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 A two-stage time series model for monthly hydrological projections 1 

under climate change in the Lim River basin   2 

Climate change projections of precipitation and temperature suggest that Serbia 3 

could be one of the most affected regions in Southeast Europe. To prepare 4 

adaptation measures, the climate changes impact on water resources needs to be 5 

assessed. Pilot research is carried out for the Lim River basin to predict monthly 6 

flows under different climate scenarios. For estimation of future water 7 

availability, an alternative approach of developing a deterministic-stochastic time 8 

series model is chosen. The proposed two-stage time series model consists of 9 

several components: trend, long-term periodicity, seasonality and the stochastic 10 

component. The last one is based on a transfer function model with two input 11 

variables, precipitation and temperature, as climatic drivers. The Nash-Sutcliffe 12 

model efficiency for the observed period 1950-2012 is 0.829. The model is 13 

applied for the long-term hydrological prediction under the RCP emissions 14 

scenarios for the future time frame 2013-2070. 15 

Keywords: two-stage deterministic-stochastic time series model; transfer function 16 

models; Lim River basin; Southeast Europe; climate change. 17 

Introduction 18 

Water resources are particularly vulnerable to climate change (IPCC, 2013, Kundzewicz 19 

et al., 2008). Changing climate is causing long-term changes in hydrological cycle, 20 

affecting water resources with increasing evaporation, change in precipitation patterns 21 

and intensity, and affecting the processes involved in surface water storage (Simonovic, 22 

2013). 23 

Projected impacts of climate change on water resources distribution vary across 24 

Europe (Behrens et al. 2010, Forzieri, 2016). Rainfall-runoff models have been widely 25 

applied for the assessment of climate change impacts in Southeastern Europe 26 

(Haddeland, 2013; World Bank, 2015; World Bank 2017). The results of simulations 27 

with future climate scenarios predict temporal and spatial changes in the runoff pattern 28 
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with more frequent extreme events, decrease in precipitation and increase in 1 

temperature in the lower Danube River basin (ICPDR, 2012; IPCC, 2013).  2 

Development of rainfall-runoff models is a critical step for long-term flow 3 

projections under climate change scenarios. There are two commonly used approaches 4 

to obtain hydrological response under changing climate (Zeng et al. 2012). The first one 5 

uses physically based hydrological models (Simonovic, 2010; Sellami et al. 2016; 6 

Todorovic and Plavsic, 2016; Marchane et al. 2017; Joo et al. 2017), which describe the 7 

precipitation-runoff relationship with a set of physical laws and/or by conceptual 8 

methods. The alternative approach employs data-driven models that describe the 9 

relationship between the hydrological response and climate parameters in a basin (Hsu 10 

et al. 1995; Dibike and Coulibaly, 2005; Tisseuil et al. 2010; Zeng et al. 2012; Taver et 11 

al. 2015). Both approaches are conditioned on climate projections (typically 12 

precipitation and temperature) under different climate change scenarios. Climate change 13 

projections are either fed into the hydrological model or serve as the predictors in the 14 

empirical or statistical models to assess impacts on water resources. For this purpose, 15 

the climate projections from the Global Climate Models (GCMs), downscaled 16 

statistically or by means of the Regional Climate Models (RCMs), are used.  17 

Long-term prediction of hydrological variables can also be obtained with the 18 

stochastic models (mainly time series models) developed from the observed 19 

hydrological time series (e.g. Pekarova et al. 2003; Pekarova and Pekar, 2006). They are 20 

used to identify the long-term hydrological pattern in terms of trend and/or multi-21 

decadal cycles expressed as a function of time, which could be extrapolated in the future 22 

period for long-term hydrological predictions. This imposes uncertainty connected to 23 

the nature of multi-decadal flow variation that is referred to as “sudden shifts” 24 

(Sveinsson and Salas, 2003). This approach does not consider directly the projections of 25 
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climatic drivers under a particular climate change scenario (or greenhouse gases 1 

emission pathways), but through proxy quantities (as precipitation and/or temperature). 2 

Consequently, the climate tendencies inherent in the climate scenarios cannot be 3 

explicitly recognized in predictions for the future by stochastic models.    4 

The time series models based on transfer functions can be used to embed 5 

indirectly the influence of climatic drivers on variability of the hydrological time series. 6 

This idea was used by Stojković et al. (2017a) in developing a joint stochastic-7 

deterministic approach to simulate the long-term sequences of the observed 8 

hydrological records. The proposed modelling scheme was comprised of deterministic 9 

components, such as the trend and low-frequency periodic components, seasonal 10 

periodic component and of the stochastic transfer function model with precipitation and 11 

temperatures as the input variables.  12 

In this study, the methodology for developing stochastic long-term projections is 13 

developed with an assumption that future changes in climate variables are the major 14 

driver for the changes in hydrological response. The methodology is applied in two 15 

stages. In the first stage, a stochastic model of annual flows based on the transfer 16 

function model with precipitation and temperature projections as the input is applied for 17 

chosen climate scenarios. At this stage the framework proposed by Stojković et al. 18 

(2017a) is further developed to incorporate the outputs of the climate models and to 19 

derive the flow estimates taking into account the trend component, macro-periodic 20 

(low-frequency) component, and seasonal component for the future time frame. In this 21 

way, annual precipitation and temperature projections are transferred to the flow 22 

estimates by means of the annual transfer function model which is capable of deducing 23 

the long- and short-term flow persistence directly from the climate signal. The results of 24 

the first stage are then used in the second stage to identify the deterministic components 25 
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of the deterministic-stochastic model for monthly flows (Stojković et al. 2017a), which 1 

in turn provides the long-term monthly hydrological projections instead of simply 2 

extrapolating the deterministic components into the future.  3 

The objective of this study is to examine the climate change impact on 4 

hydrological regime of the Lim River basin in Serbia, which was identified as a basin 5 

affected by climate change (World Bank, 2015; World Bank 2017). Broader goal of the 6 

study is to provide a tool to support future water resources planning and management 7 

and the decision-making process.  8 

Methodology 9 

General approach 10 

The stochastic models of hydrological variables are usually developed by decomposing 11 

the hydrological time series into a number of components, e.g. linear or nonlinear trend, 12 

jumps, periodic component, stochastic component and noise component (Yevjevich 13 

1972). The model structure is determined primarily by the temporal discretisation scale. 14 

In addition to the components usually present in the models on the annual scale (trend, 15 

stochastic, noise components), the monthly models also incorporate the seasonal 16 

periodic component. The stochastic component is generally modelled with the time 17 

series models based on the Box-Jenkins approach (Box et al. 2008), while the remainder 18 

is the noise term. 19 

Many observed hydrological series exhibit different trends (Stojkovic et al., 20 

2017b), providing a motive to declare such series as non-stationary (Milly at al., 2008). 21 

Natural proxy records which reflect hydrological regime (e.g. tree ring chronologies) 22 

suggest that stationarity may never have existed, since the significant changes occurred 23 

at different points throughout history (Razavi et al., 2015). On the other hand, the 24 
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hydrological series observations are generally too short to reject the stationarity 1 

hypothesis (Montanari and Koutsoyiannis, 2014). Longer hydrological series often 2 

exhibit long-term variability in a form of small amplitude and low frequency 3 

oscillations. Such behaviour, usually referred to as the long-term persistence, has been a 4 

constant subject of research since it was first studied by Hurst (1951). However, 5 

presence of the long-term persistence in a short series can be seen as a trend if the 6 

observed series covers only a part of a long-term cycle. Therefore, we don't have a 7 

proof of either stationarity or non-stationarity in the observed series.  8 

It seems reasonable to assume that a hydrological time series model, which is to 9 

be developed on monthly scale with an aim of application over a long future time frame, 10 

should include not only a trend component but also a long-term periodic component 11 

describing the low frequency oscillations in the series.  In addition, the trend component 12 

of a model designed for long-term projections cannot incorporate a simple linear trend 13 

(because extrapolating such a trend into future is not reliable). It has been shown that 14 

magnitude and direction of annual flow trend vary with the different time periods 15 

(Stojković et al. 2014). Therefore, a variable or moving trend would be a more 16 

convenient component for the long-term projections. 17 

Moreover, a long-term hydrological projection model should consider changes 18 

of precipitation and temperature as the main runoff drivers. This can be achieved by 19 

employing transfer function models (Box at al. 2008). In the applied model, the transfer 20 

function model is embedded in the stochastic component.  21 

With the above assumptions, the stochastic model for monthly flows comprises 22 

four elements: trend, long-term periodic and seasonal components, and also a stochastic 23 

component based on the transfer function model with precipitation and temperature as 24 
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the input variables. The proposed methodology for long-term hydrological projections 1 

based on the climate input therefore consists of the following two stages: 2 

 Stage 1. Creating annual hydrological projections with an application of the 3 

annual transfer function model with annual precipitation and temperature 4 

projections. This stage facilitates identification of the moving trend component 5 

and the long-term periodicity in the second stage. 6 

 Stage 2. Creating projections on a monthly time scale with a compound 7 

stochastic model for monthly flows, which includes the trend, seasonal 8 

component and the transfer-function based stochastic component with monthly 9 

precipitation and temperature projections as the input variables. 10 

In the remainder of this section, the monthly stochastic model is described first 11 

in detail, then the annual transfer function model, and finally the procedure for coupling 12 

two models into the two-stage methodology for the long-term hydrological projections. 13 

Model for monthly flows based on stochastic decomposition 14 

The monthly flow series model consists of the deterministic and the stochastic part. The 15 

deterministic part is composed of the following components: (i) trend component, (ii) 16 

macro-periodic (or low-frequency) component, and (iii) seasonal component. The 17 

remainder of the monthly series is the stochastic component, modelled as a function of 18 

monthly precipitation and temperature series as the independent time series. Such 19 

decomposition is formally expressed as follows (Stojković et al., 2017a): 20 

 DET STOCH

STOCH

( ) ( ) ( ) ( )

[ ( ) ( ) ( )] ( ) ( ), 1,2, ,T P S

Q t Q t Q t t

Q t Q t Q t Q t t t N





   

      K

 (1) 21 

where Q(t) is monthly flow in month t, QDET(t) is deterministic part, QSTOCH(t) is 22 
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stochastic component, ε(t) is the noise term (with mean E(ε) = 0, constant variance 1 

Var(ε) = const, and covariance function Cτ = 0 for all τ > 0), and N is the series length in 2 

months.  3 

Deterministic part 4 

The deterministic part of the monthly model consists of the trend component QT(t), 5 

macro-periodic component QP(t) and seasonal component QS(t). The trend and the 6 

macro-periodic component are modelled at the annual time step, while the seasonal and 7 

stochastic components are modelled at the monthly time step.  8 

The trend component QT is a composite trend obtained by the linear moving 9 

window (LMW) procedure for trend assessment (Stojković et al., 2017b). In LMW, the 10 

time series is divided into sub-series of length w = 30 years. For each sub-series, the 11 

parametric linear trend is estimated from the condition of minimum residual variance 12 

for the trend slope. The result is a composite trend, calculated as the median of the 13 

linear trends of the sub-series at each yearly time step u: 14 
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    


       


      

 (2) 15 

where n is number of years in the series (or N/12). The composite trend QT is then 16 

removed from the annual flows series Q to yield the first-order residuals: 17 

 ( ) ( ) ( ).TwQ u Q u Q u    (3) 18 

The first-order residuals Q'(u) are smoothed by the LOESS (Locally Weighted 19 

Scatterplot Smoothing) method to facilitate identification of the long-term harmonics by 20 

spectral analysis. The significant low-frequency harmonics are identified from the 21 
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relative cumulative periodogram as those outside the 95% confidence interval 1 

(Stojković et al., 2015). The macro-periodic component QP is then obtained by 2 

summing the significant low frequency harmonics (Yevjevich, 1972): 3 

  
1

( ) sin(2 ) cos(2 )
q

P i i i i

i

Q u a f u b f u 


   (4) 4 

where ai and bi are the Fourier coefficients, fi is frequency, u is current time index for 5 

years, and q is the number of significant harmonics. 6 

To proceed to modelling of the seasonal component QS(t), the annual 7 

deterministic components (trend QTw and macro-periodic QP) are first downscaled from 8 

annual to monthly time scale by using the low-pass filter and then removed from the 9 

monthly flow series to evaluate the monthly second-order residual series:  10 

 ( ) ( ) ( ) ( ) .Tw PQ t Q t Q t Q t       (5) 11 

where t is the time index in months.  12 

From the second-order residuals, the seasonal component QS(t) is modelled on 13 

monthly scale by the spectral analysis, i.e. in the form of the Fourier series: 14 

  
1

( ) sin(2π ) cos(2π )
Sq

S Si Si Si Si

i

Q t a f t b f t


   (6) 15 

where aSi and bSi
 
are the Fourier coefficients and fSi are significant frequencies of the 16 

seasonal cycle (≤12 months). In this step, it is assumed that the intra-annual cycle does 17 

not vary over time and that the seasonal periodic component is repeated each year. It 18 

should be noted that deterministic component can generally be eliminated from the 19 

second-order residual series Q''(t) by seasonal differencing or seasonal standardisation 20 

(Moeeni et al. 2017). However, these methods don’t provide analytical solution of 21 
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seasonal periodicity needed for modelling approach herein and, therefore, the spectral 1 

analysis is chosen as an appropriate tool for time series modelling. 2 

Stochastic transfer function component 3 

The stochastic component QSTOCH(t) is modelled from the third-order residuals Q''' 4 

computed by subtracting the whole deterministic part from the monthly flow series: 5 

  ( ) ( ) ( ) ( ) ( ) .Tw P SQ t Q t Q t Q t Q t      (7) 6 

The stochastic component QSTOCH is described as a function of the 7 

meteorological drivers, namely monthly precipitation X1 and temperature X2. For this 8 

purpose, the Transfer Function (TF) time series model with two input time series is 9 

applied. The TF model identifies the relationship between the third-order residuals Q''' 10 

and input meteorological time series. To comply to the assumptions of the TF model 11 

theory (Box et al., 2008), non-stationary input time series X1 and X2 are transformed into 12 

stationary ones. This is accomplished by first-order differencing of the input series, with 13 

resulting series denoted as x1t and x2t. Similarly, the third-order residuals Q''' are 14 

transformed by differencing into time series yt. The TF model of the stochastic 15 

component is represented by the following expression (Box et al., 2008): 16 

 
1 2

STOCH 1 2

1 2

( ) ( ) ( )
:    .

( ) ( ) ( )
t t t t

B B B
Q y x x a

B B B

  

  
    (8) 17 

where ω1(B), δ1(B), ω2(B) and δ2(B) are TF model parameters related to the input series 18 

x1t and x2t, respectively; B is the lag operator or backward shift operator defined with 19 

B
j
Xt = Xt–j.  Equation (8) includes the noise term at with its ARMA model parameters 20 

θ(B) and ϕ(B). Alternatively, the TF model with double input can be written as: 21 
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 1 1 2 2( ) ( ) ( ) .  t t t ty B x B x B a    (9) 1 

where v1 and v2 are the impulse response weights in the TF model and ψ(B) is an 2 

ARMA filter applied to the noise term if it exhibits any autocorrelation.  3 

Identifying TF parameters is simple if the input time series are uncorrelated or 4 

come as white noise. If this is not the case, the input series x1 and x2 have to be 5 

prewhitened. The prewhitening procedure for identification of TF model is performed in 6 

the following steps (Box et al. 2008):  7 

 Each input series xt is prewhitened by representing it as an ARMA(p, q) model: 8 

 x( ) ( ) ,x t tB x B    (10) 9 

where αt is the white noise, and ϕx and θx are the ARMA model parameters. 10 

Relation (10) gives the prewhitened series: 11 

 
x

( )
,

( )

x
t t

B
x

B





  (11) 12 

 The prewhitening model (11) is applied as a filter to the output time series yt, 13 

resulting in the filtered random output series βt: 14 

 
x

( )
.

( )

x
t t

B
y

B





  (12) 15 

 Cross-correlation function ˆ ( )r k  between the random time series αt and βt is 16 

computed for a range of lags k and then used to estimate the impulse response 17 

weights vk as: 18 
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ˆ

ˆ ˆ( ) ( ).
ˆ

kv k r k









  (13) 1 

where ˆ
   and ˆ

   are standard deviations of αt and βt, respectively. 2 

Significance of the cross-correlation coefficients )(ˆ kr  and the corresponding 3 

weights ˆ
kv  is established by comparing them to the double standard error of the 4 

cross-correlation function.  5 

Validation of the TF model adequacy is conducted by evaluating cross-6 

correlation rαa between the prewhitened input αt and the noise term at in equations (8) 7 

and (11). For this purpose, the S statistic proposed by Haugh (1976) is used: 8 

 2= ( ( )) ,
M

a

k M

S N r k


  (14) 9 

Statistic S is χ
2
-distributed with 2M + 1 degrees of freedom (total number of lags in the 10 

cross-correlation function, where M is the number of forward and backward lags). If S is 11 

smaller than the critical value defined from the χ
2
 distribution for the chosen level of 12 

significance α, the null hypothesis on the lack of cross-correlation cannot be rejected. 13 

Otherwise, the null hypothesis is rejected. Smaller cross-correlation between the 14 

prewhitened input variables and the residuals means that the TF model explains more 15 

variation between the input and output variables. 16 

Additionally, the Box-Ljung test (Salas et al., 1980) is used to verify 17 

independence of the noise term at of the TF model: 18 

 
2

1

( )
( 2) ,



 



ј

a
BL

k

r k
S N N

N k
 (15) 19 

where SBL is the test statistic, and ra(k) is the autocorrelation function of the noise term. 20 
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The sum in eq. (15) is evaluated with autocorrelations up to lag j, which depends on the 1 

series length and the orders p and q of the ARMA filter ψ(B) used for the noise term in 2 

eq. (9). The test statistics SBL is χ
2
-distributed with j – p – q degrees of freedom. The 3 

null hypothesis that the model error is not autocorrelated is rejected at the level of 4 

significance α if SBL > χ
2
(1 – α; j – p – q).   5 

Transfer function model for annual flows 6 

The Annual Transfer Function Model (ATFM) is based on the methodology for 7 

modelling monthly stochastic component QSTOCH in eq. (8), but is applied to the annual 8 

flow series. The differenced annual flow series yu are then modelled as follows: 9 

 
1 2

1 2

1 2

( ) ( ) ( )
.

( ) ( ) ( )
u u u u

B B B
y x x a

B B B

  

  
    (16) 10 

where u is yearly time index. The input time series in eq. (16) are the differenced annual 11 

precipitation x1u and temperature x2u in the river basin. Parameters in equation (16) are 12 

estimated for the observation period by the prewhitening method in the same fashion as 13 

for the monthly flows. Identification of ATFM involves the following steps: defining 14 

the observed input and output time series, standardizing and first-order differencing of 15 

inputs and outputs, estimating the parameters of TF by the prewhitening method, and 16 

verifying the model by means of the Haugh's statistic (eq. 14) and the Box-Ljung 17 

statistic (eq. 15). 18 

Two-stage long-term prediction of monthly flows 19 

Long-term hydrological projections of monthly flows are obtained by applying the two-20 

stage procedure with the annual and monthly time series models based on transfer 21 

functions, illustrated in Figure 1.  22 
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At stage 1, the ATFM is introduced with a role of providing initial projection of 1 

annual flows. The input for ATFM are the annual precipitation and temperature 2 

projections, which result from the climate modelling chain of global and/or regional 3 

climate models (GCM/RCM) fed by the climate change scenarios or pathways, and 4 

from the accompanying downscaling and correction procedures. Given these inputs, 5 

ATFM yields initial prediction of the annual flows in a future time frame.  6 

At the second stage, hydrological predictions at both annual and monthly scale 7 

are considered. By using the annual flow projections from stage 1, the composite trend 8 

and long-term periodicity are identified at stage 2a with annual time step and then 9 

downscaled to monthly scale. At stage 2b the components with monthly time 10 

discretisation are assessed, including seasonal periodicity, stochastic component and 11 

noise component. Finally, the monthly flow projections for the given climate scenario 12 

are obtained as the sum of all components. 13 

Having the initial annual flows in the future estimated, the long-term prediction 14 

of composite trend QTw and macro-periodic component QP are established in accordance 15 

with eqs. (2) and (4). The remaining deterministic part is the seasonal component QS 16 

expressed as a function of time by eq. (6). It is assumed that the seasonal component, 17 

which describes the intra-annual flow cycle, does not change during the historical 18 

period for which the model is identified (or baseline period in the climate impact 19 

studies). However, such an assumption may not be valid for the future. According to the 20 

climate change studies in the south-eastern Europe (World Bank 2015; World Bank 21 

2017), the intra-annual precipitation pattern is expected to change significantly, even to 22 

a greater extent than the change in total annual precipitation. Also, the increasing 23 

temperatures suggested by climate modelling could also contribute to changing intra-24 

annual flow patterns.  25 
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In the proposed model, it is assumed that the change in the intra-annual flow 1 

pattern follows the projected changes in the intra-annual precipitation pattern. This is 2 

done first by finding standardised average intra-annual flow and precipitation patterns, 3 

kQ and kX1 respectively, for the baseline period: 4 

 
1 11 1( ) ( ( ) ) / ,   ( ( ) ) / ,         =1, 2,...,12

SQ S S Q X Xk s Q s Q k X s X s      (17) 5 

where kQ is obtained from the observed seasonal flow component QS and kX1 is obtained 6 

from mean monthly precipitation X1 from GCM/RCM for the baseline period; 7 

11,  and ,
SS Q XQ X    are the means and standard deviations of QS and X1 and s is 8 

monthly time index. If the standardised intra-annual precipitation pattern for the future, 9 

devised from the precipitation projections, is denoted k'X1, then the change (k'X1 – kX1) 10 

between future and baseline period is applied to the standardised intra-annual flow 11 

pattern and the seasonal flow component QS for the future is then expressed as: 12 

 
1 1

( ) ( ) ( ( ) ( )) = ( )            =1,2,...12
S SS S Q X X Q S Q QQ s Q k s k s k s Q k s s           (18) 13 

where k'Q now denotes future standardised intra-annual flow pattern.  14 

The long-term projection of the stochastic component QSTOCH is obtained by 15 

using the monthly TF model (eq. 8) with future monthly precipitation and temperature 16 

projections from climate modelling as the input variables. The parameters of TFs are 17 

those estimated over the period of observations. Once all the considered components are 18 

estimated, the long term-projection of monthly flows Q(t) are obtained by equation (1). 19 
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Application to the Lim River basin 1 

The Lim River basin 2 

The study is performed for the Lim River basin upstream of the Prijepolje hydrological 3 

station that covers area of 3160 km
2
, located in southwest Serbia and northeast 4 

Montenegro (Figure 2a).  The Lim River is 201.6 km long and represents the largest 5 

tributary to the Drina River. Three streams (the Vruja, the Gričar and the Dole) meet in 6 

Gusinje to create the Ljuča River. The Ljuča River flows into the Plav Lake, which 7 

represents the source of the Lim River. From the Plav Lake to its confluence with the 8 

Drina River, the Lim River runs in south-north direction through a relatively narrow 9 

valley. Among many tributaries, the most are small streams originating from springs in 10 

the karstic formations. The Uvac River is the major tributary of the Lim River in the 11 

territory of Serbia. The "Potpeć" dam and hydropower plant, with a reservoir having a 12 

storage volume of 44 million m
3
, is located immediately downstream of the town of 13 

Prijepolje (World Bank, 2017).  14 

The Lim River basin has heterogeneous physiographic, hydrological and 15 

climatic characteristics. It is a predominantly mountainous basin with approximately 16 

65% of the area between altitudes of 750 and 1500 m a.s.l., 27% of the area above the 17 

altitude of 1500 m a.s.l. and only 7% of the area featuring hills at altitudes below 750 m 18 

a.s.l. (Kostić et al. 2016). The distribution of precipitation over the Lim River basin 19 

indicates a decreasing trend from south to north, with mean annual precipitation of 1150 20 

mm at Andrijevica on the south to 800 mm at Priboj on the north. Mean annual 21 

temperature increases in the south-north direction from 7.6 °C at Plav on the south to 22 

9.3 °C on the north. Northern parts of the Lim River basin receive the most precipitation 23 

in late spring, mainly in May and June, while the least precipitation occurs in March. 24 

The snow cover has an impact on dynamics of hydrological regime due to water 25 
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accumulated in snow. For instance, snow depths at Plav and Bijelo Polje can be as high 1 

as 1.10 m and 0.87 m, respectively. The highest show depths in the Lim River basin 2 

occur from December to February, while the melting process occurs mainly in March. 3 

The floods in the Lim River basin occur between April and May; it therefore seems that 4 

the snowmelt runoff does not contribute significantly to the high flows. 5 

Hydrological and meteorological records are available from 1950 to 2012. The 6 

time series of average precipitation and temperature over the Lim River basin to 7 

Prijepolje are estimated by the Thiessen polygons method. Six meteorological stations 8 

are used for this purpose (Figure 2b).  9 

The sensitivity of seasonal and annual flows in the Lim River basin to variability 10 

of atmospheric drivers is addressed by using the simple linear least squares regression 11 

function (Bouwer et al. 2008). The sensitivity is expressed as linear regression 12 

coefficients estimated between observed watershed response and climate drivers. The 13 

seasonal and annual regression coefficients related to the precipitation and temperature 14 

averaged over the basin as the predictor variables, and flows at Prijepolje hydrological 15 

station as the response variable, are shown in Table 1. The results suggest that seasonal 16 

precipitation is the most important climate driver for seasonal flows, rather than 17 

seasonal temperature. The regression coefficients for precipitation are the highest in the 18 

winter and autumn seasons (0.588 and 0.606, respectively). Temperature has an impact 19 

on watershed response during the summer season, while substantially lower regression 20 

coefficients are obtained for the winter and spring temperatures (from -0.097 to 0.066) 21 

when high flows are expected. At the annual scale, precipitation is the most influential 22 

driver controlling the long-term variability of hydrological time series (Table 1). The 23 

annual regression coefficients related to precipitation and temperature are equal to 1.128 24 

and -0.044, respectively. 25 
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The climate projections data 1 

In this study, climate projections include precipitation and temperature under the 2 

scenarios of Representative Concentration Pathways (RCPs), proposed in the Fifth 3 

Assessment Report (IPCC, 2013). The moderate RCP 4.5 and a comparatively high 4 

greenhouse gas emissions option, particularly the RCP 8.5 scenario, are used in this 5 

study. The outputs from the Aladin 5.2 regional climate model (RCM) under the 6 

aforementioned climate scenarios are used for this study. The simulations cover the 7 

2013-2070 time frame, while the baseline period is chosen to be 1961-1990 due to the 8 

availability of the observed data.  9 

Statistical bias correction based on the empirical quantile mapping is applied to 10 

the RCM simulations at locations of the meteorological stations (Teutschbein and 11 

Seibert 2012). This method implies constructing cumulative probability functions for 12 

daily observed and simulated variable for each meteorological station during the 13 

baseline period. Consequently, a correction function is created for each month to 14 

transform the computed values to the observed ones with the same value of the 15 

cumulative probability function. Once the correction function is determined, it is 16 

applied to the climate datasets for the future time frame providing the bias-free daily 17 

precipitation and temperature.  18 

The application of the bias correction method to the climate records for the 19 

meteorological stations within the Lim River basin is shown in Figure 3. Bias-free 20 

simulated precipitation and temperature are illustrated during the baseline period 1961-21 

1990 alongside the observed values. For this purpose, precipitation and temperature 22 

during four seasons are used: winter season (January, February, March), spring season 23 

(April, May, June), summer season (July, August, September), and autumn season 24 

(October, November, December). The results suggest that the bias-corrected simulated 25 
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temperatures agree well with the observed values (Figure 3b). The seasonal distribution 1 

of the corrected simulated precipitation mimics fairly the distribution of the observed 2 

precipitation (Figure 3a). The simulated precipitation is slightly overestimated during 3 

summer season and underestimated during winter. 4 

 The simulated climate for the Lim River Basin generally shows a decrease in 5 

annual precipitation for 2013-2070 relative to the baseline period 1961-1990. Under the 6 

RCP 4.5 and RCP 8.5 scenarios, this decrease ranges from 8.0% to 6.4%. Average air 7 

temperature shows an overall rise, which is similar for the two scenarios (1.8°C). 8 

The climatic projections for the future time frame in the Lim River basin are 9 

also analysed for two 30-year time frames: 2013-2040 (near future) and 2041-2070 10 

(mid-distant future). Relative changes in the median of annual precipitation and 11 

temperature with reference to the baseline period 1961-1990 are shown in Table 2. Both 12 

sets of climate scenarios suggest a moderate decrease in precipitation in both future 13 

periods (down to -10.9%). The RCP 4.5 scenario implies a slightly greater decrease in 14 

annual precipitation compared to the RCP 8.5 option. The climate modelling results also 15 

suggest a rapid rise in average temperatures over the two 30-year time frames.  16 

The changes in seasonal distributions of precipitation and temperature within the 17 

Lim River basin are also noticeable. These changes are shown in Table 3 for the two 30-18 

year time frames with reference to the baseline period 1960-1990. The character of the 19 

changes depends on the season, scenario and time frame. Winter precipitation is 20 

expected to increase slightly in the near future by 5.0% and 1.4% for RCP 4.5 and RCP 21 

8.5, respectively. Similarly, winter precipitation is expected to increase slightly in the 22 

mid-distant future by 6.1% under RCP 4.5 and by 1.1% under RCP 8.5 scenario. The 23 

projected changes in spring precipitation are the most pronounced in the mid-distant 24 

future when precipitation is expected to decrease by 18.4% to 20.8% under the RCP 4.5 25 
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and 8.5 scenarios, respectively. The most significant reduction is suggested for summer 1 

precipitation in the mid-distant future, ranging from 30.4% to 33.0%. The autumn 2 

precipitation is expected to decrease more in the near future than in the mid-distant 3 

future.  4 

Changes in the seasonal temperatures suggest an overall rise in all seasons. For 5 

the near future, it is most likely that seasonal temperatures would increase between 6 

0.5°C and 1.5°C, whereas the most considerable increase is expected in the winter, 7 

spring and summer seasons over the mid-distant future (from 2.5°C to 2.8°C).  8 

Results 9 

Identification and verification of the monthly flows model 10 

The results of identification of the monthly flows model components for the Lim River 11 

basin are presented in Figure 4. The composite trend QTw shown in Figure 4a exhibits an 12 

oscillatory behaviour with a very low frequency and very small amplitude. The macro-13 

periodic component QP together with the trend component in Figure 4b shows 14 

alternating multi-decadal wet and dry periods in the Lim River basin. The seasonal 15 

component has the significant harmonic with the oscillation period of 12 months. 16 

However, the harmonics of 4 and 6 months are also significant at the 5% significance 17 

level. The seasonal component modelled with all significant seasonal harmonics using 18 

eq. (6) is added to the previous deterministic parts and shown in Figure 4c.  19 

The stochastic component QSTOCH is modelled with the TF model according to 20 

eq. (8) which uses monthly precipitation and temperatures in the Lim River basin as the 21 

input. The resulting component QSTOCH is expressed at the monthly time scale as 22 

follows: 23 
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where ˆ
ty   is the output series, x1t and x2t are the inputs (differenced and standardised 2 

monthly precipitation and temperatures) and at is the noise term. 3 

Verification of the TF model in eq. (19) is conducted using the Haugh's statistic 4 

given in eq. (14). Its values for precipitation and temperature are S(α1,a) = 120.7 and 5 

S(α2,a) = 124.6, respectively. Both values are smaller than the critical value Scr = 125.5 6 

from the χ
2
 distribution for 101 degrees of freedom at the 5% significance level. It is 7 

concluded that the prewhitened input time series don't have significant cross-correlation 8 

with the residual term at. The Box-Ljung test is also used to check the independence of 9 

the TF model noise term. The value of Box-Ljung test statistic SBL(a) = 15.38, which is 10 

smaller than the critical value SBLcr=97.35 at the 5% significance level for 76 degrees of 11 

freedom, suggests that the noise term is the random series. 12 

With all components identified, the modelled monthly flows are constructed 13 

according to eq. (1) and shown in Figure 4d. The Nash-Sutcliffe efficiency (NSE) 14 

measure is used as an indicator of model performance. The NSE = 0.829 suggests a 15 

very good agreement between the modelled and observed monthly flows according to 16 

classification proposed by Moriasi et al. (2007).  17 

Identification and verification of the annual transfer function model 18 

With standardised and differentiated annual precipitation and temperature series as the 19 

input for modelling annual flows Q (as shown in Figure 1), estimated ATFM parameters 20 

are given by: 21 
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where ˆ
uy  is differenced series of annual flows, x1u and x2u are differenced annual 1 

precipitation and temperature series and at is a residual term. The Haugh's statistic is 2 

used again for verification of ATFM in eq. (20). Its values for precipitation and 3 

temperature are equal to S(α1,a) = 67.6 and S(α2,a) = 47.7, respectively. Both values are 4 

smaller than the critical value 72.6 at the 5% significance level for 51 degrees of 5 

freedom. Hence, the residual term at does not exhibit significant cross-correlation with 6 

the input time series. In addition, the Box-Ljung test is applied to verify the noise term 7 

of ATFM. The value of the test statistics SBL(a) is equal to 5.65, and the critical value 8 

from the chi-squared distribution at the significance level of 5% for 5 degrees of 9 

freedom is 12.59. Therefore, the test statistic SBL has a lower-than-critical value, 10 

suggesting that the residual term is the independent series.  11 

Model application 12 

In the first application stage, the ATFM in eq. (20) is applied for the initial projection of 13 

future annual flows with the standardised and differentiated series of precipitation and 14 

temperature projections under climate scenarios for the future time frame as the input 15 

instead of the observed time series x1u and x2u.  16 

In the second application stage, the future composite trend QTw and macro-17 

periodic component QP are inferred from the annual flows estimated in the first stage. 18 

The obtained projections of annual flows under the RCP 4.5 and RCP 8.5 emission 19 

scenarios are shown in Figure 5. The future seasonal component QS is defined using eq. 20 

(18) for two 30-year time frames: 2013-2040 (near future) and 2041-2070 (mid-distant 21 

future). It is assumed that the intra-annual pattern does not change within a 30-year time 22 

frame, but it differs for each of the two periods. By using observed seasonal flow and 23 

precipitation distribution, the relation given in eq. (18) is established based on 24 
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precipitation projections under the RCP emission scenarios for the future time frame. In 1 

this way, the projected changes of precipitation from RCM are propagated into the 2 

projections of the seasonal flow components for two 30-year time frames. Note that a 3 

finer time scale (e.g. daily or sub-daily) is required to analyse the relationship between 4 

the snow-related processes and seasonal flow distribution. Therefore, the snow 5 

processes are not considered in this study due to a limitation regarding the coarse 6 

monthly time step used for the model development. The long-term projection of the 7 

stochastic component QSTOCH is computed using TF model in eq. (19) with monthly 8 

precipitation and temperature projections from climate modelling as the input series. 9 

Finally, the monthly flow predictions for the Lim River at Prijepolje are 10 

computed by downscaling annual deterministic components to monthly time scale and 11 

by summing all components as in eq. (1). Figure 6 presents the distributions of mean 12 

seasonal and annual flows for the two time periods under the RCP scenarios.  13 

The long-term flow projections suggest gradually varying changes in the annual 14 

flows over the 2013-2070 time frame relative to the baseline period 1961-1990 (Figure 15 

5). Median annual flow is expected to reduce by 8.7% and 5.7% under the RCP 4.5 and 16 

RCP 8.5 emission scenarios, respectively. For the near future, a reduction by 5.7% and 17 

5.9% in median annual flows is suggested for the RCP 4.5 and 8.5, respectively (Figure 18 

6 and Table 4). In the mid-distant future the annual flows could be somewhat more 19 

reduced by 11.7% and 5.4% for the RCP 4.5 and RCP 8.5 scenario, respectively.  20 

The change in the intra-annual precipitation pattern and the general temperature 21 

rise in the future projected by the RCP emission scenarios are expected to introduce a 22 

significant change in the intra-annual flow distribution (Figure 6 and Table 4). A 23 

decrease in median summer and autumn flows is expected for the near future (2013-24 

2070), followed by a more pronounced reduction in summer flows in the mid-distant 25 
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future (2041-2070). The projections suggest an overall increase in median winter flows 1 

over both time frames, and a slight increase in median spring flows. For instance, spring 2 

flows during the near future will increase by 11.5% and 9.8% for the RCP 4.5 and RCP 3 

8.5 scenarios, respectively. However, the changes in the spring flow medians are 4 

negligible for the mid-distant future. For the mid-distant future, a significant rise of 5 

winter flows is expected by 37.1% (RCP 4.5) and 26.6% (RCP 8.5). The reduced 6 

summer precipitation and temperature increase will affect greatly the summer flows in 7 

the mid-distant period by decreasing their medians by 62.6% and 73.9% under the RCP 8 

4.5 and RCP 8.5 options, respectively.  9 

Discussion 10 

Changing climate already has consequences in Serbia in increased variability of 11 

meteorological parameters, higher temperatures and changing precipitation patterns. 12 

Such changes lead to changes in the hydrological regime at both seasonal and annual 13 

scale (World Bank, 2009). Based on the results of climatic modelling under the A1B 14 

and A2 scenarios, Kržić at al. (2011) suggest an overall increase of temperature in 15 

Serbia ranging from 2°C to 4°C for the future frame 2071-2100 relative to the baseline 16 

period 1961-1990. They also expect that the temperature rise would be accompanied by 17 

a decrease in seasonal precipitation in the range from 10% to 20% for all seasons, 18 

except for the spring season. 19 

The results of long-term projections for the Lim River basin imply that climate 20 

change could have considerable effects on the annual and seasonal flow pattern. The 21 

application of the presented methodology for long-term projections of the Lim River 22 

flows also suggests a decrease in annual flows towards the end of the 21
st
 century 23 

relative to the baseline period 1961-1990. Previous studies indicate that the annual 24 
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flows would reduce, and that seasonal flow distribution would change drastically 1 

(ICPDR, 2012; IPCC, 2013), while the macro-scale hydrological modelling for South-2 

east Europe suggests a decrease in the annual flows in the range of 20-30% (Arnell, 3 

2003).  4 

The projections for the Sava River basin, a 96,000 km
2
 basin to which the Lim 5 

River basin belongs, were developed in a study by the World Bank (2015) by means of 6 

the HEC-HMS deterministic hydrological model. The results from the World Bank 7 

study show that the change in mean annual flows over 2011-2070 under A1B scenario 8 

in the Lim River basin is negligible, with a more significant increase in winter flows 9 

and decrease in summer flows. The expected decrease in the Lim River annual flows in 10 

this study is more severe than in the study by the World Bank (2015). However, the 11 

seasonal change predicted by two studies is generally consistent except for the smaller 12 

change in winter flows in contrast to a more substantial increase in the study by the 13 

World Bank (2015).  14 

Different local character of hydrological projections could be seen by comparing 15 

the predicted changes in flows for the Lim River, on one hand, and for the Kolubara and 16 

Toplica Rivers in Serbia, on the other hand (Haddeland, 2013). Hydrological 17 

projections for the latter two basins under the A1B emission scenario are obtained by 18 

applying the HBV hydrologicalal model. The impact of climate change on annual and 19 

seasonal flows of the aforementioned rivers under A1B scenario is significantly greater 20 

than for the Lim River, with a decrease by about 35% by the end of the 21
st
 century.  21 

Obviously, the range of changes obtained in different studies can be attributed 22 

not only to regional characteristics but also to a range of uncertainty sources, including 23 

each element within the hydroclimatic modelling chain. Uncertainty in the hydrological 24 

projections depend on the selection of GCMs and RCMs, the assumed initial and 25 
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boundary conditions, choice of the bias correction method, the chosen greenhouse gas 1 

emission scenarios and scenarios of future socio-economic development (Kundzewicz 2 

et al. 2018). Also, there are uncertainties related to the hydrological modelling caused 3 

by a lack of reliable information needed for setting up the model structure and for model 4 

calibration.  The largest uncertainty in the predicted flows is most likely due to the 5 

selection of the GCMs or RCMs, bias-correction methods and the internal variability of 6 

the climate system (Mandal and Simonovic 2017). It seems that the choice of emission 7 

scenarios introduces the least contribution in the watershed response compared to the 8 

selection of climate models and bias correction methods (Stojkovic and Simonovic 9 

2019). Therefore, the decision-makers need to develop several hydrological scenarios 10 

for planning on based on an ensemble of GCM/RCMs while the use of a single 11 

GCM/RCM prevents capturing climate modelling uncertainty in the watershed 12 

response.  13 

Hydrological prediction can generally be based on either rainfall-runoff 14 

modelling or the time-series (Box-Jenkins) approach. The former approach represents a 15 

standard tool to estimate the impacts of climate change on water resources over long 16 

time frames, such as the whole 21
st
 century. The latter technique is based on the time 17 

series analysis utilised to assess the annual or seasonal streamflow predictions for much 18 

shorter time horizons, while the implementation of this concept for the long-term 19 

projections is limited due to the random nature of hydrological process (Stojković et al. 20 

2017c). Therefore, uncertainty associated with the application of the time series concept 21 

increases with the length of the prediction time frame. In order to reduce this 22 

uncertainty when applying the time series approach for long-term projections, the 23 

transfer function time series model is included in the proposed modelling scheme with 24 

an aim to introduce the climate signal in the flow sequences. Given that the application 25 
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of the proposed methodology to the Lim River basin has shown results that are 1 

comparable to those of other climate change impact studies in the region, it seems that 2 

the proposed approach can reconcile the two aforementioned concepts by being based 3 

on the time series analysis and by taking into account precipitation and temperature 4 

projections obtained from climate modelling.  5 

The main advantage of the time-series based modelling scheme in comparison to 6 

the hydrological models is that it represents a more parsimonious approach (Augustin et 7 

al. 2008). The proposed modelling approach can preserve the main features of the 8 

hydrological processes characterised as the long- and short-term statistical dependence 9 

and use them to provide monthly flow estimates under climate change. Also, deriving 10 

the model structure and its parameters directly from the data reduces uncertainties 11 

related to the structure of a hydrological model. Using the climate inputs at a coarse 12 

(monthly) time scale brings benefits by avoiding high uncertainties associated with 13 

daily or sub-daily precipitation resulting from the RCMs. Derived flow estimates at 14 

monthly time scale under the future climate can be considered more reliable than those 15 

obtained by running hydrological models with daily or sub-daily climate input because 16 

in the latter case the high uncertainty about daily climate input stemming from climate 17 

modelling is propagated into streamflows. Therefore, it is more likely that the major 18 

source of uncertainty in the application of the proposed methodology to the Lim River 19 

basin stems from the climate models. The limited pool of climate modelling outputs for 20 

this study lead to a limited insight into the climate modelling uncertainties, which could 21 

be better characterised by using multiple climate simulations by a greater number of 22 

climate models. Moreover, the bias correction methods may have an influence on 23 

predicted flows, especially in terms of high flows. For this reason, the use of additional 24 
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bias correction methods (e.g. parametric quantile mapping) could lead to explaining a 1 

portion of uncertainty in the predicted flows for the Lim River basin.  2 

Potential weakness of the proposed model is in the representation of the seasonal 3 

model component, which is modelled by means of spectral analysis under the 4 

stationarity assumption, meaning that the seasonal component remains unchanged 5 

throughout the simulation period. Changing climate is expected to affect the intra-6 

annual flow distribution in the studied region, and consequently the seasonal component 7 

would also be expected to evolve in time. This potential drawback of the proposed 8 

model can be improved by analysing the long observed hydrological series and climatic 9 

drivers such as precipitation, temperature, and evapotranspiration. For the river basins 10 

where snow dynamics plays a significant role, snow melt can be analysed implicitly by 11 

using temperature as a conditional variable, which can propagate the changes in the 12 

snow cover into the seasonal flow component. For finer time scales such as daily or 13 

sub-daily, the impact of the snow dynamics on hydrological regime needs to be 14 

analysed by means of the deterministic (rainfall-runoff) hydrological models. 15 

Conclusions 16 

In contrast to conventional climate change impact assessment based on the application 17 

of rainfall-runoff simulation models, this paper proposes an alternative procedure with 18 

which future precipitation and temperatures are used as the input to the two-stage 19 

deterministic-stochastic model based on the transfer functions for monthly hydrological 20 

projections. Model components based on the transfer functions allow introducing 21 

climatic drivers into a time series model in addition to the components that describe 22 

stochastic structure (serial correlation) of the hydrological time series, such as trend, 23 

long-term periodicity, and seasonality. The proposed model can capture both short-term 24 
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and long-term statistical dependence of monthly flow series. This is provided by 1 

employing time series decomposition at annual and monthly time scale, which separates 2 

high-frequency (seasonal) and low-frequency (persistence) components.  3 

Application of the proposed approach to the Lim River basin in Serbia over the 4 

historical period 1950-2012 has shown a very good agreement of the model results with 5 

the observed data, as measured by the Nash-Sutcliffe efficiency coefficient. The results 6 

of the model application for producing monthly flow projections under the RCP 7 

emission scenarios suggest that a decrease of annual and seasonal flows is expected in 8 

the future compared to the baseline period 1961-1990. Median annual flow for 2013-9 

2070 is expected to decrease by 8.7% and 5.7 % for the RCP 4.5 and RCP 4.5 scenarios, 10 

respectively. The greatest reduction of annual flows by 11.7% under the RCP 4.5 11 

scenarios is expected in the 2041-2070 time frame. The decrease of the annual flows 12 

would mainly be caused by a significant reduction in the summer and autumn flows. 13 

Although the model application was limited to a modest number of outputs from a 14 

single RCM, a part of uncertainties within the climate modelling chain was captured by 15 

including different emission scenarios (RCP 4.5 and RCP 8.5). 16 

The results of the model application are comparable to the results of similar 17 

studies, which were based on the conventional approach based on the application of 18 

rainfall-runoff simulation models. As such, the proposed stochastic modelling approach 19 

can be used in the climate change impact studies and further considerations of the 20 

climate change adaptation strategies. The model can be utilized for different tasks such 21 

as evaluating the long-term water availability in terms of future wet and dry periods and 22 

preparing effective water management plans.  23 
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TABLES 1 

Table 1. Seasonal and annual regression coefficients estimated between watershed 2 

response and atmospheric forcing (precipitation and temperature) within the Lim River 3 

basin. (WIN-December-February, SPR-March-May, SUM-June-August, AUT-4 

September-November, ANN) 5 

 6 

Table 2. Change in the median of annual precipitation and temperature for the Lim 7 

River basin relative to the baseline period 1961-1990. 8 

 9 

Table 3. Change in the median of seasonal precipitation and temperature for the Lim 10 

River basin relative to the baseline period 1961-1990 (WIN-December-February, SPR-11 

March-May, SUM-June-August, AUT-September-November, ANN)  12 

Table 4. Change in the median seasonal and annual flows of the Lim River at Prijepolje 13 

relative to the baseline period 1961-1990 (WIN-December-February, SPR-March-May, 14 

SUM-June-August, AUT-September-November, ANN). 15 

 16 
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 1 

FIGURES 2 

 3 

Figure 1. Illustration of the two-stage procedure for long-term hydrological projections 4 

with time series models based on transfer functions. 5 

Figure 2. (a) Location of the Lim River basin (grey polygon); (b) The Lim River basin 6 

to Prijepolje hydrological station with locations of meteorological stations (m.s.). 7 

Figure 3. Observed and bias corrected simulated climate variables for the 8 

meteorological stations located in the Lim River basin: (a) seasonal precipitation, (b) 9 

mean seasonal temperature. (WIN-December-February, SPR-March-May, SUM-June-10 

August, AUT-September-November, ANN)  11 

Figure 4. Modelling monthly flows of the Lim River at Prijepolje: Q - observed monthly 12 

flows, QTw - composite trend, QP - macro-periodic component, QS - seasonal 13 

component, QSTOCH - stochastic component.  14 

Figure 5. Projected annual flows of the Lim River at Prijepolje with the composite 15 

trend: RCP 4.5 and RCP 8.5 scenarios. 16 

Figure 6. Distributions of the seasonal and annual flows for the Lim River at Prijepolje 17 

under RCP 4.5 and RCP 8.5 emission scenarios for baseline period 1961-1990, near 18 

future 2013-2040, mid-distant future 2041-2070. (WIN-December-February, SPR-19 

March-May, SUM-June-August, AUT-September-November, ANN) 20 

 21 
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