eq. (4) that enables the
recovery of the shallow water equations.

5gh®> 2h
h-———-—uu, a=0
6¢ 3c
©) gh2 h h h
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In order to prove that the water depth and velocities computed from Egs. (8), using the
values of the distribution function yielded by Eq. (4), are indeed the solution of the
shallow water equations, the Chapmann-Enskog expansion is performed. This procedure
utilizes taking the Taylor expansion in time and physical space of the first term on the
left hand side of Eq. (4), as well as the expansion of the distribution function around its
equilibrium according to perturbation theory. After this, by grouping the terms of the
same order of magnitude, one can recover the continuity equation for shallow water flow

M2 (hu)=0
oo ()70 (10)

as well as the momentum equation for shallow water flow

a(huluj):—g i[h—zjw A (hu)+F, (11)

0
—(hu,)+—
ot 6xj oX \ 2 6xj6xj

where the kinetic viscosity is defined as

v=c?At(2:-1)/6, (12)
while the force term is
aZb z-bi
F=-gh—-—. (13)
ox p

In Eg. (13) z, denotes the bed elevation, and =, is the friction on the bed surface. It
should be noted that Eq. (12) demonstrates a peculiar property of the lattice-Boltzmann
method. Namely, the viscosity is dependent on the time step, as well as the mesh size
(through the lattice velocity intensity c). Therefore, while performing numerical
simulations, the relative relaxation time 7 should be adjusted so that Eq. (12) gives the
desired viscosity for a given mesh size and computational time step.

3. NUMERICAL RESULTS

Using the governing equations given in Section 2, a computer code for simulation of
shallow water flow in a simple straight channel was developed using the lattice-
Boltzmann method. Some numerical tests, performed in order to asses the developed
code, are presented in this section.
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Figure 2. 2-D plots of steady flow in a channel with uniform bed elevation
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The first group of numerical tests is based on steady flow simulations in a straight
channel with uniform bed elevation. The computational domain was 100m in the x
coordinate direction and 50m in the y coordinate direction. The computational mesh is
uniform with Ax=1m, while the computational time step was selected in accordance with
the stability conditions given in Ref. [4]. The computer code was developed in a way
that enables the implementation of slip and no-slip boundary conditions on impermeable
walls using the bounce-back scheme as described in Ref. [4,5].

a) Ve locity distribution in a cross- section

ujmfs)

0 10 20 10 ) )
¥ (m)

. _ 3 Velocity during the stabilization time
0EE
0EBE
oTkE
0B E

ufmfe]

0.4
0.3

02ZE

0 000 7000 £000 E000
tis)

Figure 3. Velocity distribution and stabilization time

The firs simulation in this group utilizes the periodic boundary condition on the
upstream and downstream ends, along with the no-slip boundary condition on the
domain walls. A 2-D plot of this computation is presented on Fig. 2a. In this case the
flow pattern consists of zero velocity on the impermeable walls (no-slip b.c.) and
maximum velocities at the midpoint of any cross-section (straight line perpendicular to
the x-coordinate direction, i.e. x=const.). The ability of the model to reproduce the same
velocity distribution for different computational time step was also investigated. Figure
3a demonstrates that there is no significant difference in numerical results even if the
computational time step is decreased more than 120%. Since the purpose of this
simulation was to achieve a steady state flow, the evolution of fluid velocity through
time was also investigated (Fig. 3b). It should be noted that, after achieving a steady
state, the continuity error was reduced to practically zero (i.e. machine precision). The
aforementioned properties indicate a certain consistency of the model.
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In practical hydraulic computations the upstream boundary condition is often a known
discharge, while a known water surface elevation is imposed on the downstream end.
The developed computer code also enables these boundary conditions on the upstream
and downstream ends of the computational domain, respectively. Therefore, the first
simulation was repeated with known discharge at the upstream end and known depth on
the downstream end, while implementing the no-slip boundary condition on
impermeable walls. A 2-D plot of this computation is presented on Fig. 2b. It is clear
that the model redistributes the imposed discharge, which also indicates a good
qualitative behavior of the model. Finally, a steady state computation was performed
with a slip boundary condition on impermeable walls and imposed discharge and water
surface level on upstream and downstream boundaries. A 2-D plot of this computation is
presented on Fig. 2c. It can be clearly observed that the simulation resulted in a uniform
velocity distribution throughout the domain, as expected.

The second group of numerical test aimed to assess the ability of the model to perform
unsteady flow computations. Using the domain and boundary conditions as on Fig. 2b,
an unsteady flow simulation was conducted. A synthetic hydrograph was implemented at
the upstream end, while a constant water surface elevation was maintained at the
downstream end. The velocity change through time for a computational point at x=50m,
y=25m is presented on Fig. 4. It can be concluded that after the stabilization time (1800
sec) the hydrograph is propagated through the domain with negligible numerical
oscillations. The continuity error was monitored during the simulation, and it stayed
under 4-10°%. Figures 4b and 4c present, in some detail, the numerical oscillations
during the stabilization time and when the hydrograph reached its maximum value.
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Figure 4. Unsteady flow computation
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The third, and final group of numerical tests consisted of flow simulations in a channel
with non-uniform bed elevation. In the interior of the computational domain the bed
elevation is somewhat higher in comparison with the surrounding area, thus creating an
obstacle to the flow. A 2-D plot of this computation is presented on Fig. 5a. Since a no-
slip boundary condition was implemented on domain walls, the velocity is zero on the
wall itself and it increases towards the interior of the domain. The velocity is
significantly higher over the elevated bed area, as expected. Figure 6a presents the
velocity distribution within a cross-section at the beginning (x=24m), at the middle
(x=50m) and at the end (x=70m) of the obstacle. The existence of a v-velocity
component indicates the tendency of the flow to bypass the elevated bed area, since it
presents a restriction to the flow (higher bed friction, etc.).
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Figure 5. 2-D plots of steady flow in a channel with non-uniform bed elevation
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The second simulation in this group was identical to the first, except for the impermeable
wall boundary condition which was set to a slip boundary condition. A 2-D plot of this
computation is presented on Fig. 5b, while the appropriate cross-section velocity
distributions are given on Fig. 6b. The results are similar as in the previous case, with the
exception that the flow is now more explicitly redirected toward the domain walls. This
is also an expected behavior of the model, since the velocity on the impermeable
boundary is not set to be zero. Therefore, the fluid is not additionally slowed down in the
vicinity of the domain walls.
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Figure 6. Velocity distribution for flow simulation in a channel with non-uniform bed
elevation

4. CONCLUSION

Unlike the traditional numerical models in computational hydraulics that directly solve
the shallow water equations, the lattice-Boltzmann method utilizes an indirect way to
solve these equations. The method’s trademark is a simple calculation procedure and
easy implementation of boundary conditions.

This paper describes a numerical model for shallow water flow simulations using the
lattice-Boltzmann method. The presented numerical tests were conducted in order to
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assess the basic properties of the numerical model as its' ability to achieve steady state
flow conditions, unsteady flow simulations as well as the capacity to simulate flow over
a non-uniform bed. It has been shown that the lattice-Boltzmann method is a very
promising computational method that could be implemented in various aspects of
hydraulic engineering. The main conveniences of the presented method are the
following: only simple arithmetic calculations are used, the model uses only a single
scalar variable, and finally, the governing equations are explicit which is ideal for
parallel programming.

Although the developed code is capable of simulating only relatively simple flow fields,
the authors believe that further research on this subject would be most advantageous.
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MNOTEHLHUJAJI LATTICE-BOLTZMANN METOJE ¥
HYMEPUYKOJ XUAPAYJINIIN

Pesume: Haxo lattice-Boltzmann-osa memooa (JIEM) nomuue uz xunemuuxe meopuje
2acosa, oHa ce ModiCce NPUMEHUMU U 3a NPaKmuyHe uxdxicersepcke npopauyre. 0saj pao
ucmpasxcyje nomenyujan npumene JIBM y pauynckoj xudpaynuyu. Huckpemna lattice-
Boltzmann-osa jeonauuna ce npumersyje na meuewy y jeOHOCMAGHOM OMEOPEHOM
Kanany kopucmehu oozosapajyhy pasnomeodicny @yukyujy pacnoodene. Cnposedenu cy
HYMepUuKy mecmosu y yumy cmuyarea yeuoa y mozyfinocmu Hymepuukoe mooena 0da
PenpooyKyje yCmameHo meyerve, SPAHUYHE YCI08e HA HENPONnyCHUM 3U008uMa cd
Kauzarwem u b6e3 Kiusama, kao u najueuthe xopuuthiene y3600He u HU3800He cpaHUUHE
yenoge y xuopomexuuyu. Pao maxohe npuxasyje pesyaimame cumynayuja HeycmameHoz
cmpyjarea, Kao u pesyamame CUMyIayuja meyersa npeko HeyHUopmHo2 Kopuma.

Kwyune peuu: lattice-Boltzmann memooa, wnymepuuxa xuopaymuxa, Hymepuuxu
mecmosu
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