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Abstract: Marine and harbor structures, wind turbines, bridges, offshore platforms, industrial
chimneys, retaining structures etc. can be subjected to significant lateral loads from various sources.
Appropriate assessment of the foundations capacity of these structures is thus necessary, especially
when these structures are supported by pile groups. The pile group interaction effects under lateral
loading have been investigated intensively in past decades, and the most of the conducted studies
have considered lateral loading that acts along one of the two orthogonal directions, parallel to the
edge of pile group. However, because of the stochastic nature of its source, the horizontal loading
on the pile group may have arbitrary direction. The number of studies dealing with the pile groups
under arbitrary loading is very limited. The aim of this paper is to investigate the influence of the
arbitrary lateral loading on the pile group response, in order to improve (extend) the current design
approach for laterally loaded pile groups. Free head, flexible bored piles in sand were analyzed
through the extensive numerical study. The main hypothesis of the research is that some critical
pile group configurations, loading directions, and soil conditions exist, which can lead to the unsafe
structural design. Critical pile positions inside the commonly used pile group configurations are
identified with respect to loading directions. The influence of different soil conditions was discussed.

Keywords: pile group interaction; lateral loading; PLAXIS 3D; Hardening Soil model; python

1. Introduction

In situations where surface soil layers have low bearing capacity, pile foundations are the common
foundation solution. Pile foundations are usually designed as closely spaced, square, or rectangular pile
groups. Beside the primary function to transfer the vertical loads to the stiff soil layers, pile foundations
can be significantly loaded with horizontal (lateral) loads. These loads may originate from different
sources, such as: wave, current and ice action, ship impacts, wind pressure, earthquake, earth pressures,
traffic acceleration, braking forces, soil displacements etc. The examples of laterally loaded engineering
structures are: marine and harbor structures, wind turbines, bridges, offshore platforms, industrial
chimneys, retaining structures, etc. The magnitude of lateral load is usually 10-15% of vertical load
(and up to 30% in offshore structures) [1]. This fact makes the problem of the laterally loaded pile
groups very challenging in marine engineering applications.

When the pile group is laterally loaded, stress—strain fields of adjacent piles overlap, followed
with the separation (“gapping”) between the piles and the soil at the back of the piles. The influence
of leading (front) pile row on lateral response of trailing (rear) pile rows is called “shadowing”
because the rear rows are in the shadow of the front pile row (Figure 1a). The problem of interaction
between the piles inside the closely spaced laterally loaded pile group has been recognized by the
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scientific community. Ideally, the bearing capacity of the pile group shall be equal to the sum of
the bearing capacities of the individual piles. However, due to the soil-structure interaction effects,
load-displacement behavior of a pile inside the group is different from the behavior of the equivalent
single pile (Figure 1b). In addition, the maximum pile bending moment in the pile group will be
larger than for an equivalent single pile. When the pile spacing is increased, the effects of overlapping
between the resisting zones become less significant.
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Figure 1. (a) Front and trailing rows in laterally loaded pile group (Hg—total lateral force acting on
pile group, sy and s,—center-to-center spacing between the piles in X and Y directions, respectively);
(b) Influence of the “shadowing” on the load distribution inside the pile group (H;—lateral force acting
on pile 7).

Engineering problems that can arise due to the inappropriate assessment of the pile lateral load
can be very serious. Failure in such cases can lead to significant damage or even collapse of the entire
superstructure. In the cases of bridges or other structures supported by pile foundations, only a few
centimeters of lateral displacements can cause the significant stress development [2]. According to
Eurocode 7 provisions [3], lateral pile displacements are usually limited to 3% of pile diameter, or to
max. 2 cm. Despite the fact that the current design practice for pile foundations is based on the
capacity-based design, many authors [2,4-9] pointed out that the opposite, displacement-based design
is more appropriate.

The pile group interaction effects under lateral loading have been investigated intensively in
past decades, both numerically and experimentally. Many numerical solutions with different level
of complexity have been proposed: closed form and empirical solutions [10-12], limit equilibrium
methods [13,14], strain wedge method [15-19], and p-y curve method [20-26]. The development
of fast computers led to rapid development of continuum-based methods, which allow for the full
discretization of both soil and the structure, combined with the use of advanced constitutive models.
Continuum-based representation of both the soil and the piles can provide a more realistic analysis,
with the use of material properties with a clear physical meaning. On the contrary, continuum-based
methods require more engineering effort for the numerical model preparation, as well as the higher
computational hardware requirements. Continuum-based studies on the laterally loaded pile groups are
mainly based on the following numerical methods: finite element method (FEM) [27-31], finite difference
method (FDM) [2,8,32-34] and boundary element method (BEM) [35-37].

Beside numerical studies, the pile group behavior under lateral loading has been investigated
using different experimental methods. Full scale tests can eliminate most of the uncertainties of the
considered problem. However, due to the high costs, only a limited number of full scale pile load test
results are available in the literature. As an alternative, experiments with small scale models are also
reported. The conducted experimental studies of the laterally loaded pile groups are summarized in
several studies (e.g., Fayyazi et al. [38], Lemnitzer et al. [39], Ashour and Ardalan [40]). The results
are mainly presented as the p-multipliers for various pile groups. Recently, improvement of CT
(computer tomography) and PIV (particle image velocimetry) technologies led to the experimental
studies [41-45] of soil deformation patterns under lateral loading, with the main conclusions regarding
the three-dimensional (almost conical) shape of the soil deformation zone, as well as the progressive
soil failure.
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The magnitude of the pile group interaction can be described by comparing the pile group
response with the response of equivalent single pile for the same mean loading. One of the possible
representations is the concept of pile interaction factors, which is still in use in everyday engineering
practice in Germany, through the recommendations of DIN/EN codes [46,47] and working group
“piles” (EAP) [48]. The pile interaction factor a; for the pile i inside the pile group is defined using the
following expression:

_ Hi
~ Hsp’
where H; is the lateral force on pile i and Hgp is the lateral force for on equivalent single pile, for the
same displacement level. According to the studies by Kliiber [49] and Kotthaus [50], pile interaction
factors are mainly dependent on both the pile spacing and pile position inside the pile group.
Interaction factors a; are calculated using the partial interaction factors a; (in the loading direction),
apa (perpendicular to loading direction, outer piles) and agz (perpendicular to loading direction,
inner piles), using following equations:
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The determination of pile interaction factors is illustrated in Figure 2.
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Figure 2. Determination of pile interaction factors based on the pile position inside the pile group
(after Kotthaus [50]). s; and s denote the pile center-to-center spacings in the direction of the lateral
loading Hg, and perpendicular to the direction of the lateral loading, respectively. Four different pile
types, based on the pile position inside the pile group, are distinguished and associated with four
different colors.

Proposed values for the partial interaction factors a;, g, and agy are given in Figure 3. Based on
the recommendation of EAP [48], the pile interaction factors «; are used for the assessment of the
modulus of subgrade reaction and pile bending moments for each pile inside the pile group.
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Figure 3. Values of partial interaction factors a;, aga, and agz based on the pile spacings in the loading
direction sy, (a) and the pile spacing perpendicular (b) to the loading direction s (after Kotthaus [50]).
Note that at the pile spacings s; > 6D and sg > 3D, no interaction occurs (D—pile diameter).
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Total pile group efficiency under lateral loading can be described using the following
non-dimensional parameter (n—total number of piles) GW:

n
Y. H;
Hg i=1
— = . 4
oW n-Hgp  n-Hgp @)

The pile group efficiency GW is equal to the mean value of all interaction factors «;. Lateral force
distribution between the piles can also be described using the load proportions LP;:
H;

LP; = —-.
i He

Q)

So far, most of the studies on pile group interaction effects have considered lateral loading acting
along one of the two orthogonal directions, parallel to the edge of pile group (namely X and Y directions,
Figure 1a). However, because of the stochastic nature of its source, the horizontal loading on the
pile group may have arbitrary direction. The number of studies dealing with the pile groups under
arbitrary loading is very limited. Randolph [51] defined the influence of the loading direction via simple
algebraic expressions for two laterally loaded flexible piles, both for elastic homogeneous and Gibson
soil. Ochoa and O’Neill [52], based on the experimental results in submerged sand, have developed the
interaction factors dependent on the angle between the load vector and the line that connects the pile
heads. Fan and Long [53] analyzed the interaction between the piles under various loading directions
and derived the modulus reduction factors to account for the interaction effects at the ultimate limit
state. Su and Yan [54] formulated the multidirectional p-y model for sands that was incorporated into
FEM and validated through the simulations of piles under unidirectional and multidirectional lateral
loading. Mayoral et al. [55] formulated the p-y curves for piles under multidirectional loading in soft
clays. The independent application of the common p-y curves in two orthogonal directions was found
to be impossible. Georgiadis et al. [56] analyzed the influence of the arbitrary lateral loading on the
ultimate resistance of the two rigid piles using FEM.

In their recent paper, Su and Zhou [57] presented the experimental study of 2 X 2 square and
rectangular pile groups under static lateral loading in different directions. The results of this study
have shown that the loading direction has great influence on the response of the pile group, mainly
on the redistribution of the lateral load between the piles, and on the total group bearing capacity.
The pile groups at medium pile spacing were found to be more sensitive to the variation in loading
direction. In addition, some pile load distributions have increased when the loading direction was
different than the usual 0/90° case, which leads to the hypothesis that some critical (worst-case) loading
cases exist, which can lead to the minimum foundation capacity. Such findings of this study, as well
as the fact that, up to the authors” knowledge, arbitrary loading case was studied in a very limited
number of research papers, mainly motivated further research presented in this paper.

Therefore, the main aim of this paper is to investigate the influence of arbitrary lateral loading
on the pile group response, in order to improve (extend) the current design approach for laterally
loaded pile groups. The main hypothesis of the research is that some critical pile group configurations,
loading directions, and soil conditions exist, which can lead to unsafe design. This hypothesis is
analyzed through the broad numerical study, and critical pile positions inside the commonly used pile
group configurations are identified with respect to loading directions. The influence of different soil
conditions, mainly sandy soil, is discussed.

2. Research Methodology and Scope

The methodology used in this study follows the concept of “numerical experiment”, where a
numerical simulation is used to mimic the real experiment. Compared to the real experiments, numerical
simulations allow for the large number of analyses to be done faster and cheaper. Full scale experiments
are expensive and therefore not feasible solution for the larger studies. First, the numerical model of
laterally loaded pile group was generated and validated, and then the broad parametric study was
conducted in order to assess the influence of various parameters on the pile group interaction.
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Interaction inside the pile group is influenced by various factors, such as: pile spacing and
arrangement inside the pile group, total number of piles, pile stiffness, length and diameter,
pile installation method, soil conditions, loading level, pile head conditions, pile-soil slippage and
separation, and presence of axial loading. A significant number of research papers [58-65] points out
and ranks the most important factors that influence this problem. “Apriori” sensitivity analysis of
different problem parameters, through the broad literature survey, was done in order to select the most
important parameters for further analysis.

Regarding the scope of the present study, bored piles are analyzed, as more expected in common
engineering practice. These piles can also sustain larger vertical loading, so the horizontal loading
is expected to be high as well. According to Van Impe [66], “bored and CFA piles account for 50%
of the world pile market, while the remaining is mainly covered by driven (42%) and screw piles”.
Regarding the pile length, long, flexible piles are considered, as the more common case [51]. Pile spacing
and configuration are identified as the governing factors for the pile group interaction by different
authors [2,67], while pile length and diameter are identified as the less important [32,51].

In this study, only free head piles were considered. According to Mokwa and Duncan [68],
boundary conditions at the pile head are somewhere in between the fixed and free head pile. The same
authors pointed out that the pure fixed head conditions are hard to achieve in reality, even when the
pile cap is very stiff. Despite the different deflection response of fixed and free head piles, pile load
redistribution can be considered independent on pile head conditions, especially within the working
load conditions. This statement is supported by various authors [21,32,69].

3. Numerical Model

The FEM is today considered as the most reliable and widely used numerical method for engineering
analysis of complex foundation systems. Regarding the laterally loaded pile group, FEM allows for
detailed modeling of all important model components: pile geometry, soil continuity and nonlinear
behavior, and especially the pile-soil interaction through the slippage and gapping. According to Dodds
and Martin [23], “modeling lateral behavior in any way other than with three-dimensional models
using nonlinear soil models and interface elements must constitute a compromise.” Eurocode 7 [3]
strongly suggests the use of soil-structure interaction in the numerical analysis, especially in the case of
complex foundations, such as laterally loaded pile foundations or piled-raft foundations.

Within this study, the response of the pile groups under arbitrary static lateral loading was
computed using FEM code PLAXIS 3D (Anniversary Edition) [70]. PLAXIS 3D is a world-wide
used code for the stress—strain, stability, and groundwater flow analysis in geotechnical engineering,
that supports an easy graphical input of the models with complex geometry, as well as the illustrative
presentation of the results. It also features various constitutive models for soil and rock, with different
levels of complexity.

3.1. Model Components

Numerical prediction of the laterally loaded pile group behavior is a challenging task that requires
realistic modeling of the deformation behavior of the soil, pile, and the contact between the soil and
the pile. As follows, model details for different model components are briefly presented.

3.1.1. Pile

Two pile modeling techniques are mainly used in PLAXIS 3D: full 3D (solid) pile model,
and recently implemented embedded beam model. The comparison of two modeling techniques
was studied by Marjanovi¢ et al. [71] on an idealized example of 2 X 2 pile group in loose and
dense sand, with conclusions that, in the case of the weaker pile-soil contact, pile group behavior
cannot be resembled using the embedded beam model in PLAXIS 3D. Therefore, the full 3D pile
model was adopted for this study. Pile volumes are modeled using 10-node tetrahedral elements
(nodes in the corners and the middles of the edges), with three translational degrees of freedom
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(ux, uy, uz) per node. This type of element provides a second-order (quadratic) interpolation of nodal
displacement components.

Pile behavior is assumed as linear elastic. Bowles [72] pointed out the possibility of concrete
cracking as the problem in realistic modeling of the laterally loaded pile. Comodromos et al. [73]
analyzed the influence of concrete cracking on the response of laterally loaded piles, and concluded
that, at the working load levels, fully elastic assumption of the pile behavior will not lead to the
significant change in the interaction effects and stress redistribution. Therefore, the pile constitutive
behavior is defined using the linear elastic model, based on the generalized Hooke’s law.

The extraction of the pile group results from the 3D FEM simulation is not a simple task. This is
mainly related to the determination of pile section forces (shear forces and bending moments).
Theoretically, this task is done by integration of component stresses over the pile cross section.
Despite the fact that the calculation of the section forces from volume elements is implemented in
PLAXIS 3D, this step cannot be done automatically, but requires that the user performs the whole
procedure manually for each pile volume. In order to simplify the calculation of pile section forces
and to automatize the post-processing as well, the “dummy” beams are added into the numerical
model. Such a modeling concept is common when the laterally loaded piles are modeled using the 3D
elements [74,75]. The elastic beam finite elements with very small bending stiffness (10° times smaller
than the pile bending stiffness EI) are inserted along the pile axes. Because the “dummy” beam stiffness
is very small, system stiffness matrix remains almost unchanged. “Dummy” beams are enforced to
deform together with the pile axis, and the pile section forces are then easily computed by simple
multiplication of “dummy” beam section forces with 10°.

3.1.2. Pile-Soil Interface

In reality, the contact between the piles and the surrounding soil is not fully rigid, but weaker,
so there are small relative displacements along the pile-soil interface. In general, the pile-soil interface
strength depends on the type of pile material (wood, steel, concrete, etc.) and pile installation effects
(bored, driven, jacked-in). Because this study considers only the bored piles, installation effects and
loading history were neglected.

The pile—soil contact was modeled using thin 2D interface elements. These elements are different
from the regular finite elements: they have pairs of nodes instead of single nodes, with the distance
between the two nodes of a node pair equal to zero. Each node has three translational degrees of
freedom (uy, uy, u;). As the result, these elements allow for differential displacements between the
node pairs to simulate both slipping and gapping on the pile-soil contact [70].

The constitutive behavior of the pile—soil interface is defined by the elastic-perfectly plastic
Mohr-Coulomb (MC) model with a non-associated flow rule and zero tension cut-off criterion
(when tension develops, a gap between the pile and the surrounding soil is generated). The shear
strength parameters of the pile-soil interface (Cjnter, Pinter) are related to the strength reduction factor
Rinter, which reduces the shear strength parameters (¢’ and ¢’) of the MC model, according to the
following expressions:

Cinter = Rinter C,/ (6)
tan Qiuter = Rinter tan §DI~ (7)

In general, there is lack of experimental data for real pile-soil interface parameters. Suitable
values of R, are recommended in the literature [70] for different soil types, and the usual value is
around 0.5.

3.1.3. Soil

Soil constitutive behavior is modeled using the Hardening Soil (HS) model (Schanz and
Vermeer [76]). As in the case of the MC model, the limit stress states of the HS model are defined
using the parameters for the MC failure criterion (cohesion ¢’, angle of internal friction ¢’, and dilation
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angle 1). However, the soil stiffness is described more accurately, using advanced stiffness parameters:
the triaxial loading stiffness Es, the triaxial unloading stiffness E;;,, and the oedometer loading stiffness
Eoeq- These stiffnesses are not constants, but are dependent on the loading level (principal stress state).
The magnitude of the stress level dependency is governed using the parameter m. The values of these
three stiffness parameters are not mutually independent—usually the following relationships are used:

Eso = Eoed, (8)
Eur = 3Esp. )

Opposite to the MC model, the yield surface of the HS model is not fixed in the principal stress
space, but it can expand due to plastic straining. Two types of hardening are included in the model:
shear hardening (due to primary deviatoric loading) and compression hardening (due to oedometer
and isotropic loading).

Due to the fact that the pile group response under lateral loading is mainly governed by the
properties of the top soil layer (near-surface soil conditions) [2], the soil was modeled as homogeneous
and isotropic. Because the static loading is assumed, drained soil conditions are assumed in the model.
The soil volumes are also modeled using 10-node tetrahedral elements.

3.2. Model Geometry, Discretization, and Boundary Conditions

Model side domain limits were chosen far enough from the center of the pile group, in order
to avoid the boundary effects on the model response. Sensitivity analyses were done to determine
the optimum size of the model. Because the model geometry will change for different pile group
configurations, it was adopted that the distance between the model domain sides and the edges of
the pile group remain the same. The spacing between the pile bottom (tip) and the bottom model
boundary was chosen to be relatively small, because the lateral pile group response is mainly governed
by the top soil layer in the case of flexible piles, as well as with the active pile length.

PLAXIS 3D does not allow for very precise control of the model discretization. However, it allows
the user to define “refinement zones” inside the model volume, where the mesh discretization can be
finer. Around the pile group, the rectangular prismatic refinement zone was adopted. Trial analyses
were executed on models with different discretization setups, in order to optimize the accuracy
and computational cost. The most of the model geometry parameters have been designed as the
multiplicators of pile diameter D, so the whole geometry can be parameterized as the function of pile
diameter D.

The displacements on the model boundaries were fully fixed in all directions at the bottom of the
model, while the displacements on the side planes were limited to vertical direction. The final model
geometry and the mesh refinement zone are presented in Figures 4 and 5.

3.3. Calculation Stages

Numerical simulations within the study were done as the staged (phase) analysis, and consisted
of the following stages:

1.  Initial (Ko) stage—initial stress field in the soil is established. Horizontal stress state is calculated
using the Jaky’s formula [77]: Ky =1 — sin ¢’.

2. Construction stage—soil volume is replaced with 3D finite elements that represent the piles
(wished-in-place concept). Interface elements are also activated in this stage

3. Prescribed displacements (4 increments)—the prescribed displacements up to 0.1D are applied at
the pile top, in desired loading direction. The prescribed displacements simulate the displacement
control test under static loading conditions.
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3.4. Post-Processing of the Results

Beside the complexity of described numerical model and numerical simulation itself,
data management after calculations was an equally challenging task, because all raw data had
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to be reordered to interpret the pile group results. PLAXIS 3D allows the extraction of all results in
Euclidean XY space. However, for the arbitrary loading case, the resultant maximum displacement,
shear forces, and bending moments must be recalculated, using simple vector algebra (Figure 6):

Y, M3, Q13

I]\

X, M2, Q12

Figure 6. Directions of the maximum displacements yy, shear forces Hy.y, and bending moments
My Loading direction is governed by the loading direction angle . X, Y, Q12, Q13, M2, and M3
denotes the directions of displacements, shear forces, and bending moments in XY space in PLAXIS

3D, respectively.

The most important step in the post-processing of the pile group results is the precise evaluation of

the pile shear forces. However, the shear forces extracted directly from the “dummy” beams in PLAXIS
3D are slightly unrealistic, which is the issue recognized and analyzed by Tedesco [74], who concluded
that such behavior could be associated with the PLAXIS 3D beam elements, that compute the shear
forces using the bending moment derivative along the pile length. In order to properly evaluate the pile
shear forces, first, the pile bending moments were approximated using the B-spline approximations,
with 10 interior knots and 5th order spline interpolation. Other fitting techniques, such as polynomials
and cubic splines, were also considered. Then, the shear forces profile was computed by differentiation
of the fitted pile bending moments line along the pile, and then the pile shear force at the ground
level was used for the calculation of the interaction factors. The shape of the characteristic diagrams

obtained in the numerical analysis is given in Figure 7.

H

Increase
of loading *

Displacements
Y

Shear Force
Q12, Q13

Bending Moments
M2, M3

Figure 7. Shape of the characteristic diagrams for a free head pile. Q12, Q13, M2, and M3 denotes the
shear forces and bending moments in XY space in PLAXIS 3D, respectively.

3.5. Automatization of the Calculation Procedures

Parametric study done within this research includes multiple FEM simulations, with different
combinations of input data. In such case, one of the critical “bottlenecks” are the repetitive
pre-/post-processing activities, and this part of the analysis is usually prone to errors. Despite the
fact that the PLAXIS 3D is very user friendly, the preparation and (especially) the post-processing of
multiple numerical models of the pile group is time-consuming. Scripting is a popular approach for
the automatization of numerical analysis, and such features are nowadays implemented in PLAXIS 3D
and many other FEM packages, mainly using the Python programming language. PLAXIS 3D input
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and output modules can be fully controlled through the user defined Python scripts, instead the GUI
(graphical user interface).

In order to perform the most of the calculation procedure in this study automatically, the broad
development and implementation of original Python scripts was done throughout every numerical
analysis step. In this manner, the PLAXIS 3D becomes a “problem calculator”, while the simulation
parameters and data analysis are handled by the separate computer programs. Such approach cannot
increase the single simulation calculation time, neither prevent the conceptual errors in the numerical
model, but data handling in all simulation stages becomes substantially faster.

Beside scripting, PLAXIS 3D allows for the use of multiple computers through the local area
network. Due to availability of multiple licenses of PLAXIS 3D, the set of computer programs for
multiple simulation running on different computers was developed. The parametric study was
then done on (in average) 4-7 computers at the same time, depending on the current availability.
The program was tested on up to 30 computers, and the only limit is the number of available PLAXIS
3D licenses. It is important to note that single computer calculates only one simulation at a time, but as
soon the simulation is finished, the next simulation is started automatically. This process lasts as long
as the simulation queue contains at least one simulation, and the total computation time is decreased
with the number of used computers, assuming the same simulation complexity and the same computer
hardware. This original solution has provided the optimum use of relatively expensive resources (code
licenses and computer power).

3.6. Model Validation

Numerical model was validated based on the back-calculation of the small-scale pile group test
from the literature. Trial and error analysis was used to match the experimental results with the
model response.

3.6.1. Experimental Results

A well-documented centrifuge test at 50 g, done by Kotthaus [50], was used for model validation.
Both single pile and the three pile rows at 3D spacing were back-calculated. The experimental setup
was prepared by the sand rainfall method, to achieve the desired relative sand density. Dry sand was
used for the centrifuge test. Experimental piles were fabricated as hollow aluminum tubes. The outside
pile diameter was 30 mm, and the pipe wall thickness was 2 mm. Model dimensions were chosen to
mimic the real structure, made of solid concrete piles. The model and prototype dimensions are given
in Table 1. Prototype model dimensions are determined according to scaling laws [78].

Table 1. Centrifuge model dimensions (after Kotthaus [50]). Prototype model mimic the real concrete
pile, with the concrete class between C20/25 and C25/30.

Centrifuge Model Prototype  Real Structure

Pile diameter D (m) 0.030 1.5 1.5
Pile embedment length L (m) 0.600 30 30
Pile length above ground level L2 (m) 0.085 4.25 4.25

Pipe wall thickness t (m) 0.002 0.10

Pipe inner diameter d (m) 0.026 1.30
Young’s modulus E (MN/m?2) 70 000 70,000 30,508

Moment of inertia I (m*) 1.73 x 1078 0.108 0.2485
Bending stiffness EI (kNm?2) 1.2130 7,581,448 7,581,448

Free head pile top conditions were provided using the screws that allowed for the rotation of
the pile head, but enforced the same pile top displacements (displacements control test). In order
to increase the pile soil friction inside the dense sand, soil particles were glued onto the pile shaft.
The point of load application was above the ground level, because of the experimental setup.
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3.6.2. Validation Results

For the accurate numerical simulation of geotechnical problem, the first step is selection and
proper calibration of the soil constitutive model. The available experimental soil testing results for
the dense sand (Cy = 2.08, D1g = 0.12 mm, D5y = 0.23 mm, epax = 0.914, epin = 0.583) used in the
centrifuge experiment by Kotthaus [50] were used for the calibration of the hardening soil model in
PLAXIS 3D. The effective angle of internal friction for the dense sand was initially assumed as ¢” = 41°,
and oedometer modulus as E,eq = 28 MPa, based on the results of the sand laboratory tests given
in [50,79]. However, slight trial and error adjustments of initially assumed values had to be done in
order to better match the measured pile group response. This alteration is justified by the fact that the
stress states around the laterally loaded are not fully matched by conventional laboratory tests. Finally
adopted constitutive model parameters are given in Table 2.

Table 2. Hardening soil model parameters after back-calculation of experimental results.

Model Parameter Value
Volumetric weight y (kN/m3) 16.6
Cohesion ¢’ (kN/m?) 0
Angle of internal friction ¢’ (°) 35
Dilation angle ¢ (°) 5
Triaxial loading stiffness E5q (kN/m?) 28,800
Oedometer loading stiffnessEqeq (kN/m?) 28,800
Triaxial unloading stiffness Eyr (kN/m?) 115,200 (=4Esq)
Poisson’s ratio v (-) 0.25
m (-) 0.47
Rinter (-) 0.654

The measured vs. computed load-displacement response is given in Figure 8. Despite slight
discrepancies, presented results of the model validation show a satisfactory match with the experimental
results and the overall performance of the numerical model is considered to be acceptably accurate for
the parametric study of the considered problem.
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Figure 8. Measured (triangles) vs. computed (red line) load-displacement response for (a) single
pile; (b) pile row—front pile; (c) pile row—middle pile; (d) pile row—rear pile. Horizontal (lateral)
displacements are given in prototype scale.
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4. Parametric Study

The scope of this study was designed with the aim to assess the most anticipated practical
situations with the reasonable complexity. The following major problem parameters, according to
“apriori” sensitivity analysis, were selected for this study: soil type, pile group configuration, and pile
spacing, as well as the loading direction, as the main parameter under investigation (Figure 9).
The selection of study parameters is briefly elaborated in the following subsections.

Loading direction
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Figure 9. Sketch of the parametric study parameters: left—side view; right—top view; f—angle of
direction of lateral loading.

In all simulations, a pile Young’s modulus of 30.5 GPa was adopted to simulate the most common
concrete class used in everyday engineering practice. Pile length L and diameter were kept constant:
D =1.0m, and L = 20.0 m. These values provide flexible pile behavior (L/D = 20). The pile head was
extended above the ground level (L2 = 0.25 m), to avoid numerical instabilities caused by the high
concentrated forces at the place of observation the horizontal displacement.

Two “synthetic” soil types, loose and dense dry sand, were simulated. Brown et al. [26] noted
that the shadowing effect was more pronounced in sand compared with stiff clay. Constitutive model
parameters for dense sand was adopted to be close to the parameters of the validated numerical model,
and loose sand parameters were chosen as significantly different, in order to compare the soil stiffening
effects on the pile group response. The parameters of the investigated soils are summarized in Table 3.

Table 3. Hardening soil model parameters for the “synthetic soils”, compared with the parameters of
validated numerical model.

Model Validation Parametric Study

Model Parameter

Dense Sand Loose Sand Dense Sand
Volumetric weight y (kN/m?) 16.6 16 18
Cohesion ¢’ (kN/m?2) 0 0 0
Angle of internal friction ¢’ (°) 35 30 42
Dilation angle ¢ (°) 5 0 12
Triaxial loading stiffness Esg (kN/m?) 28,800 15,000 30,000
Oedometer loading stiffnessEyeq (kN/m?) 28,800 15,000 30,000
Triaxial unloading stiffness Ey; (kN/mZ) 115,200 60,000 120,000
Poisson’s ratio v (-) 0.25 0.25 0.25
m (-) 0.47 0.50 0.50
Rinter (<) 0.654 0.65 0.65
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Pile groups with different pile arrangements were analyzed, as summarized in Table 4.
The numerical model symmetry could not be applied. In order to effectively analyze and discuss the
interaction effects, as well as to limit the calculation time, it was decided to limit the total number of
piles inside the pile group up to 3 x 3 piles.

Table 4. Summary of analyzed pile group configuration. The loading direction angle was varied in
15° increments.

Pile Group Shape NxM S, (D) S,(D) Loading Direction 8 (°)
2x2

N
N

Square 3%3 3 3 0/15/30/45
2 3
2 4
2 5
2x2 3 4
3 5
4 5
2 2
2 3
2 4
3 2
3 3
3 4
Rectangle 2x3 i g 0/15/30/45/60/75/90
4 3
4 4
4 5
5 3
5 4
5 5
2 3
2 4
2 5
3x3 3 4
3 5
4 5

From the practical standpoint, it is a more common case that the configuration of the pile group
(NxM) varies (square, rectangular, circular, etc.), while the spacing between the piles is kept on the
lowest possible level. If the pile spacing is higher than 5D, the costs of the pile cap will increase to a
very high level [60]. In this study, pile spacing between 2D-5D were investigated.

5. Results and Discussion

The results of the parametric study are presented in the form of pile interaction factors and
maximum bending moments for each pile inside the pile group, with respect to loading direction.
The representative plots are given to illustrate the main results trends. All results are presented for the
displacement levels 0.03D (y/D = 0.03) and 0.10D (y/D = 0.10).

All original computer codes, PLAXIS 3D AE numerical models, raw simulation results and results
databases are available from the first author via e-mail upon request.

5.1. Pile Interaction Factors

Pile interaction factors for different pile group configurations are presented on Figures 10-13.
Full lines denote the results for loose sand, while dashed lines denote the results for dense sand.
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Figure 10. Pile interaction factors for square 2 X 2 pile group (sx = 2D, s, = 2D). Different colors denote
piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.
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Figure 11. Pile interaction factors for rectangular 2 X 2 pile group (sx = 2D, sy = 3D). Different colors
denote piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.
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Figure 12. Pile interaction factors for rectangular 2 X 3 pile group (sx = 2D, s, = 2D). Different colors
denote piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.

Pile interaction factors for the closely-spaced square 2 x 2 pile group (sx = 2D, s, = 2D) are
presented in Figure 10. The significant influence of the displacement level is observed—the interaction
factors are changing in a broader range at the higher displacement level. The influence of the soil
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type is also pronounced, but at the smaller level, compared to the pile position inside the pile group.
Similar trends can be seen for the square 3 x 3 pile group interaction factors, given in Figure 13.
The effects of symmetry are clearly observed: the black and green pile have the same interaction factors
for the loading direction angle equal to zero. For the direction angle of 45 degrees, the green and blue
pile have the same interaction factors, due to symmetry. In addition, the well-known behavior of front
and rear piles can be observed: for the loading direction angle equal to zero, black and green (front)
piles carry higher loading than red and blue (rear) piles.
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Figure 13. Pile interaction factors for square 3 X 3 pile group (sx = 3D, sy = 3D). Different colors denote
piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.

Pile interaction factors for the closely-spaced rectangular 2 x 2 pile group (sx = 2D, sy = 3D)
are presented in Figure 11. The similar shape of the plot is also observed for different pile spacing,
with decreased interaction with increased pile spacing. As in the previous case (Figure 10), the significant
influence of the displacement level and medium influence of soil type on pile group interaction is
observed. The behavior of green and blue piles is significantly different, compared to the other two
piles. The changing of interaction factors for these piles is more pronounced with the variation in
loading direction. Therefore, these piles can be considered as sensitive to change in loading direction,
which can lead to the unsafe design in the case of unpredictable change of loading direction.

Pile interaction factors for the closely-spaced rectangular 2 X 3 pile group (sx = 2D, sy = 2D) are
presented in Figure 12. The interaction factors in this case follows the same trends as in the previous
case. The green, purple, and black pile can be considered as more sensitive.

Finally, pile interaction factors for square 3 X 3 pile group (sy = 3D, sy = 3D) are presented in
Figure 13. The trend lines, in general, follows the same pattern as in the case of the 2 X 2 square

pile group.
5.2. Maximum Bending Moments

Maximum pile bending moments for different pile group configurations are presented in
Figures 14-16. Full lines denote the results for loose sand, while dashed lines denote the results for
dense sand.

As shown in Figure 14, maximum pile bending moments are not significantly influenced with the
loading direction. As expected, higher bending moments occur in dense sand (due to the displacement
control test and larger soil resistance in dense sand). Beside the higher absolute bending moment,
the displacement level does not affect the distribution of the bending moments between the piles. It can
be concluded that the pile group configuration and pile position are the governing factors in this case.
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Figure 14. Maximum bending moments for square 2 x 2 pile group (sx = 2D, Sy = 2D). Different colors
denote piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.
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Figure 15. Maximum bending moments for rectangular 2 x 3 pile group (sx = 2D, sy = 2D). Different
colors denote piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.
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Figure 16. Maximum bending moments for square 3 X 3 pile group (sx = 3D, sy = 3D). Different colors
denote piles inside the pile group. Full lines—loose sand; dashed lines—dense sand.

In the case of the rectangular 2 x 3 pile group (sy = 2D, s, = 2D), maximum pile bending moments
(Figure 15) are distributed more unequally between the piles, compared with the square pile group at
the same pile spacing. Again, higher bending moments occur in dense sand. In addition, the influence
of the lateral loading direction on the maximum bending moments can be considered as less important,
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compared to the pile position inside the pile group. The same pile groups (2 X 3) with different spacing
show similar trends, with less moment differences between the piles at larger pile spacing (as expected).

Maximum pile bending moments for the square 3 X 3 pile group (sy = 3D, s, = 3D) follows the
similar trend as the smaller square pile group, but with significantly higher differences of the maximum
moment between the piles. In general, the maximum bending moment between the piles shows larger
discrepancies with the increased number of the piles in the pile group configuration.

6. Conclusions

A broad numerical experiment has been conducted to examine the influence of the arbitrary lateral
loading direction on the interaction inside the pile group. Free head, flexible bored piles in dry sands
were considered. The FEM 3D numerical model was designed and validated by back-calculation of the
existing experimental results. The capabilities of PLAXIS 3D software to perform multiple numerical
simulations have been tested in an automated scripting environment, using original computer programs.
The common approach to the analysis of the laterally loaded pile group is expanded with the pile
interaction factors for the arbitrary loading direction. The results of the study provide more clear insight
into the pile group behavior under lateral loading. Based on the presented analyses, the following
conclusions can be made:

1.  Modeling of the laterally loaded pile group using the full 3D finite element model provides
reasonable results for the case of the bored piles.

2. As expected, the level of interaction between the piles is higher at higher displacement levels.
The influence of the displacement level on the pile group interaction effects should be investigated
in more detail, especially at small displacement levels.

3. The interaction level is decreased with increased pile spacing. By means of quantification,
interaction factors are between 0.6-0.9 for working load levels, and 0.4-0.9 for high loading levels.

4.  The pile interaction factors are dependent on soil type, but soil conditions are less important
factor, compared to pile group configuration, displacement level, and pile position inside the
pile group.

5. Theinfluence of the loading direction on the maximum bending moments is relatively small, which
is expected, given the central symmetry of the circular piles. The soil conditions significantly affect
the bending moments. The displacement level does not affect the maximum bending moment
distribution between the piles. Bending moment discrepancies are more pronounced with the
increased number of piles.

6.  The force in some individual piles inside the pile group significantly changes with the change of
loading direction. These piles can be considered as sensitive, because the change of the loading
direction can be unpredictable. The critical positions of these piles inside the pile group have
been identified for the considered pile group configurations.

7. The concept of multiple numerical simulations, followed with original computer programs,
could be easily extended to other numerical models and more used in everyday practice. Bearing
in mind that the simulation sets can be run during the night, this approach leads to the optimum
use of hardware and software resources.

The presented conclusions emphasize the importance of the considered problem and can lead to
further research topics in various fields. Due to availability of modern experimental techniques, such as
CT and PIV, the experimental analysis of soil deformation patterns under arbitrary loading would
provide better insight in the problem and lead to more accurate numerical models. The identified
concept of sensitive piles should be investigated in more detail, with the aim to eliminate the sensitive
elements from the foundations design. The influence of the different water level in the soil could also be
investigated in more detail, since this paper considered only dry sand. Finally, the speed of numerical
simulations could be reduced with the alternative modeling approaches—through development of



J. Mar. Sci. Eng. 2020, 8, 800 18 of 21

improved embedded beam model formulations (with advanced interface) in FEM, as well as the more
advanced strain wedge model (with arbitrary wedge orientation).
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