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Abstract. The low mass density and the high tensile strength, usually expressed through the 

specific modulus of elasticity and the specific strength, have made composite materials 

lighter and stronger compared with most traditional materials (such as steel, concrete, wood, 

etc.) and have increased their application not only for secondary, but during the last two 

decades also for primarily structural members in aerospace and automotive industry, ship 

building industry and bridge design. Although weight saving has eliminated constrain of 

slenderness and thickness and has made possible use of very thin plate elements, they have 

become susceptible to large deflections. In such cases, the geometry of structures is 

continually changing during the deformation and geometrically nonlinear analysis should be 

adopted. In this paper the geometrically nonlinear laminated plate finite element model is 

obtained using the principle of virtual displacement. With the layerwise displacement field 

of Reddy [1], nonlinear Green-Lagrange small strain large displacements relations (in the 

von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D 

elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form 

is obtained. The obtained displacement dependent secant stiffness matrix is utilized in 

Direct interation procedure for the numerical solution of nonlinear finite element 

equilibrium equations. The originally coded MATLAB computer program for the finite 

element solution is used to verify the accuracy of the numerical model, by calculating 

nonlinear response of plates with different mechanical properties, which are isotropic, 

orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different 

boundary conditions and different load direction (unloading/loading). The obtained results 

are compared with available results from the literature and the linear solutions from the 

previous paper [2]. 

.

1. Introduction  

 The low mass density ( ) and the high tensile strength ( u ), usually expressed 

through the specific modulus of elasticity ( /E ) and the specific strength ( /u ) have 

made composite materials lighter and stronger compared with most traditional materials 

(such as steel, concrete, wood, etc.) and have increased their application not only for 

secondary, but during the last two decades also for primarily structural members in 

aerospace and automotive industry, ship building industry and bridge design. The advanced 
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mechanical properties of composite materials, which are resulted in large weight savings, 

have given designers more flexibility in finding efficient solution for specific problem, but 

have also required formulation of mathematical model able to present their complex 

anisotropic nature. Although weight saving has eliminated constrain of slenderness and 

thickness and has made possible use of very thin plate elements, they have become 

susceptible to large deflections [4,5]. In such cases, the geometry of structures is 

continually changing during the deformation and geometrically nonlinear analysis should 

be adopted. The geometrically nonlinear analysis seems also to be necessary for obtaining 

the structural response of unsymmetrical laminated composite materials [6]. Namely, the 

nonlinear response of these laminates is present even for small displacements, due to 

complex coupling between in-plane and out-of plane deformation.  

 A considerable amount of research work has been carried out so far on the 

nonlinear analysis of laminated plates. Among the published works, the von Karman plate 

theory of plates undergoing large deflections has attracted outstanding attention and a 

number of papers have been published. The first authors investigating the nonlinear 

response using the von Karman nonlinear theory [7, 8] were: Leissa, Bennett, Bert, Chandra 

and Raju, Zaghloul and Kennedy, Chia and Prabhakara, Noor and Hartley, and in the last 

decades Han, Tabiei and Park, Singh, Lal and Kumar, Reddy and Chao, Zhang Kim and 

others. 

 Mechanical response of laminated composite material is generally 3D problem of 

nonlinear mechanics. However, due to its mathematical complexity, analytical solutions 

using 3D theory of elasticity are usually difficult and some times even impossible to 

achieve, while numerical solutions are computationally inefficient and constrained to very 

specific domains. Thus, whenever possible, refined simplified mathematical models, with 

acceptable accuracy in a field of applications, should be used. It is shown that the 

Equivalent Single Layer theories (ESL) may give acceptable results when analyzing global 

response, such as gross deflections and gross stresses, critical buckling loads and 

fundamental frequencies of thin to moderate thick laminated composite plates [9]. 

However, a continuous displacement function in ESL is not able to accurately present the 

discontinuous zigzag variation of displacements in highly anisotropic plates and give 

adequate stress distribution at local or ply level [2]. A compromise between 3D theory of 

elasticity and ESL theories is then achieved with the use of Layer Wise theories (LW). In 

LW theories the in-plane displacement field, assumed for each layer, is interpolated through 

the thickness by appropriate layerwise Lagrange interpolation function or Heaviside step 

function [3], thus replacing 3D laminated element with N+1 2D plate elements (N is 

number of layers), which fulfills the continuity of displacement functions at the interfaces 

between adjacent layers.  

 From the continuum mechanics it is known that two different level of geometrical 

nonlinearity may be modeled, which are: geometrically nonlinear models with small strain 

and large displacements (von Karman theory) and geometrically nonlinear models with 

large strains. In the first case, the geometry of the structure before deformation remains 

unchanged after the deformation. However, the structure is subjected to large displacements 

and the equilibrium is achieved on the configuration displaced from the undeformed one. In 

the second case the geometry of the structure is changing during the deformation and the 

equilibrium is achieved on the deformed configuration. In both cases equilibrium equations 

are nonlinear. 

 In order to formulate nonlinear finite element model of laminated structures, 

which will be able to represent two above mentioned levels of geometrical nonlinearity, 

412



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 

Vlasina lake, Serbia, 5-8 July 2011 C-09 

two distinct approaches have been reported in the literature [3]. The first approach is based 

on laminate theory, in which 3D elasticity equations are reduced to 2D equations through 

certain kinematical assumptions and homogenization through the thickness. In this 

approach only first type of nonlinearity or small strain, large displacement assumption may 

be included. The finite elements based on such an assumptions are named the laminated 

elements. The second approach is based on 3D continuum formulation (total and updated 

Lagrange formulation) and both types on nonlinearity may be included. Finite elements 

based on this approach are called the continuum elements. 

The aim of the author’s research on composite materials so far was to implement 

Layerwise theory of Reddy or Generalized Layerwise Plate Theory-GLPT [1] on different 

levels of analysis of laminated composite plates. The previous work has been concerned 

with the linear analysis [2], and the linear laminated plate element of GLPT has been 

formulated, while in the present paper the GLPT nonlinear laminated plate element with 

von Karman geometrical nonlinearity is presented.  

In this paper the mathematical and numerical model for geometrically nonlinear, 

small strain, large displacements problem of laminated composite plates is presented. The 

3D elasticity equations are reduced to 2D problem using kinematical assumptions based on 

layerwise displacement field of Reddy (GLPT). With the assumed displacement field, 

nonlinear Green-Lagrange small strain large displacements relations and linear orthotropic 

material properties for each lamina, the principle of virtual displacement (PVD) is used to 

derive the weak form of the problem. The weak form or nonlinear integral equilibrium 

equations are discretized using isoparametric finite element approximation. The obtained 

nonlinear incremental algebric equilibrium equations are solved using direct iteration 

procedure. The originally coded MATLAB computer program for the finite element 

solution is used to investigate the effects of geometrical nonlinearity on displacement and 

stress field of thin and thick, isotropic, orthotropic and anisotropic laminated composite 

plates with various boundary conditions and loading direction (loading/unloading). The 

accuracy of the numerical model is verified by being compared with available results from 

the literature and the linear solutions from the previous paper [2]. The appropriate 

conclusions are derived. 

2. Theoretical formulation 

2.1 Displacement field 

In the LW theory of Reddy [1] or Generalized Layerwise Plate Theory (GLPT), in-plane 

displacements components v,u  are interpolated through the thickness using 1D linear 

Lagrangian interpolation function zI , while transverse displacement component w  is 

assumed to be constant through the plate thickness. 
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2.2 Strain-displacement relations 
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 The Green Lagrange strain tensor associated with the displacement field Eq.(1) 

can be computed using von Karman strain-displacement relation to include geometric 

nonlinearities as follows: 
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2.3 Constitutive equations 

For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the 

following form: 
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Where: 
Tk

yzxzxyyyxx
k and 

Tk
yzxzxyyyxx

k  are 

stress and strain components respectively, and 
k

ijQ  are transformed elastic coefficients, of 

k-th lamina in global coordinates.  

2.4 Equilibrium equations 

Equilibrium equations may be obtained from the Principle of Virtual Displacements (PVD), 

in which sum of external virtual work done on the body and internal virtual work stored in 

the body should be equal zero: 
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3.  Finite Element Model 

Figure 1. Plate finite element with n layers and m nodes
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 The GLPT finite element consists of middle surface plane and I=1, N+1 planes 

through the plate thickness Figure 1. The element requires only the 0C  continuity of major 

unknowns, thus in each node only displacement components are adopted, that are 

w,v,u  in the middle surface element nodes and II V,U  in the I-th plane element 

nodes. The generalized displacements over element 
e

 can be expressed as: 
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middle plane and I-th plane, respectively, e
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e
j ,

e

j are interpolation function matrix for the   j-th node of the element e , given 

in [2]. 

Substituting element displacement field Eq.(6) in to weak form Eq.(4), the nonlinear 

laminated finite element  is obtained: 
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and external force vectors 
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With the known displacement field, the stress field over the element may be obtained as a 

part of a postprocessor, using strain displacement and constitutive relations, Eqs. (2), (3) as: 
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where Ub  and Ob are in-plane normal stresses xyyyxx ,,  at bottom and 

upper plane in k-th layer of plate element ‘e’, while 
ek

consts  are average transverse shear 

stresses yzxz ,  in k-the layer of plate element. 

4. Numerical results and discussion 

Based on the previously derived laminated finite element model for the geometrically 

nonlinear analysis of laminated composite plates, the original computer program is coded 

using MATLAB programming language. The nonlinear finite element secant stiffness 

matrix is evaluated using Gauss–Legendre quadrature rule, which are 3x3 Gauss integration 

schemes or 2D quadratic Lagrange rectangular element for in-plane interpolation and 1D 

linear Lagrange element for through the thickness interpolation.  The Direct iteration 

numerical method is used to solve nonlinear incremental equilibrium equations. The effects 

of plate thickness, lamination scheme, boundary conditions and load direction on nonlinear 

response of isotropic, orthotropic and anisotropic plates are analyzed. The accuracy of the 

present formulation is demonstrated through a number of examples and by comparison with 

results available from the literature.  

The following boundary conditions at the plate edges are analyzed [10]. 
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When analyzing a quarter of a plate, boundary conditions in the plane of symmetry become: 

For cross ply laminates: 
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For angle ply laminates:
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Example 4.1. A nonlinear bending of square, simply supported (SS1), isotropic plate, with 

in10ba  and in1h  made of material: 

3.0,psi108.7E 6  (17) 

subjected to uniform transverse pressure is analyzed. Using the load 

parameter 4
2

4
0 hE/aqP , the incremental load vector is chosen to be: 

P0.25,0.25,0.25,0.25,0.25,0.25,0.25,5.12,25.6,25.6P  (18) 

with convergence tolerance 01.0  and acceleration parameter 8,0 . The 

displacements and stresses are given in following nondimensional form: 

E/1h/a,aq/hEww 2
xxxx

4
0

3
20  (19) 

Figure 2. Nonlinear bending of square simply supported (SS1) isotropic plate with 

10h/a ; central displacement versus load parameter 

A 3x3 quarter plate laminated GLPT model is compared with 4x4 quadratic FSDT model 

[3]. The results for linear and nonlinear deflections are presented on Figure 2. It is shown 

that proposed GLPT model closely agree with FSDT model. The Figure 2 also 

demonstrates the physical nature of geometrically nonlinear response. The study has proved 

that depending of applied load level, the plate goes from the state of pure bending, at small 
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displacement ( h30.0w ) to the phase of bending-stretching coupling, at large 

displacements. Namely, when the lateral displacement reaches approximately one half of 

plate thickness ( h.5.0w  ), they take part in stretching, together with bending of the 

plate middle surface (nonlinear terms in Eq.(2)). This activates the tensile forces, thus 

enlarging the stiffness of the plates, and reducing displacements and stresses from the 

values predicted by linear theory. This may be the reason why this phenomena is also 

known as “plate stiffening” or “stress relaxation”. Moreover, the activation of tensile forces 

in laminated composite plates is of utmost importance, due to their high available specific 

tensile strength. 

Example 4.2. A nonlinear bending of square simply supported (SS1), orthotropic plate 

made of high modulus glass-epoxy fiber reinforced material: 

,2.0E/G,5.0E/G,5.0E/G,25E/E 22321321221 25.0231312

                                                                                                                               (20)

subjected to uniform transverse pressure is analyzed. Using the load 

parameter 4
2

4
0 hE/aqP , the incremental load vector is chosen to be: 

P140,130,120,110,100,90,80,70,60,50,40,30,20,10P
            (21) 

with convergence tolerance 01.0  and acceleration parameter 3,0 . The 

displacements and stresses are given in following nondimensional form: 
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Figure 3. Nonlinear bending of square simply supported (SS1) orthotropic plate; central 

displacement versus load parameter 

A 2x2 quarter plate laminated GLPT model is compared with 8x8 CPT nonconforming and 

4x4 quadratic FSDT models [4]. The results for thick and thin plates ( /h=10 and a/h=100) 

of linear and nonlinear deflections are presented on Figure 3. It is shown that proposed 

GLPT model closely agree with CLPT and FSDT models. The more significant difference 

between linear and nonlinear solutions is observed for thick plates, while in thick plates 

larger lateral deflections have greater influence on nonlinear response, as it can be seen 

from the underlined nonlinear terms in Eq. (2). 

Example 4.3. A nonlinear bending of square cross ply 0/90 and angle ply 45/-45 plates, 

with 1ba  and 1.0h , with three different boundary conditions (SS, HH and CC, 

Eqs. 12, 13, 14) , made of material: 

25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221          (23) 

subjected to uniform transverse pressure 
2

4

E

1

h

a
y,xqq are analyzed. The 

incremental load vector is:  

20,20,20,20,40,20,20,20,20,100q  (24) 

with convergence tolerance 01.0  and acceleration parameter 5,0 . The 

displacements and stresses are given in following nondimensional form: 
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Figure 4. Nonlinear bending of square cross ply 0/90 plate with different boundary 

conditions and 10h/a ; central displacement versus load parameter 

Figure 5. Nonlinear bending of square angle ply 45/-45 plate with different boundary 

conditions and 10h/a ; central displacement versus load parameter 

A 2x2 quarter plate and 4x4 full plate laminated GLPT models are analyzed and compared 

with full 8x8 plate FSDT models (Thankam and Singh and Rao and Rath, A.K. 2003 [10]). 

The results for linear and nonlinear deflections are presented in Figures 4,5. It is shown that 

proposed GLPT model closely agree with FSDT model form literature, with the faster 

convergence. Also, the discrepancy between linear and nonlinear solutions are larger for 

flexible plates, which are the plates with simply supported boundary conditions, compared 

to hinged (HH) and  clamped (CC) boundary conditions. The study has verified that the 

change in load direction gives symmetrical displacement field.  

Example 4.4. A nonlinear bending of square simply supported (SS1) general quasi-

isotropic (0/45/-45/90)s, laminated plate with 1ba  and 1.0h , made of material: 

25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221
     (26) 

subjected to uniform transverse pressure is analyzed. Using the load parameter 
4

2
4

0 hE/aqP , the incremental load vector is chosen to be: 

P50,50,50,50,50q  (27) 

with convergence tolerance 01.0  and acceleration parameter 8,0 .
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Figure 6. Nonlinear bending of square simply supported (SS1) general quasi-isotropic     

(0/45/-45/90)s  laminated plate with 10h/a ;

central displacement versus load parameter 

A 2x2 quarter plate continuum GLPT model is compared with 8x8 full plate HSDT model 

[11]. The results for linear and nonlinear deflections are presented in Figure 6. It is shown 

that proposed GLPT model closely agree with HSDT model form literature, with the faster 

convergence. 

5. Conclusion 

In this paper a laminated layerwise finite element model for geometrically nonlinear small 

strain, large deflection analysis of laminated composite plates is derived using the PVD. 

The accuracy of the model is verified calculating nonlinear response of plates with different 

mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle 

ply), different plate thickness, different boundary conditions and different load direction 

(unloading/loading). In despite of its mathematical complexity, proposed model has shown 

better convergence characteristics than ESL models of CLPT, FDST and HSDT, still with 

less computational cost than 3D elasticity model. Moreover, present model has no shear 

locking problems, compared to ESL models, or aspect ratio problems, as the 3D finite 

element may have when analyzing thin plate behavior. The analysis has also shown that the 

discrepancy of nonlinear from linear response is greater for flexible plates, such as thick 

compared to thin plates, or plates with SS compared to hinged (HH) and clamped (CC) 
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boundary conditions. It is verified that the change of load direction (unloading/loading) 

gives symmetrical displacement field. 
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