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Geostatistical Modeling of Geochemical Variables in 3D

Geostatistical mapping of soil properties in 3D refers to the application of geostatistical
methods to the soil data in order to produce maps of soil properties at different depths.
Through two separate studies, this thesis elaborates on two different approaches for 3D
soil mapping. At first, the well established Spline-Than-Krige approach for the mapping
of soil pollutants atmospherically deposited from the copper smelting plant, was used. In
the absence of the monitoring data, which can be used for a detailed characterization of the
plume spreading process, this study was confined to the consideration of terrain exposure
to explain spatial trend in arsenic distribution at different depths. This study aims to
explore the extent to which the commonly available information, such as the prevailing
wind direction, or the location of the source of pollution, in combination with the digital
terrain model, can be used to quantify the terrain exposure, and hence to improve the

spatial prediction of the arsenic concentration at several soil depths.

Next, the innovative geostatistical approach to 3D mapping of soil properties, based on
soil profile data, was proposed. It provides the semi-automatic way for 3D modeling of
soil variables, prediction over the regular grids (rasters) and also the evaluation of predic-
tion accuracy. Methodologically, this approach operates within the 3D regression kriging
framework. 3D trend model is conceptualized as hierarchical or non-hierarchical linear
interaction model. This means that the model includes the interactions between the spa-
tial covariates and depth in the hiearchial or non-hierarchial manner. The trend modeling
is based on the application of the penalized regression technique, lasso. The lasso uses
a specific regularization penalty in a fitting procedure to enable the efficient parameter
estimation and variable selection (including interaction terms) at the same time. Special

attention has been paid to accuracy assessment. The proposed approach implements the
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nested cross-validation procedure as a tool for the evaluation of the overall prediction ac-
curacy. The obtained results show that taking the interaction into account can improve the
predictive capabilities of the trend model up to 20%. As expected, the greatest improve-
ment was achieved with variables that have a strong decreasing trend along the depth,
as well as a higher variation in the surface soil layers. In addition, the inclusion of in-
teractions between spatial covariates and depth has lead to models with the more sparse
structure. The complete computational framework was implemented in the set of R func-

tions, with the aim to constitute an R package (penint3D) for 3D soil mapping.

Key words: 3D soil maping, 3D regression kriging, Spline-Than-Krige, lasso, nested

cross-validation, pollution assessment, topographic exposure.
Scientific area: Geodesy
Scientific sub-area: Modeling and Management in Geodesy

UDC number: 528:005(043.3)
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Geostatisticko modeliranje geohemijskih promenljivih u 3D prostoru

Geostatisticko kartiranje zemljiSta u 3D odnosi se na primenu geostatistiCkih metoda na
zemljiSnim podacima u cilju izrade karata zemljiSnih karakteristika jednog podrucja, koje
se odnose na razliCite dubine zemljiSta. U okviru dve nezavisne studije, ova doktorska
disertacija razmatra dva razliita pristupa geostatistickog modeliranja zemljiSta u 3D. U
okviru prve studije, "Spline-Than-Krige" metod je koriS¢en za kartiranje koncentracije
arsena u zemljiStu, u blizini Rudarsko-topionicarskog basena Bor, na tri razli¢ite dubine
(0-5 cm, 5-15 cm i 15-30 cm). DugogodisSnje emitovanje neprecis¢enih materija iz topi-
onice rudnika u atmosferu, dovelo je do zagadjenja zemljiSta u okolini, taloZenjem Stetnih
materija noSenih vetrom. U odsustvu podataka kojima bi se detaljnije mogao opisati pro-
ces rasprSivanja Stetnih materija, ova studija se ogranicila na analizu izloZenosti terena
uticaju vetra, a time i procesu zagadenja. Predstavljen je inovativan pristup kvantifikaciji
izloZenosti terena izvoru zagadenja. Na osnovu opSte dostupnih podataka, kreirano je
nekoliko parametara kojima se kvantifikuje geometrijska i topografska izloZenost svake
taCke terena izvoru zagadenja. Tako kreirani parametri, iskori$€eni su za opisivanje pros-
tornog trenda koncentracije arsena na tri razli¢ite dubine. Definisani trendovi, koriS¢eni su
u okviru regresionog kriginga, za prostornu predikciju. Na taj nacin pokusSalo se odgov-
oriti na pitanje, u kojoj meri, opSte dostupni podaci, kao §to su pravac dominantnog vetra
ili poznavanje tacne lokacije izvora zagadjenja u kombinaciji sa digitalnim modelom ter-
ena, mogu biti iskori§éeni da bi se unapredila preciznost prostorne predikcije zemljiSnih

zagadjivaca, kako na povrSinskim slojevima tako i na veéim dubinama.



U okviru druge studije, predstavljen je inovativni geostatisticki pristup 3D kartiranju
zemljiSnih promenljivih. Metodoloski, predloZeni pristup je baziran na 3D regresionom
krigingu. Model trenda je definisan linearnom funkcijom koja ukljucuje Clanove inter-
akcije izmedu povrSinskih promenljivih i dubine, po hijerarhijskom i nehijerarhijskom
principu. Problem izbora modela i ocena parametara reSen je primenom lasso regular-
izacione regresije. Primenom lasso regresije omogucen je automatski izbor znacajnih
prediktora (ukljucujuéi i ¢lanove interakcije izmedu povrSinskih pomoénih promenljivih
i dubine). U okviru ove studije preporuceno je koriS¢enje i nacin implementacije ugn-
jezdene unakrsne validacije za ocenu preciznosti predikcije modela. Dobijeni rezultati
su pokazali da se uvodenjem interakcija moZe unaprediti model i do 20%. Najznaca-
jnija unapredenja dobijena su za promenljive sa izraZenom varijacijom u gornjim sloje-
vima zemljiSta. Pored toga, uvodenje interakcija u model, rezultiralo je izborom modela
koji ukljucuje manji broj pomoénih promenljivih. PredloZeni pristup implementiran je u

okviru PenInt3D paketa funkcija razvijanih u R okruZenju.

Kljuéne reéi: 3D modeliranje zemljista, 3D regresioni kriging, lasso, ugnjezdena un-

akrsna validacija, procena zagadenosti, topografska izloZenost
Naucna oblast: Geodezija
UZa naucna oblast: Modeliranje i menadzment u geodeziji

UDK broj: 528:005(043.3)
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Chapter 1

Introduction

1.1 Motivation

Soil is one of the most important natural resources necessary for life on Earth. It can
be defined as a surface layer of the Earth’s crust, located between the lithosphere and
the atmosphere, formed by the long-term influence of pedogenesis (Kisi¢, 2012). Soil is
a multipurpose resource that can be used in many aspects of human activity, including:
geology, agriculture, forestry, construction, and commercial use. Its relevance to a wide

range of human activities makes soil even more vulnerable to damage.

Bearing in mind that soil is a non-renewable natural resource, there has been a lot of fo-
cus on the issue of soil degradation over the past few decades. As a result, soil protection
and sustainable soil usage have become popular topics in the field. The exact causes and
types of soil degradation are numerous and complex (Eswaran et al., 2001). Pollution by
harmful elements is one of the most serious examples of soil degradation. Such pollution
is typical for soils in the vicinity of industrial zones, especially for those under mining and
ore processing impact. Mining and smelting activities are recognized as the most effective
sources of pollution. It is not uncommon that harmful dust and fumes from smelting plants
and waste incinerators are released into the atmosphere without processing. The greatest
part of the emitted matter is deposited on the ground through wet and dry depositions,

thereby significantly changing the soil’s chemical compounds. In these cases, the content
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of harmful elements in the soil usually shows the typical patterns in both horizontal and
vertical (in-depth) sense. Horizontally, the concentration of pollutants typically decreases
as the distance from the source of pollution, or the distance from from the major wind
direction increases. Regional topography and different land (usage) types may also influ-
ence contamination processes thereby making the patterns more complex. Vertically, the

concentration of harmful elements typically decreases as the soil depth increases.

The assessment of soil pollution necessarily involves the creation of maps that delineate
areas where the pollutants exceed the pre-specified allowable levels. It is inevitably pre-
ceded by numerous in-field and laboratory investigation surveys. Moreover, these maps
should provide information about the depths of soil contamination. Depending on the re-
mediation technologies, the volume of contaminated soil may also be required. Volumes
can then be converted into treatment costs, which allows for the selection of the most

cost-effective and applicable remediation technology.

Geostatistics is well established in solving these issues and provides a number of tools for
the exploratory data analysis, spatial predictions, risk mapping and the simulation of pos-
sible realizations of spatial phenomena (Goovaerts et al., 1997; Goovaerts, 2001; Khalil
et al., 2013; Komnitsas and Modis, 2006; Dayani and Mohammadi, 2010; Guastaldi and
Del Frate, 2012; Tavares et al., 2008; Garcia-Sanchez et al., 2010). Even if the character-
ization of soil in 3D is needed, geostatistics is typically used as a tool for horizontal data
analysis and mapping. The requirements for the maps related to other (deeper) soil layers
are commonly met by the modeling of each horizontal layer independently, i.e. each layer
was modeled without considering the soil properties above or below. The most widely
used approach for such mapping was proposed by Malone et al. (2009) later to be called
the *Spline-than-Krige’ method by (Orton et al., 2016). This method implies the conver-
sion of profile data into a continuous form by fitting a spline function to the profile data
(Bishop et al., 1999), prior to fitting the 2D spatial prediction model. The final product is
a suite of digital maps of soil properties relating to different soil depths. The drawbacks
of this method are twofold: (1) the spline-converted data are estimates with associated er-
rors, which, if used, ultimately create additional source of errors in the model (Hengl and
Heuvelink, 2013); and (2) the independent mapping of different layers poses a risk that

the maps would show illogical discrepancies when overlapping (Meirvenne et al., 2003).
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For these aforementioned reasons, soil should be considered as a 3D body. Soil properties
vary in each direction, and also in time. At some scale, these variations are also spatially
auto-correlated and it makes sense to treat them with 3D geostatistics. The use of 3D
geostatistics in soil science is relatively new and represents the logical continuation of
geostatistical advances in soil mapping. Today, 3D soil mapping is recognized as one of
the main methodological challenges facing the soil scientists community (Arrouays et al.,
2014). Regarding that geostatistical methods do not differ meaningfully if the spatial
phenomena are considered in 2D or in 3D, the key difficulties in the application of the 3D
geostatistical methods can be caused by the very nature of the soil data, or specific soil

properties. This is summarized by Hengl and Heuvelink (2013), as follows:

1. The differences between sampling intervals and spatial correlation in the horizontal
and vertical dimensions are very large. This results in strong anisotropy between
the two directions that must be accounted. The estimation of the anisotropy may be

hampered by a relatively small number of observations along the vertical profile.

2. Soil property values refer to vertical block support (usually because they are com-
posite samples, i.e. the average over a soil horizon), hence some of the local varia-

tion (in the vertical dimension) has been smoothed out.

3. Soil surveyors systematically under-represent lower depths - surveyors tend to sys-
tematically take fewer samples as they assume that deeper horizons are of less
importance for management, or because deeper horizons are more expensive to
collect, or because deeper horizons are assumed to be more homogeneous and uni-

form.

4. Many soil properties show clear trends along the vertical dimension. It may not be
that easy to incorporate a vertical trend because such a trend is generally not con-
sistently similar between different soil types. In addition, the lack of environmental
covariates known in 3D space largely limits the development of 3D spatial models

of soil property.

This research is primarily committed to solving the last problem. However, the other

issues will also be partially addressed.
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1.2 Problem statement

For over more than a hundred years of activity, the exploitation and processing of copper
ore in the mining and metallurgical complex Bor, Serbia, caused serious environmental
problems (Kovacevi¢ et al., 2010; Serbula et al., 2013, 2014). This was mainly due to
inefficient control and refinement of toxic fumes during the smelting process. Harmful
compounds released in the atmosphere have spread over the surrounding area and changed
the soil’s geochemistry. A field survey was conducted in 2006 to document the actual
state of soil in the vicinity. The survey included the opening of 205 soil profiles that were
randomly distributed over the area of 200 km? and were spaced 10 km away from the
mining complex; see Section 3.1. This area was also selected due to its high potential
for further mining investigation. Preliminary data analysis indicated that the soil was
indeed affected by a long term atmospheric pollution processes. This revealed the three-
dimensional, non-stationary pollution problem with complex spatial patterns that can be
connected with many external factors, such as prevailing climatic conditions, soil types,

topography, etc.

Mapping such phenomena by geostatistical methods implies the inclusion of external fac-
tors into the geostatistical model. Even more, the exclusion of these factors may result
in a misleading geostatistical model. However, the incorporation of these into a 3D geo-
statistical model may reveal new challenges. Considering that the external environmental
influences mostly affect the upper soil layers, and that their effect decreases with soil
depth, it may be expected that many of the soil characteristics will show a clear trend
along the soil depth. Furthermore, it may also be expected that the vertical trend varies
spatially due to different soil characteristics across the area. Therefore, the key question
of this research is how these influences can be properly approximated and incorporated
into a 3D geostatistical model to improve the prediction at any location in a 3D space. A
possible solution could be to make a 3D interaction model, i.e. the model that includes
the interactions between the environmental factors and soil depth. However, the inclusion
of interactions will dramatically increase the number of covariates that should be consid-
ered, which imposes the problem of model selection. Another important issue is related
to the modeling of spatial correlation structure. The anisotropic correlation model must

be found, that includes the anisotropy between the vertical and the horizontal direction,
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which is a prerequisite for the application of 3D geostatistical methods on soil measure-

ments.

1.3 Objectives

The final objective of this research is to propose an innovative approach for the 3D map-
ping of soil properties, which combines the advantages of interaction models and 3D
geostatistics. This approach would be particularly suitable for soils and soil properties af-
fected by intensive external environmental factors or human or industrial activities. Con-
sidering the characteristics of the case study, and the methodological challenges, the spe-

cific objectives can be formulated as follows:

1. To examine how case-specific environmental conditions, like exposure to the source
of pollution, can be quantified and mapped based on the limited amount of com-
monly available information, such as terrain topography, prevailing climatic con-

ditions and spatial relations.

2. To determine the contribution of such case-specific environmental layers (maps) to

the mapping of pollutants at different soil depths.

3. To examine how the important interactions can be automatically recognized and

included in a linear 3D trend model.

4. To examine the advantages and the disadvantages of the inclusion of the interactions

between spatial covariates and depth within the linear 3D model of soil variables.

5. To analyze and model the dependency structure of trend residuals in 3D.

1.4 Approach

Methodologically, the approach relies upon point scale geostatistics. Regression kriging
is adopted as a general statistical framework for spatial prediction. Regression kriging

is a two-step approach that combines two conceptually different techniques: regression

5
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for trend estimation and simple or ordinary kriging to interpolate residuals (Hengl et al.,
2007; Bajat et al., 2013). In this study, trend modeling is based on linear regression.
The restrictive nature of linear models is relaxed by considering interactions between
predictors and their functional expansion in a polynomial form. Environmental factors are
represented by a set of one or more continuous or categorical variables known as spatial
covariates. In Chapter 4, regression kriging was used within the so called Spline-Than-
Krige approach (Malone et al., 2009) (see Section 2.5.2) to map atmospherically deposited
arsenic concentration at several soil depths. In the Chapter 5, penalized regression method
"lasso’ (Tibshirani, 1996) and its extension for hierarchical interaction models proposed
by Bien et al. (2013) (see sections 2.2.7.1 and 2.2.7.2) were used to optimize the 3D
interaction trend model. Subsequently, it was incorporated into the generic framework
for 3D soil mapping. A new approach for model accuracy assessment is also an integral
part of this framework. Nested n-fold cross-validation was proposed to perform model
assessment that preserves the basic principle of predictive modeling, which states that the

modeling process has to be completely separated from the validation process.

1.5 Outline

The dissertation comprises 6 chapters, out of which one is submitted and one is prepared
for submission to peer-reviewed ISCI journals. Each chapter is arranged as introduction,

methodology, results and conclusion.

Chapter 1 offers a brief overview and objectives of the dissertation. It includes a gen-
eral introduction and the motivation for the research work, the research scope and specific
objectives, the applied approach and the thesis outline. Chapter 2 presents the main theo-
retical concepts and methods used in this thesis. It begins with the concept of soil forming
process as a foundation for quantitative soil modeling. The basic concepts of predictive
statistical modeling, including the theory of linear regression and shrinkage regression
methods are included. The main theoretical aspects of geostatistics that are followed by
specific methods used in this study are also provided. At the end of this chapter, the ex-
tension of 2D geostatistical methods to a 3D space was presented. Chapter 3 provides

details on a case study and the data used for this research. Chapter 4 presents the study of
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layer-specific mapping of arsenic concentration that was atmospherically deposited from
the Bor Copper Mining Complex. The presented approach considers the effects of the
prevailing climatic conditions and local topography on the terrain exposure to the dis-
persion of pollutants. Several exposure parameters were created and employed as spatial
covariates within the ’Spline-Then-Krige’ approach. Chapter 5 presents the usage of the
shrinkage regression method Lasso for building the 3D interaction linear trend models of
soil properties. The obtained models were further used as a part of 3D regression kriging
for the interpolation of soil properties over the whole 3D prediction domain. Chapter 6
describes the R package PenInt3D, which is still under development, for the prediction of
soil properties by penalized interaction models. Chapter 7 gives a short summary of the

most important conclusions.



Chapter 2

The main concepts and methods

This Chapter presents the main theoretical concepts and methods used in this thesis. The
specific topics include: (1) A conceptual model of pedogenesis that provides the theoreti-
cal basis for quantitative analysis and mapping of soil properties; (2) Principles of predic-
tive statistical modeling and linear regression techniques; (3) The theory of regionalized
random variable and variography; (4) Basic geostatistical methods; (5) A universal model
of soil variation and hybrid techniques; (6) An extension of geostatistical techniques in

3D space.

2.1 The Concept of Soil Formation-CLORPT model

Soil is a very complex system where a variety of physical, biological, and chemical pro-
cesses interact. The understanding of how their joint influence affect the long-age process
of pedogenesis has always been a challenge facing soil scientists. Initially, a number
of conceptual models were formulated (Stockmann et al., 2011). The most well-known
model of soil formation is Jenny’s (Jenny, 1941) state-factor model, also known as clorpt
model. It conceptualizes the state of soil as a resultant of joint influences of five main

independent factors and a number of additional, unspecified factors:

S=f(clyo,rp,t,...) (2.1)

8
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where cl is the climate, o are the organisms, r is the topography, p is the parent material,
and 7 is the time, and ... stands for additional, unspecified factors. Such formulation
has provided an intuitive framework for much of the subsequent work on solving the
function f. Most efforts were spent not to formulate the overall equation f but rather
to examine the individual contribution of each factor. In that regard, empirical methods
have mostly been employed in literature. This approach involves the examination of soil
behavior in situations where one factor is allowed to vary while others are kept constant.
Such treatments led to the development of empirical models, known as climo-functions,

bio-functions, topo-functions, litho-functions, and chrono-functions (Yaalon, 1975).

2.1.1 SCORPAN framework

The conceptual model published by Jenny has served as a foundation for further investi-
gations on quantitative relations between soil and soil forming factors. A variety of inter-
national researchers have sought the way to construct mathematical solutions that would
represent the closest approximation of joint influences of soil forming factors (McBratney
et al., 2000; Minasny et al., 2008).

With the introduction of GIS and digital terrain analysis, new opportunities for soil sci-
entists have arisen. Digital Elevation Model (DEM) along with other digital layers have
provided a detailed quantitative description of the area, thus opening the possibility to
extend the clorpt concept to the spatial domain. Consequently, soil scientists all over the
world have begun to use increasingly mapped auxiliary variables to explain the specific
spatial patterns of soil and hence to produce maps of specific soil properties. Standard
multiple linear regression was used to model the relationship between soil data and ter-
rain attributes (Moore et al., 1993; Gessler et al., 1995). This approach was later termed
as the "environmental correlation” method (McKenzie and Ryan, 1999), or the spatial

prediction by multiple regression with auxiliary variables (Odeha et al., 1994).

Following up on this trend, McBratney et al. (2003) utilized the Jenny’s clorpt concept
to propose a more generic framework called the scorpan model, which primarily aimed
at providing empirical quantitative descriptions of relationships between soil and other

spatially referenced factors. The scorpan model states that the soil type or soil attribute at
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an unvisited site can be predicted from a numerical function or model (f) of the environ-

mental factors plus the locally varying, spatial dependent residuals (€):

Sc = f(s,c,o,r,p,a,n) +¢€ or Sqa = f(s,c,0,r,p,a,n)+¢€ (2.2)

where S and S, represent soil classes and soil attribute respectively. The environmental
factors within the acronym scorpan are: s: soil, other properties of the soil at a point;
c: climate, climatic properties of the environment at a point; o: organisms, vegetation or
fauna or human activity; r: relief, topography or landscape attributes; p: parent material,

lithology; a: age, the time factor; n: space, spatial position.

Mathematical model of f is the empirical quantitative function linking the soil vari-
able (S) to the scorpan factors. Each factor can be represented by a set of one or more
continuous or categorical variables. For example, r can be represented by DEM but also
with the various DEM derivates such as slope, curvature etc. Various data layers can be
used to describe the scorpan factors. Today, the creation of these layers is seen as an

integral part of any digital soil mapping study.

2.2 Predictive soil mapping - linear regression approach

Scull et al. (2003) defined the ’predictive soil mapping" (PSM) as the development of
numerical or statistical model of a relationship among environmental variables and soil
properties, which is then applied to a geographic data base to create a predictive map.
Today, so defined PSM is just an inevitable part of broader concept called Digital Soil
Mapping (DSM) (McBratney et al., 2003; Minasny and McBratney, 2016). Digital soil
mapping is defined as: the creation and population of spatial soil information systems
by the use of field and laboratory observational methods coupled with spatial and non-

spatial soil inference systems (Lagacherie and Mcbratney, 2007).

Jenny’s model and scorpan framework have formed the theoretical basis for using
a variety of statistical methods in predicting soil properties based on auxiliary spatially

referenced data. Advances in mathematical and statistical theory (including machine

10
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learning techniques) have created a great potential for improvements in predictive soil
mapping. In statistical theory, the term "predictive modeling" refers to the data-driven
process of building a statistical model, which ideally should provide the best possible
prediction. It means that the statistical model must be determined in a way to minimize
the prediction error. The prediction error refers to the average error that results from us-
ing a statistical model to predict the soil variable on data that has not been used in the
model building process (test data). Prediction error is also known as test error. On the
other hand, the training error can be calculated by applying the statistical method to ob-
servations used in its training (training data). Training error is often quite different from
test error. Various statistical methods can be used for this purpose; however, no single
method has been proven dominant when examined using all possible data sets. An ex-
haustive review of recent achievements using this approach was provided by McBratney
et al. (2003); Malone et al. (2016).

In this thesis, the statistical approach used for solving the scorpan problem is based
on linear regression methods. In linear regression, the model has a vector of parameters set
up to minimize the training error. The potential disadvantage of linear regression models
is that the obtained model usually does not match the true unknown form of f very well.
Alternatively, the function f can be approximated by more flexible models (like tree-based
or neural network models) that can fit many different possible functional forms for f. In
linear regression, fitting a more flexible model requires estimating a greater number of
parameters. These more complex models can lead to overfitting, which essentially means

that they follow the observed data too closely.

The following sections provide a brief overview of the statistical methods and fun-
damental principles of predictive modeling that are used in this study. Considering that
linear regression is adopted as a general modeling framework in this thesis, a brief con-
cept of linear regression, their extensions and a review of modern approaches in linear
modeling, will be presented. For more details, the interested reader shall be refered to
Hastie et al. (2009); James et al. (2013); Perovi¢ (2005); Kuhn (2008) which are used as

a guide when presenting statistical methods.

11
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2.2.1 Quantitative Measures of Model Performance

In order to evaluate the performance of a statistical model, a measure must be defined
that can quantify how well predictions match the observed data. In the regression setting,
when the outcome is a number, the most commonly-used measure is the mean squared

error (MSE) given by:

MSE = 12 (yi — f(x:))? (2.3)

ni=

where y; is the i — th observation and f (x;) is the prediction that f gives for data
point x;. The MSE becomes a smaller value as the the predicted values approach the
observations, i.e if the residuals tend to be small. By squaring the residuals, MSE becomes
more sensitive to outliers, as the larger residuals contribute more to the final estimate than
the smaller residuals. Often, a more suitable measure is the root mean squared error
(RMSE, Equation 2.4) which is derived from MSE by taking the square root of the MSE
so that it is in the same units as the original data. The RMSE can be interpreted as the

average distance between the observed values and the model predictions.

RMSE = \/ % Y (i (x:))? (2.4)
i=1

Another common measure is the coefficient of determination, which is commonly
denoted as R?. R? value is a number that indicates how the fit of proposed model is
better than the fit of the simple mean model. The mean model gives the observed mean
value for every predicted value and generally it would be used if there were not any useful
predictors. R? value takes the form of a proportion and therefore assumes a value between
O and I:

12
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R TSS—RSS . _RSS
- TSS TSS
where :

n
TSS=Y (vi—7)*
i=1
n

RSS=Y (vi—5)?
i=1

(2.5)

As it can be seen from Figure 2.5, the estimation of R? is based on two sums of
squares, TSS and RSS. TSS measures how far the observed data are from the mean value
and can be thought of as the amount of variability that is left after fitting the mean model.
On the other hand, the RSS reflects the amount of variability that is left after fitting the
proposed model. Hence, the difference between TSS and RSS reflects the improvement
in prediction reached by fitting the proposed model when compared to the mean model.

Dividing that difference by RSS provides the R? value.

Model selection, which will be discussed later in this chapter, implies the consider-
ation of several models with different subgroups of predictors. If we assess the quality
of these models by comparing training error (i.e. training RMSE), it is very likely to be
shown that the smallest error is provided by fitting the model with the largest number of
predictors. For that reason, the training RMSE or training R? value can not be used to
rank models that have different numbers of predictors. However, there are several mea-
sures that can penalize the model performance based on how many predictors are used
in the model. For linear regression, a commonly used statistic is the Akaike Information
Criterion (Akaike, 1974):

AIC = nlog Z (yi— f(xi))> +2P (2.6)
i=1

where P is the number of terms in the model. The first term of the Equation 2.6
decreases as more variables are added to the model, whereas the second term increases.
In this way, AIC controls for overfitting by penalizing models that include too many vari-

ables.

13
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The adjusted R? statistic is another popular measure for model selection. Since RSS
in Equation 2.5 always decreases as more variables are added to the model, the R? always
increases as more variables are added. For a model with d variables, the Ad justed R>

statistic is calculated as:

RSS/(n—d—1)

Adjusted R>=1—
Juste 7SS/(n—1)

(2.7)

Unlike the AIC, a large value of ad justed R* indicates a model with a small error.

2.2.2 Resampling methods

Today, the application of any modern regression techniques in predictive modeling cannot
be imagined without the extensive use of resampling methods. Resampling methods in-
volve repeatedly fitting the same statistical method using different subsets of training data
in order to obtain additional information about the fitted model. This information may re-
late to the optimal subset of predictors, which aids in model selection, or eventually to the
predictive accuracy of the model, which is referred to as model assessment. Resampling
methods were devised to compensate for the lack of sufficiently large test sets that can be

directly used for the estimation of test error.

2.2.2.1 Cross-validation

Cross-validation involves splitting the data up into a set of K parts (folds) of approximately
equal size. In each step of the process, one fold is treated as the test data set (validation
data set) while the remaining folds, joined in one group, are treated as the training data
set. Also, in each step, cross-validation uses the training data set to fit the model and
the test data to compute the prediction error (Figure 2.1). By doing so, the K estimates
of prediction error can be combined to obtain the average prediction error. For example,
if each step of cross-validation results in the test MSE;, k =1,2,...,K, the average

cross-validation MSE is:

14
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K

Y MSE;
k=1

1
MSEey = -

Data

¥

Training

Test

Test

Test

Test

Test Training

FIGURE 2.1: 5-fold data partitioning

(2.8)

In predictive modeling, for methods with meta-parameters (e.g. shrinkage parameter

A for lasso, see Section 2.2.7), cross-validation is often used as a tool for selecting the

optimal meta-parameter. For example, for a model M that depends on meta-parameter 0,

a cross-validation error can be computed for a whole set of meta-parameter values 8 € ©,

which are set previously. This results in cross-validation error curve which relates the

cross-validation error to the values of 0. The optimal 0

is:

6= argmin CV(6)

0c{61,6,,....00}

Cross-validation procedure in model selection is given in Algorithm 1.

(2.9)
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Algorithm 1 Selection of the best value for meta-parameters based on cross-validation
procedure

1: Partition D into stratified sets D;, k = 1,..., K of approximately equal size
2: fork=1to K do

3 Let D' be D\ D;

4: for each 6 € © do

5: Fit the model M(6,D’)
6: Make predictions by M(6,D’) on D;
7: end for

8: For each parameter 6 compute the average error MSE,,(6;) = %Zszl MSE},
9: Let 6 be argming g MSE,(0)

10: end for

When K = n, we call this leave-one-out cross-validation, because we leave out one

data point at a time.

2.2.2.2 Nested cross-validation

The cross-validation procedure, as explained above, provides a biased estimate of accu-
racy parameters for methods that require the optimization of meta-parameters. Choosing
meta-parameters is also a part of the training process, and, since the whole data set was
used in cross-validation to select the best value of meta-parameters, the whole data set
is used for the training (Krstajic et al., 2014). This procedure violates the fundamental
requirement of predictive modeling in that the training and test data need to be separated.
The use of the nested cross-validation technique can overcome the limitations described
above (Krstajic et al., 2014). In short, the nested cross-validation consists of two nested
cross-validation loops. The outer loop serves to assess the performance of the model,
which was selected in the inner cross-validation loop. For each outer fold, the model is
selected on each outer training set, using a standard cross-validation procedure in the inner
loop and then applied to the outer test set. The process yields a prediction for each fold,
obtained from a model which was not trained on that fold. Using these predictions, the
overall accuracy measure is computed. The nested cross-validation procedure is presented

in Algorithm 2 and in Figure 2.2.
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D - input data matrix, © -set of
metaparameters

For each i,

\ i=1,..k /

Training Data: D'=D\D;

For each j,
j=1..k

Fit the model on new
training data M(6;, D)

Make predictions on
test data D';

Computing e, (6;) based
on prediction on entire D’

Fit the model M* with 6* on
training data D, M*(6*,D’)

'

Make prediction on validation
set D;

Compute the RMSE and R?
based on prediction on entire
data set D

FIGURE 2.2: Model assessment based on nested cross-validation procedure.
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Algorithm 2 Nested cross-validation

1: Partition D into stratified sets D;, i = 1,...,k of approximately equal size
2: fori=1tokdo

3 Let D' be D\ D;

4: for each 6 € © do

5: Partition D' into stratified sets D, j = 1,...,k" of approximately equal size
6: for j =1to k' do
7: Fit the model M(6,D"\ D))
8: Make predictions by M(6,D"\ D';) on D/,
9: end for
10: Compute error eg based on predicted and real target values on D’
11: end for
12: Let 0" be argmingc@ eg

13: Fit the model M(6*,D’)
14: Make predictions by M(6*,D’) on D;
15: end for

16: Report error computed on predicted and real target values on D

2.2.3 Bias-Variance trade off

The understanding of the concept of bias-variance trade off is particularly important for
any type of statistical predictive modeling. Bias-variance explains how different sources
of error influence the overall accuracy of the model. The expected test error for a particular
test point xp can be decomposed into the sum of three fundamental quantities, the variance

of f(x), the squared bias of f(x), and the variance of the error variance terms €:

E(yo— f(x0))* = Var(f(xo)) + [Bias(f(x0)]* + Var(¢) (2.10)

where E(yo — f(x0))? is the expected test error, and refers to the average test error that
would be obtained if f is repeatedly estimated using a large number of training sets and
tested each at test point xg. The equation 2.10 shows that the expected test error reaches a

minimum only if the predictive model achieves the lowest bias and variance possible.
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The variance refers to the error caused by fitting the regression model by using many
different data sets. Since different data sets are used to fit the model, the predictions for a
given point vary between different realizations of the model. Ideally, the f should not vary
significantly between different data sets. The bias refers to the error that is introduced by
modeling the true f by a particular model f. For example, if the true f is non-linear, and
we are trying to fit the linear model, an irreducible error is introduced. This error is known

as bias.

Generally, more flexible methods (like spline or tree-based methods) result in models
with less bias, but with high variance. Figure 2.3 also shows the typical relationship
between the training and test error, as the complexity of model varies. The training error
monotonically decreases as the complexity of the model increases, whereas the test error
decreases as the model reaches a certain complexity. As a result, the test error tends to
increase due to the increasing variance. For example, linear models becomes more flexible
as more variables are included in the model. Therefore, a key task in linear modeling is
to determine which subset of variables should be included in order to provide balance
between bias and variance. The relationship between bias, variance, and test error is
referred to as the bias-variance trade-off. In reality, the true f is not known, so it is
generally not possible to determine how much the adopted model deviates from the true
f. Accordingly, bias-variance trade off is not a rule, but it is rather a kind of a problem

which should always be kept in mind when modeling.

2.2.4 Linear regression

A linear regression model is a very straightforward approach for predicting a quantitative
response Y on the basis of a group of predictor variables (predictors) X;. It assumes that
there is approximately a linear relationship between Y and X, i.e. each variable is linearly
related to the modeled variable. Mathematically, the linear regression model can written

in the form: »
FX)=Po+ Y X;Bj+e 2.11)
j=1

where the ;’s are unknown parameters or coefficients, and the X; can be (Hastie et al.,
2009):
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High Bias Low Bias
Low Variance High Variance

Test Data

Prediction error

Training Data —

Low . High
Model Complexity 9

FIGURE 2.3: Bias-Variance trade-off, from (Hastie et al., 2009)

1. quantitive inputs

2. transformation of quantitive inputs, such as log, square-root

3. basis expansions of inputs, like polynomial function of particular inputs

4. numeric or '”dummy’ coding of the levels of qualitative inputs.

5. interactions between variables, for example, X; = X; X}

The observed data from which the coefficients 3 have to be estimated are typically

given in the form of pairs: (x1,y1,%2,Y2,...,%y,yn). Where each x; = (x;1,%2, ..., %ip)"
is a vector of i —th predictor variable measurements. According to the least square estima-

tion, which is the most popular method for estimation, the coefficients § = (Bo, B1,- - -, Bp) "

are determined to minimize the residual sum-of-squares (RSS):
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If the N x (p+ 1) matrix, where each row represents the input vector, is denoted by
X, and if the N-vector of outputs in the data is denoted by y, then the residual sum-of-

squares can be written as:

RSS(B) = (y—XB)" (y — XB) (2.13)

If X has full column rank, and hence XTX is a positive definite, and the first derivative
is set to zero XT(y — X3) = 0, the unique solution for = (By, B1,---,Bp) T will be given
by:

(B) = (xX"x)"'XTy (2.14)

2.2.5 Extensions of linear models

The standard linear regression model provides an interpretable model form. However, it
makes a set of restrictive assumptions that can be rarely encountered in practice. Two
highly restrictive assumptions state that the relationship between the predictors and the

response variable must be additive and linear.

2.2.5.1 Inclusion of interactions

One way to relax the additive assumption is to extend the linear model by allowing for
interaction effects. Interactions exist when a change in the level of one variable has differ-
ent effects on the response, depending on the value of the other variable. An interaction

effect is an additional term in model setting that is constructed by computing the product
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of two variables. Accordingly, the linear model with interaction terms has the following

form:
Y =Bo+BiXi+ BXo+ B X1 X2+ € (2.15)

The effects of interactions can be distinguished if we reformulate the Equation 2.15

as:

Y =P+ (B1+B:X)X1 + BXo+ €

- (2.16)
= Bo+ BiXi + B Xz

where B~1 = B1 + B3X;. Since B~1 changes concomitantly with X», the effect of X; on Y is no
longer constant. Changing in X, will change the impact of X; on Y. Therefore, interaction
models distinguishes two types of effects: main effects, which are the individual effect of

single variable and the interaction effects, or the synergy effects of two linked variables.

2.2.5.2 Polynomial expansion

As mentioned previously, the linear regression model assumes a linear relationship be-
tween the response and its predictors. However, in reality, the true relationship between
predictors and the response is often nonlinear. A simple way to address this issue with lin-
ear models is to use a polynomial regression. Polynomial regression involves the polyno-
mial expansion of predictors, i.e. includes the polynomial functions of predictors within
the linear regression model. In other words, polynomial regression extends the linear
model by adding extra predictors, obtained by raising each of the original predictors to a
power (James et al., 2013). For example, a cubic regression uses three variables, X, X 2

and X3, as predictors, which results in the model:

vi = Bo+ Bixi+ Poxt + B3 +... 4+ Buxl + & (2.17)

The coefficients in Figure 2.17 can be easily estimated using least squares linear
regression because this is still a standard linear model. Even though this is a common

linear regression model, the individual coefficients are not of particular interest. Instead,
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the attention should rather be payed on the entire fitted ’function’ that corresponds to the

one variable.

2.2.6 Model selection

Model selection is one of the most frequently encountered problems in statistical data
analysis. Generally, it involves the task of selecting an optimal statistical model from a set
of candidate models. In predictive statistical modeling, model selection should provide a
balance between model complexity and its ability to predict. Complex models fit training
data better, but they are more prone to overfitting and lead to lower quality predictions. In
linear regression modeling, with a large number of predictors, smaller subsets that exhibit

the strongest effects are preferred.

2.2.6.1 Best subset selection

Best subset selection involves the separate-fitting of models consisting of each possible
combination of p predictors, and choosing the one with the smallest test error. This is

usually done through the following algorithm:

Algorithm 3 Best subset selection, from James et al. (2013)

1: Let ug denote the model which contains no predictors (null model).

2: fork=1,2,...,p:do

3: Fit all (’,z) models that contain exactly k predictors.

4 Pick the best among these (’,z) models, and call it ;. Best is defined as having the
smallest RSS, equivalently largest R>.

5: end for

6: Select a single best model from among Lo, U1, .. ., 1, using cross-validated prediction

error, AIC or Ad justed R>.
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Best subset selection is indeed simple and a very conceptually appealing approach
but, on the other hand, it is very computationally demanding. For any subset of p predic-
tors there are 2” models that must be considered. Consequently, the number of possible

models that must be considered increases dramatically as p increases.

2.2.6.2 Forward step-wise selection

Forward stepwise selection is a popular algorithm for considering a sequence of nested
linear regression models. It begins with a model with no predictors, sequentially adding
one predictor at a time until the model with all predictors is fitted. In each step, the pre-
dictor that gives the greatest additional improvement to the fit is added to the model. This
approach appears to be a very appealing alternative to the best subset selection because
it considers a much smaller set of models. The forward stepwise selection procedure is

given in Algorithm 4.

Algorithm 4 Foreward step-wise selection, from James et al. (2013)

1: Let ug denote the model which contains no predictors (null model).

2: fork=1,2,....p—1:do

3: Consider all p — k models that augment the predictors in y; with one additional
predictor.
4: Pick the best among these p — k models, and call it ;1. Best is defined as having

the smallest RSS, equivalently largest R”.
5: end for
6: Select a single best model from among Lo, U, .. ., U, using cross-validated prediction

error, AIC or Ad justed R>.
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2.2.6.3 Backward step-wise selection

Backward step-wise selection is very similar to forward stepwise selection. Backward
step-wise selection also provides an efficient alternative to the best subset selection. How-
ever, unlike forward step-wise selection, it begins with the full least squares model con-
taining all p predictors and then iteratively removes the least useful predictor one-at-a-
time James et al. (2013). The backward stepwise selection procedure is given in Algo-
rithm 5.

Algorithm 5 Backward step-wise selection, from James et al. (2013)

1: Let uo denote the model which contains all p predictors (full model).

2. fork=p,p—1,...,1:do

3: Consider all kK models that contain all but one of the predictors in yy for a total of
k — 1 predictors.

4: Pick the best among these k models, and call it u;_;. Best is defined as having
the smallest RSS, equivalently largest R”.

5: end for

6: Select a single best model from among Lo, U1, .. ., U, using cross-validated prediction

error, AIC or Ad justed R>.

Backward selection has just one important requirement: the number of samples n
must be larger than the number of variables p, considering that the algorithm starts from
the full-model. In contrast, forward step-wise selection can be used even when n < p, and

so it is one of the viable subset methods when p is very large.

2.2.7 Shrinkage Methods

According to Hastie et al. (2009, 2015) there are two main problems with the least squares

estimation:

1. The first problem is prediction accuracy. Least squares estimates for a model with a

large number of predictors often have low bias, but very large variance. In order to
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reduce the variance, a little bit of bias must be introduced. This can be accomplished

by shrinking or setting certain coefficients to zero.

2. The second problem is interpretation. Least squares fitting yields models that re-
tain all predictors of greater or smaller importance. The inclusion of irrelevant
predictors introduces unnecessary complexity into the model. A large number of
predictors make model interpretation difficult. It is not rare that a certain number

of predictors are in fact not associated with the modeled variable.

The possible solutions to overcome these issues are the subset selection or step-wise
selection procedures described previously. The main task of these techniques is to provide
a model with a limited subset of relevant predictors, which would result in a reduction of
variance and also in simpler model interpretation. However, due to their repetitive nature,
a large number of potentially useful predictors can make this task very computationally
demanding. The easiest and the most effective solution for this problem is to use the
Shrinkage methods. Shrinkage methods fit the model containing all p predictors, by using
one of the common loss functions (e.g. square loss) extended with additional regulariza-
tion penalties that shrink the coefficient estimates towards (or exactly to) zero. The two
most popular shrinkage (penalized) methods are ridge regression and lasso (least absolute

shrinkage and selection operator).

The rationale behind the efficiency of shrinkage methods lies in bias-variance trade
off. By shrinking the coefficients towards zero, the flexibility of the model decreases,
leading to an increased bias, but a decreased variance of the model. However, a small
increase in bias may result in a large decrease in variance, which may lead to substantial
improvements in prediction accuracy. The efficiency of shrinkage methods is particularly
evident when the number of variables p is almost as large as the number of observations
n, 1.e. exactly in cases where the least squares solution has a high variance. Unlike the
ridge regression, lasso performs the model selection within the fitting procedure, forcing
some of the coefficient estimates to be exactly equal to zero. For this reason, lasso was
used for the trend modeling of the soil variables in this research. The following sections
discuss the lasso in more detail. An exhaustive review of lasso and its generalizations was

recently published in a text by Hastie et al. (2015).
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2.2.7.1 LASSO

Lasso (Least Absolute Shrinkage and Selection Operator) is the computationally attractive
one-step approach for parameter estimation and variable selection for linear regression,
proposed by Tibshirani (1996). Lasso combines the well-known least squares loss func-
tion with the bound on the /1 = 57:1 |Bj| norm of coefficients, to create a sparse linear
model, which is a unique global solution of the convex minimization problem. /1 norm is
bounded by a pre-specified value ¢. Therefore, the coefficients of lasso regression are the

solution for the following optimization problem:

1 4
min< — Y (yi—Bo—x/ B)* p subjectto Y |B;| <t (2.18)
where y; represents the observed value of response, 3 represents the vector of model
coefficients and x; is a vector of predictor values for the i —th case. The value of ¢ can
be understood as a budget which controls how large Z?Zl |B;| can be. In this way, lasso
controls the complexity of the model. For a small value ¢, more coefficients are forced to
be exactly equal to zero, while for sufficiently large 7, lasso coefficients are getting closer
to their least squares estimates. In this way, lasso yields models that simultaneously use

regularization to improve the model and to conduct the variable selection.

It is convenient, and more suitable for the optimization process to express Equa-

tion 2.18 in one-to-one corresponding Lagrangian matrix form:

. 1 2
min {51y~ XB13-+ 218l 2.19

where parameter A (shrinkage or regularization parameter) controls the strength of [;

constraint, as 't does in equation 2.18.

Typically, the use of penalized regression models implies the standardization of pre-
dictors prior to model fitting (Hastie et al., 2009). The reason for this lies in the depen-

dence of the lasso solution on the variables’ unit.

Selecting the optimal value of A is the most important issue, considering that differ-

ent values of A can produce very different models. Lasso produces different coefficient
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estimates for each value of A. The n-fold cross-validation procedure is a common way
to select the best model, or, equivalently, the optimal A parameter. By defining a grid
of values of A parameters and computing cross-validation errors e, for each value, the
optimal A value is the one which gives the lowest e.,. Figure 2.4 shows the path of the
coefficients over different values of A, estimated for the SOM (Soil Organic Matter) data
with IntL model, see Chapter 5. The upper x-axis refers to the number of predictors, while
the lower x-axis refers to the log function of A parameters. The y-axis refers to the values
of estimated coefficients. Each line corresponds to a different model variable, which were
centered and scaled prior to model fitting. As we scan from left to right on the graph,
log (1) increases and the the coefficient estimates move toward 0 at different rates. When
the log (1) is sufficiently large, many of the coefficients are set to 0. The optimal A value
can be selected by computing the cross-validation error for each value of A. The dashed
vertical line denotes the best A parameter as calculated by the 5-fold cross-validation. In
addition, lasso has one considerable advantage over the step-wise selection methods, or
best subset selection. Within the cross-validation, for any value of A, lasso fits only a

single model, and the model-fitting procedure can be performed very efficiently.

22 16 5 0

Coefficients

! T T T T
-2 -1 0 1

Log Lambda

FIGURE 2.4: Coefficients path for different value of A

28



Chapter 2 The main concepts and methods

2.2.7.2 LASSO for hierarchical interactions

Hierarchical interactions refers to the parameters setting in linear model, according to
which the interaction terms are included in the model only if the associated main’ terms
are important or statistically significant for the prediction. The consideration of hierar-
chical interactions in this study is based on an approach proposed by (Bien et al., 2013).
Their approach produces an interaction model that is guaranteed to be hierarchical. They
consider a regression model for an outcome Y and the predictors Xi,X>,...,X, with the

pairwise interactions between these predictors:

1
Y :ﬁo—FZﬁij—i—E Z@ijij—l—S
J J#k (2.20)

where & =N(0,0?)

with the goal to estimate § € R?,® € RP*?, where ® = @7 , @ jj = 0. Additive terms
are called main effects, while the multiplicative terms are called interaction effects. Two

different types of hierarchy restrictions are defined as strong and weak hierarchy:

Strong hierarcy : (:)jk #0 — Bj #0 and 3k #0

~ R . (2.21)
Weak hierarcy : O#0 = PBj#0 or B #0

They proposed a lasso procedure that produces sparse estimates of B and ®, while
satisfying either the strong or the weak hierarchy constraint. In contrast to other ap-
proaches, such as grouped lasso penalties (Yuan and Lin, 2006), their approach involves

adding a set of convex constraints to the lasso:

A
Minimi BB @)42 o
genpmimize o 4Bo.BT =BT 0)+AlBll+ IO
subject to ®=07
+ —

BﬁZO for j=1,....p
B =0 for j=1,..p
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2.3 Geostatistical mapping - concept and methods

This section provides a concise description of geostatistical methods, which are described
in more detail in Cressie (1993); Webster and Oliver (2007); Goovaerts et al. (1997);
Oliver and Webster (2015); Goovaerts (1999a); Hengl et al. (2004); Goovaerts (1999b);
Oliver and Webster (2014); Diggle (2011).

Geostatistics was introduced into soil science more than 30 years ago. Originally,
geostatistics was developed for the mining industry (Krige, 1951), and today it is applied
widely as a modeling tool in environmental sciences. As already mentioned, soil is a
product of many interacting physical, chemical and biological processes. Although these
processes are physically determined, their interactions are quite complex, whereas their
mutual influences make the soil variation appear as if it was random (Oliver and Webster,
2014). For that reason, deterministic or any exact mathematical solution does not cover

all the variations of soil property.

From the geostatistical point of view, the observation of a particular soil property at
any place z(x), where X represents geographic location, is considered to be just one of the
infinite possible values that might be observed. Thus this value can be treated as a random
variable, which is denoted by the capital Z. The set of such random variables at all of these
places in one region constitutes a spatial random process (or random function), denoted as
Z(x). Random variables in the real space, such as the concentrations of elements in soil,

are also called ’'regionalized variables’ (Matheron, 1963).

Such a random process cannot have explicit mathematical descriptions, i.e. it cannot
be expressed by a mathematical equation. On the other hand, it can be described by
stochastic relations, such as spatial correlation. This means that levels of environmental
variables at different places may be related to one another in a statistical sense. Intuitively,
the levels of environmental variables appear to be more similar, if the spatial locations,

where the values are taken, are closer to each other.
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2.3.1 Stationarity and Variography

Considering that the set of actual (observed) values is a single realization of a spatial ran-
dom process, it is theoretically impossible to determine any statistical parameter of the
spatial random process, or even of a random process at a particular point in space. In
order to overcome this limitation, geostatistical theory introduces one additional assump-
tion, named stationarity. Stationarity implies that a spatial random process has the same
degree of variation over a region of interest. Under the assumption of stationarity, a spatial

random process can be represented as:

Z(x) =pu+e(x) (2.22)

where p is the mean of the process and €(x) is a random quantity with the mean of zero
and the covariance, C(h) where the h is the separation in space. The covariance can be

expressed as:

C(h) = E[Z(x) — uZ(x+h) — u] = E[Z(x)Z(x+ h) — u?] (2.23)

where Z(x) and Z(x + h) are the values of random variable Z at places x and x + A,
and E denotes the expectation. In this way, the covariance depends only on A, which
is a separation between samples, and not on their locations within the observed area.
The stationarity assumption implies a constant mean over the whole area. Since this is
rarely the case, Matheron (1963) has introduced a relaxed assumption called intrinsic
stationarity, which implies that the expected differences between the values of a random
variable Z at places x and x + & is equal to zero. Therefore, the covariance is replaced by

half the variance of the differences, referred to as the semivariance:

1 1
v(h) = Jvar[Z(x) = Z(x+h)] = SE[Z(x) — Z(x+ 1)} (2.24)

The semivariance, expressed as the function of 4, is called the variogram y(h). Es-
timating the variogram values from the observed data, z(x;),z(x2),...z(x,) by changing
h, is usually the first step in any geostatistical analysis. The usual way to compute the

variogram values for different / is the Matheron’s method of moments (MoM):
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—

y(h) = i) z2(x; +h) — 2(x;)]? (2.25)

1

—

where z(x;) and z(x; + h) are the observed values of z at places x; and x; + h,and m(h)
is the number of paired comparisons at lag h. This set of values is called the experimental
or sample variogram, because it is based on the observed data. The sample variogram can
be modeled by fairly simple mathematical functions. The most used variogram models
are: Nugget, Exponential, Spherical, Gaussian, Linear, and Power (Oliver and Webster,
2014). The obtained model of sample variogram leads to the geostatistical prediction

technique known as kriging.

2.3.2 Ordinary Kriging

Kriging is a generic name for an entire family of geostatistical interpolation techniques.
Kriging technques provide predictions on punctual or block supports that are unbiased
and have minimum prediction errors. For this reason, kriging is often known as the Best
Linear Unbiased Predictor (BLUP). Kriging predicts values at unsampled locations by
weighting the neighboring measurements in a way that takes into account the structure of

spatial dependence, as represented in the variogram or the covariance function.

Ordinary kriging is by far the most common type of kriging. Ordinary kriging is
based on the assumptions that the variation is random and spatially dependent, and that the
underlying random process is intrinsically stationary with a constant mean and a variance
that depends only on separation distance, and not on absolute position within the observed
area (Oliver and Webster, 2015). The whole computation can refer to one, two, or three
dimensional space, as well as to the point or block support. The most common case is still
two-dimensional, but later in this work an extension to the three-dimensional space will

be presented.

If we denote the values of random variable Z that have been collected at locations
X1,X2,X3...%, as z(x;). Kriging prediction Z of a random variable Z at any new point Xg is

given by:
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N
Z(x0) = Z?Liz(xi) (2.26)

where A; are the weights. In order to ensure the unbiased estimate the weights are

summed to one:

N
Y =1 (2.27)

i=1

The prediction variance is given by:

N
Y Y Aidjyv(xi—xj)  (228)

1j=1

Mz

var[Z(xy)] = E[Z(xy) — 227”/

~.

where the quantity y(x; —xp) is the semivariance of Z between the sampling point
x and the target point xo. y(x; —x;) is the semivariance between the i —th and j—th
sampling points. It is important to note here that the kriging variances are independent
from the data values, and, as such, cannot be used as a measure of reliability of the kriging

predictions.

The essential step in kriging prediction is to find the kriging weights that ensure the
minimized kriging prediction error. These are found by solving the following system of

equations:

M=

Aiy(xi — xj) + y(x0) = Y(xi —xo) forall j

.
Il
—_

(2.29)

the y(xp) is the Lagrange multiplier introduced to achieve minimization.

In matrix form, this system can be expressed as:
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— 9 -1 r -

’}/(xlaxl) e Y(ln;xn) 1 ’}/(xnvx())
[/10] I I S : 230,
H '}’(Xn,X]) T Y(xmxn) 1 }/(xn,x())
1 1 0 1

the additional parameter u is a Lagrange multiplier, see details in Isaaks and Srivastava
(1990).

2.4 Universal Model of Soil Variation and Hybrid Tech-

niques

Despite the assumption that soil variation is a realization of a spatially random process,
it may turn out that a significant part of variation cannot be treated in this way (Lark
et al., 2006). For example, soil properties that are influenced by topography may show a
pronounced trend across an explored area, which is not consistent with the constant mean
model from Equation 2.22. For this reason, it is convenient to extend this model with a

more generic universal model of soil variation:

Z(x) =u(x)+€e(x)+e (2.31)

The universal model of soil variation distinguishes three major components: (1) the
deterministic-trend component u(x), (2) the spatially correlated component (stochastic
residuals) €(x) and (3) pure noise €. The deterministic component refers to a systematic
part of variation caused by the strong impact of other environmental factors, and can be
materialized through a deterministic function of coordinates, or available spatial covari-
ates (scorpan factors). This part of variation is also known as the ’trend component’. The
second component covers spatially correlated small-scale variations, described by the var-
iogram function. Accordingly, the variogram is no longer estimated based on the observed

data but is rather visualized using the residuals €(x) = Z(x) — u(x). The third component
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includes the part of the spatial variation which cannot be described by the means of the

previous two components.

Numerous mapping techniques have been developed to accommodate the varying
mean by combining the information from auxiliary sources with observations. All these
techniques are known as "Hybrid Techniques’ (McBratney et al., 2000). The first proposed
and probably the most commonly used hybrid technique is the Universal Kriging method
(Matheron, 1969).

2.4.1 Universal Kriging

Universal kriging (UK) uses an integral computing procedure for the estimation of trend
and residual interpolation by kriging. The original version, proposed by (Matheron,

1969), models the trend as a linear function of spatial coordinates:

K
u(x) =Y Bifi(x) (2.32)
k=0
where B,k =0,1,...,K are unknown coefficients, and the fi(x) are known functions of

x (i.e. functions of spatial coordinates).

If a variogram model y(h) is given, the prediction of Z at any xy can be obtained by:

Z(x0) = Y Aifi(xi) (2.33)
i=1

where A;,i = 1,2,...,N are the UK weights. The estimator is unbiased if:

N
Y Aifi(xi) = filxo) (2.34)
=i

The UK can be expressed as an extended ordinary kriging, taking into account the
fixed effects of the trend in addition to the spatially correlated component (Webster and
Oliver, 2007):
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N K
Y Aiy(xix)) +wo+ Y Wifi(xj) = v(x0,x;) (2.35)
=1 (=0
N
YA -1 (2.36)
i=1
N
Y Aifi(xi) = fi(xo) (2.37)
i=1

The values of y(x;,x;) are the semivariances of the residuals between the data points
x; and x;, and the Y(xo,x;) are the semivariances between the target point and the data
points. Moreover, there are additional Lagrange multipliers y; for each term of the trend
model. The universal kriging, like ordinary kriging, is a set of linear equations which can

be represented in matrix notation by:

A yx,x1) - Yle,xy) U filaa) oo fr(xa) Y(x1,X0)

Py Y(x2,x1) - Yle,xn) 1 filx2) oo fx(x2) Y(x3,X0)

An Yoon,x1) o Yoow,xw) 1 filey) oo fk(X)n Y(xn,Xo)

Yo | = 1 1 0 0 1 (2.38)
Vi filxt) - filew) O 0 f1(xo)

73} folxt) - faley) O 0 f2(xo)

vk] [ fxk) o fkbw) 00 0] | k(o) |

The major limiting factor in using the UK is that it requires the knowledge of a
residual variogram, prior to estimating the regression coefficients. This creates a circular
problem, since the computation of the residual variogram, which is needed for the UK,

requires the estimated trend coefficients.
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2.4.2 Regression Kriging

Regression kriging (RK) assumes that deterministic and stochastic components of spatial
variation can be modeled separately. It is mathematically equivalent to the previously
explained UK, where auxiliary predictors are used to solve the kriging weights directly.
However, RK combines two conceptually different techniques, regression for trend esti-
mation and ordinary or simple kriging, to interpolate stochastic residuals (Hengl et al.,
2007; Bajat et al., 2013).

The regression kriging prediction for variable Z at new location X is:

2(x0) = (x0) +2(x0) = ¥ B fixo) + Y Ar-e(x) (2.39)
k=0 i=1

where the 3,- are estimated regression coefficients, the f; is the known function of k —th
covariate, that must be exhaustively known over the spatial domain, and p is the number of
covariates. The A; are the kriging weights determined by the spatial dependence structure,

and e(x;) is the regression residual at location x;.

In practice, trend coefficients are mainly obtained by ordinary least squares (OLS).
However, this can cause bias in the estimates of the residual variogram (Cressie, 1993).
One solution to reduce the bias is to estimate the residuals taking into account the spatial
correlation between the observations Hengl et al. (2007). For that reason, the usage of
Generalized Least Squares (GLS) is recommended instead of the commonly used OLS.
However, GLS implies an iterative procedure for the variogram estimation. In the first
step, the trend model is estimated by using the OLS. The given OLS residuals are then
used to construct the covariance function needed to obtain the GLS estimates. In the
next step, the GLS residuals are used to update the covariance function in order to re-
calculate the GLS residuals, from which an updated covariance function is computed.
This procedure should be repeated until the trend coefficients no longer change. The final
residual variogram is then estimated from the final GLS residuals, and then modeled as a

continuous function of lag distance.

37



Chapter 2 The main concepts and methods

If the covariance matrix of the residuals is denoted as C, the matrix of covariate
values at the sampling locations as q, and, the vector of measured values of the target

variable as z, the vector of trend coefficients obtained by GLS (ﬁGLS), is:

P -1
Pos=(a"-C"a) q"-Clz (2.40)

The Equation 2.39 can be rewritten in matrix form and the kriging prediction at new

location xy is:

2(x0) = qg - Bars + Ay - (2—q - Bers) (2.41)

where ;&) is the estimated vector of weights for the location xg. Prediction variance is
defined as:

62()6()) = (C() —l—C]) —COT-CI'CO

t(a—a"C ) (a7 C o) (a0— g O ) (242)

where Cy + C is the sill variation and ¢ is the vector of covariances of residuals at the
unvisited location, C is the covariance matrix of the residuals, q is a matrix of covariate

values at the sampling locations, qg is a matrix of covariate values at the unvisited location.

2.5 Mapping in 3D

2.5.1 Modeling Soil Variation with depth

Soil sampling is often based on taking a bulked sample of soil from each horizon within
the soil profile. Accordingly, measurements of particular soil properties are assumed to
reflect the mean values for the soil horizons from which the samples were taken. If we as-

sign the lower and the upper bound of each horizon to each observation, vertical variation

38



Chapter 2 The main concepts and methods

of profile data can be expressed as a step-wise function of depth. However, this concept
is often too restrictive, because it assumes that the soil horizons are perfectly homoge-
neous. For that reason, soil scientists were interested to find more realistic representations
of vertical soil variation. Such realizations were achieved by fitting continuous functions,
such as exponential decay, log-log functions, polynomials or even piece-wise polynomi-
als, through the mid-depth of horizon data (Moore et al., 1972). Ponce-Hernandez et al.
(1986) proposed the specific depth function, called equal-area spline or mass-preserving
spline, which fit the piece-wise spline function through the horizon averages, maintaining
that the areas above and below the fitted spline in any horizon are equal. However, dif-
ferent functions yield various predictions of soil properties along soil profile. Figure 2.5
depicts a vertical variation of soil carbon modeled by using a logarithmic function (left)

and an equal-area spline (right).
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FIGURE 2.5: Log-log depth function (left) and equal-area spline depth function (right),
from (Hengl and Heuvelink, 2013)

Equal-area spline is a continuous function of depth which must be estimated by using
the profile data. The assumptions behind the equal-area spline imply that the f(x) and its
first derivative f’(x) are continuous, and also that the f’(x) is square integrable. The depth
is denoted by x, and the depth function describing soil attribute values by f(x). Further, if
the depths of the boundaries of the n horizons are denoted by xy < x1,..., < x;,, where xg

is the soil surface, so that xo = 0, then the measurement from the horizon i is assumed to
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reflect the mean level of soil properties at this depth (horizon). Thus, the equal-area spline

models the measurements y; as:

vi=fité& (2.43)

where f; = [ f(x)dx/(x; —x;_1) is the mean value of f(x) over the interval (x; —
x;—1)- The errors g; are assumed to be independent, with mean 0 and the variance o2. The

spline function that models barf requires choosing the f(x) that minimizes:

U e [ Q.4
i=1 X0

The first term of Equation 2.44 represents a fit to the data, while the second term
measures the roughness of function f(x) represented by its first derivative f(x). The
parameter A, known as the spline-smoothing parameter, controls the trade-off between
the fit and the roughness penalty. The quality of the fit for the equal-area spline function
largely depends on the A value. Previous results, obtained in the studies of Bishop et al.
(1999); Adhikari et al. (2012); Odgers et al. (2012) show that the value 0.1 for A parameter
provides the best fitting results.

Bishop et al. (1999) compared the predictive performance of equal-area spline with
the exponential decay functions, and 1st and 2nd degree polynomial depth functions in
predicting a number of soil properties including soil pH, electrical conductivity (EC),
clay content and organic carbon content. The obtained results indicated the superiority of
equal-area quadratic splines. Malone et al. (2009) made a minor modification to the their
work and proposed a more general method based on equal-area spline, so that input data

segments do not have to be contiguous with depth.

2.5.2 Spline Than Krige

Soil samples may relate to different depth intervals between sampling locations. This may
cause a problem in assessing the spatial distribution of a soil property at a particular depth

interval which may not correspond to the sampled intervals. A common way to map the
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soil property at any depth interval is the so-called Spline-Than-Krige (STK) approach.
The spline-Then-Krige refers to a 2D geostatiscal approach for producing a suite of digi-
tal maps for soil properties at different soil depth intervals, first proposed by Malone et al.
(2009). Methodologically, this approach combines the use of depth functions and geosta-
tistical hybrid techniques to provide the estimate of soil property at unsampled locations
and sepcific depth intervals. This approach was successfully used in many studies for the
mapping of various soil properties (Adhikari et al., 2012, 2014; Lacoste et al., 2014; Mul-
der et al., 2016). Generally, STK approach can be conceptualized through the following

procedural steps:

1. Fitting equal-area spline functions to soil profiles data and selecting the best A;

2. Deriving mean values of the "best’ spline function, within the pre-specified depth

intervals;

3. Modeling the relationship between the mean values and the environmental covari-

ates;

4. Applying the given model onto the wider study area where soil observations do not
exist;

5. Kriging the residuals at each depth interval;

6. Adding the kriging prediction of residuals to the ’trend’ prediction to obtain final

predictions;

7. Reconstructing the spline function at each predicted point with the same A.

A major disadvantage of converting the soil profile observations to the continuous
form by exact mathematical function is that these values are only estimates with associated
estimation errors. If these values ! are used as observations for spatial prediction at these
depths, then an important source of error is disregarded, which may jeopardize the quality

of the final soil prediction (Hengl and Heuvelink, 2013).

Ivalues of averaged spline predictions over the depth increments
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2.5.3 Model based 3D modeling

Model based 3D modeling refers to the methodology of soil mapping in which the varia-
tion of a soil property in three dimensions is described by a single model. 3D soil model-

ing is a natural extension of purely 2D approaches, such as Spline-Than-Krige.

The universal model of soil variation (Equation 2.31) from Section 2.4 can be ex-
tended to cover the variation of soil properties in 3D (horizontal + depth). The extension
of the universal model of soil variation is based on the fact that soil varies in both hori-
zontal and vertical directions, as well as that the soil properties are auto-correlated in both

directions. Therefore, the universal model of soil variation can be formulated as follows:

Z(x,d) = pu(x,d)+ €' (x,d) + ¢ (2.45)

The trend component U (x,d) is now a function of spatial covariates and the depth,
measured from the terrain surface. It may be further decomposed into additive consisting
of purely spatial and purely depth-related components (Hengl et al., 2014). The spatially

correlated component is typically characterized by the 3D variogram model.

2.5.3.1 3D Variogram modeling

Spatial continuity of soil variables is particularly characterized by the strong anisotropy
between horizontal and vertical directions. Spatial continuity observed in the depths of
a few centimeters may correspond to several kilometers, or more, in horizontal direc-
tion (Hengl et al., 2015). The levels of continuity in both directions can be quantified
and compared by calculating variograms in those directions. However, to incorporate the
anisotropy into a 3D geostatistical model, an anisotropic 3D variogram model must be
provided. Generally, the anisotropy is defined by major direction of continuity and the
anisotropy ratio. The major direction of continuity is the direction in which the greatest
continuity is observed. The continuity in a particular direction is greater if the range of
directional variograms is larger than in any other direction. Geometric anisotropy occures
if the two variograms reach the same sill, but at different ranges. In addition, the zonal

anisotropy can also occur, whereby the sill varies as the variogram direction is changed.
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The anisotropy ratio represents the magnitude of anisotropy. In the two dimensional set-
ting, anisotropy ratio is typically reported as the ratio between the ranges of variograms
calculated in two principal directions of spatial continuity; the direction of the great-
est continuity (major direction) and the direction perpendicular to it, which is typically
considered as the direction of the minimum continuity (minor direction). Therefore, the
anisotropy ratio is used to quantify how much larger the continuity is in a major direction

compared with the minor direction:

) . range in minor direction
anisotropy ratio = & - - - - (2.46)
range in major direction

Alternatively, the anisotropy ratio can be expressed as a relative ratio, where the
larger number represents the relative range in the major direction, and the smaller number

represents the relative range in the minor direction.

In three-dimensional settings, in which the soil data are actually collected, it is com-
mon to distinguish three principal directions: major, minor and vertical (depth). Major
and minor directions represent the two principal directions of spatial continuity in hor-
izontal space. If we assume that the spatial continuity is isotropic in horizontal space,
it remains to determine the anisotropy ratio between the the vertical and any horizontal
direction. This is exactly the case with soil data, where the two principal directions of
spatial continuity are almost always known a priori, considering the fact that the largest

anisotropy ratio occurs between the vertical and the horizontal directions.

Anisotropy can be incorporated in the 3D anisotropic variogram model, once the
principal direction of spatial continuity and the anisotropy ratio is determined. In tradi-
tional geostatistics, it is common to calculate the effective anisotropic distances (EAD)
for this purpose. The effective anisotropic distance is a unitless scalar distance that is cal-
culated as Euclidean norm of lag (k) components Ay jor, Aminor and hgeppp, €ach divided

by the corresponding range of spatial continuity @ma jor, @minor a0d Ageprh:

hma jor hminor h e
heap = \/( 2)2+( )2+(M)2> (2.47)

Amajor Aminor Adepth
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Each directional variogram is reduced to one common model with a standardized
range equal to 1, i.e. a variogram with range 1 and a variogram with range a yield equal

value for the same lag (Isaaks and Srivastava, 1990):

h
%) =) 248)
Directional model with range a can be reduced to a standardized model with range 1

simply by replacing the separation distance, 4, by a reduced distance /#/a. Therefore, the

corresponding 3D anisotropic variogram is given by:

’}/(I’l) = y(hmajor; hminoryhdepth) =N (head) (2.49)

In space-time geostatistics, equivalent model is known as the metric model:

y(h,d) =y(1/h? + (a x d)?) (2.50)

where the distances in the third dimension d are simply rescaled by anisotropy pa-

rameter & in order to be comparable with the distances £ in other dimensions.

A more general model is known as the separable (product) covariance model. It was
used in the study by Orton et al. (2016) as a part of their comprehensive approach to three-

dimensional modeling of soil variables. Separable covariance model can be expressed as:

Y(h,d) = nug X 1,50 g0 +sill X (¥%s(h) + Ya(d) — ¥%s(h) x v4(d)) (2.51)

The most comprehensive model was proposed by Heuvelink and Griffith (2010).

This model is known as the sum-metric model:

C(h,u) = Ci(h1) +Cy(hy) + Cp (/17 + (athy)?) (2.52)
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The corresponding variogram model is:

Y(h,d) = 11(h) + Ya(d) + Yha(y/ h* + (ad)?) (2.53)

Brus et al. (2016) made an analogy with the space-time analysis from Heuvelink and
Griffith (2010) and used sum-metric covariance structure to model the spatial structure of
soil organic carbon in 3D. Sum-metric model distinguishes three components of variation:
C1(hy), the covariance in horizontal direction at the distance of h; C,(h,), the covariance
in vertical direction at the distance of A,; and Cy,,(h;, ), the covariance in any direction, and
a, the geometric anisotropy ratio. By modeling the covariance as a sum of a covariance
in horizontal direction and a covariance in vertical direction, we can account for different
residual variances in these two directions (zonal anisotropy). The geometric anisotropy
ratio & in the third covariance term is needed because one distance unit in the vertical

direction is not equivalent to one distance unit in the horizontal direction.

2.5.3.2 Spatial prediction in 3D

Common method for spatial prediction in 3D is 3D regression kriging. It can be expressed

as:

N

p

2(x0,do) =) BiX;(x0,do) + &(do) + ¥ Ai(xo,do)e(xi,d) (2.54)
=0 i

where Z is the predicted soil property, x; are geographical locations and d; is depth,
measured downward from the land surface. Z?;o B X (x0,do) and the g(dp) are the pre-
dictions of two trend components, horizontal and vertical. Horizontal component is ex-
pressed as a standard multiple linear regression model, whilst the vertical component is
expressed as any function g of depth. In the study of Hengl et al. (2014), the vertical
component is modeled by spline function. The ii(xo,do) are kriging weights derived
from spatial covariance structure and €(x;,d;) are the residuals interpolated by using 3D

kriging.
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Data and Case Study

3.1 Case Study Area

The study area is situated in the central part of Eastern Serbia, a approximately 10 kilo-
meters in north-east direction from the town of Bor (Figure 3.1). Bor is a small town,
widely known as one of the main centers of mining and metallurgical industry in this part
of Europe. The Municipality of Bor covers an area of 856 km?. The town contains a
total of 35.000 inhabitants and an additional 20.000 people are settled in the surrounding

settlements.

The north-south transect of the survey area is about 20 km, while the east-west tran-
sect is about 10 km. Study area occupies the territory the three districts of Bor municipal-
ity, called Coka Kuruga, Coka Kupjatra i Tilva Njagra. More precisely, the area is located
between the Zlot limestone massif on the west, the village of Zlot on the south, Bor lake
on the southeast, Zagubica district on the north, and the Krivelj limestone massif on the

northeast.
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FIGURE 3.1: Location of case study area
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Topographically, this is a predominantly hilly and mountainous area with terrain
heights varying from 387 m to 1243 m. Mountain Crni vrh, Tilva Njagra and the Zlot
limestone massif dominate in the relief structure of the sampling area. The surrounding
area is covered with deciduous forests and agricultural lands. The landscape around the
Bor Lake, where, agricultural crops have been produced for a long time, is predominantly
hilly. Oak is the dominant type of tree in these forests. These forests are well preserved
by a dense upper storey, which is very important for the protection of the forest soils from

erosion, even on very steep slopes. Areas with burned forest occur sporadically.

There are several streams located in the study area. In the southern area there are the
Zlot and Brestovacka Rivers, in the eastern area the river Krivelj, in the northern area the
rivers Lipa and Velika Tisnica with two big tributaries, the Varfa Strz and Crna. Due to
the fact that the rivers are short and located in narrow valleys, they do not influence the

soil formation processes.

The climate of the Bor region is characterized by long severe winters and cool short
summers with moderate precipitation. Mean annual temperature at Bor is 10.1°C and at
Crni Vrh is 8.0°C. Temperature range is large with the absolute minimum air temperature
being -27.0°C in January and the absolute maximum air temperature reaching +41°C in
July and August, with the mean summer temperature being +20.0°C. Mean annual pre-
cipitation is 707 mm at Zlot, while at Crni Vrh it is 850 mm. Mean monthly precipitation
is uneven, with most of the precipitation occurring in May and June rather then in Oc-
tober and November. The precipitation amount during the growing period in Bor area is
354 mm. Air circulation is mainly controlled by prevailing northwest and eastern winds.
Winds from the northwest prevail during warmer months, whereas eastern and southeast-
ern winds prevail during colder periods of the year. Table 3.1 depicts the average wind

speed and wind directions in Bor for period 1998-2009.

The development of mining and metallurgy in Bor has caused a serious effects on
the environment over more than hundred years of production. The copper smelter, which
is a part of the Mining-Metallurgical Complex Bor is recognized as the major pollution
source in this region. The Smelter plant which processes copper concentrate, emits high
quantities of SO, (20,000 tons/year), arsenic (300 tons/year) and heavy metals (including
150 kg mercury/year) into the atmosphere which has caused erosion, high acidity of soils

and destruction of vegetation in the this area. It is estimated that over 25,500 hectares of
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TABLE 3.1: Average wind speed and wind direction (%) in Bor, 1998-2009, from (Ko-
vacevic et al., 2010)

Year Calm N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW
1998 56.6 0.2 0.2 0.8 75 39 0.3 0.3 0.2 33 0.7 0.1 1 7 6.9 10 1
1999 61.2 22 0 0.1 52 32 0.5 0.3 0.1 2.7 0.7 0.3 0.5 3.4 6.4 9.7 1.4
2000 75.7 0.5 0.1 0.1 3.1 2 0 0.1 0.2 2 0.7 0.2 0.5 2.4 6.2 55 0.8
2001 66.1 0.2 0.1 0.4 33 2.6 0.2 0.2 0.2 33 0.1 0.4 0.2 3.1 6.4 0 0
2002 58 0.8 0.7 0.6 3.1 8.5 0.5 0.2 0.4 4 0.4 0.6 1.7 74 8.4 4.4 0.3
2003 62.3 0.2 0.2 0.1 23 7 0.4 0.3 0.3 1.8 0.3 0.3 0.8 6.5 9.4 6.5 1.3
2004 51.7 0.9 0.2 0.3 1.5 7.6 0.9 0.4 0.4 4.7 0.8 0.4 1.2 6.1 11.2 10.7 1
2005 54.3 1.5 0.2 0.3 1.5 8.1 1.2 0.3 0.4 39 0.3 0.1 1.4 7.7 9.4 7.1 0.7
2006 53.6 0.7 0.1 0.3 1.4 6.8 1.3 0.4 0.6 39 03 0.2 1.4 8.5 9.6 82 0.8
2007 49.8 0.4 0.7 0.2 23 79 1.3 0.5 0.6 54 1.5 0.4 1.4 8.6 10.7 7.8 1.1
2008 50.9 0.6 0.2 0.1 3 7.6 1.3 0.6 0.6 4.1 22 0.5 1.4 10.4 9.2 55 1.8
2009 58.2 0.4 0.3 0.6 3.2 7.8 1.7 0.4 0.7 0.7 3.4 0.9 0.2 1.2 9.3 6.4 39
Average 58.2 0.7 0.2 0.3 3.1 6.1 0.8 0.3 0.4 3.3 0.7 0.4 1 6 8.6 7.4 1.3

soil are damaged, which accounts for 60% of the agricultural soil in the Bor municipality
(LEAP, 2003). It is known that the distribution of air pollutants emitted from the copper
smelter is strongly influenced by the smelter operation mode and meteorological param-
eters such as wind speed and direction. There are several studies conducted in urban and
sub-urban areas surrounding the copper smelter in Bor which prove the seriousness of the
problem of environmental pollution caused by copper production in Bor (Serbula et al.,
2013, 2014)

3.2 Data

The survey of the area was carried out in June 2006 with the aim to document the existing
conditions of soil prior to mining investigation. The preliminary survey of the land was
performed to obtain the data concerning the natural characteristics of the area and to

approximate the selection of the soil units and soil types.

The in-depth field study has involved the opening of 205 soil profiles and 382 bore-
holes, with recording their coordinates via GPS. The boreholes were used for the estab-
lishment of boundaries between different soil types and soil sub-types, as well as for the
determination of the basic morphological characteristics. In the soil profiles the morpho-
logical characteristics were described and samples were taken from the horizons. Profiles
depth varies considerably, from 24 cm to 1.2 m. Consequently, the number of samples per
soil profile varies from 1 to 5, according to soil horizons. Samples were taken from four

soil horizons including: O (organic soil horizon), A horizon, B (if it existed) and C. The
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depth to the top of the C-horizon varied between 10 and 123 cm. Therefore each sample
corresponds to the different soil depth increments. Table 3.2 summarizes the number of
soil samples according to standard soil depth increments. In total, 450 soil samples were
collected and analyzed for comprehensive physical, chemical, and microbiological prop-
erties. Among other soil properties, As concentration expressed in mg/kg, SOM content
expressed in %, and pH (measured in H,O) were selected as target soil properties for this

research.

TABLE 3.2: Number of soil samples per soil depths

0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

204 204 185 134 52 6

Figure 3.2 illustrates the three different samples of 20 soil profiles. Colors illustrate
the observed values for As concentration, SOM content and pH. Figure 3.3 depicts the
spatial distribution of soil profiles along with the soil type and the depth classes, where
the size and the color of the circle identifies which profiles belongs to which soil type or
reaches particular depth. It is important to note that there exist a number of soil types with
the relatively small number of soil profiles (Figure 3.4) which might hamper a subsequent

statistical modeling of relationship between the soil property and soil type.
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FIGURE 3.2: Soil profiles
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Preliminary data analysis revealed some interesting distributional patterns in the data,
typical for soil that has been exposed to the pronounced human influence for a long time.
Figure 3.5 illustrates the depth-wise distribution of As, SOM and pH observations created
by agp R package (Beaudette et al., 2013b). The observations from all profiles were
aggregated and summarized over 5 cm depth increments. As it is apparent, the As and
SOM data are characterized by clear decreasing trend in mean with depth as well as by
significantly higher variation in the upper soil layers which is displayed with the inter-
quartile (blue-shaded) area. There can also be spotted the distinct breaking point at 30cm
depth from which the variations appear to be more stable. On the other hand, pH appears

to have varying mean followed by nearly constant variation along depth.

Higher variation of As and SOM in the upper soil layers indicate the strong influence
of external factors on soil in this region. As it is generally known, the high SOM variation

in the surface layers can be attributed to the complex influences of many environmental
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factors, such as climate conditions, topography, soil texture, land use, and other micro-

scale factors that affect the surface soil layers (Parton et al., 1987; Burke et al., 1989).

Similarly, the higher variation of As in the upper soil layers is most probably connected

with long term smelting activity (Kovacevic et al., 2010; Serbula et al., 2013, 2014).
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FIGURE 3.5: Depth-wise distribution of profile observation of As (left), SOM (middle)
and pH (right)
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Chapter 4

Layer-specific mapping of arsenic
concentration by considering terrain

exposure

This chapter constitutes a large excerpt from my manuscript entitled Layer-specific As
concentration modeling by considering terrain exposure that has been submitted for pub-

lication in Journal of Geochemical Exploration.

4.1 Introduction

Without a doubt, industrial mining has significant consequences on the environment and
human health (Unit, 2013). Spatial extension and the magnitude of soil pollution in min-
ing areas are conditioned by many environmental factors such as climatic conditions, re-
lief, human or mining activity, the soil type, and land use. In geostatistics, environmental
factors are approximated by spatial covariates. These are mainly maps in raster format, but
could also be the output of some existing models. For example, Goovaerts et al. (2008a)
used an EPA Industrial Source Complex (ISC3) dispersion model EPA (1995) in com-

bination with kriging and geostatistical simulation to delineate areas with high levels of
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dioxin TEQDF WHQO98 in soil around an incineration plant. Their dispersion model ex-
plained 47.3% of the variance found in the soil TEQ data, leaving the residuals suitable for
geostatistical analysis. Dispersion models like ISC3 can take a wide range of parameters
into account that pertain to meteorological conditions, the local topography, and the char-
acteristics of the source (e.g., emission rate, stack height and diameter, particle diameter
etc.) (De Visscher, 2014). These parameters are often inaccessible for long-term pollu-
tion processes; therefore soil scientists have to deal with only a few known parameters
that are often related to relative distances from the source of pollution, terrain topogra-
phy or common meteorological parameters including prevailing wind direction and wind
speed. Zibret and Sajn (2008) presented successful implementation of the power function
with negative exponent to model how the level of heavy metal concentrations in the air
and soil decreases in relation to incremental increases of the distance from the source of
pollution. Saito and Goovaerts (2001) incorporated the knowledge of the position of a
pollution source and deviations from major wind direction into a kriging system to map

the spread of pollutants from a known source.

In mountainous or hilly areas, the spatial variation of wind-deposited materials is
highly affected by terrain topography. It is generally known that the amounts of wind-
deposited materials tend to be greater on areas that are more directly exposed to wind
flux. This fact has inspired researchers to develop many topographic indices with the aim
to quantify topographic exposure to wind (Antoni¢ and Legovi¢, 1999; Lindsay and Roth-
well, 2008; Winstral et al., 2002; Winstral and Marks, 2002) . Generally, all topographic
exposure indices are based on Digital Elevation Model (DEM) analysis and tend to deter-
mine whether a particular area is sheltered by a distant topographic obstacle or not. There
are several studies where topographic exposure indices were successfully used to model
the spatial patterns of snow depths (Erickson et al., 2005; Plattner et al., 2004; Winstral
and Marks, 2002).

Antoni¢ and Legovi¢ (1999) introduced the aspect of topographic exposure to wind
in their exploration of environmental pollution studies. They proposed the new compre-
hensive index, referred to as the Exposure toward the Wind Flux (EWF). EWF can be
conceptualized as the angle between a plane orthogonal to the wind and a plane that rep-
resents the local topography at a grid cell. They utilized EWF to estimate the direction of

an unknown air pollution source.
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In this study, different aspects of terrain exposure are considered in order to ex-
plain the complex spatial trend of Arsenic (As) concentration that was atmospherically-
deposited from one of the largest Copper Mining and Smelting Complexes in Europe, Bor
in Serbia. Several exposure parameters were created and employed as covariates within
the ’Spline-Then-Krige’ (STK) approach (Malone et al., 2009; Orton et al., 2016) for
producing maps of As concentration at three standard soil depth layers (0-5cm, 5-15¢cm
and 15-30cm). The created exposure parameters were grouped as follows: geometrical
(proximity) exposure parameters and topographical exposure parameters. The distances
to the source of pollution and angular deviations from prevailing wind direction were uti-
lized to create geometrical (proximity) exposure parameters. Furthermore, topographical
exposure was quantified by using DEM and two DEM derivates: modified EWF index
and the Morphometric Protection Index (MPI). A modification of EWF was performed
to account for the location of the pollution source with the aim to emphasize the effects
of topographical exposure to the known source, and not just limiting the index to wind
direction. This study primarily aims to evaluate the effectiveness of using different ex-
posure parameters for mapping atmospherically-deposited Arsenic at different soil depth
layers. Relative importance analysis was performed to access the individual contribution
of each exposure parameter in the trend model for each depth layer. By analyzing the role
of exposure parameters in As variation at different soil depth layers, the limit of signif-
icant influence of copper smelting in soil depth direction was assessed. This is the first
study of its kind that evaluates the usage of different terrain exposure indices for mapping

atmospherically-deposited pollutants from a known source, so far.

4.2 Data

The data used in this study are described in Section 3.2. The target variable is Arsenic
concentration expressed in mg/kg. Generally, the data consist of 196 soil profiles that
are randomly distributed over the entire study area (Figure 3.1). The soil samples were
digested with concentrated HNO3 and then analyzed for As concentration using the iCAP
6300 ICP optical emission spectrometer (Thermo Electron Corporation, Cambridge, UK).

As shown in Figure 3.5, the distribution of arsenic concentration in soil is character-

ized by pronounced decreasing trend in median with depth, as well as with considerable
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higher variation in the upper soil layers. The abrupt change in the trend of median and
inter-quartile range occurs at about 30 cm depth. The numbers of profiles that contribute
to the estimated median values are shown in percentages on the right vertical axes. It can
be seen that less than 50% of available profiles contribute to the estimated value for layers
below 30 cm of depth. Due to the fact that the number of observations sharply decreases
below the depth of 30 cm, the analysis was confined to the first three standard soil layers
above this depth: 0-5 cm, 5-15 cm and 15-30 cm.

The presence of extreme values is an important characteristic of this data set. Fig-
ure 4.1 depicts the spatial pattern of observations from the first soil layer, allocated within
the 4—th quartile (red circles: 80-326 mg/kg), with respect to the smelter location. The
circle size depicted in the figure is proportional to the observed value. Terrain colors

represent possible spatial coverage of plume dispersion from copper smelter.

High concentration and high variability in the As data at the upper soil layers com-
bined with distinct differences between the upper and lower soil layers are generally con-
sidered to be the indicators of external factors that have a pronounced influence on the
soil. As a result, a hypothesis can be established that the upper soil layers were indeed

affected by a long term pollution process.

4.3 Terrain exposure

In this study, terrain exposure parameters aim to provide the numerical quantification of
terrain exposure with regard to the location of the source of pollution, wind direction and
topography. As mentioned above, the considered terrain exposure parameters have been
divided into two groups: topographical exposure and geometrical (proximity) exposure.

Table 4.1 summarizes the exposure parameters used in this study.

4.3.1 Topographic Exposure

There are many existing parameters that are suitable for explaining the topographic expo-

sures to wind. An exhaustive review of existing topographic wind related parameters was
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FIGURE 4.1: Spatial disposition of extreme values of observations relative to the location
of smelter. Bor is in the lower-right corner; red circles represent the observations that
belong to the fourth quartile.

TABLE 4.1: Exposure parameters used in this study

Name Abbrevation Group Range
1 Digital Elevation Model DEM Topographical ~ 300-1045
2 Exposure toward the Source ES Topographical  0.75-1.33
3 Morphometric Protection Index MPI Topographical 0-0.70
4 Down-wind dilution DD Geometric 0.20-0.64
5 Cross-wind dilution CD Geometric 0.38-1
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outlined in studies reported by Lindsay and Rothwell (2008); Winstral et al. (2002); Win-
stral and Marks (2002). In this study, a topographic exposure analysis was confined to the
following three parameters: Digital Elevation Model (DEM), Morphometric Protection
Index (MPI) and Exposure toward the Source of pollution (ES).

4.3.1.1 DEM

Considering the assumptions that areas on higher altitudes are more exposed than low-
lands, elevation was selected as the first topographic exposure parameter. A high resolu-
tion DEM with a grid size of 20 m was created by digitizing contours from 1:25.000 scale
topographic map sheets (Figure 4.2(a)). All other exposure parameters were computed

based on this grid system.

4.3.1.2 Morphometric Protection Index

The influence of local (neighboring) topography was considered by the Morphometric
Protection Index (MPI) calculated for each grid cell. The calculation of MPI is equivalent
to the "positive openness" described by Yokoyama et al. (2002). It considers neighboring
grid cells of DEM in eight directions (cardinal and diagonal) up to a given distance (with
200 m radius), while searching for the maximum horizon angle in each direction. The
final MPI for one cell represents the average value of eight maximum horizon angles
and quantifies how the neighboring relief protects that cell. The map of MPI is given in
Figure 4.2(a).

4.3.1.3 Exposure toward the Source of pollution

The effects of topography along wind direction were considered through the modified
EWF measure. By definition, the EWF index combines two simple exposure parameters
to quantify topographic exposure to the wind flux. These two parameters are the relative

terrain aspect and the horizon angle:

EWF = cos(u)sin(B) +sin(u)cos(f)cos(6 — o) 4.1)
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(a) (b)

FIGURE 4.2: a) DEM and b) MPI computed for the whole area

where U represents the terrain slope, ¥ is the terrain aspect, 0 is the azimuth of the

dominant wind direction, and  is the horizon angle in the wind direction (Figure 4.3,a)).
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FIGURE 4.3: a) Graphical representation of EWF components. Terrain at the point T has

the maximum slope u and terrain aspect y. © represents relative terrain aspect at point

T for a given azimuth of the wind flux § . B is the horizon angle of the point T for a

search distance d. « is the angle between regression plane through the terrain point T

and the plane orthogonal to the wind. b) Equivalent graphical representation of the ES
components. Index ’s’ denotes the source of pollution.

The relative terrain aspect represents the orientation of the local terrain plane in re-
lation to the selected wind direction. This is the angle between the land-surface aspect
and the wind direction bounded between 0°, indicating an exposed location, and 180°,
indicating sheltered location. The horizon angle quantifies the effects of upwind topogra-
phy searching for the maximum elevation angle along the direction of the prevailing wind
flux. The search distance has a crucial effect on the horizon angle estimation. According
to the definition of the horizon angle, a more exposed area is characterized by a negative
horizon angle, whereas a sheltered area is characterized by a positive horizon angle. Hori-
zon angle has been used as the basis for many subsequently devised parameters (Erickson
et al., 2005; Winstral et al., 2002). Depending on the extent of the horizon angle search
distance, EWF has been referred to the horizontal wind flux (zero search distance), or to

the slope wind flux (search distance differs from zero).

The standard EWF index presumes a constant direction of wind flux, which partici-
pates in two terms of its equation: the relative aspect and the horizon angle. Taking into
account that the contaminated air flux starts from the one copper smelter stack and ex-
pands towards the explored region, it is assumed that: (1) the local terrain plane facing the
source is more exposed to pollution than planes that are not; (2) the topographic obsta-

cles founded within the direction of the source have a greater effect on the redistribution
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of pollutants than the obstacles founded strictly in the upwind direction. Based on these
assumptions, the EWF index was calculated for each grid cell with the adjustable wind
direction. More specifically, the wind direction was defined as the azimuth between each
grid cell and the source of pollution. In this regard, the relative aspect becomes the angu-
lar distance between the land-surface aspect and direction to the source. At the same time,
the horizon angle search path is also directed towards the source (Figure 4.3,b). This new
parameter was denoted as Exposure toward the Source (ES). Figure 4.4 shows the maps

of EWF and ES parameters values for the whole area of interest.

(a) (b)

FIGURE 4.4: a) EWF and b) ES indices computed for the whole area
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4.3.2 Geometric (Proximity) exposure

The creation of geometric (proximity) exposure parameters was inspired by a dilution
mechanism considered in the Gaussian dispersion model (Gaussian plume model). It as-
sumes that the dilution of plume emitted in the atmosphere could be considered in three
directions: downwind, crosswind and vertical (De Visscher, 2014). The downwind plume
dilution is the result of mixing the plume with the ambient air, while the dilution in the
cross-wind direction is a result of a large number of negligible effects related to atmo-
spheric motions. Taking into account all of the assumptions mentioned before, we pre-
sumed that areas are more geometrically exposed if they are closer to the copper smelter
and/or to the prevailing wind direction. Therefore, the effects of dilution in downwind
and crosswind directions in this study were approximated by Downwind Dilution (DD)
and Crosswind Dilution (CD) parameters computed for each grid cell. These were mod-
eled using a negative-exponential function, where the exponents were the distance to the
smelter for DD and the directional departure from dominant wind direction for CD. The
wind rose (Figure 4.1) shows that the prevailing winds blow from east and northwest di-
rections. However, in order to found the CD which is most correlated with the observed
As data, wind direction was determined based on the correlation analysis between the first
soil layer data and the CD parameter computed for several major wind directions, in the
range of 90° + 30°, along with increments of 5°. Finally, the wind direction of 105° was
found to be the most correlated with the observed data. Figure 4.5 depicts the graphical

representation of CD and DD parameters.
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FIGURE 4.5: Graphical representation of geometrical (proximity) measures.

4.4 Geostatistical Mapping

In this study, Spline-Then-Krige (STK) (Section 2.5.2) method was used for mapping
As concentration at three different depths. Generally, the STK involves conversion of
profile data into a continuous form by particular depth function, computing mean value
for specific depth interval and, finally, interpolating interval-specific mean values over the

entire area.

4.4.1 Vertical variation modeling
Variation in the soil profile was modeled by equal-area spline function, (see Section 2.5.1.

Equal-area spline function implies continuous vertical variation. This can be expected,

considering the fact that over one hundred years of copper production in Bor, vertical
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leaching of deposited toxic materials in soil has certainly occurred. This function pro-
vides that, for each sampling layer (soil horizon), the average of the spline function equals
the measured value for the horizon, i.e. the area above and below the fitted spline in any
horizon are equal. Figure 4.6 depicts an example of a fitted spline to the measured As data
from profile No. 119. The colored horizontal bars represent the measured As concentra-
tion at different horizons (each bar corresponds to one horizon), while the vertical curve
represents the equal-area spline depth function fitted to these data. In order to obtain the
As concentration related to the selected fixed depth intervals (0-5 cm, 5-15 cm and 15-30
cm), the spline function was averaged within these intervals. These intervals correspond
to the standard soil depth intervals specified in GlobalSoilMap specifications (Arrouays
et al., 2014). Soil profiles containing only one sample layer were not modeled. Instead,
they were considered as profiles with constant As concentration up to the depth of the
sampling horizon. The equal-area spline function was fitted via the mp.spline function
implemented in the GSIF R package Hengl (2015).
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FIGURE 4.6: Equal-Area spline depth function fitted to the data from profile No. 119.
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4.4.2 Trend Analysis and Spatial Prediction

The first task in trend analysis was to identify the type of relationship between the As
data and exposure parameters. It is convenient to represent the relationship between the
target variable and the covariates using a linear model (Pebesma, 2006; Hengl et al., 2007;
Kilibarda et al., 2014). The adequacy of this specification was checked by examining the
residual plots. Prior to model fitting, the exposure parameter values at each profile location
were extracted and joined to the spline-predicted As values for each depth increment. The
interaction effects between each pair of exposure parameters were also considered to be
included in the model. By doing this, it was enabled that the effects of one exposure

parameter depends on the value of the other exposure parameter.

Model selection was conducted by performing stepwise linear regression analysis
using the Akaike information criterion (AIC) (Akaike, 1974) as a selection criterion, (see
Section 2.2.1). The complete process of model selection was conducted on data from the
first soil layer, considering the fact that the effects of atmospheric pollution are the most

pronounced near the terrain surface.

An integral part of this trend analysis was to determine the contribution of each
individual exposure parameter, as well as the interactions between them, to the overall
prediction accuracy. This was achieved by computing the measures for the relative im-
portance of predictors. It is important to note that the term "predictor" is associated to
the independent model variable, which could refer to the main effect or interaction effect
as well. There are several measures for the relative importance of predictors in linear
modeling theory that are all available in the relaimpo R package (Gromping and Oth-
ers, 2006). These measures provide the information about the individual contribution of
each predictor to the portion of the explained variance (R?). The most comprehensive
and recommended measure, called LMG, was used. This measure was first proposed by
Lindeman et al. (1980).

4.4.3 Spatial Prediction

Regression Kriging (RK) was adopted as a general statistical framework for spatial pre-

diction. Regression kriging combines two conceptually different techniques, regression
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for trend estimation, and simple or ordinary kriging for the interpolation of stochastic
residuals (Hengl et al., 2007), (see Section 2.4.2).

For a given trend model and residual variogram, the prediction of a target variable at

an unsampled location s is obtained by:

2(s0) = i B - xi(s0) + Z?Li z(si) — i B - xx(s0) 4.2)

A

where z(s;) represents the observed values at the neighboring locations s;, B represents
the estimated trend model coefficients, xi(sg) are the known value of covariates at the
predicted location, xi(s;) are the known value of covariates at the location s;, and A; are

the kriging weights.

Prediction accuracy was evaluated based on the leave-one-out cross-validation pro-
cedure. The following common statistical measures were calculated to evaluate the pre-
diction accuracy: Mean Error (ME), Root Mean Squared Error (RMSE) and R? (see Sec-
tion 2.2.1).

4.5 Results and Discussion

Table 4.2 shows the common descriptive statistics measures computed for aggregated pro-
file data divided into a total of six standard depth increments. It is obvious that the mea-
sures of central tendency (mean, median) systematically decrease by depth. The mean
values in the upper layers are almost double the mean value from the layers below the 30
cm depth. This trend is even more pronounced when comparing median values. Decreases
in mean (median) values are accompanied with decreases in variation (IQR and standard
deviation), which result in small changes in coefficients of variation. The presence of
extreme observed values, even in the deeper layers, causes considerable differences be-
tween calculated mean and median values. The same statistical quantities computed with
the data predicted by the equal-area spline function, and averaged over the same depth
increments, reveal that overall distribution remains almost unchanged after the transfor-
mation (Table 4.3).
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