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Abstract 26 

The main goal of research presented in this paper was the material and radiological 27 

characterization of high volume fly ash concrete (HVFAC) in terms of determination of 28 

natural radionuclide content and radon emanation and exhalation coefficient. All 29 

concrete samples were made with fly ash content between 50% and 70% of the total 30 

amount of cementitious materials from one coal burning power plant in Serbia. Physical 31 

(fresh and hardened concrete density) and mechanical properties (compressive strength, 32 

splitting tensile strength and modulus of elasticity) of concrete were tested. The 33 

radionuclide content (
226

Ra, 
232

Th and 
40

K) and radon massic exhalation of HVFAC 34 

samples were determined using gamma spectrometry.  Determination of massic 35 

exhalation rates of HVFAC and its raw materials using radon accumulation chamber 36 

techniques combined with a radon monitor was performed. The results show beneficial 37 

effect of pozzolanic activity since the increase in fly ash content resulted in the increase 38 

in compressive strength of HVFAC by approximately 20% for the same mass of cement 39 

used in the mixtures.  On the basis of obtained radionuclide content of constituents the I 40 

-index of different HVFAC samples were calculated and compared with measured 41 

values (0.27-0.32), which were far from the limit of maximum recommended 1.0 index 42 

value. The prediction was relatively close with measured values as the ratio between 43 

calculated and measured I-index ranged between 0.89 – 1.14. Collected results of 44 

mechanical and radiological properties and performed calculations clearly prove that all 45 

10 designed concretes with certain type of fly ash are suitable for structural and non-46 

structural applications both from material and radiological points of view.  47 

Keywords 48 

Fly ash, Concrete, NORM, I-index, Radon exhalation 49 

1. Introduction 50 

1.1.  Background 51 

The building industry has one of the largest environmental impacts among all human 52 

activities: this means an annual consumption of 10 to 11 billion tons of aggregate (Meyer, 53 

2002) and 4.18 billion tons of cement (USGS, 2015). Apart from extremely high source and 54 

energy consumptions, cement production is a significant source of CO2 emissions, accounting 55 

for approximately 4.4% of global CO2 emissions from industry in 2007 (Boden et al., 2010).  56 



 

 

There are many ideas that have been proposed to make concrete “greener” and more 57 

sustainable but they are all based on two principles: reuse and reduce. Concepts based on the 58 

“reduce” principle are oriented towards decreasing cement production based on natural 59 

materials and result in a reduction in CO2 emissions. With respect to the requirements for 60 

concrete as the world’s most used man-made material, a lower production of Ordinary 61 

Portland cement must be compensated with alternative sources of binders in concrete 62 

production. There are several industrial sectors which produce significant amounts of residues 63 

such as fly ash (FA), bottom ash, red mud, steel slag, nonferrous slag, etc. which can be used 64 

for that purpose (Shi et al., 2006).   65 

Millions of tons of FA, a by-product of coal combustion, are being generated annually 66 

worldwide (Malhotra, 2002; Coal Ash Facts). Although it has been used as a partial cement 67 

replacement for decades, there is an increased pressure to use a higher content of FA in 68 

concrete as a result of three main aspects – the economy, environment and technical benefit. 69 

High volume fly ash concrete (HVFAC) is defined as concrete usually containing more than 70 

50% FA in the total cementitious material’s mass (ACI, 2014). Generally, HVFAC exhibits 71 

good workability, low heat of hydration, low drying shrinkage and enhanced durability related 72 

properties compared to ordinary cement concrete (Huang et al., 2013; Malhotra, 2002). But, 73 

for all replacement rates, FA generally slows down the setting time and hardening rates of 74 

concrete at early ages. However, concrete mixtures with an amount of FA that is equal or 75 

greater than the amount of cement can achieve a compressive strength equal to or comparable 76 

with concrete without FA (Bouzoubaa and Fournier, 2003; Lam et al., 1998; Poon et al., 77 

2000; Atis, 2005). 78 

The reuse of industrial residue streams can be beneficial from economical and ecological 79 

points of view but mechanical properties of the final product and its effect on human health 80 

are cardinal properties to ensure safe inbuilt materials. The utilization of FA in concrete 81 

should be also considered from a radiological point of view. As a result of coal combustion 82 

the initial radionuclide content of the coal remains and thereby also accumulates in the solid 83 

residues, mainly in the bottom ash or coal slag and also in FA. This is the reason why the FA 84 

belongs to the group of Naturally Occurring Radioactive Materials (NORM), materials which 85 

contain elevated natural radionuclide content. A very large scatter of data for radionuclide 86 

content in fly ash can be found between different countries (Nuccetelli et al., 2015) and 87 

only limited data can be found for Serbian fly ashes (Kisić et al., 2013). Several studies 88 

found that the natural radionuclide content in fly ash can be significantly high (Somlai 89 

et al., 1988, 1999, 2006; Petropoulos et al. 2002; Stojanovska et al., 2010). Therefore, 90 



 

 

utilization of FA as supplementary material in cement production can cause dose 91 

contribution on residents as a result of bulk inbuilt of concrete.    92 

The natural radionuclide content of inbuilt building materials can have an effect on human 93 

health which can be different from the outdoor value (Sas et al., 2015a; Szabó et al., 2013; 94 

Trevisi et al., 2012; Trevisi et al., 2013). This is the reason why the reduction and limitation 95 

of exposure to building materials must meet various radiological conditions , e.g. the I-96 

index for gamma radiation and low radon exhaling capacity (Nuccetelli et al., 2012; 97 

Kovler, 2011; Schroeyers, 2015). 98 

The natural isotopes found in building materials can significantly contribute to radiation 99 

exposure in two ways, from external and internal exposure. Gamma radiation (extremely high 100 

frequency electromagnetic and ionizing radiation, and is thus biologically hazardous) released 101 

from building materials is responsible for external exposure owing to the presence of 102 

terrestrial radioisotopes. In the recently announced 2013/59/Euratom Directive (CE, 2014) 103 

and in many other national standards regulating the radioactivity of building materials, 104 

classification is based on activity concentration index (I-index), taking into account the total 105 

effect of three main natural radionuclides usually present in building materials – 
226

Ra, 
232

Th 106 

and 
40

K.  107 

The main contributor for the internal exposure of human beings is radon (
222

Rn), a radioactive 108 

noble gas that originates from the alpha decay of 
226

Ra. Inhaled radon and its progenies 109 

significantly augment the risk of the evolution of pulmonary cancer and it is recognized as the 110 

second most relevant
 
risk after smoking (WHO, 2009). It can exhale and accumulate in badly 111 

aerated spaces, such as mines or even in buildings. Generally the underlying soil is the most 112 

dominant indoor radon enhancing factor (Szabó et al., 2014) in the case of lower floors or 113 

single storey buildings except in extreme cases when the building materials may be the main 114 

sources (Somlai et al., 2006; Somlai et al., 1999). Despite of the elevated level of 
226

Ra the 115 

FA has relatively low emanation coefficient which can be beneficial for HVFAC from 116 

radon exhalation point of view (Kovler et al. 2005).  117 

The reuse of FA from coal burning power plants in new concrete production will result in a 118 

reduction in the environmental impact of concrete by decreasing the amount of deposits in 119 

landfills and using the waste instead of natural resources for concrete production. It will also 120 

enable the management of NORM disposal in a more sustainable manner providing 121 

respectable physical and mechanical properties of the final product – concrete. However, the 122 

relatively high potential gamma exposure and indoor air quality, originating from the 123 

enhanced radionuclide content, may increase the risk in the case of human health. For the 124 



 

 

sustainable utilization of FA in building materials such as concrete, both external and 125 

internal radiation exposure should be as low as possible.  126 

 127 

1.2. Objectives 128 

The main objective of this study is to provide reliable data regarding the utilization of 129 

HVFAC in the building sector both from material and natural radiation points of view. The 130 

global aim of this research is the promotion of HVFAC as a sustainable solution for the 131 

construction industry. In order to achieve this aim, the following procedures, measurements 132 

and analysis were performed: 133 

1. Design and preparation of concrete mixtures with FA content between 50% and 70% by 134 

mass of the total amount of cementitious materials (the sum of cement and fly ash 135 

masses) 136 

2. Measurement of  basic physical and mechanical properties of fresh and hardened concrete 137 

3. Determination of radionuclide content (
226

Ra, 
232

Th and 
40

K) in all solid components of 138 

concrete (FA, cement and aggregate) and  also in the final product (HVFAC) using 139 

gamma spectrometry  140 

4. Determination of massic exhalation rates of HVFAC and its raw materials using radon 141 

accumulation chamber techniques combined with a radon monitor 142 

5. Analysis of all investigated materials by means of I-index as a widely accepted screening 143 

tool 144 

6. Analysis of the effect of the amount of FA on radioactivity concentration, radon 145 

emanation and exhalation properties of HVFAC 146 

 147 

2. Experimental program – description 148 

2.1 Materials and sample preparation  149 

FA used for concrete preparation was obtained from the power plant "Nikola Tesla B" in 150 

Obrenovac, Serbia. Its chemical and physical composition fulfils the requirements of EN 450-151 

1:2012 (CEN, 2012), and according to ASTM C618-15 (ASTM, 2015) provisions this fly ash 152 

can be classified as Class F type. Two types of commonly used sand and coarse river 153 

aggregate with a nominal maximum size of 16 mm were used in this research. The cement 154 

used was commercially available Portland-composite cement CEM II/A-M (S-L) 42.5R 155 

supplied from Lafarge. Cement additions with a mass of up to 20% of the total cement mass 156 

were grinded slag and limestone. A polycarboxylate ether polymer based superplasticizer was 157 



 

 

used in some mixtures to enable proper workability. The specific densities of applied 158 

materials are presented in Table 1.  159 

Altogether 10 different concrete mixtures were designed and organized into two groups with 160 

two different quantities of cement - 200 kg/m
3
 and 150 kg/m

3
. FA mass varies from 200 161 

kg/m
3
 to 400 kg/m

3
 in the first group and from 150 kg/m

3
 to 350 kg/m

3
 in the second group, 162 

Table 2. The mass of FA in all mixtures was chosen to be at least 50% and increases up to 163 

70% of the total mass of cementitious materials. The ID of each sample was given in the form 164 

CN_FM_W, where C means cement, N means the mass of cement, F means fly ash, M means 165 

the mass of FA and W means the water-to-binder ratio. Concrete was casted in moulds and 166 

the standard curing procedure was conducted. In all mixtures, the FA content was equal to or 167 

greater than the mass of cement thus this type of concrete can be classified as High Volume 168 

FA Concrete.  169 

The 100 mm concrete cubes were cast for compressive strength testing. The 150 x 150 mm 170 

cylinders were cast for splitting tensile strength testing and 150 x 300 mm cylinders for 171 

testing the modulus of elasticity. After completion, the specimens were exposed to the 172 

standard curing procedure which meant covering them with wet fabric and storage in a casting 173 

room at 20±2
o
C for the first 24 hours. Samples were demoulded and put in a water tank for 28 174 

days after which mechanical properties were tested.  175 

Radiological characterization was performed on all 10 concrete samples but also on their 176 

components – three fractions of aggregate, cement and fly ash from a coal burning power 177 

plant. All samples were dried in a drying oven for 24 hours at 105 °C to remove moisture and 178 

achieve a constant weight. The raw material and the solidified HVFAC samples were grinded 179 

and sieved through a mesh containing holes of 5.0 mm in diameter. The samples were put into 180 

air-tight aluminium Marinelli beakers, weighed and enclosed for 30 days. 181 

2.2 Determination of radionuclide content by gamma spectrometry 182 

To obtain the radionuclide content, a (HPGe) semiconductor detector (ORTEC GMX40-76, 183 

with an efficiency of 40% and energy resolution of 1.95 keV at 1332.5 keV) was used. The 184 

data and spectra were recorded using an ORTEC DSPEC LF 8196 MCA. The 
226

Ra 185 

concentration values were determined after 30 days (necessary to reach a secular equilibrium 186 

state between 
226

Ra and 
222

Rn) by measuring the gamma lines of its decay products, 
214

Pb 187 

(295 and 352 keV) and 
214

Bi (609 and 1120 keV) under an equilibrium state. The 
40

K was 188 

measured using the 1461 keV gamma ray, while the 
232

Th was measured using the 911 keV 189 

gamma ray of 
228

Ac and 
208

Tl using the 583 keV and 2614 keV gamma rays. To calculate the 190 



 

 

activity concentration the obtained spectra were compared with a certificated  reference 191 

material (IAEA-327 soil sample) (IAEA, 2003). The sample measuring time varied between 192 

60,000 and 80,000 s.  193 

2.3 Determination of massic exhalation and emanation rates 194 

Radon exhalation is the radon activity that diffuses per unit of time from a material to the air 195 

surrounding the material, in Bq s
-1 

defined by NEN-ISO 11665-9:2016 en (NEN-ISO 11665-196 

9:2016). The radon exhalation rate can be related either to the area of exhaling surfaces 197 

or the mass of sample. If the exhalation is related to the surface - the areic exhalation 198 

rate (radon flux Bq m
-2

 s
-1

) can be calculated. On the other hand, when the radon 199 

exhalation rate is related to the mass - the massic exhalation rate (Bq kg
-1

 s
-1

) is 200 

obtained. Generally, the diffusion length in the case of porous materials is greater than 40 cm 201 

(Keller et al., 2001; Mujahid et al., 2005). Owing to that fact, if the sample thickness is 202 

extremely low compared with the diffusion length of radon, all the emanated radon can exhale 203 

from the matrix. This means the geometry of the sample has no effect on the sample. Only the 204 

amount of the sample, its 
226

Ra content and emanation factor determine its radon exhalation 205 

rate. Under those conditions the massic radon exhalation rate can be obtained (Kovler et al., 206 

2005). 207 

HVFAC samples and its components were enclosed in air-tight radon accumulation 208 

chambers. Before measurements the chambers were purged with radon-free N2 gas prior to 209 

the accumulation to reduce the initial radon concentration to zero (Sas et al., 2015b). The 210 

accumulation time ranged between 2 and 5 days. Following that period, the radon increment 211 

in the accumulation chamber was measured by a professional Alpha GUARD PRO type radon 212 

monitor. The sampling process took 10 minutes with an air flow of 1.0 dm
3
 h

-1
 to ensure 213 

homogenous radon conditions in the entire sampling volume. After circulation had ceased 214 

there was also thoron (
220

Rn) – originating from the 
232

Th content of the samples – in the 215 

detector chamber, which cannot be distinguished by the PIC (Pulse Ionization Chamber) 216 

detector. Owing to its short half-life (55.6 s), a waiting time of ten minutes is enough for the 217 

thoron to decay. The radon concentration was obtained after the atmosphere had become 218 

thoron-free in the detector chamber. The method is described in detail in previous 219 

publication (Sas et al., 2015b). The radon exhalation rate in terms of mass can be calculated 220 

by Eq. (1) (Sas et al., 2015b): 221 

t

t
Mass

e

t

tm

VC
E














1
       (1) 222 

 223 



 

 

where: 224 

 Ct = accumulated radon concentration in the measurement kit during sampling  [Bq m
-3

] 225 

 EMass = massic exhalation rate [mBqkg
-1 

h
-1

] 226 

 t = accumulation time [h] 227 

 V = volume of the accumulation kit [m
3
]  228 

 m = mass of the sample [kg] 229 

 λ = decay constant of radon [h
-1

] 230 

 231 

The emanation factor (ε) is defined as the ratio of 
222

Rn atoms that escape from the 232 

sample matrix into the pore space and total 
222

Rn atoms that are produced in the sample 233 

matrix (Sahoo et al. 2007). The equilibrium radon activity can be calculated using the 234 

following formula: 235 

t

t

e

VC
A







1           
(2) 236 

where: 237 

 A∞ = Equilibrium radon activity  [Bq] 238 

 Ct = accumulated radon concentration in the measurement kit during sampling  [Bq m
-3

] 239 

 t = accumulation time [h] 240 

 V = volume of the accumulation kit [m
3
]  241 

 λ = decay constant of radon [h
-1

] 242 

3. Results and discussion 243 

3.1 Fresh concrete properties  244 

The investigation of the workability of concrete was conducted by means of a standard slump 245 

test and flow table test for mixtures that had slump values higher than 20 cm. Lower slump 246 

values were obtained for concrete mixtures with higher amounts of FA. In the group of 247 

mixtures with 200 kg/m
3
 of cement, mixtures with 300 kg/m

3
 and 350 kg/m

3
 of FA resulted in 248 

slump which can be categorized as of S1 class according to EN 206-1:2013 (CEN, 2013), 249 

while the mixtures with 200 kg/m
3 

and 250 kg/m
3
 of FA belong to the class S3. In the group 250 

of mixtures with 150 kg/m
3
 there was one mixture in slump category S1 (with 300 kg/m

3
 of 251 

FA) and three in category S2 (with 150, 200 and 250 kg/m
3
 of FA). The consistency of the 252 

two mixtures with the highest content of FA and lowest water-to-binder ratio, one from 253 

each group (C200_F400_0.33 and C150_F350_037) was quite different from the others. 254 

These mixtures were very dry during the mixing but became very liquid after a 255 



 

 

superplasticizer was added the amounts of about 1% of cement mass. Apart from that, 256 

thixotropic behaviour was observed during the preparation and testing of these two mixtures. 257 

During mixing in the pan they were movable while afterwards they exhibited surface 258 

hardening. The observed behaviour is similar to the behaviour of alkali-activated fly ash 259 

concrete with dense, sticky but workable mixtures. There were only slight differences in fresh 260 

concrete densities of a maximum of 5.5 % between all 10 concrete mixtures. They were all 261 

between 2230 kg/m
3
 and 2355 kg/m

3
, similar to the density of ordinary concrete mixtures. 262 

These results showed that it was possible to make workable HVFAC with a suitable fresh 263 

density, but in the case of very high FA content and low water-to-binder ratio, a careful 264 

choice of the amount of superplasticizer is necessary.  265 

3.2 Hardened concrete properties 266 

Physical and mechanical properties of hardened HVFAC are presented in Table 3. Oven-dry 267 

densities of all concretes were between 2244 kg/m
3
 and 2352 kg/m

3
. Obviously, all designed 268 

HVFACs can be classified as normal-weight concrete as they meet EN 206-1:2013 (CEN, 269 

2013) requirements. Obtained compressive strength values for 2 concrete mixtures prepared 270 

with 200 kg/m
3
 of cement satisfy requirements for classes C30/37 while the other 3 can be 271 

classified as class C25/30. In the group of concrete made with 150 kg/m
3
 of cement 2 out of 272 

the 5 concretes can be classified as class C20/25 while the other 3 belong to the class C16/20, 273 

according to EN 1992-1-1:2005 (CEN, 2005) provisions. By comparing HVFAC mixtures of 274 

the same FA content, higher compressive strengths were observed in concrete mixtures with 275 

greater cement contents of between 33% and 56%. Within the group of concretes of the same 276 

amount of cement, compressive strength increases by up to 20% as FA content increases. The 277 

relation is not very strong but the trend is obvious. This can be explained as a consequence of 278 

a ‘filler’ effect of FA, resulting in a more compact structure of the concrete matrix.  279 

No reliable correlation between obtained values for splitting tensile strength and FA content 280 

in HVFAC can be found, Table 3. A relatively big scatter of results is obvious, from 2 MPa to 281 

3.7 MPa in the first and between 2.3 MPa and 3.2 MPa in the second group of concretes. With 282 

the exception of C200_F400_0.325, absolute values of splitting tensile strength in the group 283 

of concretes prepared with 200 kg/m
3
 of cement satisfy requirements for at least class C25/30 284 

EN 1992-1-1:2005 (CEN, 2005). Possible reason for such a low tensile splitting strength 285 

of C200_F400_0.325 mixture is its very pronounced tixotropic behaviour and hard 286 

concrete placement into moulds that could cause insufficient compacting of concrete. 287 



 

 

The group of concretes made with 150 kg/m
3
 of cement meets requirements for at least class 288 

C20/25. 289 

There were negligible differences in the modulus of elasticity within the group of HVFACs 290 

with the same cement content. Generally, an average value of the modulus for concrete in the 291 

first group is 32.2 GPa while for the second one it is 30.2 GPa which is 6.5% lower. All 292 

concretes with higher cement content meet the requirements for concrete classification in 293 

class C25/30, while concretes with lower cement content can be used as class C20/25 EN 294 

1992-1-1:2005 (CEN, 2005). 295 

Results of hardened properties testing proved that it is possible to produce HVFAC with 296 

respectable properties even for structural applications, comparable and competitive with 297 

ordinary concrete.   298 

3.3 Natural radionuclide content of samples determined by gamma spectrometry 299 

The measured activity concentrations of ingredients and all HVFAC samples are presented in 300 

Table 4.  301 

I-indexes of prepared HVFAC samples were calculated from the measured activity 302 

concentrations in Bq/kg of 
226

Ra (CRa-226), 
232

Th (CTh-232) and 
40

K (CK-40), using equation 303 

(3): 304 

3000200300

40232226   KThRa CCC
I   [-]                                                             (3) 305 

The I-index value of 1.0 can be used as a conservative screening tool for identifying 306 

materials that during their use would cause doses exceeding the reference level laid 307 

down in Article 75(1) of the 2013/59/EURATOM council directive (CE, 2014).  308 

Obtained results show that the 
40

K content in aggregate samples was approximately 30% 309 

higher than in the case of other ingredients (Cement and FA), Table 4. However, it was 310 

below the value which is considered as average activity concentration of 
40

K for 311 

aggregate in European Union (EU), Table 5. As expected, the potassium content of the 312 

produced concrete samples was between the values of the component material. The 
226

Ra 313 

content was under the detection limit (DL) in the aggregate samples. Compared to the 314 

cement samples, FA had a 36% higher 
226

Ra activity concentration. The obtained results of 315 

current study show that the applied cement has slightly higher radionuclide content 316 

than it’s the average value for EU countries, Table 5. The 
40

K, 
226

Ra and 
232

Th content of 317 

examined Serbian FA samples were relatively low compared with the data from 318 

different database, Table 5. Activity concentrations of all three isotopes were below the 319 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013L0059


 

 

average value for EU samples while 
226

Ra content was even below the lower boundary of 320 

the range for USA samples. 321 

Regarding the final product - concrete, measured activity concentrations of all three 322 

radionuclides in all ten concrete mixtures were below the average values in Trevisi et al. 323 

(2012) database, Table 5. Radionuclide content increase in the case of 150 kg/m
3
 324 

(HVFAC_150) and 200 kg/m
3
 (HVFAC_200) mixtures as FA content increases, for 

226
Ra and 325 

232
Th. The increments of 

226
Ra and 

232
Th activity concentrations and obtained I-indexes of 326 

different mixtures can be seen as a function of FA content in Figure 1. 327 

It was interesting to find out if there is a reliable relationship between activity concentrations 328 

of radionuclides in raw materials and measured values of activity concentrations in different 329 

concretes, i.e. if we can radiologically characterize raw materials can we predict with 330 

acceptable accuracy the values of activity concentrations for different concretes during the 331 

process of design taking into consideration their mixture proportions? 332 

For that purpose, the 
40

K, 
226

Ra and 
232

Th activity concentrations and I-indexes of all 333 

HVFAC samples were calculated from the measured activity concentrations of the 334 

concrete constituents taking into account its mass portion in concrete mass of unit 335 

volume (Table 4). Example for calculation of 
226

Ra activity concentrations in concrete is 336 

given below: 337 

 
 

 
 

 
 calc. meas. meas. meas.

Ra 226 Ra 226 Ra 226 Ra 226

m FA m A m CM
C (C) C FA C A C CM

(C) (C) (C)
        

  
  (4) 338 

where C, A and CM are designations for concrete, aggregate and cement, respectivelly, 339 

while γ is concrete hardened density. 340 

Afterwards, calculated values of activity concentrations and I-indexes derived from 341 

these results were compared with the measured activity concentration and I-indexes of 342 

the analysed HVFAC samples, Table 6. 343 

The comparison of measured and calculated values of activity concentrations for 
40

K and 344 

232
Th leads to the conclusion that calculated values were always 6 % and 11 % higher (on 345 

average), respectively, than the measured ones. Calculated values for the activity 346 

concentrations of 
226

Ra were always 10 to 30% lower than measured values. However, the I-347 

indexes obtained from calculated radionuclide contents were very close to the I-indexes 348 

calculated from the measured activity concentrations. In the group of concretes with higher 349 

cement content, differences between calculated and measured based values of I-indexes are 350 

within 5%. A larger scatter of these results is observed in the group of concretes with 150 351 

kg/m
3
 of cement and increases up to 14% on the conservative side and up to 11% on the 352 



 

 

underestimate side. These differences can be explained by the extraordinary low radionuclide 353 

content of the applied aggregates and also with the sensitivity of the detector. Another 354 

reason for disagreement between measured and calculated values most likely originates 355 

from uncertainties of the mass portion of components in the total mass of particular concrete 356 

samples.  357 

A combination of mechanical property and natural radiation results of radiological analysis 358 

leads to the conclusion that an increase in FA content in concrete ensures increased 359 

compressive strength but at the same time higher I-indexes. This means that despite the 360 

beneficial effect of FA on mechanical properties the risk originating from the gamma dose 361 

caused by the elevated radionuclide content of FA requires a survey of raw materials 362 

especially the FA. However, obtained I-indexes for all concrete mixtures are significantly 363 

lower than the recommended limit value (1.0) which enables the utilization of HVFAC 364 

without any elevated gamma radiation exposure on resident.  365 

However, the accuracy of the measured value of 
226

Ra activity concentration can be slightly 366 

disputable due to the extraordinarily low radionuclide content of the aggregate. It can be 367 

stated that the calculation of the radionuclide content of mixtures from the results of the 368 

component materials is suitable for predicting the radionuclide content and I-index in the final 369 

concrete products.  370 

According to these results, HVFACs based on the analysed type of FA in amounts up to 400 371 

kg/m
3
 can be widely used as building materials, both for indoor or outdoor applications and 372 

for structural as well as for non-structural uses.  373 

3.4 Exhalation measurement 374 

The obtained massic exhalation rate of investigated samples is listed in Table 7. In the case of 375 

aggregate samples the obtained massic radon exhalation rate was the lowest. Despite the 376 

relatively high 
226

Ra content of the FA the measured exhalation rate was only 15 ± 4 mBq kg
-

377 

1
 h

-1
. The emanation coefficient of aggregate samples cannot be calculated due to the very low 378 

226
Ra activity concentration which was under the detection limit. In the case of the FA the 379 

emanation factor was only 2%, which explains the very low massic exhalation rate of FA. 380 

This fact is not unusual since the applied heating temperature used in coal combustion power 381 

plants has a great effect on internal structural conditions it reduces the amount of open pores 382 

in FA grains. 383 

In spite of the relatively low 
226

Ra content of prepared HVFAC samples the obtained massic 384 

exhalation results were higher than in the case of concrete ingredients. This can be explained 385 

by the different microstructure of concrete samples formed as a result of the chemical 386 



 

 

transformation of ingredients. Although the porosity features were not studied in this research 387 

previous studies have proven that a significant correlation can be found between the 388 

nanopores and radon emanation features (Sas et al., 2015b).  389 

The obtained emanation factors for concrete were 2-3 times higher compared to the results for 390 

cement, which had the highest emanation factor as a raw material. It can be stated that the 391 

preparation process of concrete clearly changes (increases) the massic exhalation rate of 392 

applied ingredients. However the measured exhalation rates as a function of the FA content 393 

exhibited no significant changes (Table 7). A strong correlation was found between the 394 

content of FA and the obtained emanation features (Figure 2). The radon emanation has a 395 

decreasing tendency with the increase of FA content for all mixtures in spite of the increasing 396 

226
Ra activity concentration. This phenomenon can be explained by the increasing amount of 397 

FA which posses the lower emanation factor compared to the cement. 398 

A correlation was found between the water-to-binder ratio and the emanation factor, as 399 

illustrated in Figure 3. According to this diagram, the emanation coefficient increases as the 400 

water-to-binder ratio increases. In general, total porosity of concrete increases with the 401 

increase of water-to-binder ratio (Neville, 1995; Lafhaj et. al, 2006, Volz et al., 2012).  402 

However, increased total porosity does not necessarily imply that the radon emanation 403 

increases (Ulbak et al., 1984) as the radon emanation is mainly affected by nanoporosity 404 

of prepared concrete (Sas et al., 2015b). The pore size distribution was out of the scope 405 

in the current study and its influence on emanation coefficient will be studied in the 406 

future work. 407 

 408 

4. Conclusions 409 

The objective of this work was the investigation of physical, mechanical and radiological 410 

properties of HVFAC made with different amounts of fly ash from one Serbian coal burning 411 

power plant. Based on the presented results and discussion, the following conclusions can be 412 

drawn: 413 

 Testing of physical and mechanical properties showed that designed HVFAC can be used 414 

both for structural and non-structural applications.  415 

 Compressive strength of  HVFAC increases by approximately 20% as the FA content 416 

increases from 50% to 70% of total cementitious materials mass. 417 

 The natural radionuclide content of 
226

Ra, 
232

Th and 
40

K in all solid components 418 

(aggregate, cement and FA) for all concrete samples was significantly lower than the 419 

recommended limit value for I-index of 1.0. As a result, investigated FA from Serbian 420 



 

 

coal burning power plant does not require any restrictions regarding the amount for 421 

HVFAC production from a radiological point of view.  422 

 The 
226

Ra activity concentration of the investigated FA was 90 Bq/kg , which was the 423 

highest value among all investigated components. As the FA content in the HVFAC 424 

samples increased, an increase in the I-index was observed. 425 

 Differences in the I-index for HVFAC obtained from measured activity concentrations of 426 

concrete and calculated from the activity concentrations of solid concrete components 427 

were within 5% for higher cement content mixtures and within 14% for lower cement 428 

content mixtures. Generally, I-index of the final product (HVFAC) can be predicted from 429 

the activity concentrations of the concrete components with the acceptable accuracy. 430 

 The massic exhalation features of the studied HVFAC samples were nearly constant in 431 

spite of the increase in FA (and its 
226

Ra) content due to the decreasing emanation factor 432 

of the final products.  433 

 Generally, increased water-to-binder ratio in concrete mixtures increased the emanation 434 

factor, but further investigation is required to explain this phenomena. 435 
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Table 1 

Specific density for concretes ingredients 

Material Water 

Aggregate 

Cement Plasticizer FA sand 

[0/4] 

coarse  

[4/8] 

coarse 

[8/16] 

Specific density 

[kg/m
3
] 

1000.0 2573.0 2548.0 2591.0 3040.0 1070.0 2075.0 

 

 

Table_1
Click here to download Table: Table_1.docx

http://ees.elsevier.com/jenvrad/download.aspx?id=190070&guid=9c44cb06-8289-4f32-b021-59ee4fc31f5c&scheme=1


Table 2 

Mixture proportions of all designed concrete mixtures 

ID of concrete sample 

W
at

er
  
[k

g
/m

3
] Quantity of aggregate 

[kg/m
3
] 

C
em

en
t 

[k
g

/m
3
] 

P
la

st
ic

iz
er

 

[k
g

/m
3
] 

F
ly

 a
sh

 [
k

g
/m

3
] 

S
lu

m
p

/F
lo

w
 

[m
m

] 

Specific. 

density of 

concrete 
 [kg/m

3
] S

an
d

 

[0
/4

]a  

C
o

ar
se

  

[4
/8

]b
 

C
o

ar
se

 

[8
/1

6
]c  

C200_F200_0.488 195.0 810.5 486.3 324.2 200.0 0.00 200.0 127.0 2218.0 

C200_F250_0.433 195.0 748.5 486.3 324.2 200.0 1.00 250.0 148.0 2205.0 

C200_F300_0.390 195.0 686.5 486.3 324.2 200.0 1.25 300.0 28.0 2193.3 

C200_F350_0.355 195.0 624.5 486.3 324.2 200.0 2.24 350.0 33.0 2218.0 

C200_F400_0.325 195.0 562.5 486.3 324.2 200.0 2.00 400.0 700.0
d 2170.0 

C150_F150_0.610 183.0 878.6 527.2 351.4 150.0 0.00 150.0 82.0 2240.2 

C150_F200_0.523 183.0 816.6 527.2 351.4 150.0 0.00 200.0 58.0 2228.2 

C150_F250_0.458 183.0 754.6 527.2 351.4 150.0 0.00 250.0 83.0 2216.2 

C150_F300_0.407 183.0 692.6 527.2 351.4 150.0 0.33 300.0 40.0 2204.5 

C150_F350_0.366 183.0 630.6 527.2 351.4 150.0 1.13 350.0 585.0
d 2193.3 

a 
Fine aggregate, size 0-4 mm

 
 

b 
Coarse aggregate, size 4-8 mm 

c 
Coarse aggregate, size 8-16 mm 

d
 Flow values  
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Table 3  

Hardened physical and mechanical properties of HVFAC 

ID of concrete 

sample 

Hardened 

concrete 

density 

(kg/m
3
) 

Compressive 

strength 

(MPa) 

Splitting 

tensile 

strength 

(MPa) 

Modulus 

of 

elasticity 

(GPa) 

C200_F200_0.488 2303 34.2 2.9 31.3 

C200_F250_0.433 2295 38.2 2.7 32.1 

C200_F300_0.390 2244 36.7 2.9 31.8 

C200_F350_0.355 2268 42.0 3.7 33.2 

C200_F400_0.325 2255 40.2 2.0 32.7 

C150_F150_0.610 2352 24.3 2.5 29.0 

C150_F200_0.523 2313 25.7 2.3 31.9 

C150_F250_0.458 2316 24.5 3.1 30.0 

C150_F300_0.407 2291 26.8 2.9 30.1 

C150_F350_0.366 2283 29.8 3.2 30.2 
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Table 4  

Activity concentration and calculated I-indexes of investigated samples 

ID of sample 
40

K 
226

Ra 
232

Th 
I-index 

Bq/kg ± Bq/kg ± Bq/kg ± 

Aggregate 311 41 <DL
1
 <DL

1
 24 9  

Cement 230 35 66 24 29 10  

Fly ash (FA) 240 36 90 28 66 19  

C200_F200_0.488 247 36 27 15 22 11 0.28 

C200_F250_0.433 249 37 28 15 23 11 0.29 

C200_F300_0.390 239 36 29 15 24 11 0.29 

C200_F350_0.355 239 36 34 17 27 12 0.33 

C200_F400_0.325 248 37 31 16 27 13 0.32 

C150_F150_0.610 229 35 20 13 18 10 0.23 

C150_F200_0.523 247 36 22 13 21 11 0.26 

C150_F250_0.458 235 36 28 15 25 12 0.29 

C150_F300_0.407 255 37 33 16 28 13 0.33 

C150_F350_0.366 248 37 32 16 27 13 0.33 
1
 Detection limit 
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Table 5  

Average activity concentration in concrete and raw building materials  

Material 
40

K 
226

Ra 
232

Th 

[Bq/kg] [Bq/kg] [Bq/kg] 

Cement
2 

216 (4-846)
1 

45 (4-422)
1
 31 (3-266)

1
 

Aggregat
2,3 

333 (3-1700) 21 (1-210) 24 (1-370) 

Fly ash in EU
4
 546 (301-1049) 207 (27-750) 80 (14-130) 

Fly ash in USA
5 

- (100-1200) (100-600) (30-300) 

Concrete
2 

392 (7-1450) 60 (1-1300) 35 (1-152) 
1
 Minimum and maximum values are given in brackets  

2
 European Union countries, Trevisi et al., 2012 

3 
Sedimentary origin 

4
 European Union countries, Nuccetelli et al., 2015 

5
 IAEA, 2003 
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Table 6  

Comparison of measured and theoretically calculated activity concentration of investigated 

samples 

ID of sample 
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Ra 
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 I - index 
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C200_F200_0.488 247 260 1.05 27 21 0.76 22 25 1.14 0.28 0.28 0.99 
C200_F250_0.433 249 257 1.03 28 22 0.80 23 26 1.13 0.29 0.29 1.00 
C200_F300_0.390 239 260 1.09 29 25 0.85 24 27 1.14 0.30 0.31 1.03 
C200_F350_0.355 239 254 1.06 34 26 0.77 27 28 1.03 0.33 0.31 0.95 
C200_F400_0.325 248 252 1.02 31 28 0.90 27 29 1.07 0.32 0.32 1.00 
C150_F150_0.610 229 262 1.14 20 17 0.87 18 24 1.33 0.23 0.27 1.14 
C150_F200_0.523 247 264 1.07 22 19 0.88 21 25 1.20 0.26 0.28 1.07 
C150_F250_0.458 235 261 1.11 28 21 0.75 25 26 1.04 0.30 0.29 0.97 
C150_F300_0.407 255 261 1.02 33 23 0.70 28 27 0.97 0.34 0.30 0.89 
C150_F350_0.366 248 259 1.05 32 25 0.78 27 28 1.04 0.32 0.31 0.96 

Average Calc./Meas.   1.06   0.81   1.11   1.00 
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