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Abstract

Faculty of Civil Engineering

Department of Geodesy and Geoinformatics

Automated Mapping of Climatic Variables Using Spatio-Temporal Geostatistical

Methods

Publicly available global meteorological data sets, from ground stations and remote sens-

ing, are used for spatio-temporal interpolation of air temperature data for global land ar-

eas. Publicly available data sets were assessed for representation and usability for global

spatio-temporal analysis. Three aspects of data quality were considered: (a) represen-

tation in the geographical and temporal domains, (b) representation in the feature space

(based on the MaxEnt method), and (c) usability i.e. fitness of use for spatio-temporal in-

terpolation (based on cross-validation of spatio-temporal regression-kriging models). The

results show that clustering of meteorological stations in the combined data set (GSOD

and ECA&D) is significant in both geographical and feature space. Despite the geograph-

ical and feature space clustering, preliminary tested global spatio-temporal model using

station observations and remote sensing images, shows this method can be used for ac-

curate mapping of daily temperature. Around 9000 stations from merged GSOD and

ECA&D daily meteorological data sets were used to build spatio-temporal geostatisti-

cal models and predict daily air temperature at ground resolution of 1 km for the global

land mass. Predictions were made for the mean, maximum and minimum temperature

using spatio-temporal regression-kriging with a time series of MODIS 8 day images, to-

pographic layers (DEM and TWI) and a geometrical temperature trend as covariates. The

model and predictions were built for the year 2011 only, but the same methodology can be

extended for the whole range of the MODIS LST images (2001–today). The results show

that the average accuracy for predicting mean, maximum and minimum daily tempera-

tures is RMSE = ±2°C for areas densely covered with stations, and between ±2°C and

±4°C for areas with lower station density. The lowest prediction accuracy was observed

http://www.bg.ac.rs
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in highlands (> 1000 m) and in Antarctica with a RMSE around 6°C. Automated map-

ping framework is developed and implemented as ❘ package ♠❡t❡♦. Likewise, package

♣❧♦t●♦♦❣❧❡▼❛♣s for automated visualisation on the Web, base on Google Maps API is

developed.

Key words: spatio-temporal interpolation, spatio-temporal kriging, space-time variogram,

linear regression, MaxEnt, daily air temperature, MODIS LST, global model

Scientific area: Geodesy

Scientific sub-area: Geodetic cartography

UDC number: 007:528.9(043.3) ; 551.581(043.3)
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Rezime

Grad̄evinski fakultet

Odsek za geodeziju i geoinformatiku

Automatsko kartiranje klimatskih varijabli primenom prostorno-vremenskih

geostatističih metoda

Javno dostupni meteorološki podaci, kako sa stanica tako i iz daljinske detekcije, korišćeni

su za prostorno vremensku interpolaciju temperature vazduha iznad površine Zemlje.

Zastupljenost i pogodnost javno dostupnih podataka je ocenjena, kroz tri aspekta kont-

role kvaliteta: (a) zastupljenost u geografskom i prostornom domenu, (b) zastupljenost

u karaktestičnom prostoru (feature space; bazirano na MaxEnt metodi), kao i (c) pogod-

nost korišćenja podataka za prostorno-vremensku predikciju (na osnovu kros-validacije

prostorno-vremnskog regresionog kriginga). Rezultati pokazuju da je kombinovani set

podataka (GSOD i ECA&D) značajno klasteriran i u geografskom i u karakterističnom

prostoru. Uprkos klasteriranju, preliminarni rezultati globalne interpolacije primenom

prostorno-vremenskog regresionog kriginga koristeći merenja sa stanica i snimke daljinske

detekcije su pokazali da se tako mogu dobiti precizne globalne karte dnevne tempera-

ture. Oko 9000 stanica kombinovanog seta podataka (GSOD i ECA&D) je korišćeno

za prostorno-vremensko geostatističo modeliranje i predikciju dnevnih temperatura u re-

zoluciji 1 km, iznad površine Zemlje. Za predikciju srednjih, minimalnih i maksimalnih

temperatura korišćen je regresioni kriging uz pomoćne prediktore: MODIS LST 8-dnevni

snimci, topografski lejeri (DEM i TWI) i geometrijski temperaturni trend. Model i predik-

cija se odnose na 2011 godinu, ali ista metodologija bi se mogla primeniti od 2001 godine

do danas (od kada su dostupni MODIS snimci). Rezultati pokazuju da je prosečna tačnost

predikcije za srednju, minimalnu i maksimalnu temperaturu vazduha oko ±2°C za oblasti

gusto pokrivene stanicama i izmed̄u ±2°C i ±4°C za oblasti koje su slabo pokrivene stani-

cama. Najniža tačnost predikcije je dobijena u planinskim predelima i na Antartiku, oko



6°C. ❘ softverski paket, ♠❡t❡♦, je razvijen kao resenje za automatsko kartiranje. Razvijen

je i paket ♣❧♦t●♦♦❣❧❡▼❛♣s za automatsku vizuelizaciju na Web-u, koristeći Google Maps

API.

Ključne reči: prostorno-vremenska interpolacija, prostorno-vremenski kriging, prostorno-

vremenski variogram, linearna regresija, MaxEnt, dnevne temperature vazduha, MODIS

LST, globalni model

Naučna oblast: Geodezija

Uža naučna oblast: Geodetska kartografija

UDK broj: 007:528.9(043.3) ; 551.581(043.3)
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Chapter 1✶

Introduction✷

One of the main applications of using data from meteorological stations is to produce✸

maps showing spatio-temporal patterns of climatic variables, also referred as mapping✹

climatic variables. The term mapping, in this thesis, is considered as an interpolation on✺

regular grids that are also called raster grids, climatic images or surfaces. Chapter 2 de-✻

scribes interpolation methods used in meteorology and climatology; they range from near-✼

est neighbour methods, splines, regression and kriging, to neural networks and machine✽

learning techniques. The most of used methods, and related works of global mapping at✾

daily temporal resolution (see Chapter 2 for literature review on interpolation of climatic✶✵

variables) uses only spatial interpolation. The reason for this purely spatial modelling of✶✶

spatio-temporal phenomenons might be that the areas of spatial statistics (and spatial GIS✶✷

modelling) have been much more developed in contrary to spatio-temporal statistics, able✶✸

to model processes, essential dynamics. Similar, time series analysis have been developed✶✹

and used mostly without considering spatial component of time series of observations.✶✺

Spatio-temporal geostatistics has made a breakthrough in the past decade with theo-✶✻

retical concepts (Cressie and Wikle, 2011) and various examples of applications have✶✼

been provided (Gething et al., 2007; Heuvelink and Griffith, 2010; Heuvelink et al., 2012;✶✽

Gräler et al., 2011; Hengl et al., 2012). An extension from purely spatial statistical mod-✶✾

els to spatio-temporal models is a logical evolution of the field, especially since we know✷✵

that most meteorological parameters vary both in space and time and that observations✷✶
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Chapter 1 Introduction

are correlated in space and time. The fitting of spatio-temporal models and making pre- ✶

dictions using spatio-temporal covariates (regression-kriging) implies more than just the ✷

smoothing of station data. The insights obtained from the process are much richer and ✸

allow one to distinguish sources of variability and to isolate purely temporal, spatial and ✹

spatio-temporal components of variability. Moreover, we can predict values using spatio- ✺

temporal observations in individual domains such as the spatial domain (e.g. as daily map, ✻

pure spatial data),the temporal domain (predict missing values at a certain meteorological ✼

station in the form of a time series) and in the spatio-temporal domain as spatio-temporal ✽

full grid data as is demonstrated in the spatio-temporal class (data model) developed by ✾

Pebesma (2012). ✶✵

A literature review shows that no group has previously attempted to interpolate daily ✶✶

values of meteorological variables using spatio-temporal regression-kriging with a time- ✶✷

series of remote sensing based covariates, especially at a fine resolution of 1 km. Hengl ✶✸

et al. (2012) describe a framework for space-time regression kriging interpolation of daily ✶✹

temperatures that makes use of a time-series of MODIS images, which are presented as ✶✺

a Croatian case study. Questions that remain include: 1) Can this methodology now be ✶✻

extended and improved? 2) How can daily maps of climatic elements at ground resolution ✶✼

of 1 km for the global land mass be produced? 3) Can this method be implemented using ✶✽

publicly available global data sets? 4) What remote sensing images and environmental ✶✾

layers can be used to model the trend? 5) Can we make an automated mapping procedure ✷✵

that can be applied to create an archive of global weather patterns at very high resolution ✷✶

for serving daily maps at 1 km and are similar to ❲♦r❧❞❈❧✐♠✳ ♦r❣ ? (❲♦r❧❞❈❧✐♠✳♦r❣ as ✷✷

a climatic repository Hijmans et al. (2005). ) ✷✸

Chapter 3 provides a review of publicly available meteorological data sets form ground ✷✹

stations and remote sensing. In addition, the chapter discusses the results of analysis, ✷✺

points to the possible problems with using this data for climatological mapping and sug- ✷✻

gests new directions of development in creating daily spatial grids for global land areas ✷✼

using the spatio-temporal regression kriging. International datasets from ground stations ✷✽

used in this thesis include the Global Surface Summary of Day (GSOD) disseminated ✷✾

by the National Climatic Data Center (NCDC) and the data set from the European Cli- ✸✵

mate Assessment and Data sets (ECA&D). This data is intended to be used for free and is ✸✶

unrestricted when used in research, education, and other non-commercial activities. ✸✷
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Predictions of the daily mean, the minimum and maximum air temperatures using spatio-✶

temporal regression-kriging with a time series of MODIS 8 day images, the topographic✷

layers (DEM and TWI) and a geometrical temperature trend as covariates is described in✸

detail within Chapter 4. The methodology, accuracy assessment and prediction is made✹

for year 2011, but the same methodology can be extended for the whole range of the✺

MODIS LST images (2001–today).✻

Automated mapping is a data driven approach to mapping with little or no human inter-✼

action.In this thesis, geostatistical mapping is assumed and used, which mostly requires✽

expert involvement in the mapping procedure. An automated mapping framework for the✾

mapping daily meteorological observations using spatio-temporal regression kriging is✶✵

developed and implemented in the ❘ environment (R Development Core Team, 2012) as✶✶

a package called ♠❡t❡♦. The implemented framework, which also includes some special✶✷

adaptations for climatic mapping, is described in the Chapter 5. The package source code✶✸

is available on ❤tt♣s✿✴✴r✲❢♦r❣❡✳r✲♣r♦❥❡❝t✳♦r❣✴♣r♦❥❡❝ts✴♠❡t❡♦✴.✶✹

Chapter 6 presents the spatio-temporal visualisation of meteorological data using ♣❧♦t✲✶✺

●♦♦❣❧❡▼❛♣s (Kilibarda and Bajat, 2012), which is a part of the automated mapping✶✻

framework, and also highlights isolated solutions for scientific cartographic communi-✶✼

cation in climatic mapping research (Luković et al., 2013). Interactive web maps related✶✽

to the results of this thesis were produced using ♣❧♦t●♦♦❣❧❡▼❛♣s and are available on✶✾

❤tt♣✿✴✴❞❛✐❧②♠❡t❡♦✳♦r❣✴.✷✵
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Chapter 2 ✶

Methods for the interpolation of ✷

climatic variables ✸

In this chapter the basic principles of the spatial interpolation methods mostly used in ✹

climatology and meteorology are presented. ✺

2.1 Introduction ✻

An interpolation method is the process of estimating (assessing) the values of a target vari- ✼

able at any spatial or temporal location where the target variable has not been measured. ✽

The mapping of climatic variable is one of the most important tasks for many applications. ✾

The term mapping in this study is considered as an interpolation on regular grids that are ✶✵

also called raster grids, climatic images or surfaces. ✶✶

The interpolation methods used in meteorology and climatology are quite diverse; they ✶✷

range from nearest neighbour methods, splines, regression and kriging, to neural networks ✶✸

and machine learning techniques (Tveito et al., 2006). Hartkamp et al. (1999); Tveito ✶✹

et al. (2006) gives a review of the interpolation methods used in climatic/meteorological ✶✺

mapping (interpolation). There are also various studies reported in literature that describe ✶✻

comparisons of the most commonly used interpolation methods and are given by Price ✶✼

et al. (2000), Jarvis and Stuart (2001), Stahl et al. (2006) and Hofstra et al. (2008). ✶✽
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One of the main applications of using data from meteorological stations is to produce✶

maps showing spatio-temporal patterns of climatic variables. This is not only interesting✷

for predicting approaching events, but also to create an archive of weather patterns (so✸

called “climate normals”). Images of weather conditions are commonly produced for✹

different spatial and temporal supports, e.g. ranging from single day to 50 or 100-year✺

time periods at the local, national and global scale. At the global scale, the first monthly✻

images of land surface temperature at 0.5° decimal degrees resolution was produced by✼

Legates and Willmott (1990). They used a collection of data consisting of 24,635 inde-✽

pendent terrestrial station records, 2223 oceanic grid-point records and a series of inter-✾

polations made using a spherically based interpolation procedure. Leemans and Cramer✶✵

(1991) generated grids at the same resolution for mean monthly temperature, precipita-✶✶

tion and cloudiness using a triangulation network followed by smooth surface fitting. New✶✷

et al. (1999, 2000) mapped terrestrial climatic variables at 0.5° decimal degrees resolu-✶✸

tion showing the monthly space-time variability of global land areas excluding Antarctica✶✹

for the period 1901–2000. Mitchell and Jones (2005) further refined interpolation tech-✶✺

niques to produce climatic grids for nine climate variables (temperature, diurnal tempera-✶✻

ture range, daily minimum and maximum temperatures, precipitation, wet-day frequency,✶✼

frost-day frequency, vapor pressure, and cloud cover) for the period between 1901–2002,✶✽

on a monthly temporal scale. Further on, Hijmans et al. (2005) used a thin-plate smooth-✶✾

ing spline on a collection of public meteorological data-sets of monthly records to produce✷✵

global (land mass) climatic images at 1 km resolution for the period from 1960 to 1990.✷✶

Becker et al. (2012) recently mapped monthly precipitation for the whole world using✷✷

an empirical interpolation method based on angular distance weighting at resolutions of✷✸

0.25°, 0.5°, 1.0° and 2.5° using data from the Global Precipitation Climatology Centre✷✹

(GPCC).✷✺

Examples of the most recent applications of interpolation methods on daily observation✷✻

at regional or global scales are worth listed below. The first global terrestrial gridded data✷✼

set of daily temperature averages and ranges, and daily precipitation has been developed✷✽

by Piper and Stewart (1996) for use in terrestrial biospheric modelling. Daily station ob-✷✾

servations, commencing from the year 1987, have been interpolated to a 1 by 1 degree✸✵

grid (longitude, latitude) using a nearest neighbours interpolation technique. Frei and✸✶

Schaer (1998) used an advanced distance weighting scheme commonly adopted for the✸✷
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analysis of precipitation on a global scale to create a daily precipitation grid at 25 km res- ✶

olution. The produced maps covering the European Alps were based on a station network ✷

with more than 6000 stations within countries of the Alpine region. Global daily predic- ✸

tions of meteorological variables were produced by Kiktev et al. (2003); Alexander et al. ✹

(2006), who used an angular distance weighting technique to interpolate extreme daily ✺

precipitation and temperature indices onto a 2.5° latitude by 3.75° longitude grid. Caesar ✻

et al. (2006) mapped daily maximum and minimum temperature anomalies using the same ✼

method and the same output resolutions as Alexander et al. (2006). There are now numer- ✽

ous approaches to produce daily weather images with fine resolutions at regional or local ✾

scales. Haylock et al. (2008) produced European-coverage maps of daily mean, minimum ✶✵

and maximum temperature and precipitation at 0.25° and 0.5° resolution using the Eu- ✶✶

ropean Climate Assessment and Dataset Project (ECA&D). These maps were generated ✶✷

by first estimating monthly averages, whereby daily anomalies from those averages were ✶✸

interpolated using kriging and added back to monthly estimates (Haylock et al., 2008). ✶✹

Van den Besselaar et al. (2011) mapped sea level pressure for Europe using the same data ✶✺

source and global kriging. Di Luzio et al. (2008) presented a method for mapping daily ✶✻

precipitation and temperature across conterminous USA at 2.5 arc-minutes (around 4 km) ✶✼

for the period of 1960–2001. Their method also combines interpolation (inverse distance ✶✽

weighting) of daily anomalies from respective gridded monthly estimates. In their case, ✶✾

interpolations were generated from the Parameter Elevation Regressions on Independent ✷✵

Slopes Model (PRISM). ✷✶

The different interpolation methods listed above can be divided into several categories ✷✷

according to the fundamental mathematics they are based on. Classification given by ✷✸

Tveito et al. (2006) is given here: ✷✹

1. Deterministic methods, ✷✺

2. Probabilistic methods, ✷✻

3. Artificial neural networks, ✷✼

4. Physical methods, ✷✽

5. Hybrid methods. ✷✾
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In this chapter the basic principles of the methods mostly used in climatology and me-✶

teorology are presented. The presentation of the methods will be structured in sections:✷

“Deterministic methods”, “Probabilistic methods” and “Artificial neural networks”. The✸

described interpolation techniques, in this chapter, have been widely applied in spatial✹

modelling and not just in meteorology/climatology. Two presented methods specially✺

developed for meteorology and climatology are presented in a separate section entitled✻

“Methods specially developed for meteorology and climatology”, and hybrid methods are✼

described in the section “Probabilistic methods”. Physical methods are not included in✽

the scope of this study.✾

2.2 Deterministic methods✶✵

Deterministic interpolation techniques create surfaces from measured points that are based✶✶

on either the extent of similarity (inverse distance weighted) or the degree of smoothing✶✷

(polynomial characteristics). Similar to other interpolation groups, deterministic interpo-✶✸

lation techniques can be global or local. Global techniques calculate predictions using✶✹

the entire set of observations in the domain of interpolation. Local techniques calculate✶✺

predictions from the measured points within neighbourhoods smaller then the study area.✶✻

These methods are exact interpolators (splines can be exact but not necessary) and the✶✼

resulting surface is made to pass through the data values.✶✽

The most used deterministic methods in meteorology and climatology are:✶✾

1. Nearest neighbours,✷✵

2. Triangulation,✷✶

3. Inverse distance weighting,✷✷

4. Splines and local trend surfaces,✷✸

5. Thin plate splines.✷✹
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2.2.1 Nearest neighbours ✶

Assuming that the area of interpolation is divided into polygons, the nearest neighbour ✷

method predicts the value of a variable at a target point that depends on the accompanied ✸

polygon. Due to the fact that the area of interpolation can be divided into polygons in ✹

an infinite number of ways, the Thiessen (or Dirichlet/Voronoi are also the same methods ✺

but with different names) method is used for dividing a domain of interpolation. Specifi- ✻

cally, it divides a test area into polygons using lines that are equidistant between pairs of ✼

observation stations. ✽

The Thiessen method also has two other requirements when forming polygons. The first ✾

requirement is that each polygon contains only one observation point. The second re- ✶✵

quirement is that any unobserved location from the polygon is closer to its enclosed ob- ✶✶

servation than to any other observation or observations contained within other polygons. ✶✷

So, the area of the one polygon is considered as the area of a unique value of target vari- ✶✸

able, where by the value is the same as the observation enclosed within the polygon (see ✶✹

Figure 2.1). The predicted image (surface) is similar to a mosaic, depending only on geo- ✶✺

metrical distribution of observation. For more details about the nearest neighbours method ✶✻

see Ripley (1981); Isaaks and Srivastava (1989); Burrough and Mcdonnell (1998); Li and ✶✼

Heap (2008). ✶✽

The nearest neighbours method has rarely been used in meteorology and climatology ✶✾

in recent times. However, the method is widely used in hydrology for estimating areal ✷✵

precipitation, but gives poor accuracy in comparison to novel methods. ✷✶

2.2.2 Triangulation ✷✷

The triangular irregular network (also known as Triangulation) was developed for digital ✷✸

elevation modelling and is also a geometrical method. The area of interpolation is divided ✷✹

into a network of non-overlapping triangles between observation points (similar to the net- ✷✺

work of polygons in the nearest neighbours method) but the triangles are empty. Unlike ✷✻

the nearest neighbors method, observation points are vertices of the triangles, see Fig- ✷✼

ure 2.2. Triangle network creation follows Delaunay triangulation principals (for details ✷✽

and variants see Tsai (1993)). Simplistically, the method tends to avoid skinny triangles. ✷✾
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FIGURE 2.1: Sample of meteorological stations and accopanied Thiessen’s polygons.
Projected in the Robinson projection system.

An added bonus is that each triangle will become part of a 3D surface (e.g. similar as in✶

terrain modelling) if we consider observation values as third coordinates of the triangle✷

vertices. As such, the constructed triangulated surface provides a surface representation✸

of the target variable (estimated values at any location in study area).✹

The triangulation method is efficient for estimation purposes but, as of late, is rarely used✺

in meteorology and climatology. The main reason for this is that the method is very sen-✻

sitive to the sampling design. The sampling design should cover all characteristic points✼

of the target phenomenon, e.g.all the points where the phenomenon has local minimum✽

or maximum. The approach is commonly used in geodesy and land surveying where to-✾

pographic points are well designed and sample sizes are relatively large compared when✶✵

compared to other disciplines. In contrast, sample sizes for meteorology and climatology✶✶

are considerably smaller.✶✷

2.2.3 Inverse distance weighting method✶✸

The inverse distance weighting or inverse distance weighted (IDW) method estimates the✶✹

values of a variable at an unobserved location using a linear combination of values at✶✺

9
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FIGURE 2.2: Sample of meteorological stations and accopanied triangulation polygons.
Projected in the Robinson projection system.

sampled points. The weights of this linear combination are proportional to the inverse ✶

of the distance between the interpolated and measured points. These weights are then ✷

normalised so the sum for all stations is equal to 1 (within the search neighbourhood for ✸

local IDW) (Tveito et al., 2006). The formula for the IDW estimation at an unmeasured ✹

location s0 is: ✺

ẑ(s0) =

m

∑
i=1

1
d

p
i

z(si)

m

∑
i=1

1
d

p
i

, (2.1)

where z(si) the measured value at location si, m is number of observations used for pre- ✻

diction (if m = n where n is total number of observation it is global IDW, but often m < n, ✼

local IDW, the searching criteria is based on the maximum distance to used observations ✽

for estimation or maximum numbers of neighbouring observations), p is a power param- ✾

eter, di is distance from estimated location to i-th observation. ✶✵

Formula 2.1 shows that if the power parameter is higher, the nearby observation has a ✶✶

heavier weight and has more influence on the estimation. This means that higher power ✶✷

10
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parameters hardly decreases the influence of the observations that are far apart from the✶

prediction location, because weight is defined as powered inverse distance. Therefore,✷

the high power parameter gives the high local influence of closer observations (almost✸

local interpolation) even if global IDW is used, because influence of distant observations✹

is small. IDW is referred to as a “moving average” when p is zero, “linear interpolation”✺

when p is 1, “weighted moving average” when p is not equal to 1 and “inverse distance✻

squared method” when p is two (Li and Heap, 2008). The choice of the parameter p is✼

often arbitrary and gives a biased solution for the result of interpolation (Burrough and✽

Mcdonnell, 1998). However. the p can be chosen on the basis of error measurement, e.g.✾

root mean square error or minimum mean absolute (MAE) error, to optimize the IDW. The✶✵

calculation of the optimal power parameter that is based on MAE is provided by ✐♥t❛♠❛♣,✶✶

❘ software package (Pebesma et al., 2010).✶✷

IDW is frequently applied in climatology and meteorology (Tveito et al., 2006). The✶✸

weakness of this very fast method is that the direct measurement of uncertainty can not be✶✹

obtained and that the spatial dependency is only modelled by the inverse distance weights.✶✺

2.2.4 Splines and local trend surfaces✶✻

Mitas and Mitasova (1999) describes splines as part of variational interpolation methods:✶✼

“The variational approach to interpolation and approximation is based on the assumption✶✽

that the interpolation function should pass through (or close to) the data points and, at the✶✾

same time, should be as smooth as possible. These two requirements are combined into✷✵

a single condition of minimising the sum of the deviations from the measured points and✷✶

the smoothness.”✷✷

The interpolation function consists of a series of polynomials with each polynomial of✷✸

degree p. For degree p is 1, 2, or 3, a spline is called linear, quadratic or cubic respectively.✷✹

The local trend surface fits a polynomial surface for each predicted point when using✷✺

only nearby observations. The local influence is ensured by using weighted least squares,✷✻

whereby the local point is the most influential (Venables et al., 1994).✷✼
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2.2.5 Thin plate splines ✶

Thin plate splines (TPS), previously known as “laplacian smoothing splines”, is a very ✷

popular interpolation method in climatic mapping (Hartkamp et al., 1999; Li and Heap, ✸

2008). “The TPS function minimises the surface curvature and imitates a steel sheet ✹

forced to pass through the data points: the equilibrium shape of the sheet minimises ✺

the bending energy that is closely related to the surface curvature” (Mitas and Mitasova, ✻

1999). In simpler words, the TPS function minimises observation deviations from surface ✼

and smoothing. In climatological applications, the smoothing parameter is calculated by ✽

minimising the generalised cross validation function (Li and Heap, 2008). ✾

2.3 Probabilistic methods ✶✵

This group of methods is based on a probabilistic framework in which expected values ✶✶

are of primary importance (Isaaks and Srivastava, 1988). This means that the measured ✶✷

observations represent one of the possible realisations of reality when considering the ✶✸

randomness of observed values. The resulting interpolation produces the expected value ✶✹

along with its associated uncertainty and confidence intervals for the prediction. The ✶✺

following section briefly describes linear regression and geostatistics. ✶✻

2.3.1 Linear regression ✶✼

Linear regression explores a possible linear relation (this is stochastic not functional re- ✶✽

lationship) between the primary variable (interpolated variable, e.g. temperature) and the ✶✾

explanatory variables (e.g. geographical coordinates, elevation, distance to coast line), ✷✵

which are easy to measure (or already known) over the domain of interpolation (Burrough ✷✶

and Mcdonnell, 1998). These explanatory variables are usually referred to as secondary ✷✷

variables, predictors, auxiliary variables, ancillary variables or covariates. Spatial inter- ✷✸

polation is often interpolation on a regular grid, so the explanatory variables should also ✷✹

be regular grids that cover the domain of interpolation. In further text below, the explana- ✷✺

tory variable is referred to as covariate. Linear regression is often used in geostatistical ✷✻

12
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applications for de-trending, where the part of variation estimated by regression is called✶

the deterministic part of a target variable phenomenon Z.✷

The linear regression model is given by:✸

m(s) =
p

∑
i=0

βi fi(s), (2.2)

where the βi are unknown regression coefficients, s any location in domain of interpola-✹

tion, the fi covariates that must be exhaustively known over the spatial domain, and p is✺

the number of covariates. Covariate f0 is taken as unity, resulting in β0 representing the✻

intercept.✼

2.3.2 Geostatistics✽

Webster and Oliver (2007) gives a very interesting history of geostatistics. It is is usually✾

believed that origin of geostatistics were in mining (Krige, 1951), but the first origin was✶✵

actually in agronomy (Mercer and Hall, 1911, in their article shows yields crop plots and✶✶

ideas about spatial dependence, correlation range ect.) and the second was in meteorology✶✷

(Kolmogorov, 1931).✶✸

Kolmogorov tried to describe and predict turbulence of the air and weather in his stud-✶✹

ies. He recognized a spatial correlation phenomenon and modelled it using a ‘structure✶✺

function’. He also tried to apply this function for an optimal and unbiased interpola-✶✻

tion method with minimum variance. Kolmogorov’s study is published with the name✶✼

“Interpolated and extrapolated stationary random sequences”, in 1942. Inspired by Kol-✶✽

mogorov, Gandin (1963) developed a method for use in synoptic meteorology called opti-✶✾

mal interpolation (His research was entitled “Objective analysis of meteorological fields”)✷✵

and the method is very similar to kriging, which was developed at same time by Matheron✷✶

(1963) in France and is based on Krige’s practical studies. Geostatistics includes several✷✷

methods that use kriging algorithms for estimating continuous variables in space (2D and✷✸

3D) and the space-time domain (2D + time).✷✹
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This section provides a short description of methods published in books written by Isaaks ✶

and Srivastava (1989); Cressie (1993); Burrough and Mcdonnell (1998); Webster and ✷

Oliver (2007); Hengl (2007); Bivand et al. (2008); Li and Heap (2008). ✸

In geostatistics, the spatial correlation is usually modelled by a variogram. A variogram ✹

plots semi-variance as a function of distance. The term semivariogram and variogram are ✺

mostly considered as synonymous in geostatistical practices. ✻

For processes modelled using geostatistics, the stationary assumption is considered. The ✼

intrinsic stationary assumes that the observation Z can be decomposed into a mean and a ✽

residual part (Burrough, 1998; Hengl, 2009): ✾

Z(s) = m+ ε ′(s)+ ε ′ (2.3)

where m is constant mean and ε ′(s) is the spatially correlated stochastic part of variation ✶✵

andε ′ uncorrelated stochastic component (pure noise) and: ✶✶

E(Z(s)) = m (2.4)

and spatial dependency is defined by the variogram as: ✶✷

γ(h) =
1
2
E(Z(s)−Z(s+h))2 (2.5)

whereh is Euclidean distance |h|, E denotes mathematical expectation and s is any location ✶✸

in the domain of interpolation. ✶✹

The variogram model can be understood as measure of the average dissimilarity between ✶✺

data separated in the spatial domain of an interpolation. Typically, we assume that pro- ✶✻

cesses occurring spatially close to each other are stronger related than processes occurring ✶✼

farther apart (Tobler ’s law). ✶✽

The sample (experimental) semivariogram γ̂(h) can be estimated from a set of obser- ✶✾

vations by calculating the semivariance from observation pairs z(si) and z(si + h), here ✷✵

referred to as separation groups where h can be interpreted as distance intervals (e.g. all ✷✶
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pairs separated from 50-70 km are taken as one group), and every separation group con-✶

tains n(h) number of pairs.✷

γ̂(h) =
1
2
·

1
n(h)

n(h)

∑
i=1

(z(si +h)− z(si))
2 (2.6)

The sample variogram is used for the fitting of a variogram model. The most used vari-✸

ogram models are: Nugget, Exponential, Spherical, Gaussian, Linear, and Power.✹

When a variogram model is known (modelled),a spatial covariance function is also implic-✺

itly known and kriging interpolation can be performed. An ordinary kriging interpolator✻

(base for many kriging variants) is a linear combination of measured values with weights✼

depending on the spatial correlation between the observations. It is an unbiased interpola-✽

tor since it aims at minimizing the variance of the errors and the mathematical expectation✾

of the errors is zero.✶✵

Kriging covers a range of least-squares methods of spatial prediction.Li and Heap (2008)✶✶

shortly desribes 22 geostatistical interpolators in their applications and Tveito et al. (2006)✶✷

remarks several interpolators as important for meteorological/climatic mapping:✶✸

1. Ordinary kriging,✶✹

2. Universal kriging,✶✺

3. Kriging with external drift,✶✻

4. Residual kriging,✶✼

5. Indicator kriging,✶✽

6. Cokriging.✶✾

Hengl (2007) shows that both universal kriging, kriging with external drift and regression✷✵

kriging (residual kriging) are basically the same technique. Bivand et al. (2008) explaine✷✶

ordinary, universal and kriging with external drift as a special case of universal kriging✷✷

that depends on trend computation over a domain of interpolation. In the text below,✷✸

ordinary, regression, indicator and cokriging are briefly presented.✷✹
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2.3.2.1 Ordinary kriging ✶

Ordinary kriging is by far the most common type of kriging in practice (Webster and ✷

Oliver, 2007). An ordinary kriging interpolator is a linear combination of observations ✸

that are a weighted sum of nearby observation. The weights depend on the variogram ✹

model and the sum of weights is one. These weights are estimated under the condition ✺

that kriging variance is minimal. ✻

The ordinary kriging estimator for variable Z at the location s0 is (Isaaks and Srivastava, ✼

1989; Webster and Oliver, 2007): ✽

Ẑ(s0) = λ̂0
T
·
[

Z(s1) · · · Z(sn)
]T

(2.7)

where λ̂0 is the estimated vector of weights for the location s0, n is the number of obser- ✾

vation of the variable Z. ✶✵

The kriging variances and their square roots, the kriging errors, can be mapped similarly ✶✶

and give an idea of the reliability of the maps of estimates. The reliability of ordinary ✶✷

kriging or any kriging interpolator depends on how accurately the variation is represented ✶✸

by the chosen spatial model. ✶✹

The varinace formula for variable Z at the location s0 is (Isaaks and Srivastava, 1989; ✶✺

Webster and Oliver, 2007): ✶✻

σ2(s0) = λ̂0
T
·
[

γ(s1,s0) · · · γ(s1,s0) 1
]T

(2.8)

The formula for the λ̂0 is (Isaaks and Srivastava, 1989; Webster and Oliver, 2007): ✶✼

[

λ̂0

µ

]

=















γ(s1,s1) · · · γ(1n,sn) 1
...

. . .
...

...

γ(sn,s1) · · · γ(sn,sn) 1

1 · · · 1 0















−1













γ(sn,s0)
...

γ(sn,s0)

1















(2.9)
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the additional parameter µ is a Lagrange multiplier, see details in Isaaks and Srivastava✶

(1989).✷

Ordinary kriging has become very popular in climatology and meteorology and is often✸

applied as the stochastic component in residual interpolation (Tveito et al., 2006).✹

2.3.2.2 Regression kriging✺

Regression kriging uses a spatial multiple regression for de-trending so that the observed✻

phenomenon is decomposed into two parts that are namely 1) the deterministic part (trend)✼

and 2) the residual (regression residuals) stochastic part. Regression kriging assumes that✽

deterministic and stochastic components of spatial variation can be modelled separately.✾

It is mathematically equivalent to the interpolation method variously called “universal✶✵

kriging” and “kriging with external drift”, where auxiliary predictors are used to directly✶✶

solve the kriging weights (Hengl, 2007).✶✷

The regression kriging model for a spatial variable Z at any of the locationss is:✶✸

Z(s) = m(s)+ ε ′(s)+ ε ′′ (2.10)

where m(s) is the linear regression trend defined by Eq. 2.2, ε ′(s) is the regression resid-✶✹

ual, stochastic component spatially correlated and ε ′′ the pure noise component of the✶✺

observed variable. The sample variogram needs to be calculated from residuals.✶✻

The regression kriging estimator for variable Z at the location s0 is:✶✼

ẑ(s0) = m̂(s0)+ ê(s0) =
p

∑
k=0

β̂k · fk(s0)+
n

∑
i=1

λi · e(si) (2.11)

where the β̂i are estimated regression coefficients, the fi covariates that must be exhaus-✶✽

tively known over the spatial domain, and p is the number of covariates. Covariate f0✶✾

is taken as unity, resulting in β0 representing the intercept. The λi are kriging weights✷✵

determined by the spatial dependence structure and e(si) is the regression residual from✷✶

an observed location si.✷✷
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The regression coefficients can be estimated using ordinary least squares or Generalized ✶

Least Squares (GLS), (Cressie, 1993): ✷

β̂GLS =
(

qT ·C−1 ·q
)−1

·qT ·C−1 · z (2.12)

where β̂GLS is the vector of estimated regression coefficients using GLS, C is the covari- ✸

ance matrix of the residuals, q is a matrix of covariate values at the sampling locations ✹

and z is the vector of measured values of the target variable. ✺

The Eq. 2.11 can be rewritten in matrix form and the kriging estimator at the location s0 ✻

is (Christensen, 2001; Hengl, 2009): ✼

ẑ(s0) = qT
0 · β̂GLS+λ T

0 · (z−q · β̂GLS) (2.13)

where λ̂0 is the estimated vector of weights for the location s0. Prediction variance is ✽

defined (Christensen, 2001; Hengl, 2009): ✾

σ̂2(s0) = (C0 +C1)− cT
0 ·C1 · c0

+
(

q0 −qT ·C−1 · c0

)T

·
(

qT ·C−1 ·q
)−1

·
(

q0 −qT ·C−1 · c0

) (2.14)

where C0 +C1 is the sill variation and c0 is the vector of covariances of residuals at the ✶✵

unvisited location, C is the covariance matrix of the residuals, q is a matrix of covari- ✶✶

ate values at the sampling locations, (q0 is a matrix of covariate values at the unvisited ✶✷

location. ✶✸

2.3.2.3 Indicator kriging ✶✹

Typically, indicator kriging is used for mapping binary variables, whereby such variables ✶✺

denote the presence or absence of a phenomenon, e.g. precipitation occurrence.The cre- ✶✻

ation of binary data may be through the use of a threshold for continuous data, e.g. map- ✶✼

ping the precipitation higher than the defined threshold. Another example of binary data ✶✽
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creation is the mapping of radiation higher than the allowed limit of radioactivity from✶

the continuous radioactivity observations. Conversion of continuous to binary variable is✷

given:✸

ω(s) =

{

1 if z(s)< zc

0 otherwise
(2.15)

The indicator variable is ω(s) and is derived from a continuous variable, z(s), which is✹

achieved quite simply by scoring binary values depending on specified threshold zc.✺

Converting a continuous variable into an indicator clearly loses much of the information✻

in the original data and it might seem prodigal to transform quantitative data in this way✼

(Webster and Oliver, 2007). This is often the case when many zero data points are in✽

observational data sets and the data distribution is far from a normal distribution; as a✾

result, indicator kriging can then be used for delineation of zero and non-zeros areas.✶✵

For example, the indicator kriging technique is used first to delineate the raining areas✶✶

from rain gauge observations and then ordinary kriging or regression kriging is used to✶✷

determine the rainfall estimates in raining areas.✶✸

The results of the indicator kriging are values lying between 0 and 1. Such values are✶✹

effectively the probability levels given to the data. Zero probability Z(s) < zc is defined✶✺

with 0 and 100% probability with 1.✶✻

2.3.2.4 Cokriging✶✼

Cokriging estimator beside primary variable uses additional variable(s) that exhibit some✶✽

correlation with the primary variable. An additional (secondary)variable is known at sam-✶✾

pled locations and often on the more discrete point in the domain of interpolation, but✷✵

limited number of points,not over all domain of interpolation like covariates in regression✷✶

kriging. Cokriging covariance matrix depends on the variogram and the cross-variogram✷✷

model. The cross-variogram model shows a correlation of the spatial variability of a target✷✸

variable with the secondary variable, see Eq 2.16. Cross-correlated information contained✷✹

in the secondary variable should help reduce the variance of the estimation errors and✷✺

19



Chapter 2 Methods for the interpolation of climatic variables

the result should not be worse than univariate kriging, which does not account for cross- ✶

correlation. ✷

The sample cross-semivariance (or cross-variogram) γ̂12(h) for two variables can be esti- ✸

mated from the observations by calculating the semivariance from the observation pairs ✹

of z1 and z2 , n(h) (as described previously in the methods section), which is the number ✺

of point pairs separated with h, distance in Euclidian space. ✻

γ̂12(h) =
1
2
·

1
n(h)

n(h)

∑
i=1

(z1(si +h)− z1(si))(z2(si +h)− z2(si)) (2.16)

It was shown that cokriging gives better results in comparison to the univariate kriging ✼

approach particularly when spatial correlation between secondary variables (covariables) ✽

and the variable of interest is high and when the covariables are oversampled with respect ✾

to the target variable (Tveito et al., 2006). ✶✵

2.4 Methods specially developed for meteorology and cli- ✶✶

matology ✶✷

2.4.1 PRISM ✶✸

PRISM is an acronym (Parameter Regression on Independent Slopes Model) for a method ✶✹

developed by Daly et al. (1997). PRISM is a knowledge based method that uses point ob- ✶✺

servations, digital elevation models and other spatial datasets to produce climatic maps ✶✻

based on climate-elevation regressions. A detailed description of the PRISM knowledge ✶✼

based method is given by Daly et al. (2002). PRISM is based on a linear regression func- ✶✽

tion accounting the dominant influence of elevation on the climatic maps. The method in- ✶✾

terpolates the target variable using a weighted combination of stations data, where weights ✷✵

for a specific location depend on many distinct types of spatial information, e.g. distance ✷✶

(from station to grid point), elevation, cluster, vertical layer (includes a two-layer of atmo- ✷✷

sphere representation), topographic facet (e.g. rain shadows, windward sides ect.), coastal ✷✸

proximity, and effective terrain weights (expert based). ✷✹
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Tveito et al. (2006) summarise the PRISM advantage in comparison with traditional meth-✶

ods:✷

“In a comparison with kriging and detrended interpolation PRISM was shown to be the✸

preferable method in regions with sparse station networks and relatively low precipitation✹

gradients, and very powerful in areas where the station network is unrepresentative for✺

the variation in topography. The more traditional methods showed better results in the✻

areas with a very dense network, where the variability due to the terrain is represented by✼

the stations.”✽

2.4.2 AURELHY✾

AURELHY stands for “Analyse Utilisant le RElief pour l’Hydrométéorologie” (Topography-✶✵

based analysis for hydrometeorology). In this method, the local topography is used to✶✶

explain variables by multiple linear regression and regression residuals are interpolated✶✷

by ordinary kriging. This can be considered as a typical regression kriging method.The✶✸

AURELHY method was introduced by Meteo France (Benichou and Le Breton, 1987).✶✹

There are many similar examples of regression kriging like methods that are named dif-✶✺

ferently, e.g. MISH (Meteorological Interpolation based on Surface Homogenized Data✶✻

Basis) recently developed at the Hungarian Meteorological Service.✶✼

2.5 Artificial neural networks✶✽

Artificial Neural Networks (ANN) is machine learning technique used for data analysis✶✾

and modelling in many fields and have been recently applied in spatial prediction. The✷✵

machine learning algorithms model specific phenomena using an empirical approach for✷✶

finding the relation of the input and output parameters via a computer program. ANN✷✷

computing techniques are adaptive and “learning by example" replaces traditional “pro-✷✸

gramming" in solving problems. In traditional programming, the modelling process is✷✹

coded into the computer program based on the physical or statistical model (stochastic or✷✺

functional relationship is defined). In contrast, themodel is unknown to the user in the✷✻

“learning by example" approach. Instead, software that uses a mathematical/statistical✷✼
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FIGURE 2.3: Simple model of artificial neural networks

model of optimisation synthesizes the relationship between input and output parameters ✶

for the user. ✷

The application of machine learning in spatial prediction and analysis is given by Kanevski ✸

et al. (2009) in the book “ Learning for Spatial Environmental Data: theory, applications ✹

and software”, where many applications in climatic mapping and a short description of ✺

ANN are supplied . There are many applications of the ANNs in meteorological/climatic ✻

mapping and some of the first studies cited are Hsu et al. (1997); Demyanov et al. (1998); ✼

Antonić et al. (2001). ✽

ANN are inspired by the structure of the biological neural network that are composed of ✾

a set of numerous interconnected elements that process information (impulses, signals). ✶✵

ANN uses a set of non-linear functions as the so called processing elements (neurons, ✶✶

cells or nodes). The input information (signal, set of known parameters, e.g. longitude, ✶✷

latitude, elevation) are passed to nodes (non-linear functions) and the target variable (e.g. ✶✸

temperature) is modelled as a linear combination of the nodes (non-linear functions). Fig- ✶✹

ure 2.3 shows a simple model of the ANN. ✶✺

The blue circles from Figure 2.3 represent the input parameters in a similar fashion as ✶✻

regression known over the domain of interpolation (e.g. elevation, longitude, latitude), ✶✼

the red circles represent the nodes (neurons). The nodes are functions defined generally ✶✽

by formula: ✶✾
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f (x,w) = f (
K

∑
i=1

ωix
i +b) (2.17)

where xi are some elements (some predictors) of the input vector x , ωi are weights and b✶

is bias passed to the function f , so called transfer function. Example of transfer function✷

is hyperbolic tangent:✸

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
(2.18)

Therefore, the resulting circle (the green one depicted in Figure 2.3) is the prediction✹

representing the linear combination of processing components (nodes). Thus, the weights✺

from the Eq. 2.17 are essential parts of the ANN technique since they are fitted (tuned) by✻

the ANN algorithm to match certain criteria that is based on reducing error from predicted✼

and observed values.✽

The most frequently used neural networks consist of multi-layers, which contain several✾

hidden layers of neurons that are fully connected. The step by step procedure for using a✶✵

multilayer neural network in spatial interpolation is given by Kanevski et al. (2009), who✶✶

strongly recommend using a combination of geostatistical and ANN approaches.✶✷
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Chapter 3 ✶

Publicly available global meteorological ✷

data sets and preliminary ✸

spatio-temporal analyses1
✹

The chapter reviews publicly available global meteorological data sets from ground-based ✺

stations and/or remote sensing systems, prepared and maintained by national and interna- ✻

tional organizations: the National Aeronautics and Space Administration (NASA), Global ✼

Precipitation Climatology Centre (GPCC), European Organisation for the Exploitation of ✽

Meteorological Satellites (EUMETSAT), and United States National Oceanic and Atmo- ✾

spheric Administration (NOAA) with focus on available data. A merge of the Global ✶✵

Surface Summary of Day (GSOD) and the European Climate Assessment & Dataset ✶✶

(ECA&D) consisting of 10,695 stations for the year 2011 were assessed for represen- ✶✷

tation and usability for global spatio-temporal analysis. Three aspects of data quality ✶✸

were considered: (a) representation in the geographical and temporal domains, (b) rep- ✶✹

resentation in the feature space (based on the MaxEnt method), and (c) usability i.e. fit- ✶✺

ness of use for spatio-temporal interpolation (based on cross-validation of spatio-temporal ✶✻

regression-kriging models). The results show that clustering of meteorological stations in ✶✼

the combined data set is significant in both geographical and feature space. Most of the ✶✽

1Based on article: Kilibarda M, Perčec Tadić M, Hengl T, Luković , Branislav B (2013?) Publicly
available global meteorological data sets: sources, representation, and usability for spatio-temporal analysis.
Under review in International Journal of Climatology
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distribution of the stations (84%) can be explained by population density and accessi-✶

bility maps, also with elevation, showing that higher elevations areas are less covered✷

with stations, as spared populated and inaccessible areas. Although a spatio-temporal✸

regression-kriging model of mean daily temperature on 8-day MODIS LST images pro-✹

duced average global accuracy of 2–3°C, prediction for polar areas and mountain chains✺

was 2 times worse than for areas densely covered with meteorological stations. Despite✻

the geographical and feature space clustering, the presented global spatio-temporal model✼

using station observations and remote sensing images can be used for production of global✽

mean daily air temperature images at very high resolution.✾

3.1 Introduction✶✵

Publicly available meteorological and/or climate data are also one of the foundations of✶✶

democracy. Combine open access data with the open source software tools and everyone✶✷

can build his/her opinion about global change. The same way anyone is now able to zoom✶✸

into the Ikonos and QuickBird images available via the Google Engine (Butler, 2006), and✶✹

witness deforestation or massive land degradation (possibly not reported anywhere yet!),✶✺

anyone should also be able to plot meteorological variables per station, per region, for✶✻

any given selection, and identify possible changes and trends. Fortunately, “open-access✶✼

climate science is becoming easier than ever” (Kleiner, 2011). There are now multiple✶✽

data portals where anyone can download original meteorological data in a variety of for-✶✾

mats. Some of the major U.S. and global open meteorological data sources have been✷✵

reviewed by Yang et al. (2010). The most popular sources of freely available satellite✷✶

data for agro-climatic application have been described by Toulios and Stancalie (2011).✷✷

Becker et al. (2012) provide a review of global precipitation data sets and their limitations✷✸

for global change analysis. Recently, several data portals have been launched to support✷✹

free exchange of climatic and meteorological data sets. The University Corporation for✷✺

Atmospheric Research (UCAR) Climate Data Guide2, for example, is a repository for the✷✻

climate community supporting a wide range of observational data sets and their appropri-✷✼

ate use in analyzes and climate model evaluation. The data comprises ground and satellite✷✽

observations and re-analyzes and model simulations with links to sources of data. Royal✷✾

2❤tt♣s✿✴✴❝❧✐♠❛t❡❞❛t❛❣✉✐❞❡✳✉❝❛r✳❡❞✉
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Netherlands Meteorological Institute (KNMI) Climate Explorer portal3 is another source ✶

of data and tools for climate research. In the framework of the Berkley Earth Project4, ✷

monthly temperature observations from 16 sources, including the National Climatic Data ✸

Center (NCDC) data, were used to produce average, minimum and maximum temperature ✹

anomaly grids. ✺

It is for example well know that meteorological stations are often allocated to represent ✻

provide higher density information for areas of high population density. Consequently, ✼

mountains and uninhabited areas are often miss-represented in the national observation ✽

networks. See for example maps of station location used by Vose et al. (1992); Peterson ✾

and Vose (1997); Klein Tank et al. (2002) and/or Lawrimore et al. (2011). In addition to ✶✵

the problem of station clustering, most spatial prediction methods do not consider varying ✶✶

uncertainty in input data and its effects on the final outputs. Most of the climate grids ✶✷

that can be find on the data portals listed above have no uncertainty measures attached, ✶✸

or the uncertainty is not spatially assessed. This is obviously a problem because the ✶✹

data quality is an important aspect for decision making. The scale of global or regional ✶✺

temperature change is often very fine (e.g. 0.2–0.5°C) and high uncertainty can lead to ✶✻

misinterpretation of produced patterns (Rohde et al., 2012). ✶✼

The national budgets for weather monitoring in the developing countries are of course very ✶✽

limited. Consequently, the representation of stations globally does not necessarily reflect ✶✾

complexity of climate. This is a well know paradox in ecology that we probably know ✷✵

the least about the areas of the highest ecological and climatic complexity (Chapman, ✷✶

2005). Thus, consistent and harmonized (unbiased) grids are needed for global analysis ✷✷

and climatic planning. But can we produce such harmonized grids using the ground and ✷✸

remote sensing data we have at the moment at all? ✷✹

In this paper we look at the general usability of global meteorological data sets com- ✷✺

ing from ground-based stations and/or remote sensing systems which are of interest for ✷✻

spatio-temporal analysis. The first part of the paper provides a review of the available me- ✷✼

teorological data sets. The second part shows the results of analysis, points the possible ✷✽

3❤tt♣✿✴✴❝❧✐♠❡①♣✳❦♥♠✐✳♥❧
4❤tt♣✿✴✴✇✇✇✳❜❡r❦❡❧❡②❡❛rt❤✳♦r❣
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problems with using this data for climatological mapping and suggests direction of de-✶

velopment of daily spatial grids for global land areas using the spatio-temporal regression✷

kriging.✸

We focus on three important aspects of publicly available data: (a) content, (b) repre-✹

sentation, and (c) suitability for spatio-temporal interpolation. For this purpose we have✺

merged GSOD and ECA&D station observation, as clean and consistent meteorological✻

(point), and then run a number of standard spatial analysis operations to determine what✼

could be possible problems with using the global data sets for spatio-temporal interpola-✽

tion and time-series analysis. The spatio-temporal regression kriging model on MODIS✾

LST 8 day images is made just for mean daily temperature records for a year 2011.✶✵

3.2 Measurements at ground stations✶✶

Climate research relies heavily on the records from instruments at these near-surface✶✷

weather stations (Peterson and Vose, 1997), as the most accurate and reliable measures✶✸

of weather. Although, ground station measurements are the most accurate and the most✶✹

reliable records of the weather at near surface, they are the only one available records✶✺

of spatial and temporal variability of climatic variables to 1960, when the first weather✶✻

remote sensing mission had been lunched by NASA.✶✼

Flowing sections describes publicly available data sets at global or near global coverage.✶✽

3.2.1 NCDC’s Global Surface Summary of Day (GSOD)✶✾

The Global Surface Summary of Day (GSOD) data set is produced and archived at the✷✵

NOAA’s National Climatic Data Center (NCDC) under the code ◆❈❉❈ ❉❙■✲✾✻✶✽. The✷✶

input data used in building GSOD are the Integrated Surface Data (◆❈❉❈ ❉❙■✲✸✺✵✺),✷✷

which includes global hourly data obtained from the US Federal Climate Complex (FCC)✷✸

consisting of about 27,000 stations.✷✹

GSOD (Fig. 3.1) is certainly the most consistent and probably still the largest publicly✷✺

available international station data sets. It contains daily measurements for a list of 11✷✻
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meteorological parameters of several climatic variables (since 1929): temperature, hu- ✶

midity, pressure, wind, precipitation (liquid and solid) and phenomena: ✷

1. mean, minimum and maximum temperature (precision of 0.1°F), ✸

2. mean dew point (0.1°F), ✹

3. mean atmospheric pressure and mean sea level pressure (0.1 mb), ✺

4. mean visibility (0.1 miles), ✻

5. mean wind speed, maximum sustained wind speed and maximum wind gust (0.1 knots),✼

6. precipitation amount (0.01 in), ✽

7. snow depth (0.1 in), ✾

8. and an indicator (class) for occurrence of fog, rain or drizzle, snow or ice pellets, ✶✵

hail, thunder, and tornado/funnel cloud. ✶✶

This data set is continuously being updated so that the latest daily summary data are ✶✷

normally available 1–2 days after the date-time of the observations used in the daily sum- ✶✸

maries. The data summaries provided in the GSOD are based on data exchanged under the ✶✹

World Meteorological Organization (WMO) World Weather Watch Program, following ✶✺

the WMO Resolution 40 (WMO-No. 837, 1996). This allows WMO member countries to ✶✻

place restrictions on the use or re-export of data for commercial purposes outside of the ✶✼

receiving country. The GSOD data is intended for free and unrestricted use in research, ✶✽

education, and other non-commercial activities. ✶✾

3.2.2 NCDC’s Global Historical Climate Network Dataset ✷✵

The previously mentioned GSOD together with more than 20 other sources are part of the ✷✶

world’s largest collection of daily climatological data that is the GHCN (Global Histori- ✷✷

cal Climatology Network)-Daily database (GHCN-D). It contains historical data on daily ✷✸

temperature, precipitation and snow over the global land areas and it is updated daily ✷✹

where possible. One or more of the 40 meteorological elements (maximum/minimum ✷✺
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temperature, precipitation, snowfall, snow depth, snow water equivalent, wind maximum, ✶

cloudiness, etc.) are collected on more than 80,000 stations in 180 countries and territo- ✷

ries (Menne et al., 2012). GHCN-D is especially useful for monitoring the frequency and ✸

magnitude of extremes due to high temporal resolution. ✹

The GHCN-Monthly (GHCN-M) temperature data set was first developed in the early ✺

1990s (Vose et al., 1992). A second version was released in 1997 following extensive ✻

efforts to increase the number of stations and length of the data record (Peterson and ✼

Vose, 1997). GHCN-M version 3 released in 2011 focused on four areas (Lawrimore ✽

et al., 2011): ✾

(a) consolidating duplicate station records; ✶✵

(b) improving station coverage, especially during the 1990s and 2000s; ✶✶

(c) enhancing quality control, and ✶✷

(d) applying a new bias correction methodology that does not require use of a compos- ✶✸

ite reference series. ✶✹

The version 3 currently contains monthly mean temperature, monthly maximum temper- ✶✺

ature and monthly minimum temperature. The station network for the time being, is the ✶✻

same as GHCN-M version 2 (NCDS, 2012). GHCN-M version 2 has data for precipitation ✶✼

(20,590 stations, at precision of 0.1 mm), mean temperature (7280 stations, at precision ✶✽

of 0.01°C; Fig. 3.2), and minimum and maximum temperature (4966 stations, at precision ✶✾

of 0.01°C). ✷✵

The GHCN-M has geographical station information such as latitude, longitude, elevation, ✷✶

station name, etc., and also extended metadata information, such as surrounding vegeta- ✷✷

tion and similar5. ✷✸

3.2.3 European Climate Assessment & Dataset ✷✹

The largest European publicly available meteorological data set is the European Climate ✷✺

Assessment and Dataset Project (ECA&D). The idea of ECA&D project was to provide ✷✻

5❢t♣✿✴✴❢t♣✳♥❝❞❝✳♥♦❛❛✳❣♦✈✴♣✉❜✴❞❛t❛✴❣❤❝♥✴✈✸✴❘❊❆❉▼❊
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uniform analysis methodology to daily observational series from 62 European countries ✶

and 6596 European and Mediterranean meteorological stations (Klein Tank et al., 2002). ✷

Fig. 3.3 shows the geographical distribution of stations with daily time series, through- ✸

out Europe and the Mediterranean (around 2700 stations). The number of observed daily ✹

climatic elements varies in geographic and time domain. This data set contains measure- ✺

ments for the following meteorological variables and their parameters: ✻

1. minimum, mean and maximum temperature (resolution of 0.1°C), ✼

2. humidity (1 %), ✽

3. mean sea level pressure (0.1 hPa), ✾

4. mean wind speed (0.1 m/s), wind direction (degrees), maximum wind gust (0.1 m/s), ✶✵

5. precipitation amount (0.1 mm), ✶✶

6. snow depth (1 cm), ✶✷

7. cloud cover (oktas), ✶✸

8. sunshine duration (0.1 hours). ✶✹

Only a portion of this data can be downloaded and used freely for non-commercial re- ✶✺

search. On the other hand, licensed daily data are used together with the publicly available ✶✻

daily data to calculate derived value-added products, such as indices of extremes or daily ✶✼

maps of gridded data (E-OBS) available from the ECA&D project web page6. ✶✽

3.2.4 Aviation Routine Weather Report (METAR) ✶✾

Another station data set of interest for global analysis is distributed as the international ✷✵

standard code format for hourly surface weather observations — METAR. METAR roughly ✷✶

translates from French as Aviation Routine Weather Report and is predominantly used by ✷✷

pilots in fulfillment of a part of a preflight weather briefing, and by meteorologists. Typ- ✷✸

ical METAR report contains data for temperature, dew point, wind speed and direction, ✷✹

6❤tt♣✿✴✴❡❝❛✳❦♥♠✐✳♥❧✴❞♦❝✉♠❡♥ts✴❊❈❆❉❴❞❛t❛♣♦❧✐❝②❴✈✺✳♣❞❢
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precipitation, cloud cover and heights, visibility, and barometric pressure. Current data, ✶

original and decoded, for individual stations are available from the US National Weather ✷

Service (NWS) FTP site7. ✸

Historical data of METAR reports are not available from official FTP site. Current ob- ✹

servations in KML format8 are available from the NWS web site showing also the largest ✺

density of observations in US and Europe. ✻

3.2.5 Climatic Research Unit (CRU) land station temperature database ✼

In addition to the meteorological data at point support, a number of data sets is available ✽

also at block supports. For example the Climatic Research Unit (CRU), University of ✾

East Anglia, UK derived several gridded monthly temperature products covering the land ✶✵

land/or sea regions on the 5° by 5° grid. These are referred to as the CRU-TEM data sets: ✶✶

CRUTEM3 and the new CRUTEM4 (from March 2012) land air temperature anomalies ✶✷

on a 5° by 5° grid (Jones et al., 2012), and their (variance) adjusted versions CRUTEM3v ✶✸

and CRUTEM4v. CRU and UK Met Office Hadley Centre have also produced combined ✶✹

land and marine (sea surface) temperature anomalies on a 5° by 5° grid (HADCRUT3) ✶✺

and associated variance adjusted versions of HadCRUT3, HadCRUTv3. ✶✻

The station data used to generate those gridded fields are available from the CRU website9. ✶✼

For example, CRUTEM4 underlying data set contains 5583 monthly station temperature ✶✽

time series some extending back to 1850. They cover the global land area, with relatively ✶✾

rough positional precision of the station. The location of stations are available at 0.1 ✷✵

degrees precision in geographic coordinates, that is around 10 km at middle geographic ✷✶

latitudes. HadCRUT and CRUTEM station data had assigned codes to each station, giving ✷✷

the principal source for each series (Brohan et al., 2006). ✷✸

7❢t♣✿✴✴t❣❢t♣✳♥✇s✳♥♦❛❛✳❣♦✈
8❤tt♣✿✴✴✇✇✇✳sr❤✳♥♦❛❛✳❣♦✈✴❣✐s✴❦♠❧✴♠❡t❛r✴♠❡t❛r❧✐♥❦✳❦♠❧
9❤tt♣✿✴✴✇✇✇✳❝r✉✳✉❡❛✳❛❝✳✉❦✴❝r✉✴❞❛t❛✴t❡♠♣❡r❛t✉r❡✴
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3.2.6 FAOCLIM 2.0✶

Another valuable source of historical meteorological observations is the FAOCLIM 2.0✷

global climate database i.e. CD ROM (Environment and Natural Resources, 2001). FAO-✸

CLIM 2.0 contains monthly data for weather stations across the world. This station✹

database contains monthly data for around 28,000 stations, precipitation data for 27,372✺

stations, mean temperature data for 20,825 stations, and minimum and maximum temper-✻

ature data for 11,543 stations (Hijmans et al., 2005). FAOCLIM 2.0 also contains both✼

long-term averages (1961–1990) and monthly time series for precipitation and tempera-✽

ture.✾

3.3 Publicly available remote sensing data✶✵

The first weather Television and Infrared Observation Satellite (TIROS-1) was launched✶✶

on 1960 by NASA. It was in operation for just 78 days, but it sent back thousands of pic-✶✷

tures of cloud patterns. It proved the theory that satellites could effectively survey global✶✸

weather from space. TIROS was followed by nine more test satellites launched between✶✹

1960 and 1965 (TIROS X) to provide routine, daily weather observations. This polar-✶✺

orbiting satellite was providing images of clouds across parts of the globe that may be✶✻

compared with coincident meteorological observations. Since then, the development of✶✼

satellite systems has advanced significantly, with different satellite platforms and instru-✶✽

ments operating on board (Kidd, 2001).✶✾

Satellite images are now routinely used in climate studies due to its availability, spatial✷✵

coverage and multi-decade length of the series (Struzik et al., 2011). They also allow✷✶

determination of different climatic parameters at different scales. Some data are freely✷✷

available trough the Internet while the others require registration. Many research agree✷✸

that meteorological satellites are the key to weather forecast, and analysis of climate.✷✹

Satellite images often need to be calibrated using the ground data which can be tricky since✷✺

even small systematic differences can lead to wrong conclusions. For example, Santer✷✻

et al. (2000) found an apparent difference between surface estimated warming of 0.2°C✷✼

per decade since 1979 and the much smaller temperature trend in the lower troposphere✷✽
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estimated from satellites and radiosondes. According to them these differences mainly ✶

come from data quality problems in either the surface and/or satellite and radiosonde ✷

data. Further on, the difference may be due to the effects of natural variability and/or ✸

external forcing. A third reason for the observed difference in the temperature trends ✹

is the discrepancy in spatial coverage between surface and satellite data. According to ✺

Thorne et al. (2005), the choice of data set in meteorological studies can even change ✻

the sign of upper-air temperature trends relative to those reported at the surface. Many ✼

papers have been published dealing with analysis of ground based and satellite based data ✽

(Proedrou et al., 1997; Feidas et al., 2004). The focus is mainly put on assessing the bias ✾

of remote sensing based measurements of ground conditions, and on methods that can be ✶✵

used to minimize the bias (Smith et al., 2006). ✶✶

There is a close cooperation between two US agencies, NASA and NOAA in making ✶✷

the land, oceans and atmosphere visible from space and sometimes their roles is hard to ✶✸

distinguish. While NASA is responsible mainly for satellite pre-launching and launching ✶✹

faze, the NOAA is taking the responsibility for the satellite operation, processing, distri- ✶✺

bution and archiving of the data. Convention for naming the NASA/NOAA satellites is to ✶✻

set the name and letter before the launch, e.g. last launched meteorological satellite was ✶✼

GOES-P, and after it reached its proper orbit the it was renamed GOES-15. ✶✽

It can be said that all meteorological remote sensing system are often specialized in moni- ✶✾

toring specific meteorological features at some working spatio-temporal scale. For practi- ✷✵

cal reasons, distinction between two groups of Remote Sensed (RS) systems is made: RS ✷✶

systems focused on monitoring surface temperatures and RS systems focused on moni- ✷✷

toring precipitation (Table 3.1). ✷✸

3.3.1 The National Oceanic and Atmospheric Administration (NOAA) ✷✹

NOAA’s Satellite and Information Service (NESDIS) is leading provider of meteorolog- ✷✺

ical satellite data. This USA agency operates meteorological satellites, processes and ✷✻

distributes climate data managing one of the world’s largest climate data archive at the ✷✼

National Climatic Data Centre (NCDC). NOAA’s satellites monitor (Ohring et al., 1989; ✷✽

Ohring and Booth, 1995): ✷✾
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• Atmospheric temperatures,✶

• Oceanic temperatures,✷

• Greenhouse gases,✸

• Ozone Sea ice, glaciers, snow cover,✹

• Sea level Ocean acidification,✺

• Extreme temperatures and floods/droughts.✻

NOAA’s satellites provide consistent, long-term observations, 24-hours-a-day, 7-days-a-✼

week, at a basic resolution of 1 km.✽

The NOAA series of satellites began weather monitoring in 1970. These series of satellites✾

were known as Polar Orbiting Environmental Satellites (POES). Currently, NOAA-15✶✵

through NOAA-18 serve as the stand-by satellites and NOAA-19 as the operational one✶✶

performing the morning and afternoon global coverage, orbiting the Earth every 6 hours✶✷

with a spatial resolution 1.1×1.1 km. The POES among other instruments include the✶✸

Advanced Very High Resolution Radiometer (AVHRR) instrument and the Advanced✶✹

TIROS Operational Vertical Sounder (ATOVS) suite.✶✺

From 2012 the Suomi NPP became fully operational new satellite as bridge to the forth-✶✻

coming series of the advanced Joint Polar-Orbiting Satellite System (JPSS) whose first✶✼

satellite JPSS-1 is planned for launching in 2016. Currently two Geostationary Oper-✶✽

ational Environmental Satellites (GOES-13 and GOES-15) circle the Earth at the same✶✾

speed as Earth’s rotation. This allows them to hover continuously over one position on✷✵

the surface. GOES-13 (or GOES EAST) monitors North and South America and most of✷✶

the Atlantic Ocean, while GOES-15 (or GOES WEST) monitors part of North America✷✷

and the Pacific Ocean basin. The era of these satellites began with launching of Syn-✷✸

chronous Meteorological Satellites-1 (SMS-1) on 1974. However, this program officially✷✹

started on 1975 in cooperation between NOAA and NASA by launching GOES-1. This✷✺

series operates until today and will be improved by new generation of GOES-R satellites✷✻

scheduled for launching in 2015 (Davis, 2007).✷✼
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3.3.2 The National Space Science and Technology Centre (NSSTC)✶

The National Space Science and Technology Centre (NSSTC) is a mission conducting✷

and researching in order to support NASA mission. In cooperation with The University✸

of Alabama in Huntsville (UAH) produces temperature data set for the lower and mid-✹

troposphere and the lower stratosphere that merge data from the nine Micro Sounding✺

Units (MSUs) and two Advanced Micro Sounding Units (AMSUs).✻

The data are obtained from Microwave Sounding Units (MSUs) on the NOAA’s TIROS-N✼

(polar orbiting) satellites, which relate the intensity or brightness of microwaves emitted✽

by oxygen molecules in the atmosphere to temperature. Images and data for the download✾

are available via the NSSTC web site. Spatial coverage of the MSU data set is nearly✶✵

global while temporal coverage is limited, as the MSU data set is in existence since 1979✶✶

(Christy et al., 2000).✶✷

3.3.3 European Organisation for the Exploitation of Meteorological✶✸

Satellites (EUMETSAT)✶✹

EUMETSAT is the European operational satellite agency for monitoring weather, cli-✶✺

mate and the environment. It operates a system of meteorological satellites monitoring✶✻

the atmosphere and delivering weather satellite data on a daily basis 365 days a year. EU-✶✼

METSAT is offering a list of atmosphere products available from their geostationary MSG✶✽

satellites, polar orbiting METOP and low orbiting satellites. EUMETSAT Polar System✶✾

program (EPS) is European contribution to a joint European-US satellite system called✷✵

the Initial Joint Polar-Orbiting Operational Satellite System (IJPS). This is an agreement✷✶

between EUMETSAT and the NOAA on providing instruments for each other’s satellites,✷✷

exchange all data in real time, and assist each other with backup services. Other part-✷✸

ners are the European Space Agency (ESA) and the Centre National d’Etudes Spatiales✷✹

(CNES) of France.✷✺
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3.3.4 National Aeronautics and Space Administration (NASA) ✶

The Moderate Resolution Imaging Spectroradiometer (MODIS) images of the Terra and ✷

Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving at- ✸

mospheric, oceanographic including biological variables using different techniques. There ✹

are many data products from MODIS observations describing land (temperature, land ✺

cover), oceans (sea surface temperature, optical thickness) and atmosphere (water vapor, ✻

cloud product, atmospheric profiles) that can be used for studies at different scales, local ✼

to global. In meteorological studies are very often used Land Surface Temperature (LST) ✽

data and images obtained from MODIS thermal bands and distributed by Land Processes ✾

Distributed Active Archive Center (LP DAAC FTP) of USGS (US Geological Survey). ✶✵

Additionally to this MODIS Level 2 or higher level data, there are also the MODIS Level 1 ✶✶

data that are distributed trough the LAADS portal hosted at Goddard Space Flight Center. ✶✷

The MODIS LST data are available on daily basis and have spatial resolutions of 1×1 km ✶✸

(Coll et al., 2009). The accuracy of MODIS LST is 1°K. However, some validations ✶✹

reported accuracy better then 1°K in clear sky conditions within the temperature range ✶✺

from -10°C to 50°C (Yoo et al., 2011). MODIS LST data and/or images are one of the ✶✻

mostly used and best documented publicly available RS products in the world. ✶✼

3.3.5 NASA/Goddard’s Space flight Center Laboratory for Atmo- ✶✽

sphere ✶✾

Precipitation satellites are not able to estimate ground conditions as accurately as e.g. land ✷✵

surface temperature sensors (Mendelsohn et al., 2007). This can be overcome through ✷✶

combining the satellite with the rain gauge data. The international authority that gathers ✷✷

both sources of precipitation data is the Global Precipitation Climatology Project (GPCP), ✷✸

established at the Laboratory for Atmospheres at the NASA Goddard Space Flight Center. ✷✹

The aim of this project is merging the precipitation data taking advantage of the each data ✷✺

type. Rain Gauge data contributing to this project are available from German Weather ✷✻

Service’s project GPCC. Satellite precipitation estimates project are computed from geo- ✷✼

stationary satellites (GOES — United States, Meteosat — Europe, GMS — Japan), and ✷✽

polar-orbiting satellites (NOAA). ✷✾
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Set of precipitation estimates by Geostationary Satellite Precipitation Data Center (GPSPDC)✶

is another standard resource of the RS data. Data from NASA Aqua and TIROS are also✷

included in GPCP. Regarding temporal coverage daily precipitation data are available✸

since 1996, while monthly series are available since 1979 in mmday. Precipitation data✹

with a global spatial coverage is currently available only for coarse spatial resolutions✺

of 1°×1° resolution for daily data and 2.5°×2.5° for monthly data. Monthly and daily✻

data are freely available in a FORTRAN binary format with software for reading from✼

NOAA’s National Climate Data Center (NCDC), and from the German Weather Service10.✽

An overview of the remote sensing system used to map precipitation is given by Prigent✾

(2010).✶✵

3.4 Environmental layers✶✶

The environmental layers used for this thesis were provided from WorldGrids.org11 por-✶✷

tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded✶✸

and maintained by ISRIC (International Soil Reference and Information Center). The✶✹

portal serves continues raster layers, for example, DEM, MODIS Terra products, various✶✺

climatic, land cover and geological layers. Layers are thematically grouped in sections:✶✻

• Climatic and meteorological images,✶✼

• DEM–derived parameters,✶✽

• MODIS products,✶✾

• Land cover and land use,✷✵

• Urbanization and Lights at night images,✷✶

• Biodiversity and human impact maps,✷✷

• Land, vegetation and water masks,✷✸

• Harmonized World Soil Database images,✷✹

10❢t♣✿✴✴❢t♣✳❞✇❞✳❞❡✴♣✉❜✴❞❛t❛✴
11❤tt♣✿✴✴✇✇✇✳✇♦r❧❞❣r✐❞s✳♦r❣✴❞♦❦✉✳♣❤♣
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• Various layers. ✶

The environmental grids from the data repository are available at various resolutions from ✷

1 to 20 km. The short description of the most commonly used layers for this research is ✸

presented in further sections. ✹

3.4.1 Global relief model (DEMSRE) ✺

The environmental layers used for this research were provided from WorldGrids.org por- ✻

tal. WorldGrids.org is component of GSIF (Global Soil Information Facilities) funded ✼

and maintained by ISRIC (International Soil Reference and Information Center). The ✽

portal serves continues raster layers, for example, DEM, MODIS Terra products, various ✾

climatic, land cover and geological layers. Global relief model at 1km resolution was ✶✵

derived as combination of SRTM 30+ and ETOPO DEM at 1/120 arcdeegres resolution. ✶✶

The model is based on SRTM 30+ and ETOPO DEM, publicly available data sets. ✶✷

Shuttle Radar Topography Mission (SRTM) is an international project managed by Na- ✶✸

tional Geospatial-Intelligence Agency (NGA), National Aeronautics and Space Adminis- ✶✹

tration (NASA), National Imagery and Mapping Agency (NIMA) and Italian and German ✶✺

space agency (Deutsche Zentrum fur Luft und Raumfahrt - DLR). SRTM for the first time ✶✻

provides a near global high quality DEM at resolution levels of 1 and 3 arc sec, covered ✶✼

land mass between 60°N and 57°S. The horizontal spacing is 1 arc sec; the elevation ✶✽

value is given in meters. WGS84 is used as horizontal and vertical datum. This means ✶✾

that ellipsoidal heights are provided. The DEM accuracy requirements are Âś16 m ab- ✷✵

solute and Âś6 m relative vertical accuracy (Rabus et al., 2003). For detail description ✷✶

of DEM produced by SRTM see Rabus et al. (2003); Farr et al. (2007). SRTM 30+ is a ✷✷

near-global digital elevation model (DEM) comprising a combination of SRTM data and ✷✸

U.S. Geological Survey’s GTOPO30 data set. ✷✹

ETOPO is a 1 arc-minute global relief model of Earth’s surface that integrates land to- ✷✺

pography and ocean bathymetry. It was built from numerous global and regional data sets ✷✻

covering complete global topographic and bathymetric coverage. The detail description ✷✼

is provided in publication Amante and Eakins (2009). ✷✽

42



Chapter 3 Publicly available global meteorological data sets

DEMSRE comes with an accompanying processing script providing detailed instruction✶

for layer reproduction. DEMSRE is a main source of many geomorphometric layers on✷

the portal, such as slope, potential incoming solar radiation, topographic wetness index,✸

etc. Figure 3.4 shows DEMSRE global Earth coverage.✹

3.4.2 SAGA Wetness Index (TWISRE)✺

The topographic wetness index (TWI), which combines local upslope contributing area✻

and slope, is commonly used to quantify topographic control on hydrological processes✼

(Sorensen et al., 2006), but also can be used as an indicator of cold air accumulation✽

(Bader and Ruijten, 2008). Methods of computing this index differ primarily in the way✾

the upslope contributing area is calculated. TWI is defined in the equation 3.1 :✶✵

TWI = ln

(

A

tan(β )

)

(3.1)

where A (m2) being the contributing area, and tan(β ) being the slope.✶✶

❙❆●❆ ●■❙ documentation contains description of SAGA Wetness Index:✶✷

“The ‘SAGA Wetness Index’ is, as the name says, similar to the ‘Topographic Wetness✶✸

Index’ (TWI), but it is based on a modified catchment area calculation (‘Modified Catch-✶✹

ment Area’), which does not think of the flow as very thin film. As result it predicts for✶✺

cells situated in valley floors with a small vertical distance to a channel a more realistic,✶✻

higher potential soil moisture compared to the standard TWI calculation. "✶✼

The process of computing the SAGA Wetness Index for global land areas is very time✶✽

consuming, even if a strong PC configuration is provided the computation takes several✶✾

days. To achieve this, it is necessary to tile the DEM at continental level, re-project to✷✵

equal area projection, compute ’SAGA Wetness Index’ for each tile and build a mosaic✷✶

for the global land mass (Figure 3.5). Majority of grid analyses and computation for this✷✷

research was done in Sinusoidal projection. The result of distortion analysis and pixels✷✸

omission process, in context of mapping global image data, suggests use of Sinusoidal✷✹

projection in comparison to other equal area projections (Seong et al., 2002). The script✷✺
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for layer production produced by Tomislav Hengl and Milan Kilibarda is available on the ✶

WorldGrids.org. ✷

3.4.3 Potential incoming solar radiation derived in ❙❆●❆ ●■❙ (IN- ✸

MSRE) ✹

Potential incoming solar radiation is topo-climatic parameter which depends on few fac- ✺

tors, it is not just DEM derivative. Topo-climatology is the part of climatology which ✻

deals with impacts of land surface (i.e. topography) on climate (Boehner and Antonic, ✼

2009). ✽

Potential incoming solar variability depends on (Boehner and Antonic, 2009) : ✾

“There are three major causes of spatial variability of radiation at the land surface: (1) ✶✵

orientation of the Earth relative to the sun, (2) clouds and other atmospheric inhomo- ✶✶

geneities and (3) topography. The first cause influences latitudinal gradient and seasons. ✶✷

The second cause is associated with local weather and climate. The third cause such as ✶✸

spatial variability in elevation, slope, aspect and shadowing, can create very strong local ✶✹

gradients in solar radiation. ✶✺

One of the first articles about GIS modelled solar radiation is written by Dubayah and Rich ✶✻

(1995) as initial proposal of using GIS for computing solar radiation, the formulas and ✶✼

illustration are provided in publications Hofierka and Suri (2002); Boehner and Antonic ✶✽

(2009). ✶✾

Author calculated potential incoming solar radiation for 8-days intervals in ❙❆●❆ ●■❙, ✷✵

thus computing is very time consuming and for global land areas takes more than 20 ✷✶

processing days. The processing steps were in general: ✷✷

• re-projection of initial DEM (DEMSRE) in equal area Sinusoidal projection, ✷✸

• creation of tiles across land mask, around 500 tiles, ✷✹

• calculation of potential incoming solar radiation for 8 day period, ✷✺

• mosaicking results. ✷✻
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Finally, result of this computation contains 46 images at 1 km resolution. The script for✶

computing is provided on WorldGrids.org, but only available at the moment on the portal✷

is annual average (Figure 3.6) and standard deviation grid at resolution 1 km, or smaller.✸

3.4.4 Distance from the sea coast line(DICSRE)✹

Distance from the sea coast line (❉■❈●❙❍) was derived using the Global Self-consistent,✺

Hierarchical, High-resolution Shoreline Database (GSHHS) (Wessel and Smith, 1996).✻

The coastline vector map was rasterized to the Robinson projection with three central✼

meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast✽

line has been derived, and then merged to create a complete and consistent distance to the✾

coast line map in kilometers.✶✵

3.5 Methods✶✶

After identifying major publicly available sets and following the preliminary inspection✶✷

of their temporal and geographical coverage and data formats, three clean and consistent✶✸

data sets have been merged for purpose of testing: GSOD and ECA&D (station data) and✶✹

time-series of MODIS Land Surface Temperature images. We run a number of standard✶✺

spatial analysis operations in the ❘ environment for statistical computing (R Development✶✻

Core Team, 2012) to determine possible problems with using this data for spatio-temporal✶✼

interpolation and time-series analysis.✶✽

We focused on three important aspects of data quality:✶✾

(a) representation of station data in geographical space and temporal coverage — as-✷✵

sessed using kernel density analysis;✷✶

(b) representation of station data in feature space — assessed using the MaxEnt anal-✷✷

ysis;✷✸

(c) suitability of data for spatio-temporal interpolation — assessed using cross-vali-✷✹

dation of spatio-temporal prediction models;✷✺
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3.5.1 Representation of station data in geographical space and tem- ✶

poral coverage ✷

To assess temporal coverage ((a)) we plot change in number of stations and then try to ✸

explain differences and trends. To assess geographical representation we produced ker- ✹

nel density maps using the Gaussian smoothing kernel as implemented in the s♣❛tst❛t ✺

package for ❘ (Baddeley and Turner, 2006). Kernel density estimation of point process ✻

intensity requires an optimal bandwidth selection. To derive the optimal bandwidth we ✼

used algorithm based on cross validation as described in Diggle (2003, pp.115–118). The ✽

obtained bandwidth was 70 km for the temperature and 40 km for the precipitation sta- ✾

tions. To provide comparable maps of density for two meteorological variables, we further ✶✵

derived and plotted only the relative density maps with values in the range [0,1]. ✶✶

3.5.2 Representation of station data in feature space ✶✷

To asses the feature space representation i.e. the sampling bias ((b)), we use the ▼❛①✲ ✶✸

❊♥t analysis (Phillips et al., 2006). ▼❛①❊♥t uses maximum entropy model, purposely ✶✹

developed to explain distribution of animal or plant species as a result of environmental ✶✺

conditions (Phillips et al., 2006), to derive a probability of occurrence of point patterns. ✶✻

Moreover, this technique could be successfully used to explain distribution of people in ✶✼

certain areas as well as to assess spatio-temporal dynamics of human populations as a ✶✽

function of environmental predictors (Bajat et al., 2011). ▼❛①❊♥t is consider to be one ✶✾

of the most robust methods to assess the feature space coverage (Elith et al., 2011). In ✷✵

this paper we use it to assess the sampling preference i.e. feature space representations of ✷✶

meteorological station network. As ‘occurrences’ we used records of mean temperature ✷✷

for year 2011 and precipitation for the same year respectively (GSOD and ECA data sets). ✷✸

▼❛①❊♥t generate the receiver operating curve (ROC) and the area under the curve (AUC) ✷✹

which allows for evaluation of the model performance between occurrence of climate ✷✺

locations and their absence. The area under the curve (AUC) values can be interpreted ✷✻

as indicating the probability that, when a presence site and an absence site are drawn at ✷✼

random from the population, the first will have a higher predicted value than the second. ✷✽
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Models with an AUC value above 0.75 are considered as significant (for more details refer✶

to Elith et al. (2006)).✷

As environmental predictors for the ▼❛①❊♥t analysis we used the following five publicly✸

available environmental layers:✹

• ❉■❈●❙❍ — distance from the sea coast line,✺

• ●▲❈❊❙❆ — land cover classes based on the MERIS FR images (factor-type variable),✻

• ❉❊▼❙❘❊ — global Relief Model based on SRTM 30+ and ETOPO DEM,✼

• P❉▼●P❲ — gridded Population of the World, version 3 (GPWv3),✽

• ●❆❈●❊▼ — world accessibility map,✾

Distance from the sea coast line (❉■❈●❙❍) was derived using the Global Self-consistent,✶✵

Hierarchical, High-resolution Shoreline Database (GSHHS) (Wessel and Smith, 1996).✶✶

The coastline vector map was rasterized to the Robinson projection with three central✶✷

meridians at -120, 0 and 120 degrees, and then for each tile metric distance from coast✶✸

line has been derived, and then merged to create a complete and consistent distance to the✶✹

coast line map in kilometers.✶✺

The environmental grids listed above are available for download via the WorldGrids.org✶✻

(❤tt♣✿✴✴✇✇✇✳✇♦r❧❞❣r✐❞s✳♦r❣✴❞♦❦✉✳♣❤♣) data repository at various resolutions from✶✼

1 to 20 km. In this case study we used the grids with spatial resolution of 0.05 degrees i.e.✶✽

5 km when projected in the Robinson projection system (❤tt♣✿✴✴s♣❛t✐❛❧r❡❢❡r❡♥❝❡✳✶✾

♦r❣✴r❡❢✴❡sr✐✴✺✹✵✸✵✴).✷✵

3.5.3 Suitability of data for spatio-temporal interpolation✷✶

For assessing usability of point and RS data (8-day MODIS images) for spatio-temporal✷✷

modeling ((c)), we first fit a spatio-temporal regression-kriging model for mean daily tem-✷✸

peratures, then run cross-validation to detect possible outliers and critical areas. Within✷✹

the regression-kriging framework, the regression and residual kriging parts are dealt with✷✺
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separately, the regression part is used as trend surface and residuals are fit with a global ✶

space-time sum-metric variogram model. The interpolation surface is the sum of trend ✷

surface (regression part) and the residuals surface (spatio-temporal kriging prediction). ✸

As auxiliary predictor to model the spatio-temporal trend we used a time series of 8-day ✹

MODIS day-time LST images. Original MODIS LST were converted to degrees Celsius ✺

from Kelvins. Missing pixels in the original LST maps were replaced using ❙❆●❆ ●■❙ ✻

function “Close Gaps”. Close Gaps function uses splines as robust method for filling the ✼

gaps in areas with sparse or irregularly spaced data points (Neteler, 2010), the missing ✽

pixels filtering from 8-day MODIS mosaics were performed because the predictor need ✾

to be known over the domain of interpolation, i.e. over the land mass area. The temporal ✶✵

dissaggregation from 8-day images to daily images is done by applying spline in temporal ✶✶

domain, by splining 8-day MODIS LST pixels to provide daily values. Thus, we provided ✶✷

daily values of predictor for global land mass area at 1 km spatial resolution. The linear ✶✸

regression for 2011 year were applied on the MODIS spline images. Figure 3.8 shows the ✶✹

plot of observation against the 8-day MODIS spline values. ✶✺

The spatio-temporal regression-kriging method is described in detail in Hengl et al. (2012) ✶✻

and Heuvelink et al. (2012), they used sum-metric variogram structure for temperature ✶✼

modeling, as we in this paper. The sum-metric space-time variogram were fitted via the ✶✽

space-time kriging framework from ❣st❛t package (Pebesma, 2004), the package that is ✶✾

also capable of working with space-time class data (Pebesma, 2012). The sum-metric ✷✵

covariance structure assumes that the component of variation can be explained by pure ✷✶

spatial variability (space variogram), the second part with pure time component (temporal ✷✷

variogram) and the third part is explained by joint variogram (spatio-temporal interaction), ✷✸

where the time component is multiplied by geometric anysotropy coefficient. Finally, ✷✹

fitted variogram surface is described by 10 parameters. The prepared spatio-temporal ✷✺

point data set contained around 3 billion measurements of daily average temperature from ✷✻

8713 stations for the selected year 2011. ✷✼

The cross-validation technique was performed by using “leave-one-station-out” proce- ✷✽

dure. This takes neighborhood stations to predict the all values in temporal domain (365 ✷✾

days in this case for each day in 2011) without using any observation from cross-validated ✸✵

station. Cross-validation predictions are than compared with actual observed values to ✸✶
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FIGURE 3.8: The station Novi Sad, Serbia (λ = 19.850,φ = 45.333) (above), gray solid
line: mean daily temperature observation in 2011; black dashed line: 8-day MODIS
LST values; red dashed line: MODIS LST spline (red); Station Swanbourne, Western

Australia (λ = 115.767,φ =−31.950) (below).

derive the root mean square error (RSME). The RMSE was derived for station × day✶

(Figure 3.19) and for each day of the year globally (Figure 3.17).✷

Before model fitting, station data needed to be cleaned-up for duplicates and inconsisten-✸

cies. All assumed duplicate stations (closer than 2 km) were removed from the analysis.✹

Also, stations that have obvious artifacts (usually not visible in the original data) were✺

iteratively removed by comparing the cross-validation versus the observed values. For✻

example, 27 GSOD stations with large difference between cross validation and actual ob-✼

served values for Canada are shown in Figure 3.9. These are assumed to be gross errors✽

and were removed from final analysis.✾
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FIGURE 3.9: Outliers and inconsistencies detected for station data from Canada. The
observed mean daily temperature (grey) and cross-validation prediction of temperature

(black line) in °C. Heading numbers refer to internal identifier of stations.

3.6 Results ✶

3.6.1 Temporal coverage ✷

Change in annual number of available stations is illustrated separately for daily (Fig- ✸

ure 3.10, upper) and monthly (Figure 3.10, lower) data sets. As plots indicate, there are ✹

several major differences in these sets. ECA&D data set comprises some historical data ✺

back to 1800s while GSOD starts in 1890s. Maximum number of stations in GSOD is ✻
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more than three times larger than in ECA&D due to GSOD’s global geographical cover-✶

ages compared to ECA&D’s European one. ECA&D number of station reached steady✷

plateau from 1960s through 1990s when number of station started to drop down. GSOD✸

number of stations per year had strong increase from 1940s to 2000 but then the number✹

also declines.✺

FIGURE 3.10: Number of stations per year with daily records in ECA&D (European
Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day) data sets
(above). Number of stations per year with monthly records in GHCN-M V3 (Global
Historical Climatology Network-Monthly) and CRUTEM4 (Climatic Research Unit land

stations) (below).

The reasons for decline in number of stations could be many. The development of com-✻

puters and telecommunications are mainly responsible for the rise in number of stations✼
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while reasons for the reduction in number are harder to explain. Ground measurements ✶

are expensive to maintain so at one moment it was suspected that automatic meteorologi- ✷

cal stations and remote sensed data (radars and satellites) could replace ground measure- ✸

ments. This technological shift is still on-going, so that the plots show a slight drop as ✹

there are less records for the last decade. Also the number of stations available in all ✺

global data sets is dependent on national data exchange policies, so sometimes just part ✻

of the national data are available. This is also subjected to change. For example ECA&D ✼

has been expanded in 2013 with Finnish and a number of Russian stations. ✽

The number of stations with monthly temperature records per year are provided for GHCN- ✾

M v3 and CRUTEM4 data-sets. For selected meteorological element these numbers for ✶✵

global area (Figure 3.10, lower) are comparable with number of stations in European ✶✶

ECA&D data set even though the overall number of stations in GHCN is larger. This re- ✶✷

flects in lower average global spatial density of GHCN set compared to European ECA&D ✶✸

(except in eastern US and some other smaller regions). ✶✹

3.6.2 Geographical coverage ✶✺

Geographic coverage analysed with Gaussian smoothing kernel is shown in Figure 3.11. ✶✻

The regions with average and higher than average station density values are coloured or- ✶✼

ange to red (Europe, North America, South and East Asia, coastal part of South America, ✶✽

Africa and Australia). Regions with lowest relative density and mostly zero density pix- ✶✾

els are coloured in white (< 0.1 or 10%). The later are the areas where spatio-temporal ✷✵

prediction models would possibly result in data extrapolation. ✷✶

The results of the neighborhood analysis show that for 25% of global land areas the dis- ✷✷

tance to nearest station is >200 km. Further analysis of station frequency counts for ✷✸

100 km×100 km blocks (about one decimal degree cells) shows that 72% of land areas ✷✹

contains no stations, 15.5% of land area has only one station per 10,000 km2, while only ✷✺

12.5% of land areas is covered with more then one station per 10,000 km2. ✷✻
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FIGURE 3.11: Relative density of stations for 2011: (above) estimated for the ECA&D
(European Climate Assessment & Dataset) and GSOD (Global Surface Summary of Day)
daily temperature data set, (below) estimated for the GSOD and ECA&D daily precipi-

tation data set. Bandwidth used to derive kernel density: H=70 km.
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FIGURE 3.12: Relative station density compared to relative population density and land
areas arrangement depending on latitude. Density values are in the range [0,1] for the all

showed elements.

3.6.3 Feature space coverage ✶

The results of cross-validation using 75% of records for training and 25% of records for ✷

validation in MaxEnt show that distribution of GSOD and ECA sets are fairly controlled ✸

by selected environmental layers (AUC= 0.84). This means that distribution of station ✹

locations could be explained with these covariates with an accuracy of 84%. The cur- ✺

rent distribution of stations locations is strongly controlled by all continuous predictor ✻
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layers (❉■❈●❙❍, ❉❊▼❙❘❊, P❉▼●P❲, ●❆❈●❊▼). Even if each of this predictors is used sepa-✶

rately, they explain about 80% of distribution individually. Obviously, ❉■❈●❙❍, ❉❊▼❙❘❊,✷

P❉▼●P❲, ●❆❈●❊▼ are highly cross-correlated, and highly correlated with the density of✸

meteorological stations. The environmental layer that decreases the gain the most when✹

omitted from the prediction is ●▲❈❊❙❆ (land cover map), which therefore appears to have✺

the most information that is not present in the other layers.✻

Figure 3.13 indicates that there is indeed a clear sampling preference for meteorological✼

monitoring. As expected, most of Europe is densely covered and represented with meteo-✽

rological stations (except Alps region), so are the South and East Asia and coasts of North✾

and South America. On the other hand, the areas of Central Asia (Himalaya Range), An-✶✵

des Range and Amazon Basin in South America, Central Australia, north coasts of Asia✶✶

and North America, Central Australia and Sahara desert in Africa, as well as all of Green-✶✷

land, Antarctic and Arctic poles suffer from a significant misrepresentation in the feature✶✸

space.✶✹

The station clustering is also illustrated using histogram plots in Figure 3.14. This shows✶✺

that there is a higher grouping of stations along the coast lines. Note also in Figure 3.14✶✻

(upper) that some stations are located further from the coast line, which is not an artifact,✶✼

but the consequence of the resolution of the covariate layers (5 km). Many meteorological✶✽

stations are located on small islands (with area <25 square kilometer) not mapped in the✶✾

❉■❈●❙❍ map. From Figure 3.14 (lower) it is also obvious that large mountain chains are✷✵

globally under-represented in the meteorological networks.✷✶

3.6.4 Spatio-temporal models for temperature✷✷

The results of regression modeling show that time series of 8-day MODIS LST images✷✸

explain 81% of the variability in mean daily temperature values for the year 2011. MODIS✷✹

LST images are significant estimators of the daily temperatures but with somewhat lower✷✺

precision than indicated by e.g. Wan et al. (2004): the correlation plot in Figure 3.15✷✻

indicates an average precision of ±5.3°C. Note also that we use the 8-day averages of✷✼

MODIS LST images, hence somewhat higher error can be expected.✷✽
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FIGURE 3.13: Sampling bias in feature space derived using the MaxEnt software and
standard covariates (distance from the sea coast line, land cover classes, elevation map,
population map, world accessibility map): (above) probability of station occurrence de-
rived for observed temperature data sets (European Climate Assessment & Dataset and
Global Surface Summary of Day; ECA&D and GSOD), (below) probability of station
occurrence derived for observed precipitation data sets (ECA&D and GSOD). White col-

ored areas indicate extrapolation areas. Spatial resolution of the maps is 5 km.
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FIGURE 3.14: Station clustering for observed temperature data sets (European Climate
Assessment & Dataset and Global Surface Summary of Day) visualized in feature space
(distance to the coast line and elevation). The histograms were derived by overlaying
stations and environmental layers. The points below the two histograms show actual me-
teorological stations. The red lines shows global relative density distribution of distance

from coast line and elevation.
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FIGURE 3.15: Scatter plot showing the general relationship between daily temperature
and 8-day MODIS LST images. The fitted regression line and the 1:1 line (dotted).

Figure 3.16 shows the space-time variogram for residuals fitted using automated fitting ✶

in ❣st❛t. The pure spatial component of the space-time variogram, showing the residual ✷

correlation at any time separation between two spatial point exists, pure spatial spherical ✸

variogram has the nugget of 3.22°C2, the sill of the 18.28°C2 is reached with the range ✹

more than 6000 km. Thus, if it is known just spatial distance between two observations ✺

without knowing time separation the part of total covariance is known. The pure time ✻

component of variogram structure is zero, implying that if it is just known time separation ✼

between two points even part of total covariance is not known, implying that all tempo- ✽

ral variability is explained by space-time interaction components. The joint variogram, ✾

representing space-time interaction is modeled by spherical function with the parameters: ✶✵

nugget 1.8°C2, the sill 8.35°C2 and range 2349 km. The geometric anisotropy parameter ✶✶
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FIGURE 3.16: Fitted sum metric model (left) and sample variogriom (right) of linear
regression residuals of mean daily temperature observation on 8-day MODIS spline im-

ages. The variogram surface is presented in 2D (above) and 3D manner (below).

is 583 km/day, this allowing to scale time separation in spatial distance for purpose of✶

calculating space-time joint components of covariance. Therefore, space-time correlation✷

of mean daily temperature residuals on MODIS LST spline images modeled with sum-✸

metric covariance structure contains 7 parameters describing correlation at any space-time✹

distances.✺

The results of cross-validation confirm that the spatio-temporal prediction model of mean✻
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FIGURE 3.17: Daily temporal variation for RMSE and R− square for year 2011.

daily air temperature can explain between 87.4–97.1% of variability in the observed val- ✶

ues, with an average of 92.5% (see R− square in Figure 3.17). Figure 3.17 further shows ✷

that average root mean square error per day (RMSE) varies from 2.5°C to 3.2°C with ✸

overall average 2.8. ✹

Annual changes of RMSE and R−square with the largest errors during winter on southern ✺

hemisphere when the global range of minimum and maximum mean daily temperature ✻

on the global land mask is the highest. RMSE calculated for latitude bands shown in ✼

64



Chapter 3 Publicly available global meteorological data sets

FIGURE 3.18: Spatial variation of (RMSE) for different latitudes (aggregated per 1 de-
gree).

Figure 3.18 illustrates that [−70−−90]° latitudes have the highest RMSE, the same plot✶

shows that for the latitude range [0,50]° global spatio-temporal model has the highest✷

precision, in average less than 2°C, what is expected because the number of stations in✸

this range is the highest (Figure 3.12).✹

Spatial distribution of RMSE calculated per year for each station (Figure 3.19) indicates✺

that there are several regions where model is critically inaccurate. In the map shown in✻

Figure 3.19, 47 stations, 0.5% of total points involved in cross-validation have an RMSE✼

above 6°C (with an average of 6.8°C), 10% of total points have an RMSE in range from 3✽
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to 6°C (with an average of 3.8°C). The most of the stations with RMSE higher then 3°C✶

are located in Antarctica, mountains regions and in the sparsely populated areas with low✷

station density coverage. Black circles in Figure 3.19 are points with high accuracy i.e.✸

RMSE <2 (63% of total points) and with an average of RMSE =1.5°C. Finally, average✹

RMSE for the global land mass of 2.8°C, but for USA and Europe the accuracy of interpo-✺

lation by using this data set and spatio-temporal regression kriging model is less than 2°C✻

in average. The interactive web map of the stations with RMSE produced with ❘ package✼

♣❧♦t●♦♦❣❧❡▼❛♣s (Kilibarda and Bajat, 2012), with cross-validating values against obser-✽

vation is provide on the ❤tt♣✿✴✴❞❛✐❧②♠❡t❡♦✳♦r❣✴❲♦r❧❞▼❛♣✲❘▼❙❊✲❙❚❘❑✲▼❡❛♥❚✲♦♥✲▼❖❉■❙✳✾

❤t♠.✶✵

3.7 Discussion and conclusions✶✶

All the data required to produce WorldDailyMeteo images are basically ready to be used.✶✷

The remaining issues are: how to fit global spatio-temporal models and run automated✶✸

geostatistics, and how accurate can we expect to get? The preliminary results of this re-✶✹

search indicate that, before the production of daily estimates of meteorological variables✶✺

at 1 km resolution can become operational, a care needs to be taken to account for spatial,✶✻

temporal and feature space clustering of the meteorological networks. The expected accu-✶✼

racy probable can be better if more static and dynamic covariate layers are included, but✶✽

sparsely covered areas in geographical and feature space still would be areas with double✶✾

lower accuracy.✷✵

Temporal coverage analysis of the publicly available meteorological station data sets in-✷✶

dicates that the GSOD and ECA&D data sets together represent respectable source of✷✷

meteorological data for spatial-temporal analysis at daily resolution (especially from year✷✸

1960), however the distribution through time and space is unequal. What worries espe-✷✹

cially is that there is a drop in the observation density in the last decade. Even more✷✺

distinct clustering can be observed in geographical and feature spaces. Analysis of distri-✷✻

bution of stations locations in feature space shows that the spatial distribution of the me-✷✼

teorological network is distinctly controlled by environmental factors with an AUC=0.84✷✽

(estimated using cross-validation), which means that most of the distribution of the sta-✷✾

tions can be explained by population density and accessibility. Figure 3.14 also clearly✸✵
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shows that the stations frequency is the highest near coast lines and at the lower eleva- ✶

tions. Thus, unequally station distribution in feature space coverage, proved by MaxEnt ✷

results, can lead to inaccurate prediction in higher elevation and sparse populated areas. ✸

For mean daily temperature measurements at stations we have further fitted a spatio- ✹

temporal model using the 8-day MODIS LST time series of images and got an average ✺

accuracy of about 2–3°C when assessed using cross-validation (which confirms the results ✻

of some local studies by Hengl et al. (2012), Heuvelink et al. (2012) and Neteler (2010)). ✼

This is promising as it indicates that indeed highly accurate maps of daily temperatures ✽

could be produced at high spatial resolution using the global spatio-temporal models. Fig- ✾

ure 3.19 also shows that the outliers are distinctly grouped in areas poorly covered with ✶✵

meteorological stations. The second group of outliers we observed were in the moun- ✶✶

tain regions i.e. areas frequently covered with snow. This corresponds to the work of ✶✷

Neteler (2010) who experienced similar difficulties of working with dynamic snow cover ✶✸

on mountain tops. All this indicates that the produced spatio-temporal models will have ✶✹

serious problems for all areas that have been under-sampled in geographical or feature ✶✺

space. ✶✻

Figure 3.15 also indicates that temperatures from [−10,50]°C range are much better cor- ✶✼

related with the MODIS LST images and hence easier to map than temperatures within ✶✽

this range. Similar results were reported, for example, by Wan et al. (2004); Yoo et al. ✶✾

(2011). Lack of stations in polar areas and in large mountain chains remains probably the ✷✵

most serious problem for global meteorological mapping (as illustrated in Figures 3.19, ✷✶

3.18). The current meteorological station networks (Figure 3.1, 3.3, 3.2) probably do not ✷✷

represent the true complexity of climate at higher elevations, deserts, tropical forests, that ✷✸

is in sparsely populated areas (25–50% of the land surface). Topography, arrangement ✷✹

and orientation of mountain ranges are the key climatic factors in land areas (Hartmann, ✷✺

1994; Beniston, 2006), hence station networks should follow this complexity in order to ✷✻

allow for a truly global assessment. It is not realistic to expect that the density of the ✷✼

meteorological stations will change in the years to come, and that these geographical cov- ✷✽

erage gaps will be solved. What is more interesting to the research community is probably ✷✾

how to overcome these problems with using appropriate statistical methods and the higher ✸✵

precision remote sensing technologies. ✸✶
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FIGURE 3.20: Mean daily temperatures for all stations in year 2011 (red), as compared
to the mean 8-day temperature estimated based on the MODIS LST product (black), and
the long-term sea surface daily temperatures obtained from ❤tt♣✿✴✴❞✐s❝♦✈❡r✳✐ts❝✳

✉❛❤✳❡❞✉✴❛♠s✉t❡♠♣s✴ (blue).

Remote sensing is the future of global meteorology, even if the original RS imagery is✶

noisy and produces biased estimates. For example, surface temperatures estimated by✷

MODIS LST product can contain significant noise and artefacts. On the other hand, they✸

can be used to get a more representative estimate of the global temperatures (‘the com-✹

plete picture’), which is impossible to achieve by using ground data only. Figure 3.20,✺

showing differences between the global mean daily temperature from three sources, illus-✻

trates what we mean by bias. There are two logical explanations of the differences in the✼

three curves in Figure 3.20. First, the mean sea surface temperature is relatively constant✽

with slightly higher values in March (2011); both MODIS LST mean temperature and✾

the mean temperature at the stations follow the same pattern that reflects the seasonality✶✵

in the northern hemisphere as most of the land mass falls in the northern hemisphere.✶✶

Second, meteorological stations do not cover land mass uniformly so that the mean can✶✷
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not represent global mean temperature and therefore the values are in average somewhat ✶

higher than the MODIS LST temperatures. In general, accuracy of station’s observations ✷

is higher than of the MODIS LST estimated values, but the station’s observations provide ✸

a biased estimate of the global mean daily temperature because of clustering of points. If ✹

one would try to estimate global land temperature only based on the values on meteoro- ✺

logical stations that he/she would probably make a systematic error (under-estimation) of ✻

2-3°C. On the other hand, MODIS 8-day satellite images with 95% of coverage of land ✼

mask lack the fine precision of the daily measurements, providing land surface tempera- ✽

ture. All this indicates that there is indeed a need for spatio-temporal regression-kriging ✾

methods that can produce calibrated images of daily air temperatures, so that also the ✶✵

global daily average can be estimated in an unbiased manner. ✶✶

To conclude: the observed high temporal, spatial and feature space clustering of meteoro- ✶✷

logical stations potentially represent a limitation of these data sets that could complicate ✶✸

fitting of accurate global spatio-temporal models. This does not imply that no reliable ✶✹

models can be fitted using these data sets, but that sophisticated spatio-temporal tech- ✶✺

niques need to be used that can account for the data clustering, spatially if remote sens- ✶✻

ing and/or monthly images are not used as predictor. Spatio-temporal regression kriging ✶✼

model can provide the most realistic estimate of the uncertainty, so that also an unbiased ✶✽

estimates of the global and local land air temperature and other meteorological variables ✶✾

can be produced. The presented model can be used for calibration of 8-day MODIS LST ✷✵

images by using station observation resulting with daily global images of mean daily air ✷✶

temperature at 1 km scale. This would be the first global daily images at very high spatial ✷✷

and temporal resolution (1 km spatial and 1 day temporal resolution). ✷✸

70



Chapter 4✶

Spatio-temporal interpolation of daily✷

temperatures for global land areas at✸

1 km resolution1
✹

Around 9000 stations from merged GSOD and ECA&D daily meteorological data sets✺

were used to build spatio-temporal geostatistical models and predict daily air tempera-✻

ture at ground resolution of 1 km for the global land mass. Predictions were made for✼

the mean, maximum and minimum temperature using spatio-temporal regression-kriging✽

with a time series of MODIS 8 day images, topographic layers (DEM and TWI) and a geo-✾

metrical temperature trend as covariates. The model and predictions were built for the year✶✵

2011 only, but the same methodology can be extended for the whole range of the MODIS✶✶

LST images (2001–today). The accuracy of predicting daily temperatures has been as-✶✷

sessed using leave-one-out cross-validation; the standard approach is extended with block✶✸

approach. The values were aggregated for blocks of land of size 500×500 km to account✶✹

for geographical point clustering of station data. All computations were implemented in✶✺

the ❘ environment for statistical computing by combining functionality of the ❣st❛t pack-✶✻

age (geostatistical modelling), r❣❞❛❧ and r❛st❡r packages (raster data loading and analysis),✶✼

and s♥♦✇❢❛❧❧ package (cluster computing). The results show that the average accuracy for✶✽

1Based on article: Kilibarda M, Hengl T, Gerard B.M. H, Benedikt G, Edzer P, Perčec Tadić M, Branislav
B (2013?) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. in

review; Journal of Geophysical Research, D: Atmospheres
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predicting mean, maximum and minimum daily temperatures is RMSE =±2°C for areas ✶

densely covered with stations, and between ±2°C and ±4°C for areas with lower station ✷

density. The lowest prediction accuracy was observed in highlands (> 1000 m) and in ✸

Antarctica with a RMSE around 6°C. This automated geostatistical framework could be ✹

used to produce global archives of daily temperatures (new generation WorldClim repos- ✺

itory) and to feed various global environmental models. ✻

4.1 Introduction ✼

Records from near-surface weather stations are the foundation of climate research (Pe- ✽

terson and Vose, 1997). These stations still provide the most accurate and most reliable ✾

measurements of weather. Ground station measurements are not only important because ✶✵

of their high accuracy, they are also the only available records of spatial and temporal ✶✶

variation of climatic variables before the first satellite based observations came available ✶✷

in the 1960s. ✶✸

Station observations are the main source of input of spatial interpolation that predict cli- ✶✹

matic variables on raster grids, while some interpolation methods also make use of addi- ✶✺

tional, auxiliary information such as remotely sensed images and/or topographic layers. ✶✻

In-depth reviews of interpolation methods commonly used in meteorology and climatol- ✶✼

ogy are given by Price et al. (2000), Jarvis and Stuart (2001), Tveito et al. (2006) and ✶✽

Stahl et al. (2006), just to mention the most recent publications in the field. The literature, ✶✾

in general, shows that interpolation techniques used in meteorology and climatology are ✷✵

quite diverse: they range from nearest neighbour methods, splines, regression and kriging, ✷✶

to neural networks and machine learning techniques. ✷✷

Hofstra et al. (2008) made a comparison of six interpolation methods for prediction of ✷✸

daily precipitation, mean, minimum and maximum temperature, and sea level pressure ✷✹

from station data in Europe, and compared anomalies interpolation relative to the long- ✷✺

term monthly mean (1960-1990). The result showed that global kriging on anomalies ✷✻

was the best overall performing method. Besides using ordinary kriging on anomalies ✷✼

for predicting daily values at regional scales, a method known as “regression-kriging” ✷✽

(RK) (also known as “Kriging with External Drift” and/or “Universal kriging”) has been ✷✾
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widely recognized as a flexible and a well-performing technique for unbiased spatial pre-✶

diction of meteorological and environmental variables (Carrera-Hernández and Gaskin,✷

2007; Haylock et al., 2008; Hengl et al., 2012).✸

To our knowledge, no group has previously attempted to interpolate daily values of mete-✹

orological variables using spatio-temporal regression-kriging with time-series of remote✺

sensing based covariates, at fine resolution of 1 km. The challenges to achieve this are sig-✻

nificant, both from a methodological and technological perspective. The global land mask✼

contains about 149 million pixels at 1 km resolution, which means that predicting daily✽

values for 10 years would result in about 4 TB of data. Fitting of geostatistical models✾

with millions of point pairs, and predicting at such large grid stacks can only be achieved✶✵

by intelligent programming that avoids memory limit problems and computations that✶✶

take weeks or longer.✶✷

In this study, we present an automated mapping framework for producing predictions of✶✸

daily mean, minimum and maximum air temperatures using spatio-temporal regression-✶✹

kriging implemented in the ❘ environment for statistical computing via the ❣st❛t (Pebesma,✶✺

2004) and st❛ts (R Development Core Team, 2012) packages. As inputs we use a collec-✶✻

tion of publicly available daily records from NCDC’s Global Surface Summary of Day✶✼

and European Climate Assessment & Dataset, and a time series of MODIS LST 8 day✶✽

images and topographic layers as covariates. The research reported herein focuses on✶✾

the year 2011 for practical purposes and assumes that the same methodology can be ex-✷✵

tended for the whole range of MODIS LST images (2001–today). The input data sets and✷✶

methods are described in Section 4.2. The results of model fitting, cross-validation and✷✷

validation are presented in Section 4.3, whereas summary results are given in the final 4.4✷✸

“Discussions and conclusions”.✷✹

4.2 Data and Methodology✷✺

4.2.1 Merged global station data set✷✻

GSOD and ECA&D daily meteorological data sets have been merged to produce a con-✷✼

sistent global station data set. A large portion of the station data had missing values, but✷✽
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all stations were used in the interpolation procedure. Even though the meteorological ✶

services responsible for collecting the data also perform at least basic quality control, a ✷

small portion of the stations from the merged data sets contained clear gross errors and ✸

needed to be cleaned. The gross errors were detected using the following procedure: an ✹

initial spatio-temporal model was first fitted using all data followed by analysis of cross- ✺

validation predictions at the station location. The high cross-validation root mean square ✻

errors (derived from yearly residuals at certain station) for a number of stations suggest ✼

that there could be some gross errors in the data. This was usually confirmed with abrupt ✽

jumps in observation values in time series plots; thereby showing observations against ✾

cross-validation prediction. We decided to remove all stations that had cross-validation ✶✵

residual higher than ± 15°C, as these clearly contain errors in the data set. After all data ✶✶

filtering, the final set contained about 9000 stations from merged GSOD and ECA&D ✶✷

data sets. ✶✸

4.2.2 Covariates: remote sensing images and DEM-derivatives ✶✹

4.2.2.1 National Aeronautics and Space Administration (NASA) ✶✺

The Moderate Resolution Imaging Spectroradiometer (MODIS) images of the Terra and ✶✻

Aqua Earth Observing System (EOS) platforms provide the possibility for retrieving at- ✶✼

mospheric and oceanographic variables using different techniques. There are many data ✶✽

products from MODIS observations describing land (temperature, land cover), oceans ✶✾

(sea surface temperature, optical thickness) and atmosphere (water vapor, cloud product, ✷✵

atmospheric profiles) that can be used for studies at different scales ranging from local to ✷✶

global. Land Surface Temperature (LST) data and images obtained from MODIS thermal ✷✷

bands that are distributed by the Land Processes Distributed Active Archive Center (LP ✷✸

DAAC FTP) of the US Geological Survey are very often used in meteorological studies ✷✹

(Coll et al., 2009). ✷✺

In addition to the MODIS Level 2 or higher level data, there are also MODIS Level 1 ✷✻

data that are distributed trough the LAADS portal hosted at the Goddard Space Flight ✷✼

Center. The MODIS LST data are available on a daily basis and have spatial resolutions ✷✽

of 1×1 km (Coll et al., 2009). The nominal accuracy of the MODIS LST product is ±1°K. ✷✾
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However, some validations reported accuracy statistics smaller better than 1°K in clear sky✶

conditions within the temperature range of -10°C to 50°C (Yoo et al., 2011). MODIS LST✷

data and/or images are one of the most often used and best documented publicly available✸

remote sensing products in the world.✹

In this work, we only use Level 3 MODIS LST 8 day composite images to improve spatial✺

predictions of mean, minimum and maximum daily temperature despite the fact that daily✻

day-time and night-time MODIS LST images are also available. Notably, the correlation✼

with ground data would probably be more significant if we would use day-time MODIS✽

LST images for maximum temperature prediction and night-time images for minimum✾

temperature prediction. However, day/night images contain many missing pixels that✶✵

ultimately limit their usability for global mapping.✶✶

The original 8 day MODIS LST images were converted from degrees Kelvin to Celsius.✶✷

The original images still contained 0–15% of missing pixels due to clouds or other reasons✶✸

which were replaced using the ❙❆●❆ ●■❙ function “Close Gaps”. This function uses✶✹

splines as a robust method for filling gaps in areas with sparse or irregularly spaced data✶✺

points (Neteler, 2010). Furthermore, the 8 day images were disaggregated in the time✶✻

dimension through the use of splines for each pixel. As a result, the daily coverage was✶✼

obtained.✶✽

4.2.2.2 DEM derivatives✶✾

The elevation data used in this study were obtained from the WorldGrids.org portal. The✷✵

data set is derived as a combination of the publicly available SRTM 30+ and ETOPO data✷✶

sets, and is commonly referred to as DEMSRE.✷✷

The ‘SAGA Wetness Index’ is based on a modified catchment area calculation imple-✷✸

mented in ❙❆●❆ ●■❙ (Böhner et al., 2008). The Global SAGA Wetness Index used in this✷✹

paper was produced by Milan Kilibarda and Tomislav Hengl and the processing script is✷✺

available via the WorldGrids.org data portal.✷✻
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4.2.3 Spatio-temporal regression kriging ✶

Consider the problem of describing the spatio-temporal process of a continuous variable ✷

Z. Z varying over space and time, e.g. temperature varies in space from one location to ✸

another and in time from one point in time to another. The statistical model of such a ✹

process is typically composed of the sum of a trend and a stochastic residual (Burrough, ✺

1998; Heuvelink and Griffith, 2010; Hengl et al., 2012): ✻

Z(s, t) = m(s, t)+ ε ′(s, t)+ ε ′′(s, t) (4.1)

where s, t is the space-time continuum, m is the trend component, ε ′(s, t) is the spatio- ✼

temporally correlated stochastic component and ε ′′(s, t) is the uncorrelated noise. The ✽

phenomenon Z is observed at a finite set of points in space and time. An interpolation ✾

technique is required in order to predict Z at an unobserved location or time. Geostatistical ✶✵

interpolation techniques start by defining a model that describes the degree of variation of ✶✶

the variable of interest in space and time, then followed by characterizing its relationship ✶✷

with explanatory variables that are denoted as ‘covariates’. ✶✸

The global trend of Z can often be explained using covariates known over the spatio- ✶✹

temporal domain, e.g. part of the variation of temperature can be explained using climatic ✶✺

factors (static) such as latitude and elevation, TWI and time dependent predictors like ✶✻

day of year and space and time dependent MODIS LST. It is convenient to represent the ✶✼

relationship between the dependent variable and the covariates using a linear model. The ✶✽

linear trend model is given by: ✶✾

m(s, t) =
p

∑
i=0

βi fi(s, t), (4.2)

where the βi are unknown regression coefficients, the fi covariates that must be exhaus- ✷✵

tively known over the spatio-temporal domain, and p is the number of covariates. Covari- ✷✶

ate f0 is taken as unity, resulting in β0 representing the intercept. ✷✷

The linear model for the mean daily temperature is given as a multiple linear regression ✷✸

on the covariate layers (described in section 4.2.2). In addition to these covariate layers, ✷✹
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we assume that the global daily temperature is a function of geometrical position of a✶

particular location on Earth and day of the year. We call this a ‘geometrical temperature✷

trend’. The geometrical temperature trend for the mean temperature was modelled as a✸

function of the day of the year and latitude (φ ):✹

tgeom = 30.4cosφ −15.5(1− cosθ)sin |φ |, (4.3)

where θ is derived as:✺

θ = (day−18)
2π

365
+21−sgn(φ)π. (4.4)

The number 18 represents the coldest day in the northern and warmest day in the southern✻

hemisphere and was derived empirically by graphical inspection of mean daily temper-✼

ature plots from stations in the northern and southern hemisphere. The sgn denotes the✽

signum function that extracts the sign of a real number. Parameters 30.4°C and 15.5°C✾

of the geometric temperature trend were calculated by least squares fitting on circa 44✶✵

million daily temperature observations from 2000 to 2011. These two numbers are, in✶✶

fact, similar to the mean yearly temperature on the Equator and the mean global Earth✶✷

temperature.✶✸

The linear model for the minimum daily temperature uses the same covariates as the✶✹

linear multivariate model for mean daily temperature. The geometrical temperature trend✶✺

for minimum daily temperature was:✶✻

tgeom = 24.2cosφ −15.7(1− cosθ)sin |φ |, (4.5)

The geometrical temperature trend for maximum daily temperature was:✶✼

tgeom = 37cosφ −15.4(1− cosθ)sin |φ |, (4.6)
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The parameters 24.2°C and 15.7°C in Eq.(4.5), and 37°C and 15.4°C in Eq.(4.6) were ✶

also derived by the method of least square estimation based on the 11 years of observation ✷

from 2000 to 2011. ✸

In recent years, many covariate layers with fine resolution have become available and ✹

regression models can often explain a significant part of the observed variation. However, ✺

in practice, the trend cannot explain all variation even though predictors are spatially, ✻

temporally and spatio-temporally varying. The residuals of the regression model might ✼

show spatio-temporal dependencies, which suggests that a spatio-temporal variogram may ✽

be estimated from the residuals at observation locations and used to krige the residuals. To ✾

make this explicit, we write the variable of interest as a sum of the trend and space-time ✶✵

residual: ✶✶

Z(s, t) = m(s, t)+V (s, t), (4.7)

where V is a zero-mean stochastic residual. ✶✷

To proceed with the estimation of the spatio-temporal covariance structure of V , we as- ✶✸

sume it to be stationary and spatially isotropic. In other words, we assume that the vari- ✶✹

ance of V is constant and that the covariance of V at points (s, t) and (s+h, t + u) only ✶✺

depend on their separation distance (h,u), where h is the Euclidean distance |h|. These as- ✶✻

sumptions might be hard to fulfil for the random field Z but are more likely to be realistic ✶✼

for the residuals. The spatio-temporal covariances are usually described using a spatio- ✶✽

temporal variogram, which measures the average dissimilarity between data separated in ✶✾

the spatio-temporal domain using the distance vector (h,u) defined as: ✷✵

γ(h,u) =
1
2
E(V (s, t)−V (s+h, t +u))2 (4.8)

where E denotes mathematical expectation. ✷✶

The residual V may be thought of as comprising three components: spatial, temporal, and ✷✷

spatio-temporal interaction (Heuvelink et al., 2012). The sum-metric variogram structure, ✷✸

that considers these three components as mutually independent, is defined as (Heuvelink ✷✹

et al., 2012): ✷✺
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γ(h,u) = γS(h)+ γT (u)+ γST (
√

h2 +(α ·u)2), (4.9)

where γ(h,u) denotes the semi-variance of V with h units of distance in space and u✶

units of distance in time,γS,γT are purely spatial and temporal components, and γST is the✷

space-time interaction component. The spatio-temporal anisotropy ratio α converts units✸

of temporal separation (u) into spatial distances (h). The spatio-temporal sum-metric var-✹

iogram model can be seen as a surface with ten parameters; three parameters for each✺

variogram component (sill, nugget, range) and the spatio-temporal anisotropy parameter✻

α . Semivariances (and covariances) can be estimated for any spatio-temporal separation✼

distance (h,u) once these parameters are estimated from the observed residuals. In turn,✽

these can be used in spatio-temporal kriging to compute the best linear unbiased predic-✾

tor (i.e., with minimum expected mean squared error) for any space-time point where V✶✵

(and Z) was not observed. The formulas of kriging in the spatio-temporal domain do not✶✶

differ fundamentally in a mathematical or statistical sense from those of spatial kriging✶✷

(Heuvelink et al., 2012):✶✸

V̂ (s0, t0) = c0
Tc−1V, (4.10)

where c is the n×n variance-covariance matrix of the residuals at the n observation space-✶✹

time points, as derived from the spatio-temporal variogram, c0 is a vector of covariances✶✺

between the residuals at the observation and prediction points, T denotes matrix transpose,✶✻

and V is a vector of residuals (see Eq. 4.7) at the n observation points.✶✼

The final prediction of variable Z at location (s0, t0) is defined as:✶✽

ẑ(s0, t0) = m̂(s0, t0)+V̂ (s0, t0). (4.11)

where m̂(s0, t0) is the estimated multiple linear regression trend. The regression coeffi-✶✾

cients are estimated in the usual way, using where possible Generalized Least Squares✷✵

or Ordinary Least Squares (Pinheiro and Bates, 2009). Note that ‘regression-kriging’✷✶

specifically implies that the regression modelling and residual kriging parts are addressed✷✷

separately: we first produced predictions for the regression part (see Eq. 4.2), followed by✷✸
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extracting residuals for all observations and finally fitting a global sum-metric variogram ✶

model. The residuals were then interpolated and added to the predicted trend. ✷

Spatio-temporal regression-kriging has made a breakthrough in the past decade with the- ✸

oretical concepts and providing various examples of applications (Gething et al., 2007; ✹

Heuvelink and Griffith, 2010; Heuvelink et al., 2012; Gräler et al., 2011; Hengl et al., ✺

2012). Here, we extend the spatio-temporal regression-kriging framework that combines ✻

ground observation together with MODIS 8 day images, as was presented in a Croatian ✼

case study (Hengl et al., 2012), to a global data set and hyper-resolution data. We imple- ✽

mented all the computing in the ❘ environment for statistical computing (R Development ✾

Core Team, 2012) by combining functionality of ❣st❛t package (geostatistical modelling), ✶✵

r❣❞❛❧ and r❛st❡r packages (raster data loading and analysis), and s♥♦✇❢❛❧❧ package (cluster ✶✶

computing). We used the ❣st❛t package (Pebesma, 2004) that is also capable of working ✶✷

with spatio-temporal data sets defined in s♣❛❝❡t✐♠❡ ♣❛❝❦❛❣❡ (Pebesma, 2012) for vari- ✶✸

ogram model fitting. The sample variograms were estimated with spatial lags of 50 km ✶✹

and time lags of 1 day. Because this is a global point data set, all distances were calculated ✶✺

as great circle distances in the WGS84 coordinate reference system. ✶✻

4.2.4 Accuracy assessment ✶✼

Two approaches were applied for assessing the accuracy of the predictions made for the ✶✽

daily temperature of the global land surface as obtained with spatio-temporal regression- ✶✾

kriging. These were: (1) cross-validation (CV), and (2) comparison with GHCN-M ✷✵

monthly data. For validation using GHCN-M data, we predicted values at daily resolution ✷✶

and then aggregated these predictions to monthly averages. Stations from the GHCN-M ✷✷

dataset that were closer than 50 km to any station used in this study were excluded in ✷✸

order to avoid station overlap and to increase the independence of the validation data to ✷✹

obtain more objective results. ✷✺

For cross-validation, we use the leave-one-out cross-validation method. This works as ✷✻

follows: the method predicts a complete annual time series of daily temperature at all sta- ✷✼

tions using only observations from neighbouring stations ( i.e. the 35 nearest observation ✷✽

were sampled for current date and the day before and after the current one, resulting in ✷✾

the collection of around 105 observations that exclude data from the target station itself). ✸✵
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The predicted values were compared with the actual observations of the target stations to✶

derive cross-validation statistics. The final accuracy of the model is assessed using the✷

root mean squared error (RMSE):✸

RMSE =

√

1
m
·

m

∑
j=1

[

T̂ (s j, t j)−T (s j, t j)
]2

(4.12)

where T̂ (s j, t j)−T (s j, t j) is the difference between the cross-validation prediction and the✹

observed temperature at spatio-temporal location (s j, t j), and m is the number of obser-✺

vations for the station. The derived RMSE per station were then exported to KML and✻

HTML formats to allow for visual exploration of errors in space and time domains. These✼

visualizations can be accessed via the ❤tt♣✿✴✴❞❛✐❧②♠❡t❡♦✳♦r❣ website.✽

Because stations are heavily clustered (Kilibarda et al., 2013c), the global RMSE mostly✾

depends on the accuracy in areas with a high station density. In order to obtain a more✶✵

objective measure of accuracy that accounts for this point clustering the block aggre-✶✶

gated RMSE for 500 by 500 km blocks of land prepared in Sinusoidal equal area projec-✶✷

tions is analysed. The regression-kriging cross-validation statistics were first calculated✶✸

in the WGS84 coordinate reference system using geodetic line distances, and then were✶✹

re-projected to Sinusoidal projection for the block aggregation.✶✺

4.3 Results✶✻

4.3.1 Mean daily temperature interpolation✶✼

4.3.1.1 Linear regression for mean daily temperature✶✽

Figure 4.1 shows the geometrical trend values against observed temperatures for two sam-✶✾

ple stations. Surprisingly, the geometrical temperature trend already explains 75% of daily✷✵

temperature variation with a standard error of ±5.7°C.✷✶

Figure 4.2 shows the dissagregated MODIS LST 8 day layer (MODIS spline) against✷✷

observed temperature for two stations. The linear regression model using only MODIS✷✸
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FIGURE 4.1: Mean daily temperature observation in 2011 (gray solid line) and geo-
metrical temperature trend (black dashed line). PHILADEPLHIA, USA (λ = −75,φ =

39.993) (top). BUNBURY, Western Australia (λ = 115.65,φ =−33.35) (bottom).
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LST spline images explains 80% of the variability in mean daily temperature values for✶

the year 2011. Thus, MODIS LST spline images are significant estimators of the daily✷

temperature with an average precision of ±5.2°C. Again, this precision is lower than the✸

one reported by Wan et al. (2004) because we use 8 day composites and not daily MODIS✹

LST images in order to reach full land coverage.✺

The DEM and TWI layers also appeared to be significant covariate layers even though✻

we expected that MODIS LST will account for the variation of temperature with eleva-✼

tion. We suspect the main reason for some elevation dependency was left unexplained✽

in MODIS LST is related with the fact that this is a cloud free product so it is likely✾

to underestimate winter temperatures (due to strong radiative cooling in cloud free sit-✶✵

uations) and overestimate summer temperatures (Van De Kerchove et al., 2013). As a✶✶

consequence, during winter days/nights surface observed temperatures would be higher✶✷

under the clouds due to suppressed radiative cooling and our MODIS LST gap-filling pro-✶✸

cedure would probably underestimate temperature in these areas. During summer, under✶✹

the clouds in the mountains observed surface temperature would be lower, while over gap-✶✺

filling procedure would result in higher temperatures. Since this two processes are mainly✶✻

elevation dependent this could be accounted for with DEM and TWI covariate layers.✶✼

The final multiple linear model with four covariates explains 84.2% of the variation and✶✽

associated standard deviation of ±4.6°C. Figure 4.2 shows plots of modelled against ob-✶✾

served temperature for the same stations as used in previews figures.✷✵

Figure 4.3 presents the general relationship between the observed temperature and linear✷✶

model on the full data set used for spatio-temporal modelling. Note that the residuals are✷✷

in general normally distributed around the regression line and no heteroscedasticity can✷✸

be observed.✷✹

4.3.1.2 Spatio-temporal variogram model for mean daily temperature✷✺

ÂňThe right-hand side of Figure 4.4 shows the 2D and 3D sample space-time variogram.✷✻

The fitted model (ten variogram parameters described in Section 4.2.3 with the fit.StVariogram✷✼

function in ❣st❛t) is shown in the left-hand side of Figure 4.4. Table 4.1 summarizes the✷✽
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FIGURE 4.2: Mean daily temperature observation in 2011 (gray solid line) and multi-
variate linear model of mean daily temperature (red dashed line) on MODIS LST spline
(black dashed line), geometrical temperature trend (black dotted line), elevation and to-
pographic wetness index. PHILADEPLHIA, USA (λ = −75,φ = 39.993) (top). BUN-

BURY, Western Australia (λ = 115.65,φ =−33.35) (bottom).

parameter estimates of the sum-metric variogram model. Note that all variogram compo- ✶

nents were modelled as spherical functions. ✷

The Figure 4.4 indicates that regression residuals have clear correlations both in space and ✸

time and therefore spatio-temporal kriging of residuals is certainly applicable. The fitted ✹
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FIGURE 4.3: Scatter plot showing the general relationship between mean daily tempera-
ture and multivariate linear model prediction of mean daily temperature. The dashed line

is the 1:1 relationship.

spatio-temporal variogram parameters of the mean daily temperature residuals show a sig-✶

nificant purely spatial variogram component, while the purely temporal component is zero✷

and temporal variability is only contained in the space-time interaction component. This✸

suggests that the temporal pattern in mean temperature is probably already sufficiently✹

captured by the regression model. Current residuals are correlated with residuals from✺

day after (or before) and correlation depends on space-time distance. But only temporal✻

separation between any two stations (without knowing spatial distance) doesn’t explain✼
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FIGURE 4.4: Fitted sum-metric model (left) and sample variogriom (right) of residu-
als from multiple linear regression of mean daily temperature on MODIS, geometrical
temperature trend, elevation and topographic wetness index. The variogram surface is

presented in 2D (top) and 3D (bottom).
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TABLE 4.1: Parameters of the fitted sum-metric variogram model for mean daily tem-
perature regression residuals, each component (see Eq. 4.9) is modelled using a spherical

function.

Nugget Sill Range parameter Anisotropy ratio
spatial 1.934 14.13 5903 km

temporal 0 0 0 days
space-time 0.474 9.065 2054 km 497 km/day

even part of spatio-temporal correlation. Contrary, only spatial distance between two sta-✶

tions (without knowing temporal separation) explain part of spatio-temporal correlation.✷

The short distance variation (nugget effect) in both the purely spatial and spatio-temporal✸

components indicates that the model can’t give better precision than ± 1.5°C globally (for✹

interpolation at daily resolution). The range parameters are very large (especially pure✺

spatial range) showing that the residuals are correlated within wide zones reaching sill af-✻

ter 6000 km. Thus, the local neighbourhoods need to be selected in a way that reflects the✼

spatial and temporal ranges. Only few temporal instances will be selected while the spa-✽

tial selection spans several hundred kilometres. This is captured by the spatio-temporal✾

anisotropy as well suggesting that a station with a temporal lag of one day exhibits a✶✵

similar correlation as a station about 500 km apart.✶✶

4.3.1.3 Accuracy assessment: mean daily temperature✶✷

An interpolated map of daily mean temperature for the first and second January of 2011✶✸

is shown in Figure 4.5, daily maps for the year 2011 at 1 km spatial resolution in GeoTiff✶✹

format are available for download via ❤tt♣✿✴✴✇✇✇✳❞❛✐❧②♠❡t❡♦✳♦r❣. The mean daily✶✺

temperature map of coterminous USA for the first 4 days in January 2011 is presented in✶✻

Figure 4.6.✶✼

The cross-validation results on the complete data set showed a RMSE=2.4°C for global✶✽

land areas including Antarctica, with R-square of 96.6%. The block aggregated RMSE✶✾

results shows that the average accuracy is a bit worse (RMSE = 2.8 , see also map Fig-✷✵

ure 4.7). As mentioned previously, the global block aggregated RMSE gives a more✷✶
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objective global measure of accuracy. Thus, the actual RMSE is half a degree larger than ✶

RMSE calculated as a simple mean from all stations. ✷

The monthlyRMSE obtained from cross-validation of monthly aggregated observations ✸

with cross-validation prediction is 1.7°C. This is an important result because it indicates ✹

that the model can be used for monthly image production (aggregation of daily grid- ✺

ded data). The yearly RMSE is 1.4°C. The spatial distribution of RMSE calculated per ✻

station (yearly average of squared daily cross-validation residuals, which is a daily qual- ✼

ity measure) is shown in Figure 4.8. In this figure, the stations with RMSE <2°C rep- ✽

resent 59% of the total number of stations (black dots), and 26% of stations have an ✾

RMSE between 2°C and 3°C. Figure 4.8 is also provided as an interactive map produced ✶✵

with the ❘ package ♣❧♦t●♦♦❣❧❡▼❛♣s (Kilibarda and Bajat, 2012), and is available via ✶✶

❤tt♣✿✴✴✇✇✇✳❞❛✐❧②♠❡t❡♦✳♦r❣. ✶✷

Observed and cross-validated values for two stations are shown in Figure 4.9. Considering ✶✸

the fact that cross-validation predictions are made using only 35 neighbouring stations (in ✶✹

spatial and 3 days in temporal domain) without any observation from the validation sta- ✶✺

tion, the spatio-temporal regression-kriging model is an accurate tool for filtering missing ✶✻

values in time series of mean daily temperatures. ✶✼

The spatial distribution of RMSE can also be aggregated in the spatial domain by region ✶✽

or country. The aggregated results show that the smallest RMSE=1°C is achieved in the ✶✾

Netherlands, whereas Europe on average performs with an RMSE=1.6°C. Other results ✷✵

for large countries and regions are Russia (c.a. 2.2°C), USA 1.8°C, South America 3.1°C, ✷✶

while Antarctica has the highest RMSE with 5.9°C. An interactive map of spatially ag- ✷✷

gregated RMSE at the country level is also available via ❤tt♣✿✴✴✇✇✇✳❞❛✐❧②♠❡t❡♦✳♦r❣. ✷✸

The RMSE on the GHCN-M data is 1.5°C and spatial distribution of RMSE calculated per ✷✹

year (yearly average of squared monthly validation residuals) for each station is shown on ✷✺

Figure 4.10 (an interactive map is available at ❤tt♣✿✴✴✇✇✇✳❞❛✐❧②♠❡t❡♦✳♦r❣). This map ✷✻

shows that 48% of predicted points have prediction accuracy smaller than 1°C. GHCN- ✷✼

M stations at a monthly resolution have an accuracy between 1 and 2°C for 40% of the ✷✽

points. ✷✾
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Chapter 4 Spatio-temporal interpolation of daily temperatures

FIGURE 4.9: Comparison of mean daily temperature observations in 2011 (gray solid
line) and space-time regression kriging cross-validation prediction of mean daily temper-
ature (black dashed line). PHILADEPLHIA, USA (λ = −75,φ = 39.993) (top). BUN-

BURY, Western Australia (λ = 115.65,φ =−33.35) (bottom).
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4.3.2 Minimum daily temperature interpolation✶

4.3.2.1 Linear regression model for minimum daily temperature✷

The geometrical temperature trend explains about 72% of the minimum daily temperature✸

variations for 2011 with a standard error of ±6°C, Figure 4.11 shows geometrical trend✹

against observation. The results of regression modelling based on MODIS LST spline✺

images explains 70% of the variability in minimum daily temperature values for the year✻

2011 with an average precision of ±6.3°C; thus performing somewhat worse than for✼

mean temperature.✽

DEM and TWI layers also showed to be highly significant covariates for minimum daily✾

temperature. The final linear model with four covariates explains 77% of the variation✶✵

with a standard error of ±5.5°C. Figure 4.11 shows a plot of the modelled geometrical✶✶

trend for minimum daily temperature and MODIS LST spline values against observed✶✷

temperature on the same stations.✶✸

4.3.2.2 Spatio-temporal variogram model for minimum daily temperature✶✹

The spatio-temporal variogram is modeled in the same way as was described for mean✶✺

daily temperature. The variogram for minimum daily temperature has similar parameters✶✻

as the mean daily temperature (see Table 4.2 and Figure 4.12). Again, the pure spatial✶✼

component exists and pure temporal one doesn’t. The pure spatial component shows spa-✶✽

tial dependence of regression residuals across the Globe (pure spatial range is 5725 km)✶✾

at any time separation, whereas complete temporal variability of residuals is contained in✷✵

the spatio-temporal interaction part of the variogram structure. The nugget parts of these✷✶

components are around 3.5°C2, which is higher than in the mean temperature case and✷✷

suggests that short range variability in space and time of minimum temperature regres-✷✸

sion residuals is significantly higher than for the mean temperature so extreme tempera-✷✹

tures being harder to predict.✷✺
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FIGURE 4.11: Minimum daily temperature observation in 2011 (gray solid line) and
multivariate linear model of minimum daily temperature (red dashed line) on MODIS
LST spline (black dashed line), geometrical temperature trend (black dot line), elevation
and topographic wetness index. PHILADEPLHIA, USA (λ = −75,φ = 39.993) (top).

BUNBURY, Western Australia (λ = 115.65,φ =−33.35) (bottom).
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FIGURE 4.12: Fitted sum metric model (left) and sample variogriom (right) of residuals
from multiple regression of minimum daily temperature observation on MODIS, geomet-
rical temperature trend, elevation and topographic wetness index. The variogram surface

is presented in 2D (top) and 3D manner (bottom).
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TABLE 4.2: Parameters of the fitted sum-metric variogram model for minimum daily
temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-

ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 3.695 22.682 5725 km

temporal 0 0 0 days
space-time 1.67 9.457 1888 km 485 km/day

4.3.2.3 Accuracy assessment: minimum daily temperature ✶

The results of cross-validation for minimum temperature produced a RMSE=2.7°C for ✷

global land areas including Antarctica, with R-square of 94.2%. Monthly RMSE ob- ✸

tained from the cross-validation of monthly aggregated observation and cross-validation ✹

prediction is 2°C, yearly RMSE is 1.7°C. The spatial distribution of RMSE calculated per ✺

station (yearly average of squared daily cross-validation residuals, daily quality measure) ✻

for each station is shown in Figure 4.13, where the stations with RMSE <2°C are repre- ✼

sented with 40% of the total number of stations (black dots), and 2°C< RMSE <3°C with ✽

35% (blue dots), 23% of points are with 3°C< RMSE <6°C, and 200 stations are with ✾

RMSE >6°C. ✶✵

The spatial distribution of RMSE also shows lower accuracy than predictions of the mean ✶✶

temperature in general. The aggregated results show that the lowest RMSE=1.4°C is ✶✷

achieved in the Netherlands, Europe without Russia (c.a. 2.7°C) an RMSE of around ✶✸

2.3°C, USA 2.3°C, South America 3.1°C, Antarctica has again the highest RMSE=4.7°C. ✶✹

4.3.3 Maximum daily temperature interpolation ✶✺

4.3.3.1 Linear regression model for maximum daily temperature ✶✻

The geometrical temperature trend in the linear model explains 75% of maximum daily ✶✼

temperature variation for 2011 with a standard error of ±6.6°C. Figure 4.14 shows the ✶✽
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geometrical trend compared against observation. The geometrical trend results are com- ✶

parable to the results of modelling the mean temperature and are hence better than the ✷

results for modelling the minimum daily temperature case. ✸

The regression modelling only with MODIS LST spline images already explains 84.5% ✹

of the variability in maximum daily temperature values for the year 2011 with an average ✺

precision of ±5.2°C. MODIS LST 8 day images are the best predictor for the maximum ✻

daily temperature when compared to actual mean and minimum daily temperatures. DEM ✼

and TWI layers also were significant covariate layers for the maximum daily temperature. ✽

The final linear model with four covariates explains 86.7% of variation with standard ✾

deviation of ±4.8°C, Figure 4.14 shows the modelled linear regression line, the geomet- ✶✵

rical trend for the maximum daily temperature and the MODIS LST spline values against ✶✶

observed temperature for the same stations. ✶✷

4.3.3.2 Spatio-temporal variogram model for maximum daily temperature ✶✸

Table 4.3 summarizes the parameters of the spatio-temporal variogram model, as in the ✶✹

previous variograms the components of variogram are spherical functions. Similar as ✶✺

for minimum daily temperature the nugget effect of pure spatial component is higher ✶✻

showing that this model can not achieve a better accuracy than the model for mean daily ✶✼

temperature. ✶✽

TABLE 4.3: Parameters of the fitted sum-metric variogram model for minimum daily
temperature regression residuals, each component (see Eq. 4.9) is modeled using a spher-

ical variogram function.

Nugget Sill Range parameter Anisotropy ratio
spatial 2.8722 8.314 4930 km

temporal 0 0 0 days
space-time 1.750 11.175 2117 km 527 km/day
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FIGURE 4.14: Maximum daily temperature observation in 2011 (gray solid line) and
multivariate linear model of maximum daily temperature (red dashed line) on MODIS
LST spline (black dashed line), geometrical temperature trend (black dotted line), ele-
vation and topographic wetness index. PHILADEPLHIA, USA (λ = −75,φ = 39.993)

(top). BUNBURY, Western Australia (λ = 115.65,φ =−33.35) (bottom).
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FIGURE 4.15: Fitted sum-metric model (left) and sample variogriom (right) of residuals
from multiple linear regression of maximum daily temperature on MODIS, geometrical
temperature trend, elevation and topographic wetness index. The variogram surface is

presented in 2D (above) and 3D (below).
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4.3.3.3 Accuracy assessment: maximum daily temperature✶

Results of cross-validation for maximum daily temperature on the complete data set✷

gave a RMSE = 2.6C for global land areas including Antarctica, with R-square 95.9%.✸

Monthly RMSE obtained from cross-validation of monthly aggregation of observation✹

and cross-validation prediction is 1.9°C, and yearly RMSE is 1.6°C. Spatial distribution✺

of RMSE calculated per station (yearly average of squared daily cross-validation resid-✻

uals, daily quality measure) for each station is shown in Figure 4.16, where the stations✼

with RMSE <2°C are represented with 41% of total number of stations (black dots), and✽

2°C< RMSE <3°C with 41% (blue dots), 16.6% of points are with 3°C< RMSE <6°C,✾

and 106 stations are with RMSE >6°C.✶✵

The spatial distribution of RMSE also shows lower accuracy than for mean daily tem-✶✶

perature. The aggregated results show that the best RMSE=1.3°C is achieved in the✶✷

Netherlands, Europe without Russia (ca. 2.7°C) achieves around 2.1°C, USA 2.1°C, South✶✸

America 3.2°C, Antarctica has the highest RMSE=5°C.✶✹

4.4 Discussion and Conclusions✶✺

In this paper we have demonstrated how dense publicly available ground station data✶✻

together with a time series of remote sensing images and covariates at 1 km resolution✶✼

can be used to predict mean, minimum and maximum daily temperature for the global✶✽

land mass in space and time. The obtained global models for mean, minimum and max-✶✾

imum temperature were further used to produce gridded images of daily temperatures at✷✵

very high spatial and temporal resolution. We achieved an average prediction accuracy✷✶

of about 2–3°C for daily temperature prediction when assessed using cross-validation✷✷

(which confirms the results of some local studies by Hengl et al. (2012), Heuvelink et al.✷✸

(2012) and Neteler (2010)). This is promising as it indicates that highly accurate maps of✷✹

daily temperatures can be produced at high spatial resolution using global spatio-temporal✷✺

models. Figures 4.8, 4.13, 4.16 also show that the outliers are distinctly grouped in areas✷✻

that are poorly covered with meteorological stations and in mountain regions, i.e. areas✷✼

frequently covered with clouds or snow. This agrees with findings of Neteler (2010), who✷✽

experienced similar difficulties in working with dynamic snow cover on mountain tops.✷✾
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Chapter 4 Spatio-temporal interpolation of daily temperatures

During the model fitting, we discovered that the GSOD point data sets still contain many✶

artifacts and possible gross errors. We removed a small portion of obvious errors, but✷

surely there is even more noise in this data set. It was beyond the scope of this study✸

to identify and remove all errors. Station data filtering should probably be performed by✹

the organizations that collected the data because they have expert knowledge on the mea-✺

surements and stations. In that context, our proposed methodology for cross-validation✻

provides a tool to detect stations with potential errors in time series, and we recommend✼

that responsible organizations use it to detect errors and clean up their data sets. Further-✽

more, by overlaying the point data and WorldGrids.org covariates, we were able to detect✾

stations with inaccurate locations. This is especially important for stations in mountainous✶✵

regions, which proved to be very important for model building as the error of predicting✶✶

temperature increases with elevation.✶✷

It is worth noting that the presented global regression-kriging models can also be used to✶✸

produce maps of associated uncertainty at very high spatio-temporal resolution in addi-✶✹

tion to providing estimates of the values of target variables. Basically, by using the global✶✺

models presented in this paper, one can get an unbiased prediction of daily air tempera-✶✻

tures for any place on the global land mask (at support size of 1 km) and for any day of✶✼

the year for the period from the beginning of the MODIS mission until today.✶✽

The geometrical temperature trend (Eq.4.3) presented in this paper turned out to be a cru-✶✾

cial covariate. Alone, it can explain more than 70% of the temperature variation. This✷✵

indicates that a similar model without remote sensing images can be made for the daily✷✶

temperature interpolation for the period when MODIS images were not available and✷✷

would not perform much worse than a model that includes MODIS data as a covariate.✷✸

The fitted spatio-temporal global models for mean, minimum and maximum daily temper-✷✹

ature could be used as a tool for disaggregation of MODIS 8 day images to daily images✷✺

and for the calibration of land surface temperatures (conversion to air temperature).✷✻
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Chapter 5 ✶

Meteo package for automated ✷

spatio-temporal mapping ✸

This Chapter describes the ❘ package ♠❡t❡♦ that is under development. The package ✹

purpose is to provide functionalities for the automated mapping of meteorological obser- ✺

vations using spatio-temporal regression kriging. The package contains regression and ✻

variogram models that were presented and described in Chapter 4. The models were fitted ✼

using publicly available data sets (see Chapter 3). Spatio-temporal regression kriging is ✽

implemented in a way that can be used for large amounts of data. Detection of outliers, ✾

which are based on iterative cross-validations, is also implemented in the package. In ✶✵

addition to the implemented methods, the package performance is presented through the ✶✶

case study of mapping mean daily temperatures in Serbia. ✶✷

5.1 Introduction ✶✸

The most powerful ❘ package available for geostatistical analysis is ❣st❛t, which was de- ✶✹

veloped for applied geostatistics Pebesma (2004). Many spatial geostatistics techniques ✶✺

(including ordinary, universal kriging, block kriging, kriging in a local neighbourhood, ✶✻

variogram cloud diagnostics, variogram modelling, multivariable variogram modelling, ✶✼
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Chapter 5 Meteo package for automated spatio-temporal mapping

cokriging and simulation)are available to the broad community of geoscientists. The tech-✶

niques of spatio-temporal variogram fitting and implementation of global spatio-temporal✷

ordinary kriging has recently been developed. Spatio-temporal regression kriging predic-✸

tion and cross validation have not been implemented in ❣st❛t, yet.✹

The package ♠❡t❡♦ Kilibarda et al. (2013b)1 has been implemented in the ❘ environment✺

for statistical computing (R Development Core Team, 2012). It combines functionali-✻

ties of the ❣st❛t, r❣❞❛❧ (Bivand et al., 2013) and r❛st❡r (Hijmans and van Etten, 2013)✼

packages (raster data loading and analysis) and s♥♦✇❢❛❧❧ (Knaus, 2013) package (cluster✽

computing). This package provides an automated framework for various tasks including:✾

spatio-temporal regression kriging interpolation of ground based observations interpola-✶✵

tion and de-trended using covariates, e.g. satellites products and DEM derivatives. Global✶✶

temperature models are stored in the package (see Chapter 4 for models details) such that✶✷

the prediction (interpolation) can be performed without fitting spatio-temporal regression✶✸

and variogram models.✶✹

The automated spatio-temporal kriging interpolation procedure is a data driven approach✶✺

designed for mapping with little or no human interaction. Hengl (2009) describes auto-✶✻

mated mapping, as an evolving technique that encompasses the future of mapping frame-✶✼

works:✶✽

“We can conclude that an unavoidable trend in the evolution of spatial prediction models✶✾

will be a development and use of fully-automated, robust, intelligent mapping systems.✷✵

Systems that will be able to detect possible problems in the data, iteratively estimate the✷✶

most reasonable model parameters, employ all possible explanatory and empirical data,✷✷

and assist the user in generating the survey reports.”✷✸

The ♠❡t❡♦ package endeavours in this direction and includes the additional paradigm of✷✹

using a global model as the target meteorological/climatic variable. Currently, automated✷✺

mapping with the ♠❡t❡♦ package can be decomposed in chunks:✷✻

1. defining input observations and covariates;✷✼

2. use of pre-calculated global models;✷✽

1❤tt♣s✿✴✴r✲❢♦r❣❡✳r✲♣r♦❥❡❝t✳♦r❣✴♣r♦❥❡❝ts✴♠❡t❡♦✴
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3. detecting and/or removing outliers; ✶

4. creation of final prediction (and its export to GIS formats); ✷

5. cartographic visualisation of results and/or creation of web maps (e.g. by using ✸

❘ package ♣❧♦t●♦♦❣❧❡▼❛♣s (Kilibarda and Bajat, 2012) for automatic creation of ✹

interactive web maps). ✺

In addition, ♠❡t❡♦ offers the possibility of using user defined covariates, regressions and ✻

variograms; thereby giving more flexibility of using the package in a semi-automated ✼

approach. ✽

5.2 R enviroment and related packages ✾

5.2.1 R enviroment ✶✵

As stated in the Introductory section of the ❘ Language Definition on-line manual (R ✶✶

Development Core Team, 2012), ❘ is a system for statistical computation and graphics, ✶✷

which provides, among other things, programming facilities, high-level graphics, inter- ✶✸

faces to other languages, and debugging facilities. ❘ implements a language similar to ✶✹

the S language that was originally developed by John Chambers (Becker and Chambers, ✶✺

1984). The main difference is in the license statement because, ❘ is a free and open source ✶✻

software under the terms of the GNU General Public License in contrast to the S language. ✶✼

The syntax of the ❘ language is analogous to the C programming language. However, a ✶✽

fully functional interpreter permits the creation of functions and calculations within an ✶✾

environment defined by a command line window or a graphical user interface (Grunsky, ✷✵

2002). ❘ is organized as a collection of packages designated for specific tasks. ✷✶

The ❘ package system has been one of the key factors in the overall success of the ❘ ✷✷

project (R Development Core Team, 2012). The ❘ contains the base system which enables ✷✸

statistical computation, linear algebra computation, graphics creation, and other similar ✷✹

features. A package is a related set of functions, help, and data files that have been bundled ✷✺

up together. Packages in ❘ are similar to modules in Perl, libraries in C/C++, and classes ✷✻
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in Java. It is not necessary to install the specific packages if they do not part into the user’s✶

computing and analysing interests.✷

The set of developed packages are especially interesting for the ♠❡t❡♦ package. The ❘✸

developers have written the R package s♣ to extend R with classes and methods for spatial✹

data (Pebesma and Bivand, 2005). Classes specify a structure and define how spatial data✺

are organised and stored. Methods are instances of functions specialised for a particular✻

data class (Bivand et al., 2008). Another important package used in this study is the r❣❞❛❧✼

package. This package uses functions of the Geospatial Data Abstraction Library to read✽

and write GIS data with options of handling a coordinate referent system (CRS). This✾

package allows the user to define CRS for spatial object. CRS might be obtained directly✶✵

from the data if data are imported from the GIS file by the r❣❞❛❧ package. Performing✶✶

transformations among different CRSs is available using the PROJ4 library2, which is im-✶✷

plemented in the r❣❞❛❧ package. A very efficient tool for raster manipulation is the r❛st❡r✶✸

package (Hijmans and van Etten, 2013), which provides functionalities for reading, writ-✶✹

ing, manipulating, analysing and modelling of a gridded spatial data. Packages s♣❛❝❡t✐♠❡✶✺

and ❣st❛t will be briefly described in further text.✶✻

5.2.2 Package spacetime✶✼

Spatio-temporal data have been used in meteorological/climatic mapping for a long time.✶✽

However, they have not been defined as an object with structured spatial and temporal✶✾

elements and bound together as a spatio-temporal data model. The examples of those✷✵

data are: time series of weather measurements from ground stations in regions of interest,✷✶

satellite images of weather, etc. Spatio-temporal data have mainly been used and analysed✷✷

separately, whereby the spatial aspect is analysed first and the temporal aspect afterwards✷✸

or reversed. Such data has not been included in an integral modelling approach (Bivand✷✹

et al., 2008). The lack of GIS data models and software for storing, handling and analysing✷✺

spatio-temporal data were the main reason for the described data processing approach✷✻

outlined in this Chapter.✷✼

2❤tt♣✿✴✴tr❛❝✳♦s❣❡♦✳♦r❣✴♣r♦❥✴
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Package s♣❛❝❡t✐♠❡ provides classes and methods for different types of spatio-temporal ✶

data that are implemented in ❘. Spatio-temporal data types implemented in s♣❛❝❡t✐♠❡, ✷

include: space-time regular lattices, sparse lattices, irregular data, and simple trajectories ✸

(Pebesma, 2012). In addition, the utility functions for plotting data as map sequences (lat- ✹

tice or animation) or multiple time series and methods for spatial and temporal selection ✺

and subsetting and spatial and temporal overlay are provided in this package. ✻

A STFDF-class is used in the ♠❡t❡♦ package for storing, overlaying and manipulation of ✼

spatio-temporal data. STFDF-class is a data model referred to as a full space-time grid. ✽

It contains observation data (stored as data.frame objects that are presented in analogue ✾

form as a spreadsheet in Excel), spatial features (points, lines, polygons, grid cells) as ✶✵

sp objects and time information data and time as a vector. This data model (class) im- ✶✶

plies that each spatial location contains observations for each time instance. Therefore, ✶✷

the number of observations is a product of the number of locations and number of time ✶✸

instances. Unobserved space-time locations (e.g. missing observation on certain day at ✶✹

meteorological station) are stored as a missing value NA in an observation table. This ✶✺

class is suitable for storing meteorological/climatic data from both ground stations and ✶✻

remote sensing data. ✶✼

5.2.3 Package gstat ✶✽

The ❣st❛t package provides a wide range of univariable and multivariable geostatistical ✶✾

functions for modelling, predicting and simulation, whereby the package s♣ provides gen- ✷✵

eral purpose classes and methods for defining, importing/exporting and visualizing spatial ✷✶

data (Pebesma, 2004). The package allows one to calculate sample variograms, fit valid ✷✷

models, show variograms, calculate (pseudo) cross-variograms, fit valid linear models, ✷✸

and calculate/fit directional variograms and variogram models (anisotropy coefficients are ✷✹

not fitted automatically). ✷✺

The development of the s♣❛❝❡t✐♠❡ package has already started in 2010 and the ❣st❛t func- ✷✻

tion has been adapted for spatio-temporal mapping (Pebesma, 2013). This package can ✷✼

be used for spatio-temporal geostatistics, estimated sample spatio-temporal variograms, ✷✽

spatio-temporal variogram fitting and ordinary global spatio-temporal kriging. ✷✾

110



Chapter 5 Meteo package for automated spatio-temporal mapping

The variogramST function calculates empirical spatio-temporal variograms using an ob-✶

ject of STFDF-class as input data. The resulting variogram can be visualised as a sur-✷

face (see Figure 5.1) or an image. Spatio-temporal model fitting is provided by the✸

fit.StVariogram function. It fits a spatio-temporal variogram model of a given type from✹

a spatio-temporal sample variogram. Different variogram models can be defined using✺

the vgmST function. A variogram model (separable, product-sum, sum-metric, ect.) de-✻

termines a structure of the space-time covariance model, e.g. the sum-metric structure✼

is defined using the Equation 4.9 that contains pure spatial, pure temporal and spatio-✽

temporal components.✾

FIGURE 5.1: Spatio-temporal sample (experimental) variogram surface.

A function krigeST provides the particular implementation of global spatio-temporal or-✶✵

dinary kriging. At the moment, krigeST does not support block kriging or kriging in a✶✶

local neighbourhood and it does not provide simulation.✶✷
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The prediction over a large area with lots of spatio-temporal observations cannot be per- ✶

formed using the generic krigeST function because of the intensity of computation efforts. ✷

The alternative solution could be: ✸

• dividing area of interest in smaller parts (tiles), as well as observations points; ✹

• use krigeST for prediction and ; ✺

• mosaic back tiles to area of interpolation. ✻

Spatio-temporal regression kriging using ❣st❛t also must be performed separately: the ✼

first step isto produce predictions for the regression part using the regression function, the ✽

second part involves extracting residuals for all observations and finally fitting a global ✾

sum-metric variogram model. The residuals then should be interpolated and added to the ✶✵

predicted trend. For large areas and lots of observations, the prediction of residuals using ✶✶

ordinary kriging needs to be completed tile by tile. The ♠❡t❡♦ package automates the ✶✷

procedure for regression kriging prediction over large areas. ✶✸

5.3 Development of meteo package ✶✹

The ♠❡t❡♦ package contains several functions that aim to fit table data to spatio-temporal ✶✺

objects. Such fitting is necessary for acquiring a spatio-temporal kriging prediction. The ✶✻

spatio-temporal regression kriging function (pred.strk) is the most important part of the ✶✼

package. This function can perform predictions fully based on the krigeST function with- ✶✽

out any simplification of the kriging procedure. The use of this function for “large data” ✶✾

sets (even few hundreds of observations) need to be performed with tilling and simplified ✷✵

local spatio-temporal kriging with a fast neighbouring searching algorithm implemented ✷✶

in ♠❡t❡♦. ✷✷

5.3.1 Simplified searching algorithm for spatio-temporal kriging ✷✸

Fast spatio-temporal regression kriging implemented in ♠❡t❡♦ applies a tiling procedure ✷✹

for prediction. The area is divided into tiles (smaller parts, see Figure 5.2)by the tiling ✷✺

112



Chapter 5 Meteo package for automated spatio-temporal mapping

function, which is implemented in the ♠❡t❡♦ package. For each tile, the nearest spatio-✶

temporal observations are selected according to distance from tile’s centroids. Subse-✷

quently, spatio-temporal regression kriging estimates values within each tile on the base✸

of nearest selected observations. Thus, within each tile, all estimates are calculated by✹

using global kriging from previously selected observations. The procedure differs from✺

traditional kriging in a local neighbourhood approach (which uses the neighbours obser-✻

vations while searching for an algorithm for each location) in that the number of spatial✼

searches for nearest observations is reduced.✽

Figure 5.3 shows a tiling and searching algorithm in a graphical manner. For this ex-✾

planatory example, ten nearest spatial locations are selected for the each tile. Tiles i, j✶✵

are coloured in black and green and contain around 4,000 unmeasured locations points✶✶

(regular grid at 1 km). The predictor function at any location from tile i uses 10 nearest✶✷

observations in the space domain, and only two of these ten observations are not used in✶✸

thetile j. In other words, tile j, uses 8 common observations for both tiles.✶✹

After tiling and selection of the nearest spatial locations, a prediction is performed for✶✺

all target temporal instances. Accordingly, the procedure spares time spent in spatial✶✻

searching because the prediction is performed for each of the time instances in a row and✶✼

is based on the initial neighbourhood selections. Therefore, the full advantage of this✶✽

approach is evident when the prediction is performed for longer periods of time (e.g. for✶✾

month or year period). For example, the reduced number of local searches ( just for one✷✵

tile containing npoints) for a spatio-temporal prediction that is completed for a one year✷✶

period, is defined as:✷✷

nred = npoints ·ntimes (5.1)

where nred is a number reduced searches, ntimes is a number of time instances of the✷✸

target spatio-temporal prediction and npoints is a number of spatial locations in one tile.✷✹

The number of tiles should be defined and depend on multiple criteria, e.g. observation✷✺

density over an area of interpolation, the number of points for prediction, the number of✷✻

nearest observations that should be used for kriging, and target savings in computation✷✼

etc.✷✽
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FIGURE 5.2: Plot of tiles over domain of interpolation over with observations.

The automated selection of an optimal number of tiles within the domain of interpolation ✶

is still open for question. For example, the Figure 5.3 depicts an area that is divided into ✷

56 tiles for the territory of Serbia. Figure 5.2 shows all tiles and observations over tiles. ✸

It is clear that many tiles ‘share’ nearest observations and therefore potential artefacts ✹

in the edge line appear mostly due to the presence of outliers in observations or when ✺

observations are heavily clustered. The ♠❡t❡♦ package offers option for double tiling ✻

(two different networks of tiles) followed by averaging the results of predictions derived ✼
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FIGURE 5.3: Plot of tiles together with accompaning observations used for spatio-
temporal regression kriging.

from different tiling systems to avoid artefacts.✶

5.3.2 Outliers detection based on cross-validation✷

During the model fitting (in Chapter 3 and Chapter 5), it was discovered that the GSOD✸

point data set still contain many artefacts and possible gross errors. The small portion✹
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of obvious errors was removed based on the comparison of a cross-validation prediction ✶

with the observations. The example of outliers detected by cross-validation is given in ✷

Figure 5.4. Stations with RMSE averaged per year from daily residuals higher than 15°C ✸

are selected as potential outliers. Visual inspection shows that most of selected stations ✹

are obvious outliers, but the fact is that they also increase hardly RMSE of neighbours. ✺

FIGURE 5.4: Exapmle of outliers detected based on cross-validation. Point labels show
RMSE averaged per year from daily residuals. Map presents only sample of potential

outliers from GSOD data set in 2011.

The outliers’ detection algorithm firstly performs cross-validation and detects the station ✻

with the highest residual. If the residual is higher than the a priori defined threshold value, ✼

the station is removed from the dataset and new cross-validation is performed. Again, the ✽

station with the highest residual is compared against the threshold value and the iterative ✾

process is repeated while no more residuals exceed the defined threshold. ✶✵

The described method is implemented in the ♠❡t❡♦ package (as part of the pred.strk func- ✶✶

tion) and the package can perform detection and removal of outliers based on the defined ✶✷
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threshold. This method should be described in detail and should be tested with simulated✶

and real data in further work.✷

5.4 Case study: Automated mapping mean daily temper-✸

ature in Serbia✹

A collection of stations from GSOD and ECA&D data sets descried in Section 3.2 were✺

used for mapping the mean daily temperatures in Serbia from 2011-07-05 to 2011-07-08.✻

Observation data (for July 2011) are stored in the ♠❡t❡♦ package as table data (data.frame)✼

for the purpose of demo examples. Corresponding spatial information are stored in the✽

package as the same class. A function meteo2STFDF creates spatio-temporal objects✾

from two data tables. The first table must contain at least three columns (attributes): time,✶✵

station id and observation. The second table with station information must at least contain:✶✶

station id and coordinates.✶✷

❞❛t❛✭❞t❡♠♣❝✮✶✸

❞❛t❛✭st❛t✐♦♥s✮✶✹

t❡♠♣❁✲ ♠❡t❡♦✷❙❚❋❉❋✭❞t❡♠♣❝✱st❛t✐♦♥s✮✶✺

Covariates also need to be transformed into spatio-temporal STFDF-class objects. Co-✶✻

variates for Serbia (2011-07-05 to 2011-07-08) are stored in the package and contain two✶✼

dynamic covariates (geometrical temperature trend, splined MODIS LST, see Chapter 4)✶✽

and two static covariates DEM and TWI. Figure 5.5 shows a spatio-temporal plot of the✶✾

splined MODIS LST over the domain of interpolation.✷✵

The geometrical-temperature trend is shown on Figure 5.6. Static covariates are shown in✷✶

Figure 5.7.✷✷

Static and dynamic covariates used in this example were stored as one object of theSTFDF-✷✸

class and was named regdata. The following command produces spatio-temporal regres-✷✹

sion kriging prediction for the period between 2011-07-05 and 2011-07-08.✷✺

r❡s❂ ♣r❡❞✳str❦✭t❡♠♣✱ ♥❡✇❞❛t❛❂ r❡❣❞❛t❛❬✱✶✿✹❪✱ t❤r❡s❤♦❧❞✳r❡s❂✶✵ ✮✷✻

117



Chapter 5 Meteo package for automated spatio-temporal mapping

FIGURE 5.5: Splined MODIS LST 8-day images in Serbia (2011-07-05 to 2011-07-08).

The temp object contains spatio-temporal observations and regdata defines covariates and ✶

the frame for prediction. The prediction has been estimated for each spatio-temporal ✷
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FIGURE 5.6: Geometrical-temperature trend in Serbia (2011-07-05 to 2011-07-08).

points defined in theregdata space-time grid. The global regression model fitted and de-✶

scribed in Chapter 4 is presented as a variogram model for mean temperature and was✷
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FIGURE 5.7: (left) Digital elevation model. (right) SAGA topographic wetness index

specified in the function as a default setting. The threshold value was specified with an ✶

argument threshold.res. ✷

The resulting object res is a list of particular results: ✸

• an object of STFDF-class with column contains prediction of mean daily teperature; ✹

• cross validation information for points used in prediction; ✺

• removed locations as spatial object, showing spatial locations of removed stations; ✻

• removed locations with observations as an object of STFDF-class. ✼

The prediction of mean daily temperature (Figure 5.8) was produced based only on the ✽

observations of 27 stations and the trend part was computed using covariates previously ✾

described that uses a regression model within the function. The total number of 27 stations ✶✵

was selected from the 35 stations that were available in the pool. A total of 8 stations were ✶✶

removed by function as outliers that were determined based on the defined threshold and ✶✷

iterative cross-validation process described in Section 5.3.2. ✶✸
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FIGURE 5.8: Prediction of mean daily temperature for Serbia (from 2011-07-05 to 2011-
07-08) produced by automated mapping.

Detected outliers are showed in the spatio-temporal plot shown in Figure 5.9 and the✶

multi-panel time series plot. The plot shows 7 out of 8 outliers because the station name✷

“BELGRADE(OBSERVATORY)” contains measurement showing −47°C temperature✸

that is obviously an error and would cause the values axis to be incorrectly scaled on✹

the plot.✺
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FIGURE 5.9: Outliers detected using detection based on cross-validation.

The detected outliers were removed but could be analysed individually. For example, ✶

the first station from the Figure 5.9 entitled “NIS” is obtained from the GSOD data set ✷

and the same station obtained from the ECA&D data set has around 15°C lower mean ✸

daily temperatures( see Figure 5.10). The lower temperatures from ECA&D are more ✹

correlated with covariates than the rest of the used observations. Therefore, the station ✺

from GSOD that was from the same location was detected as an outlier and presented ✻

residuals around 15°C, see Figure 5.9. ✼
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Chapter 5 Meteo package for automated spatio-temporal mapping

5.5 Discussion and conclusion ✶

The mapping framework described in this Chapter enables the use of spatio-temporal ✷

regression kriging for meteorological mapping. The Implementation of a fast searching ✸

algorithm provides an advantage in computing when completing interpolations over a ✹

large spatio-temporal grid. The advantage is especially noticeable if the grid of points ✺

contains larger time series (e.g. predictions made for the area of interpolation over a year ✻

period where each location contains around 365 observations). ✼

The automated mapping framework presented herein is still under development and a lot ✽

of functionalities need to be implemented in the future. There are still many open ques- ✾

tions related to a) an optimal number of tiles for the domain of interpolation, b) the choice ✶✵

of an optimal threshold for the detection of outliers, and c) incorporating a function for ✶✶

downloading ground station observations from data providers. Likewise, the develop- ✶✷

ment of procedures for downloading and mosaicking remote sensing imagery and their ✶✸

organisation in an appropriate space-time object would be useful for many meteo/climatic ✶✹

applications. ✶✺

Filtering missing pixels in MODIS LST 8-day images through the use of spatial splines ✶✻

also needs to be implemented in the package. Similarly, temporal disaggregation from ✶✼

8-day images to daily images using splines (in the temporal domain) might be offered as ✶✽

an automated procedure. ✶✾

Automated mapping using a global model incorporated in the mapping framework is a ✷✵

new approach in the automated mapping field. The global model should be iteratively ✷✶

improved with increasing availability (and/or quality) of observations both from ground ✷✷

stations and/or from remote sensing data. Therefore, global modelling of processes (that ✷✸

can be modelled with spatio-temporal kriging) could be performed similarly by storing ✷✹

the global model within automated mapping frameworks. ✷✺
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Chapter 6✶

Spatio-temporal visualisation of✷

meteorological data using✸

plotGoogleMaps 1
✹

Google Maps are increasingly used for communication throughout many map-based ser-✺

vices and are often embedded on third-party websites via the Google Maps API. The main✻

objective of this study is to develop a solution for the easy creation of an interactive web✼

map, with a base map supplied by Google, where all map elements and additional func-✽

tionalities are handled by just one line of code. The present solution for the automatic✾

creation of a complete web map is the R package that is based on the Google Maps API,✶✵

♣❧♦t●♦♦❣❧❡▼❛♣s. This tool provides a new interactive plot device for handling the geo-✶✶

graphic data for web browsers. It also offers a complete map in the HTML format, which✶✷

has become a regular medium for cartographic communication. HTML as a multimedia✶✸

medium gives new possibilities in the visualisation of spatial and spatio-temporal data.✶✹

The tool ♣❧♦t●♦♦❣❧❡▼❛♣s is developed in the R software language and is designed for the✶✺

automatic creation of web maps. This chapter discusses ♣❧♦t●♦♦❣❧❡▼❛♣s applications in✶✻

meteorological spatial and spatio-temporal mapping.✶✼

1Mostly based on article: Kilibarda M, Branislav B (2012) plotGoogleMaps: The R-based web-mapping
tool for thematic spatial data, Geomatica , 2012, 66, 37-49
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6.1 Introduction ✶

Although the Internet has been in existencesince the late 60’s, the widespread use of the ✷

World Wide Web (Web)was estabished in the mid-90âĂŹs and shortly after has become a ✸

foremost medium for cartographers (Peterson, 2007). The real tipping point in the usage ✹

of geographic information on the Web was the year 2005. In June 2005, Google released ✺

the Google Maps Application Programming Interface (API), which allows a combination ✻

of geographic information from a variety of sources and formats. One of the most im- ✼

portant capabilities of the API is the generation of mashup maps, which is the product ✽

of the combination of geographic data from one source with a map from another source ✾

(Miller, 2006; Haklay et al., 2008; Gartner, 2009). The mashup maps are easy to create ✶✵

and can be implemented in any web page for free and without any technical specification ✶✶

and requirements whatsoever, thereby resulting in an increased web mapping popularity. ✶✷

This progress, together with the popularity of web mapping and its application, is clarified ✶✸

by Haklay (Haklay et al., 2008): ✶✹

“These rapid developments in web mapping and geographic information use are enabled ✶✺

and facilitated by global trends in the way that individuals and communities use the In- ✶✻

ternet and new technologies to create, develop, share and use information (including ge- ✶✼

ographic information), through innovative, often collaborative, applications.” ✶✽

This change in direction of Web philosophy from communication media to contribution ✶✾

media is named Web 2.0. The Web 2.0 term and concept was first coined and described ✷✵

by Tim O’Reilly in 2005 2 and later in publication (O’Reilly, 2007). ✷✶

The collaborative nature of the Web 2.0 environment allows data production to be shared ✷✷

among many individuals (Feick and Deparday, 2010). Goodchild (2007) described the ✷✸

term ‘Web Mapping 2.0” as an important part of the Web 2.0 concept. Integration and vi- ✷✹

sualization of different geographic information on base maps (such as Google Maps/Earth, ✷✺

Virtual Earth, or Yahoo Map), is the core of ‘Web Mapping 2.0’. The most significant part ✷✻

of Web Mapping 2.0 corresponds to Google Maps/Earth services. Google Earth/Maps is ✷✼

2❤tt♣✿✴✴♦r❡✐❧❧②✳❝♦♠✴✇❡❜✷✴❛r❝❤✐✈❡✴✇❤❛t✲✐s✲✇❡❜✲✷✵✳❤t♠❧
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ground-breaking software that excelled in at least five categories: availability of applica-✶

tion, high quality background maps, single coordinate system, web-based data sharing,✷

popular interface and availability of API services (Hengl, 2009).✸

Google Maps API has encouraged a considerable number of users, with intermediate✹

and advanced programming knowledge, to build their own applications using Google✺

Maps data as visualization interfaces (Gibin et al., 2008). According to BuiltWith Trends✻

statistics 3 the number of Google Maps websites usage was over 800,000 and, comprised✼

mainly of thematic cartography.✽

A thematic map displays the spatial pattern of social or physical phenomena such as pop-✾

ulation density, life expectancy or climate change. Thematic mapping has a long history✶✵

in geography and one important part of presenting thematic data is the provision of high✶✶

quality base maps that allow integration into the Google Map interface through the Google✶✷

Maps API. The London Profiler (Gibin et al., 2008) presents geographic information as✶✸

a series of choropleth maps on top of Google Maps. This example is an exception from✶✹

most mashups because they mostly display spatial point data (push pins).✶✺

The existing solution of using a Google Maps image as a background for plotting spatial✶✻

data is the general concept of the ❘❣♦♦❣❧❡▼❛♣s R package (Loecher, 2013) that is based✶✼

on Google Static Maps API. The Google Static Maps API 4 allows the embedding of a✶✽

Google Maps image in the user’s webpage without requiring JavaScript or any dynamic✶✾

page loading. This package provides static maps without interactive tools such as data✷✵

pan or zoom control and with a constrained quality of the Google background map. The✷✶

maximum zoom level, provided by Google Static Maps API, concurs with the maximum✷✷

size limitation of 640 x 640 pixels.✷✸

The other package with similar functionalities, which provides an interface between the✷✹

R and the Google Visualisation API, is called the ❣♦♦❣❧❡❱✐s (Gesmann and de Castillo,✷✺

2011). The Google Visualisation API offers interactive charts that can be embedded into✷✻

web pages. The googleVis package contains options to produce map mashups based on✷✼

Google Maps API. The input data for the package is the data frame with marked columns✷✽

3❤tt♣✿✴✴tr❡♥❞s✳❜✉✐❧t✇✐t❤✳❝♦♠✴✇❡❜s✐t❡❧✐st✴●♦♦❣❧❡✲▼❛♣s
4❤tt♣s✿✴✴❞❡✈❡❧♦♣❡rs✳❣♦♦❣❧❡✳❝♦♠✴♠❛♣s✴❞♦❝✉♠❡♥t❛t✐♦♥✴st❛t✐❝♠❛♣s✴
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that are related to location information. This is a typical package used for handling spatial ✶

data and their visualization. ✷

The objective of ♣❧♦t●♦♦❣❧❡▼❛♣s (Kilibarda, 2013) is to provide a solution for the easy ✸

creation of an interactive web map, with a base map supplied by Google, where all map ✹

elements and additional functionalities are handled by just one line of code. The ob- ✺

tained result is an interactive map rendered in a web browser. The automatic creation of ✻

a complete web map, which is based on the Google Maps API (the HTML file with CSS ✼

styling and Java Script functionality) , is provided by the R package ♣❧♦t●♦♦❣❧❡▼❛♣s . ✽

The package provides a solution to create and visualize vector and raster data, to map ✾

features, plot choroplet maps, and include proportional symbols. The version of package ✶✵

2.0 is extended to accommodate the visualisation of spatio-temporal classes in the form of ✶✶

afull space-time grid (STFDF) and the visualization of unstructured spatio-temporal data ✶✷

(STIDF), for more datails see Pebesma (2012). The growing popularity of the R language ✶✸

was the driving force behind the development of the ♣❧♦t●♦♦❣❧❡▼❛♣s tool, particularly ✶✹

among academic and expert communities and especially in the field of spatial data analy- ✶✺

ses. The goal of the presented work is to adopt and apply map design principles in order ✶✻

to create mashups and to focus on the minimization of coding and scripting. This would ✶✼

enable the creation of mashups based on Google Maps without any Internet programming ✶✽

knowledge. Thus, the creation of web maps becomes a plot facility for R users. The ✶✾

web maps created by ♣❧♦t●♦♦❣❧❡▼❛♣s package could be used as a temporary result for ✷✵

spatial visualization (spatio-temporal) generated on local machines or published on any ✷✶

web page. The next section contains a brief description of theoretical and technical back- ✷✷

ground for the development of the ♣❧♦t●♦♦❣❧❡▼❛♣s package, Web 2.0 and AJAX, Google ✷✸

Maps API. In addition to this section, there is a description of package functionalities and ✷✹

an explanation of how these functions were programmed. Details concerning the source ✷✺

code and instructions on how to get this package are also included. The paper continues ✷✻

with examples of practical package applications in meteorological/climatic mapping. ✷✼
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6.2 Package plotGoogleMaps and underling web technolo-✶

gies✷

6.2.1 Web 2.0 and AJAX✸

Best (2006) defined the main characteristics of Web 2.0, and in a few words are listed as: a✹

rich user experience, user participation, dynamic content, metadata (tagging, as semantic✺

enrichment), web standards (e.g. W3C5 recommendations) and scalability. Examples of✻

Web 2.0 applications embrace social networking sites, video sharing, wikis, blogs, etc.✼

The Web 2.0 concept is based on the AJAX technology.✽

Asynchronous JavaScript and XML, or shorter, AJAX (Schutta and Asleson, 2005) is the✾

name given to a set of modern web application development technologies that were pre-✶✵

viously known as the dynamic HTML (DHTML) and remote scripting. The fact that this✶✶

web application has a similar speed to standard desktop applications makes up the core✶✷

benefit of this technology. Traditional web pages, created in HTML, were static, non flex-✶✸

ible, and hardly adopted for any dynamic content. AJAX, on the other hand, as the base of✶✹

Web 2.0 concept, was built for use in dynamic, interactive, and efficient web pages with✶✺

high performance. Web pages without AJAX were slow; user interaction with the website✶✻

required significant web server-side resources such that the server needed to send a com-✶✼

plete web page if just one part of the web page was changed and sent back to the user. If✶✽

the user drew a point on the web map, the server would send back the whole redrawn map✶✾

with the new point icluded. AJAX brings a new concept such that the user interaction✷✵

is left to a user’s computer, which works only with a changeable part of the web page.✷✶

Therefore, even if the user operates with one point only, it would not be necessary to re-✷✷

draw the whole map again. AJAX-based geographical applications significantly improve✷✸

the usability of web mapping (Skarlatidou and Haklay, 2006; Haklay and Zafiri, 2007;✷✹

Haklay et al., 2008; Kilibarda et al., 2010). Apart from AJAX, APIs have also influenced✷✺

web mapping strongly. API is a set of routines, protocols, and tools for building software✷✻

applications. The most popular web mapping APIs are: Google Maps API, Yahoo! Maps✷✼

API, Microsoft Virtual Earth API, AOL MapQuest API (Gartner, 2009).✷✽

5urlhttp://www.w3.org/
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6.2.2 Google Maps API ✶

Google Maps API is a set of predefined JavaScript classes that are designed for embed- ✷

ding the Google Maps site into an external website. The resut of this process is such that ✸

additional geographical data could be overlaid over a basic Google Map. These results are ✹

possible to realize even if the creator is not an expert in web programming, although basic ✺

knowledge in JavaScript programming language, XML, Ajax and XHTML is required. ✻

Google Maps API, compared to the relative complexity of Open Geospatial Consortium ✼

(OGC) standards, is much easier for implementation. Google Maps API provides map- ✽

ping functionality and high-resolution background data, but map mashups implementation ✾

still requires some web programming knowledge. It enables a combination of geographic ✶✵

information from a variety of sources and formats. GIS data objects, such as vectors, ✶✶

points, polylines, polygons or raster are represented in the mashups as Google Maps API ✶✷

Java Script objects. For that reason, it is necessary to transform the GIS data into Java ✶✸

Script objects that are appropriate to Google Maps API. These objects could be carto- ✶✹

graphically represented with point symbols, (although with some limitation) . Polylines ✶✺

and polygonâĂŹs line representations could be defined with outline width, color, trans- ✶✻

parency and fill color for the polygon area. Transforming the GIS data into Google Maps ✶✼

API objects and defining a cartographic representation for every single object is time ✶✽

consuming and rather difficult, especially for someone who has no experience in web ✶✾

programming. The developed R package, ♣❧♦t●♦♦❣❧❡▼❛♣s, offers an easy creation of ✷✵

mashups as local files or files ready to be published on the Web. ✷✶

6.2.3 Development of plotGoogleMaps ✷✷

The newly developed R package, ♣❧♦t●♦♦❣❧❡▼❛♣s, based on AJAX and Google Maps API ✷✸

service, produces HTML file map mashups (web maps) with Google Map high-resolution ✷✹

background data and additional data layers. The first version of the package was devel- ✷✺

oped in 2010 and the current 2.0 version was published in 2013 (Kilibarda, 2013). ✷✻

The package depends on two packages for spatial and spatio-temporal data handling, ✷✼

s♣ (Pebesma and Bivand, 2005; Bivand et al., 2008) and s♣❛❝❡t✐♠❡ (Pebesma, 2012). ✷✽

130



Chapter 6 Spatio-temporal visualisation of meteorological data using plotGoogleMaps

Another package significant for the automatic cartographic re-projection within ♣❧♦t✲✶

●♦♦❣❧❡▼❛♣s is r❣❞❛❧ R package (Bivand et al., 2013). These sets of developed packages✷

are especially interesting for geoscientists. The R developers have written the R package✸

sp to extend R with classes and methods for spatial data (Pebesma and Bivand, 2005).✹

Classes specify a structure and deïňĄne how spatial data are organized and stored. Meth-✺

ods are instances of functions, specialized for a particular data class (Bivand et al., 2008).✻

The package r❣❞❛❧ provides functionalities for importing and exporting the most popular✼

formats of GIS data in R. This package uses functions of the Geospatial Data Abstraction✽

Library 6 to read and write the GIS data and includes options for handling a coordinate✾

referent system (CRS). With the r❣❞❛❧ package, users can optionally define a CRS or✶✵

inherit it from the input data as well as perform data transformations between different✶✶

CRSs using the PROJ4 library 7, implemented as part of r❣❞❛❧. The imported GIS data are✶✷

converted into s♣ objects and are used for handling the vector and raster (grid) data in R.✶✸

These functionalities enable the use of a very large amount of the GIS data format as an✶✹

input for the ♣❧♦t●♦♦❣❧❡▼❛♣s, previously read via r❣❞❛❧. Input data, s♣ or s♣❛❝❡t✐♠❡ ob-✶✺

ject with defined CRS, is the only mandatory argument in the ♣❧♦t●♦♦❣❧❡▼❛♣s functions.✶✻

Hence, different GIS formats of input data are read in R and are afterwards based on a✶✼

predefined visualization method; those data are mapped as web map (Figure 6.1).✶✽

The ♣❧♦t●♦♦❣❧❡▼❛♣s contains functionalities from PROJ4 library, which performs co-✶✾

ordinate transformations from source CRS to WGS84 CRS that is used for spatial data✷✵

handling by Google Maps. Google Maps API allows for additional spatial data handling,✷✶

in the form of XML, KML, and GeoRSS, but some visualization functionalities, as well✷✷

as interaction with attribute data in the form of Google Maps API InfoWindow object, and✷✸

similar, are difficult to be controlled. Another solution is to use the data in the form of✷✹

predefined JavaScript classes of vector data primitives; point, line and polygon data and✷✺

raster overlay. This approach is also implemented in ♣❧♦t●♦♦❣❧❡▼❛♣s. It means that ev-✷✻

ery single primitive is separated from the spatial object and its geometry is translated into✷✼

a JavaScript object. Attribute data for every single feature is converted into a JavaScript✷✽

InfoWindow object; its activation is available by clicking on the related feature on the✷✾

produced web map. Additional visualization options supported by Google Maps API ob-✸✵

jects such as outline width, color, and transparency can be specified in ♣❧♦t●♦♦❣❧❡▼❛♣s✸✶

6❤tt♣✿✴✴✇✇✇✳❣❞❛❧✳♦r❣✴
7❤tt♣✿✴✴tr❛❝✳♦s❣❡♦✳♦r❣✴♣r♦❥✴
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FIGURE 6.1: Simplified workflow for web map production by using plotGoogleMaps.

functions. The visualization of mandatory parameters is easy to set and is achieved by ✶

using optional arguments in ♣❧♦t●♦♦❣❧❡▼❛♣s functions. Therefore, ♣❧♦t●♦♦❣❧❡▼❛♣s ✷

writes object arguments in every JavaScript object and in the final HTML file. Google ✸

Maps API provides the majority of Google Maps utilities including pan, zoom, back- ✹

ground layer control, and scale bar. Map utilities are controlled by optional arguments in ✺

♣❧♦t●♦♦❣❧❡▼❛♣s functions. Similarly, map width, background color, layer name, legend ✻

name, default background map, etc., can be set by using optional arguments in the ♣❧♦t✲ ✼

●♦♦❣❧❡▼❛♣s function. Some advanced utilities for interactive controls of additional lay- ✽

ers are provided by defaults in ♣❧♦t●♦♦❣❧❡▼❛♣sincluding: layer appearance, line width, ✾

transparency, and legend colors display control. Spatial data, with visualization parame- ✶✵

ters and utilities, are written in the HTML file with JavaScript and CSS elements. Thus, ✶✶

in the ❘language, ♣❧♦t●♦♦❣❧❡▼❛♣s with only one function, and with few arguments, may ✶✷

produce many lines of codes in few languages for Web programming (Figure 6.2). ✶✸

The map mushup (6.2- right bottom window) is produced by the R command: ✶✹

❃ ♣❧♦t●♦♦❣❧❡▼❛♣s✭♠❡✉s❡✱ ❢✐❧❡♥❛♠❡❂✬♠②▼❛♣✳❤t♠✬✮ ✶✺

The command contains two arguments: (1) the first is the set of spatial data, named Meuse, ✶✻

that contains 155 points with 12 soil properties in the form of attributes,(2) the second is ✶✼
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FIGURE 6.2: Plotting vector point data. Just one line of R code substitutes many lines of
HTML with JavaScript and CSS code.

an optional argument with a file name of the output map mashup. This function contains✶

many optional arguments. For example, the description of the function arguments may be✷

provided by using the “help” function in R or can be found on the package web page8 or✸

in the reference manual. The same web page contains the package source; the source code✹

is open and available under the GPL license. Technical details about the used solutions in✺

the package could be obtained from the source code.✻

Generally, the idea of package implementation is denoted as the automatic production✼

of HTML map mashups using spatial or spatio-temporal data objects. The R command✽

used in the previous example produces an HTML file from the Meuse data. The output✾

map also contains CSS elements and JavaScript scripts. The control of CSS elements is✶✵

available through the use of optional function arguments in order to set the dimensions of✶✶

8❤tt♣✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴✇❡❜✴♣❛❝❦❛❣❡s✴♣❧♦t●♦♦❣❧❡▼❛♣s✴✐♥❞❡①✳❤t♠❧
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a map area. Since the optional arguments are not set in this example, the resulting HTML ✶

file contains default CSS styling settings. The rest of the produced HTML is JavaScript ✷

that contains Google Maps API and a set of JavaScript functionalities related to layer ✸

control options. The Meuse data was transformed from native CRS to WGS 84 and every ✹

single point was translated to a Google Maps Marker object, i.e. JavaScript object, used in ✺

Google Maps API. The base map is set, by default, to be a Google hybrid map where the ✻

initial zoom and central points of the base map depend on the Meuse bounding box. The ✼

attribute data, for every single point separately, are converted to google.maps.InfoWindow ✽

objects, with an associated listener function included to handle the click event on the ✾

marker. ✶✵

The next section contains examples focusing on the package application in meteorologi- ✶✶

cal/climatic visualisation. ✶✷

6.3 Implementation and applications ✶✸

The functionalities of the package that are used for the production of web maps of cli- ✶✹

matic spatial and spatio-temporal data are presented through the following case studies - ✶✺

examples. The applications illustrated in this paper pertain to different studies concerning ✶✻

spatial and spatio-temporal data analysis. ✶✼

6.3.1 Spatio-temporal visualisation of climatic variables ✶✽

The package ♣❧♦t●♦♦❣❧❡▼❛♣s plots spatial objects of sp and spacetime classes over Google ✶✾

Maps using very simple syntax and only one or a few lines of R code. Figure 4.8 shows ✷✵

results of an accuracy assessment presented in Chapter 4. The map of mean daily temper- ✷✶

ature cross-validation errors (RMSE) is averaged per year for each station. Daily residuals ✷✷

should be very interesting, but the traditional way to represent daily residuals associated ✷✸

with a multi-panel plot (365 plots for year 2011) and space-time cross section plot (e.g., ✷✹

space on the x-axis and time on the y-axis) or animated plot. The traditional approach ✷✺

for daily residual visualisation is cumbersome to be both informative and intuitive at the ✷✻

same time. Thanks to the multimedia nature of the HTML, the package ♣❧♦t●♦♦❣❧❡▼❛♣s ✷✼
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uses traditional spatial plots together with a time series multivariate plot implemented in✶

③♦♦ (Zeileis and Grothendieck, 2005) package, see Figure 6.3.✷

FIGURE 6.3: RMSE map. Space-time regression kriging of mean daily temperature
observations on 8-day on MODIS 8 day images, topographic layers (DEM and TWI) and

a geometrical temperature trend; ❤tt♣✿✴✴❞❛✐❧②♠❡t❡♦✳♦r❣✴

In multi-panel (lattice) plots, panels share x- and y-axis, a common legend, and the strip✸

above the panel indicates what the panel is about (Bivand et al., 2008). Similar, plot is✹

implemented in ♣❧♦t●♦♦❣❧❡▼❛♣s, as well, giving the possibility to visually compare data✺

from few time instances. The interactive nature of the produced map provides an oppor-✻

tunity to inspect additional attributes by opening more than one google.maps.InfoWindow✼

simultaneously. A Multi-panel plot of temperature data in Serbia for 2011-07-05 and✽

2011-07-06 is provided as a web map. The map showed in Figure 6.4 is produced simply✾

with the following code:✶✵

❃ st♣❧♦t●♦♦❣❧❡▼❛♣s✭▼❡❛♥❚❡♠♣✱③❝♦❧❂✬t❡♠♣❝✬✱ ♠❛♣❚②♣❡■❞❂✬❘❖❆❉▼❆P✬✱✇❂✬✹✾✪✬✱❤❂✬✶✵✵✪✬✮✶✶

A similar line of code produces the spatio-temporal visualisation of predicted mean tem-✶✷

peratures in Serbia for 2011-07-05 and 2011-07-06. The additional interactive control✶✸

utilities: layer appearance, transparency line width, and legend colors display can be set✶✹

by adding additional arguments to ♣❧♦t●♦♦❣❧❡▼❛♣s plotting functions. The color cod-✶✺

ing system for map design in ❘ is supported by ❘❈♦❧♦r❇r❡✇❡r package (Brewer et al.,✶✻
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FIGURE 6.4: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05 and 2011-07-06.

2003). It provides palettes for drawing nice maps. This package was derived from the ✶

ColorBrewer website ❤tt♣✿✴✴❝♦❧♦r❜r❡✇❡r✷✳♦r❣✴. ColorBrewer is an online tool that ✷

helps chose a colour palette according to the number of data classes and the nature of data ✸

(matched with sequential, diverging and qualitative schemes). The colors obtained from ✹

❘❈♦❧♦r❇r❡✇❡r are used for the color scheme in Figure 6.5. ✺

❜❧✉❡s❂❝♦❧♦r❘❛♠♣P❛❧❡tt❡✭❜r❡✇❡r✳♣❛❧✭✾✱ ✧P✉❇✉✧✮❬❝✭✽✱✺✱✷✮❪ ✱ s♣❛❝❡ ❂ ✧▲❛❜✧✮ ✻

r❡❞s❂❝♦❧♦r❘❛♠♣P❛❧❡tt❡✭❜r❡✇❡r✳♣❛❧✭✾✱ ✧❨❧❖r❘❞✧✮❬❝✭✷✱✺✱✽✮❪ ✱ s♣❛❝❡ ❂ ✧▲❛❜✧✮ ✼

st♣❧♦t●♦♦❣❧❡▼❛♣s✭Pr❡❞✐❝t✐♦♥✱ ✇❂✬✹✾✪✬✱ ❤❂✬✶✵✵✪✬✱ ❝♦❧P❛❧❡tt❡❂ ❝✭❜❧✉❡s✭✼✮✱r❡❞s✭✼✮✮✮✽

Quantitative point symbols, such as proportional symbols of varying sizes that are used ✾

to symbolize totals at a point, are available in the ♣❧♦t●♦♦❣❧❡▼❛♣s. The most frequently ✶✵

used shapes are circles, however squares and triangles are also possible solutions offered ✶✶

by the ♣❧♦t●♦♦❣❧❡▼❛♣s function. A spatial plot with proportional symbols is presented in ✶✷

Figure 6.6. ✶✸
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FIGURE 6.5: Mean daily temperature images for Serbia for 2011-07-05 and 2011-07-06.

FIGURE 6.6: Mean daily temperature observations from GSOD and ECA&D data sets
for Serbia for 2011-07-05. Proportional symbols.

6.3.2 Real-time visualisation of meteorological observations✶

The package can be implemented for the visualisation of meteorological observations in✷

real-time. The example of using the package for this purpose is illustrated in the presen-✸

tation of meteorological data in Catalonia (Spain), see website ❤tt♣✿✴✴♠❡t❡♦✹✉✳❝♦♠✴.✹
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Figure 6.7 shows a temperature map where Google Maps markers are represented as num- ✶

bers that indicate actual temperatures in near real-time, which were obtained from a few ✷

different sources. The map mushup (Figure 6.7) shows detailed station information in the ✸

form of a ‘tooltip’ window. Detailed information are also available as Google Maps API ✹

JavaScript object, google.maps.InfoWindow, appearing after the user clicks on a specific ✺

station point. As a result, the obtained map mushup is interactive, intuitive and functional ✻

thanks to underlying Google Maps API and predefined JavaScript functions created by ✼

♣❧♦t●♦♦❣❧❡▼❛♣s. The map creation could be automated using the R server and maps are ✽

changed as data are updated. ✾

FIGURE 6.7: Plotting temperature data using ♣❧♦t●♦♦❣❧❡▼❛♣s. Map mushup is availible
on ❤tt♣✿✴✴♠❡t❡♦✹✉✳❝♦♠✴.

The main function in the package vectorsSP creates a radius vector from point data in ✶✵

form of SpatialLinesDataFrame class depending on radius and azimuth. This function ✶✶

is very appropriate for mapping wind speed and wind direction observation. Figure 6.8 ✶✷

shows a real life application of the automated visualisation of wind observations. ✶✸
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FIGURE 6.8: Plotting wind observation by using proprortional symbols depending on
wind speed. The orientation of the radius vectors depends on wind direction. Map

mushup is availible on ❤tt♣✿✴✴♠❡t❡♦✹✉✳❝♦♠✴.

6.3.3 Spatial visualisation of rainfall trends in Serbia✶

The spatial pattern of annual, seasonal and monthly rainfall trends in Serbia are ex-✷

amined by Luković et al. (2013). The study used data from 63 weather stations be-✸

tween the period of 1961–2009. Precipitation trends are depicted with different col-✹

ors in Figure 6.9 (positive trends are blue and negativetrends are red) and are overlaid✺

with proportional bubble symbols presenting the trend values of each considered station.✻

The bubbles outlined with black circles in the maps represent stations with statistically✼

significant trends at the confidence level of 97.5 %. The web maps are available on✽

❤tt♣✿✴✴✇✇✇✳❣r❢✳❜❣✳❛❝✳rs✴⑦❜❛❥❛t✴❚r❡♥❞s✳❤t♠.✾

Kilibarda et al. (2013c,a) use ♣❧♦t●♦♦❣❧❡▼❛♣s for scientific communication and visuali-✶✵

sation in meteo/climatic mapping, see ❤tt♣✿✴✴❞❛✐❧②♠❡t❡♦✳♦r❣✴ .✶✶
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FIGURE 6.9: Spatial distribution of rainfall trends in Serbia from 1961 to 2009, annual
map. The bubbles with blackoutlined circles represent stations with significant positive
and negative trends at the confidence level of 97.5 %. The web map is availible on

❤tt♣✿✴✴✇✇✇✳❣r❢✳❜❣✳❛❝✳rs✴⑦❜❛❥❛t✴❚r❡♥❞s✳❤t♠.

6.4 Discussion and Conclusions ✶

The ♣❧♦t●♦♦❣❧❡▼❛♣s is a free and open source software solution for the simple creation of ✷

rich interactive web maps. In this case, ♣❧♦t●♦♦❣❧❡▼❛♣s uses the web browser as a plot- ✸

ting device instead of the default R graphic device. Therefore, it offers more advantages ✹

when compared to the classical R plotting device environment. For an example, signifi- ✺

cant advantages include high quality of background Google layers for better abstractions ✻

of geographical reality, spatial data exploration functionality and map interactivity (nav- ✼

igation control, pan, zoom, attribute info windows, etc). The package ♣❧♦t●♦♦❣❧❡▼❛♣s ✽

is a tool that can be used for plotting meteorological/climatic spatial and spatio-temporal ✾

data for internal use or for website. ✶✵

This package promotes the creation of interactive maps in user friendly environments ✶✶

where a map is stored in the HTML format. Map sharing with non GIS map users is ✶✷

easier and it is not necessary to use the GIS software. Sharing is simply achieved using ✶✸

aweb browser and the map remains interactive and simpler than in professional software. ✶✹

Also, R users can use this package instead of standard plot functions because it provides ✶✺
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a faster preview of the mapped data in relation to geographic reality provided by Google✶

Maps.✷

Google Maps API is not suitable for handling large amounts of data and consequently✸

♣❧♦t●♦♦❣❧❡▼❛♣s has the same constraint. One of the possible alternative open-source✹

solutions might be the combination of a server side software (e.g. Geoserver) and a client✺

side software (e.g. Openlayers), according to OGC standards9. This solution requires✻

more specific GIS knowledge and a greater understanding of software and standards for✼

establishing a mapping framework. The implementation of automatic web map creation✽

would have more requirements and depend more on server software components.✾

9❤tt♣✿✴✴✇✇✇✳♦♣❡♥❣❡♦s♣❛t✐❛❧✳♦r❣✴st❛♥❞❛r❞s
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Chapter 7 ✶

Discussion and conclusion ✷

This work was conducted in part thanks to organizations such as the national Meteorolog- ✸

ical Services and WMO, National Aeronautics and Space Administration (NASA), Na- ✹

tional Climatic Data Center (NCDC), European Climate Assessment and Dataset Project ✺

(ECA&D), Global Precipitation Climatology Centre (GPCC), European Organisation for ✻

the Exploitation of Meteorological Satellites (EUMETSAT), and the United States Na- ✼

tional Oceanic and Atmospheric Administration (NOAA). The meteorological data pro- ✽

vided by these organizations is available to the public and to the research community. ✾

The spatio-temporal models were based on publicly available ground observations to- ✶✵

gether with publicly available time series of atmospheric and surface reflectance images ✶✶

(MODIS, Meteosat, GOES, GMS). Such data can be used to produce a new generation ✶✷

of detailed daily global maps of meteorological variables. Even though the positions of ✶✸

meteorological stations are representative to describe the weather and climate in some ✶✹

neighbourhood, the global geographical or feature space coverage is not representative ✶✺

from the point of view of spatio-temporal statistics requirements or sampling strategies ✶✻

(Heuvelink et al., 2012). ✶✼

Global spatio-temporal analysis of publicly available data sets (a collection of GSOD ✶✽

and ECA&D) shows that the observed high temporal, spatial and feature space clustering ✶✾

of meteorological stations potentially represent a limitation of these data sets and could ✷✵

further complicate the fitting of accurate global spatio-temporal models. This implies ✷✶

that sophisticated spatio-temporal techniques need to be used that can account for the ✷✷
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data clustering. The use of remote sensing and/or monthly images as covariates is one✶

solution to overcome clustering issues. The spatio-temporal regression kriging model✷

uses covariates for de-trending and is followed by the interpolation of regression residuals✸

. This interpolation step uses the covariance model integrally in space and time through the✹

incorporation of a spatio-temporal variogram. The applied covariance model in this thesis✺

takes into account pure spatial, temporal and spatio-temporal components of variability.✻

Such treatment can provide the most realistic estimate of the uncertainty so that unbiased✼

estimates of the global and local land air temperature and other meteorological variables✽

can be also be produced.✾

The presented model can be used for calibration of 8-day MODIS LST images by inte-✶✵

grating station observations together with geometrical temperature trends, elevations and✶✶

the topographic wetness index. The result of this treatment would afford the first global✶✷

daily air temperature images at very high spatial and temporal resolution (1 km spatial and✶✸

1 day temporal resolution). The geometrical temperature trend (Eq. 4.3) presented in this✶✹

thesis could be a crucial covariate for real-time mapping or for temperature interpolation✶✺

for the dates before MODIS LST images has been launched.✶✻

Furthermore, globally fitted models of daily temperatures could be used for regional or lo-✶✼

cal studies, e.g. where a limited number of ground observations are available so that some✶✽

referent global model of spatio-temporal variability is required. The models described in✶✾

this thesis can be obtained by installing the ♠❡t❡♦ package that has been mostly created✷✵

and maintained by the author.✷✶

Clearly, the presented computational framework could be used to produce a global archive✷✷

of the mean, minimum and maximum temperature images. The daily maps of temperature✷✸

could also serve as raster files in a similar fashion as climate layers from the WorldClim✷✹

project (Hijmans et al., 2005). This would require HUGE data storage and serving capac-✷✺

ities considering the amount of output pixels (10 years by 365 days by 3 meteorological✷✻

variables plus uncertainty maps). The service should also offer Web GIS functionalities✷✼

implemented through OGC standards.✷✽

This study discovers that the GSOD point data sets still contain many artefacts and pos-✷✾

sible gross errors. Therefore, the mapping accuracy can be improved by filtering station✸✵
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observations. Concerning the number of stations, this procedure should be done by us- ✶

ing some automated method. One of the main objectives for the further development of ✷

the ♠❡t❡♦ package will be incorporation of an automated and tested algorithm for the ✸

detection of outliers. ✹

A future plan is to use the publicly available data sets shown in this thesis to model and ✺

interpolate daily meteorological variables such as: precipitation, wind speed, snow depth, ✻

meteorological indicators etc. at the spatial resolution of 1 km and temporal support of ✼

1 day. WordDailyMeteo could be extended to offer all meteorological variables contained ✽

in publicly available data sets. ✾

Presented approach in this thesis could be also used for climatic mapping. Figure 7.1 ✶✵

shows general climatic-mapping scheme based on spatio-temporal daily mapping in con- ✶✶

trast to classical climatic mapping approach. Classical approach assumes aggregation of ✶✷

meteorological measurements to climatic variable and than spatial modelling and predic- ✶✸

tion. WorldDailyMeteo approach, is based on the aggregation of daily maps, archiving ✶✹

and offering daily weather images but also offering monthly, yearly or other climatic ✶✺

global maps at very high spatial resolution. The climatic maps would be based on daily ✶✻

spatial estimates, therefore, all daily measurements even from stations with time series ✶✼

covering short period are incorporated into final climatic estimate. ✶✽

What would WorldDailyMeteo offer that other services do not provide: ✶✾

1. WorldDailyMeteo maps would be of high spatial detail (1 km), high temporal reso- ✷✵

lution (1 day; 10 years of maps) and with a global coverage; ✷✶

2. WorldDailyMeteo predictions would be based on using state of the art geostatistical ✷✷

methods (linear or GLM-based spatio-temporal regression-kriging with time series ✷✸

of predictors - MODIS and similar RS images); ✷✹

3. All target meteorological variables would be mapped using automated mapping ✷✺

frameworks with a single global model for each target meteorological variable; ✷✻

4. All target meteorological maps could be aggregated to climatic maps, at very vari- ✷✼

ous temporal support (monthly, yearly, etc); ✷✽
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FIGURE 7.1: A general spatio-temporal prediction framework. (Path#1) Classical cli-
matic mapping approch. (Path#2) Daily mapping and climatic aggregation, WorldDaily-

Meteo approch.

5. The produced time series (10 years of daily images) of the target meteorological✶

parameters could be analysed using time-series / Fourier analysis algorithms. We✷

could extract global, regional and local components of dynamics of meteorological✸

variables (per pixel);✹

Very high spatio-temporal resolution dataset offered from WordDailyMeteo, based on✺

cleaned publicly available data, could be used for analysing extremes of climate, in en-✻

vironmental modelling, precise agriculture, hydrological modelling, terrestrial biospheric✼

modelling, ect.✽
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