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Abstract: The human migration from rural to urban areas has triggered a chain reaction causing
the spiking energy demand of cities worldwide. High-rise buildings filling the urban skyline could
potentially provide a means to improve the penetration of renewable wind energy by installing wind
turbines at their rooftop. However, the above roof flow region has not received much attention
and most results deal with low-rise buildings. This study investigates the flow pattern above
the roof of a high-rise building by analysing velocity and pressure measurements performed in
an atmospheric boundary layer wind tunnel, including four wind directions and two different
roof shapes. Comparison of the surface pressure patterns on the flat roof with available low-rise
building studies shows that the surface pressure contours are consistent for a given wind direction.
At 0◦ wind direction, a separation bubble is detected, while cone vortices dominate at 30◦ and 45◦.
The determining factor for the installation of small wind turbines is the vicinity to the roof. Thus,
45◦ wind direction shows to be the most desirable angle by bringing the substantial amplification of
wind and keeping the turbulence intensity low. Decking the roof creates favourable characteristics by
overcoming the sensitivity to the wind direction while preserving the speed-up effect.

Keywords: wind tunnel experiments; velocity measurements; pressure measurements; urban wind
energy harvesting

1. Introduction

The world has been rapidly urbanising for the past five decades, with ~54% of the population
currently living in urban areas, expected to reach ~66% by 2050 [1]. As a result, cities are transforming
with more high-rise buildings being planned to cope with the increasing dwelling demand, living
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standards and sustainability [2]. This unprecedented societal change goes in parallel with a meteoric
rise in the energy demand, estimated to increase by 56% before 2040 [3].

Renewable energy needs to play a crucial role to meet the demand without affecting urban
resilience and sustainability. Wind energy represents the most successful source of renewable energy,
due to its steadily increasing reliability, ever-reducing costs and economical and environmental
feasibility [4]. While the predominant wind energy production comes from large wind farms, having
received enormous resources to optimise their output [5], an opportunity may arise from distributed
generation [6], with small wind turbines installed in optimal locations close to consumers. A recent
study showed that, in a hypothetical scenario, having small wind turbines installed on 1500 high-rise
buildings in major cities in the Netherlands, urban wind energy has the potential to annually yield
150 GWh of electricity, i.e., enough to power up ~60,000 typical Dutch households [7]. Advocates of
urban wind energy harvesting support it due to the perspective of having ready-to-use energy at the
consumption place, eliminating a significant cost contribution in wind farms [8,9].

Some authors have attempted to estimate the potential of generating wind energy in cities, using the
annual wind speed variability and the typical installation height as reference [10,11]. Although results
suggest that small-scale wind turbines are only to be installed on the outskirts of cities, the local
flow conditions are normally not considered for such evaluations, hence these studies have a limited
scope. The ideal method to assess the local wind flow pattern above buildings would require to
directly perform measurements on site, as done for wind farms. This is a rather expensive solution,
which is not yet justified in terms of the expected yield of urban wind energy [12,13]. However, other
approaches can be used for the assessment of the wind resource in urban areas, including atmospheric
boundary layer wind tunnel testing or computational fluid dynamics (CFD). In recent years, CFD has
successfully provided a way for the determination of mean flow conditions and it has contributed
to the understanding of the wind flow above buildings. However, the accuracy and reliability of the
CFD solutions remain a concern that requires further validation efforts [13,14]. Thus, wind tunnel
experimentation is still considered to be the most effective approach [13].

The main constraint to the performance of small wind turbines installed on buildings comes
essentially from the lack of information on the urban wind resource at the installation site [13,15].
In fact, the urban flow is very complex and strongly influenced by the building features, spacing or
relative height between them, or their orientation with respect to the main wind direction [16]. As the
performance of a wind turbine in the built environment is only significant when there is an adequate
wind supply, buildings minimising the disturbance to the wind resource or, even better, enhancing the
wind flow would be expected to augment greatly their wind energy potential [12]. Campos-Arriaga [17]
confirmed that among buildings in a given location, the tallest ones show to improve the wind energy
resource, and hence are to be preferred as suitable locations to install wind turbines.

Besides the importance of the local wind speed acceleration, turbulence is another important factor,
which affects the design, the operability and service life of wind turbines. Moreover, the assessment of
the wind energy potential should also account for different approaching wind directions.

Most of the literature about the flow pattern above buildings is related to isolated low-rise
buildings. The majority of works report on wind tunnel studies focusing on the relationship between
flow pattern and surface pressure. Ginger and Letchford [18] studied the flow mechanism above a
low-rise building under different wind angles. They identified a 2D separation bubble forming when
the flow is perpendicular to the building side, and 3D conical vortices for oblique angles. Kawai
and Nishimura [19] also detected conical vortices from surface pressure under smooth and turbulent
boundary layer inflows under oblique wind. The study revealed that fluctuations in the surface
pressure are correlated to the movement of conical vortices forming above the roof. Subsequently,
Kawai [20] used hot-wire anemometry to reconstruct the structure of conical vortices above the roof.
The strength of the conical vortices is larger in the smooth flow than in the turbulent flow. The presence
of 3D conical vortices has also been confirmed using the quasi-steady theory [21], laser Doppler
anemometry [22,23] and numerical large eddy simulation [24]. Further investigations on the formation
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mechanism, size and fluctuation of conical vortices have been provided investigating the effect of
incident winds [25,26] and the shape of the building [27,28], leading to the development of analytical
models for conical vortices on low-rise buildings [29–31].

More specific works related to urban wind harvesting are mostly related to idealised parametric
studies considering simple configurations, for example, standalone cubes, prismatic buildings or
groups of simple buildings [13]. Besides the flat roof type, many studies also investigated other
types of roofs aiming at finding more favourable shapes for wind energy potential. These studies are
dominantly using CFD as a methodology. For example, Toja-Silva et al. [32] considered a flat-roof
building with a 2:1 height-to-width ratio. Different turbulence models were tested and results were
compared with experimental data to identify the regions of the roof that perform best. Ledo et al. [33]
investigated the flow above low-rise buildings using CFD with regards to the shape of the roof, either
flat, pitched or pyramidal. Based on the turbulence intensity and the velocity above the roof, the flat
roof presented the most favourable shape. Moreover, it was found that the power density above the
flat roof is greater and more consistent than above the other roof types. Abohela et al. [34] performed
CFD simulations further focusing on the effect of roof shape and expanded the analysis covering the
flow above spherical and vaulted roofs with lower turbulence characteristics. Additionally, Toja-Silva
et al. [35] investigated the roof–wall transition geometry by testing different variations of a spherical
roof using CFD and showed that a soft transition (curved edge) between the wall and the roof leads
to a desired speed-up. Lu and Ip [11] carried out CFD tests investigating the wind flow over three
configurations of two tall buildings by considering parameters such as building height, type of roof
(flat and cater-corner flat roof) and distance using meteorological data. Balduzzi et al. [36] characterised
the flow field in the rooftop area of two buildings using CFD and assessed general criteria as the height
and the width of its upwind building and the distance between the buildings themselves, to evaluate
the convenience of a microeolic turbine installation on the roof.

In contrast, there are very few wind tunnel tests focusing specifically on wind velocity
measurements of the flow above the roof of high-rise buildings. An example of a well-documented
wind tunnel database was published by the Architectural Institute of Japan (AIJ) [37]. The database
aims to provide benchmark validation test cases to validate CFD studies and, eventually, it was used to
set best practice guidelines for the prediction and the assessment of the pedestrian wind environment
around buildings [38]. Along with low-rise test cases, the AIJ also reports on high-rise buildings.
Another similar database is the CEDVAL database [39], which was designed to validate numerical
dispersion models. CEDVAL provides flow measurements of cubic and prismatic building shapes
either isolated or in a regular array. Both AIJ and CEDVAL datasets have in common the fact that
they mostly report pedestrian level winds. Although some measurement points above the roof are
provided, they are limited in scope and extension.

Therefore, the flow above the roof of high-rise buildings remains a rather unexplored topic
of building aerodynamics. Moreover, the effect of the wind direction is also largely disregarded
in investigations.

Incidentally, CFD studies in the literature do present some sort of validation using experimental
data, however more appropriate test cases are needed, including measurements of the velocity field at
more specific locations above the roof [35,40]. This study aims to provide an adequate database with
test cases specifically targeting the wind energy potential over high-rise buildings. An experimental
campaign was performed at the “Building Aerodynamics Laboratory” of Ruhr University Bochum
(WIST). Within this campaign, the presented study is contributing to the identification of the flow
pattern above an isolated high-rise building with a height-to-width ratio of 3:1 under different incident
wind directions. Besides considering a flat roof benchmark case, the study also treats a deck roof
case, presumably more favourable for improving wind energy harvesting. The present dataset is
available at Mendeley Data [41]. The flow above the same high-rise building model was also analysed
in [42] with reference to building clusters, and that dataset is also available at Mendeley Data [43].
Both experimental studies were part of the activities of the EU COST Action TU1304 [44,45]. In addition,
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the presented work brings more insight into the flow-specific characteristics, particularly important for
urban wind exploitation. It also provides a comparison to the flow pattern observed above flat-roof
low-rise buildings, in terms of flow structures and augmented wind speed.

2. Experimental Methodology

2.1. High-Rise Building Models

A 1:300 scale model of a high-rise building, square in plan, has been used in this investigation.
Two roof shapes are considered: a flat roof and a deck-type roof as shown in Figure 1a,b, respectively.
As shown in Figure 1a, the height of the building is denoted by H (400 mm) and the width by D
(133.3 mm).
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In the context of the atmospheric boundary layer winds, low-rise buildings are defined as
those having two heights smaller than the width (2H < D) and H < 30 m [46]. This matches the
definition of squat buildings given by Cook [47], whereas the building is considered tall when 2H > D.
This distinction is made based on the behaviour of the wind and its path to overcome the building as an
obstacle. When the building is tall, the wind finds it easier to flow around the sides than over the top
of the building, except for an area very close to the top, as opposed to squat buildings [47]. In recent
literature, related to the flow around buildings, the term high-rise building is used for buildings having
a height-to-width ratio of H/D ≥ 2:1, as in [48,49]. Thus, the ratio of H/D = 3:1 is chosen as an example
for the geometry of a high-rise building.

The inclination of the deck roof in Figure 1b is 30◦. The dimensions of the deck roof are the same
as those of the flat-roof building with the added cap to the flat roof. The hypothesis here is that the
deck-type roof helps to reduce both the separated flow and its turbulence intensity in the above roof
flow and hence enhance the quality and mean speed of the wind above the roof for wind energy
harvesting. The flow pattern around the two buildings was investigated under four different wind
angles, namely 0◦, 15◦, 30◦ and 45◦.

2.2. Wind Tunnel Setup and Incoming Flow

The experiments have been conducted in the atmospheric boundary layer wind tunnel of the
Ruhr-University Bochum, Germany. The wind tunnel has a cross-section of 1.6 × 1.8 m2 and a test
section length of 9.4 m. Figure 2 shows the wooden models mounted on a rotating table in the wind
tunnel. The reference velocity Uref used to normalise the data was measured using a Prandtl tube
mounted at the height of the high-rise building model and placed 1 m upstream of the model. Reynolds
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number related to all measurements based on the mean velocity at the height of high-rise building and
the side of the roof is Re ~ 1.4 × 105. Horizontal buoyancy is found to be absent in the wind tunnel,
as very low decay of the static pressure is measured throughout the measurement section [50].Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22 
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Figure 2. The two building models mounted in the wind tunnel, (a) flat roof and (b) deck roof.

The boundary layer flow is generated in the wind tunnel using both spires at the tunnel inlet
and roughness elements as shown in Figure 2a. The mean wind profile matches that of a power law
with the exponent of 0.2 as shown in Figure 3a. This wind profile is found to be consistent in the
lateral direction of the wind tunnel, covering the central portion of the test section. This spans over
approximately 0.9 m at least (±0.45 m from the central position), which is outside of the influence of
the walls [51]. This is representative of the terrain category II [52] simulating realistic conditions of the
flow around isolated high-rise buildings. Further, measured data can be used as an approximation for
the flow pattern in case of an urban area with a dominant high-rise building surrounded by low-rise
buildings. This arrangement is common on the outskirts of large cities, university campuses displaced
from city centres, etc., all representing potential locations for efficient urban wind energy harvesting.
The mean stream-wise wind speed (Uref), the stream-wise turbulence intensity (IU) and the vertical
turbulence intensity (IW) at the height of the model are 16 m/s, 13% and 11%, respectively.
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Figure 3. (a) Mean stream-wise wind speed (U/Uref), stream-wise turbulence intensity (IU) and vertical
turbulence intensity (IW) profiles, measured from the floor of the wind tunnel (Uref is the mean wind
speed at the model height), (b) longitudinal velocity spectrum at the height of the model.
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2.3. Experimental Procedure

In addition to the velocity measurements, the surface pressure has also been obtained at different
locations to present a comprehensive database where pressure and wind speed results can be used as a
validation test case.

The surface pressure on the roofs of the models was measured using 64 pressure taps, distributed
as shown in Figure 4. The pressure sensors are four active element piezoresistive bridges. Two different
pressures sensors were used: Honeywell 170 PC (measurement range: ±35 mbar) and AMSYS
5812-0001-D-B (measurement range: ±10.34 mbar). Due to the narrow spaces in the model, the pressure
sensors were placed outside of the model and connected to the bores in the wooden deck by brass
connectors (inner diameter 1 mm) and plastic pressure tubes (inner diameter 1.5 mm), that are freed
from burrs and debris. The length of plastic pressure tubes was about 0.9 m. The calibration of
the pressure measurement system included two phases: static and dynamic. The static calibration
was performed to establish the pressure–voltage relation for each pressure sensor, while dynamic
calibration was performed to correct the dynamic effects of tubes [53]. Surface pressures were acquired
with a sampling frequency of 1000 Hz and were scanned in a sample-and-hold modus, enabling the
simultaneous sampling of signals. For each measurement, 28 samples of 4.7 s length were collected,
where each sample corresponds to a 10 min long sample in full scale. The maximum uncertainty of
surface pressures based on five repeated measurements was estimated to be ~2.5%. More details about
the pressure measurement equipment that consisted of pressure sensors, a tubing system, amplifiers
and analog/digital (A/D) converters can be found in [54].
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The velocities above the roof were mainly measured at three different heights (z/D = 0.075,
0.3 and 0.45) above the points marked in red in Figure 4. In addition, above points 36 of the flat
roof and 58 of the deck roof, at the centre of the roof, ten heights are considered with the spacing
of z/D = 0.075. The hot-wire anemometer consisted of two cross wires allowing to measure both
stream-wise and vertical velocity components. All velocity data, including hot-wire anemometer
and Prandtl tube, are sampled with the frequency of 2000 Hz. The hot-wire anemometer was
calibrated in laminar flow conditions in a calibration tunnel by exposing a probe to the set of known
velocities, while corresponding voltages were recorded. The adopted fitting curve is a fourth order
polynomial curve with coefficients calculated by fitting the data in the least-squares sense. Uncertainties
related to the velocity measurements were calculated following the procedure presented by [55,56].
The total uncertainty of the velocity consisted of calibration, linearisation, positioning of the probe,
digitalisation and uncertainty due to variation in the experimental conditions (such as temperature or
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ambient pressure). The maximum uncertainty of the time-averaged stream-wise velocity was 5.6%.
The maximum uncertainties of the stream-wise and vertical turbulence intensities were estimated to be
9.6% and 9.4%, respectively. These uncertainty estimates correspond to the 95% confidence interval.
The manual positioning of the hot-wire anemometer was detected as one of the main contributions to
uncertainty, as established based on three repeated measurements at ten different heights above the
middle point of the flat roof.

The flow in the roof region is expectably inherently 3D. Some degree of cross-flow is expected in
those regions of the flow where vorticity occurs, i.e., closer to the surface. Eventual three-dimensionality
in the flow is estimated looking at the performance of the signal measurements and the level of
turbulence intensity. In regions where IU > 30%, the flow is likely to be affected by a reversed direction
or strong cross-component. It is worth noting that even using 3D probes, reversed flow conditions
cannot be detected either. Furthermore, those regions of highly skewed flow are not suitable for urban
wind energy. Therefore, the degree of precision given by hot-wire anemometry is considered sufficient
for the scope of the study: to understand the evolution of vortex structures and compare them to the
surface pressure distribution for the sake of wind energy applications.

No blockage corrections of the measured results were considered, as even in the worst case,
the normal-to-wind areas of the testing models were smaller than 1.8% of the wind tunnel cross-section.

3. Results

3.1. Flat-roof Building

3.1.1. Wind Velocity

In this subsection, the velocity measurements above the flat-roof building are discussed for the
four wind angles of attack, 0◦, 15◦, 30◦ and 45◦. The velocity profiles over two alignments, x/D = 0.2
and x/D = 0.8, are plotted in Figure 5, considering points 18–50 and 22–38–54 (Figure 4a). Depending
on different wind angles, the positions of these points are changing. For example, at small angles,
point 18 lies in the upstream half of the roof, while point 50 lies downstream. However, in the case
of large wind angles, both points 18–50 are in the upstream half of the roof. In addition to velocity
profiles, Figure 5 shows the longitudinal (IU) and vertical (IW) turbulence intensities, obtained by

IU= σU/U; IW= σW/U (1)

where σU and σW are the standard deviations of stream-wise and vertical wind velocity components
and U is the mean stream-wise wind speed. Figure 5 also illustrates the acceleration of the stream-wise
wind speed as calculated with (U − Uref)/Uref, where Uref is the mean reference velocity measured with
a Prandtl tube placed upstream of the model.

Figure 5a shows the velocity profiles above points 18 and 22 for the wind angle of 0◦. A strong
separation develops at the upstream edge, as velocity vectors above the height of z/D = 0.3 point
upwards. In the vicinity of the roof, a high stream-wise turbulence intensity zone can be detected,
reaching up to a value of 55%. In regions of turbulence intensities >30%, hot-wire measurements are
expected to be affected by some inaccuracy and, therefore, results cannot be treated as reliable [55].
Nevertheless, these high values of turbulence intensity confirm the existence of separated flow.
The separation bubble from the windward edge reattaches in the vicinity of points 50 and 54, as velocity
vectors point downwards.
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and (d) 45°. The arrows indicate the velocity magnitude normalised with the reference velocity (Uref), 
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Figure 5. Velocity vectors profiles, based on the stream-wise and vertical velocity components, showing
the stream-wise turbulence intensity IU, the vertical turbulence intensity IW and the percentage increase
in the stream-wise wind speed. Each numerical value reported at every measurement point in the figure
shows the following statistics: IU [%] above on the left; IW[%] below on the left; (U − Uref)/Uref[%]
below on the right. Profiles over the flat-roof high-rise building are measured above points 18 and
50 (belonging to the marked line x/D = 0.2, left) and above the points 22, 38 and 54 (belonging to the
marked line x/D = 0.8, right) for wind directions: (a) 0◦, (b) 15◦, (c) 30◦ and (d) 45◦. The arrows indicate
the velocity magnitude normalised with the reference velocity (Uref), as referred to the unity vector
represented in the legend.
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At 15◦, the velocity profiles above the upstream points 18 and 22 are similar to those found at 0◦.
However, profiles above points 38 and 50 show some differences. The velocity vectors above point
38 are no longer parallel to the roof, pointing slightly upwards, suggesting a downwind shift of the
average moving vertex core. Besides, vectors above point 50 at heights z/D ≥ 0.3 are nearly parallel to
the roof, seemingly out of the separation region, as the flow behaves analogously to points upstream of
the separation bubble.

As the wind angle increases to 30◦, a small separation cone generates along the upstream edge
of the building, starting at its upstream corner. The down-pointing velocity vectors at the lower
measuring points suggest that both points 18 and 50 are located at the tail of the separation cone where
the flow tends to attach to the roof. The profiles above the line x/D = 0.8 indicate a slightly smaller
separation compared to the 15◦ wind angle. This is followed by the reduction in turbulence intensities
of the flow above points 38 and 54.

At 45◦, the wind flow is highly turbulent close to the roof above point 50 and less turbulent above
point 18. This suggests that a large separation cone occurs at the upstream edge and increases in size
along the length of the building side. In this particular case, the lower measurement position above
point 50 lies entirely in the separation zone as IU is larger than 50%. In addition, another separation
cone formed along the other upstream side of the building is affecting the flow above points 22 and,
to a lesser extent, 38. In fact, the lower measurement position above point 38 is pointing slightly
downwards, suggesting that it is located at the tail of the separation cone. However, the flow at higher
positions above points 38 and 54 seems to lie out of the influence of the separation cone.

One possible way to verify inferences related to the flow patterns is the use of flow visualisation
techniques, such as smoke injection. Another way would be to perform and analyse CFD simulations
that are validated with the presented experimental results. Thus, future work will focus on justifying
and exploring in-depth recognised flow patterns.

Figure 5 also shows that the pair of points 18–22 and 50–54 at 0◦ and 22–50 at 45◦ have a similar
configuration, confirming that the flow is symmetric at those angles.

3.1.2. Surface Pressure

The flow pattern above the roof can also be analysed based on surface pressure. In addition, surface
pressure can provide more reliable validation as it usually has lower uncertainty levels compared to
velocity measurements. Figure 6 shows the contours of the mean surface pressure coefficient of the
flat-roof building, at the four wind angles. The pressure coefficient (Cp) is defined as

Cp = (p− p∞)/(0 .5ρU2
re f

)
(2)

where p∞, ρ and Uref are the free-stream pressure, the air density and the reference velocity, respectively.
Figure 6a shows a significant reduction in the surface pressure at 0◦ close to the upstream edge due

to the flow separation, followed by a subsequent increase downstream. A similar distribution of the
surface pressure is found at 15◦ with a slightly higher reduction in the pressure close to the upstream
corner. At higher wind angles of 30◦ and 45◦, the contour maps are similar to each other, with a
high reduction in surface pressure located at a limited area along both upstream edges. This pattern
of pressure contours indicates the existence of two intense conical structures, as observed from the
velocity measurements presented in Figure 5. As expected, for the 45◦ wind angle, the surface pressure
distribution is symmetrical around the diagonal line of the roof. The non-uniform arrangement of the
measuring taps might be responsible for the slightly asymmetric pattern in Figure 6d.
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To provide an improved understanding of the effect of the wind direction on the surface pressure,
Figure 7 shows the mean pressure coefficient and its standard deviation along two alignments on the
roof, at x/D = 0.35 and x/D = 0.8. For all wind angles in Figure 7a, a characteristic upstream hump
shape is observed, which is typical for a flow with a separated region followed by a reattachment [57].
The hump shape is related to the high negative pressure values in the separation region. The largest
suction lies directly below the average moving vortex core [23]. The length of the mean recirculation
region is related to the peak location of the standard deviation value, considering that the peak occurs
just upstream of the mean reattachment position [57]. For wind angles of 0◦ and 15◦, the hump shape is
wider than in the case of 30◦ and 45◦. This is the consequence of the large separation bubble generating
at the upstream edge, which entails a long recirculation region. Comparing Figure 7a,b, the growth
in the size of the conical vortices along the side of the building can be noticed for the 30◦ and 45◦

wind angles.
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for different wind angles, 0◦, 15◦, 30◦ and 45◦, along different alignments on the roof: (a) x/D = 0.35,
(b) x/D = 0.8.

3.1.3. Turbulence Intensity and Flow Acceleration

Figure 8 gives further insight on the turbulence intensity in the stream-wise (IU) and vertical
(IW) directions above all measuring points for the four wind angles. Along with local wind profiles,
the inflow turbulence intensity at the same height is also shown as a reference (taken from Figure 3),
using a black-filled circle mark.

At 0◦, the stream-wise turbulence intensity for all measurement points in the vicinity of the roof is
>30%, indicating the presence of a large separation bubble. This is followed by turbulence intensities of
~20–25% in the vertical direction. At z/D = 0.3, the turbulence intensity in the stream-wise direction is
still higher than the reference profile value, within the limits 15–21%. This is not the case for upstream
points (18, 20 and 22), where values are comparable to the reference ones. Turbulence intensities in
the vertical direction are comparable to the reference profile within the range 10–13%. Measurements
above the height of z/D = 0.3 are closer to the free-stream values, suggesting that the height of the
separation region is slightly above 0.3D.

Similarly, to the previous case, turbulence intensity profiles at 15◦ show high turbulence close to
the roof. Values at z/D = 0.075 are mostly over 30% for IU and over 20% for IW, followed by a reduction
in turbulence with increasing height. At z/D = 0.3, turbulence intensity lies in the ranges of 12–22%
and ~10–15% for the stream-wise and vertical directions, respectively. Moreover, Figure 8 reveals
that values above the alignment x/D = 0.2 and x/D = 0.5 show a slight shift in turbulence intensities
compared to 0◦ for both the stream-wise and vertical directions. In contrast, an increase in turbulence
intensity is noticeable above the alignment x/D = 0.8. This suggests that the separation bubble moves
to the right while maintaining the height of ~0.3D.

Considering the 30◦ wind angle case, most of the points in the vicinity of the roof, at z/D = 0.075,
show IU > 30% and IW > 15%. Exceptions are points above the main diagonal over the roof (36 and 54)
with lower values, ~23% for IU and ~13% for IW. It leads to the conclusion that these points are near
the border of the cone vortex formed at the upstream edge. Measurements from height z/D = 0.3 are
analogous to the reference profile values.

For a wind angle of 45◦, higher values of turbulence intensities, reaching up to 50% in stream-wise
and 25% in the vertical direction, are observed at the lowest measured heights, in regions affected by the
two separation cones. Turbulence levels are increasing as the cone is increasing in size (e.g., above points
20 and 22). Above the main diagonal on the roof (points 18, 36 and 54), measurements at all heights are
characterised by relatively low turbulence intensities. These turbulence levels are comparable or even
lower, as in the case of vertical turbulence, than the reference inflow. Namely, the wind separates from
the two upstream sides of the building, forming two cone vortices, while the flow at the centre of the
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roof might be fully attached. Again, as at 30◦, turbulence intensities from height z/D = 0.3 for all points
match free-stream values.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 
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Figure 8. Stream-wise (IU) and vertical (IW) turbulence intensity, and normalised stream-wise velocity
U/Uref with uncertainty limits, as measured above the flat roof at 0◦, 15◦, 30◦ and 45◦. Measurement
points include: (a) 18–50 (marked line x/D = 0.2), (b) 20–36 (marked line x/D = 0.5) and (c) 22–38–54
(x/D = 0.8). Free-stream reference values (at the inlet profile shown in Figure 3) are also marked for the
turbulence intensity (•).

Thus, it can be concluded that for wind angles of 30◦ and 45◦, turbulence assumes characteristics
similar to the free-stream values above the height z/D = 0.3 at all positions on the roof. Arguably,
the wind direction of 45◦ provides a suitable flow pattern for wind energy, as the turbulence intensities
above the main diagonal of the roof are low, even at positions closer to the roof.
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To compare the speed-up effect above the roof, Figure 8 additionally illustrates the normalised
velocity profiles above the measuring points for the different wind angles. These profiles are normalised
using the reference velocity (Uref). A similar normalisation is also shown in Figure 5.

At 0◦, the zones of high turbulence intensity close to the roof are characterised by low values
of normalised wind speed. Above, at heights z/D = 0.3 and z/D = 0.45, an increase in wind speed in
the range of 20–30% can be observed. The highest value of ~30% occurs above point 36 at z/D = 0.3,
suggesting this is the upper limit of the separation zone.

Similar to the previous case, at 15◦, a decrease in wind speed occurs due to the separation in the
vicinity of the roof. In this case, an increase in the normalised velocity of ~15–20% is identified above
several measuring points from the height z/D = 0.3.

At 30◦, normalised velocities at the lowest measurement height are mostly <1. At height z/D = 0.3,
they are increased by the range of 10–20%, reaching 20% in the zone above the cone vortex development.

For a wind angle of 45◦, even at the vicinity of the roof, all points at the main diagonal are
experiencing an increase in wind speed of more than 15%. Yet, the maximum velocity increase of 20%
occurs above the downstream point 54. These positions close to the roof are good candidates for wind
harvesting due to their location and the fact that turbulence intensity levels are rather low for this wind
direction. When all the cases are considered, the most favourable result regarding flow acceleration is
detected above point 36 at a height of z/D = 0.3 at 0◦. Still, this region seems to be affected by slightly
higher turbulence intensity levels, implying that for the adequate positioning of the wind turbine,
an even higher location, just by a bit, should be considered.

3.1.4. Flow Pattern Comparison with Other Flat-Roof Buildings

In order to compare the flow above high-rise buildings with available results for low-rise
buildings, a comparison with the databases AIJ and CEDVAL is proposed. The CEDVAL database
reports flow measurements around a cube (H/D = 1:1) obtained through laser Doppler anemometry
(LDA two-component system) for various wind directions. At 0◦, a large separation over the top
of the roof is detected. However, the actual size of the separation length is not available due to the
lack of measurement data near the roof, as the closest measurement positions are located at z/D = 0.2.
The maximum velocity increase of 21% occurs above the central point of the cube at z/D = 0.6. This is
followed by slightly higher turbulence intensity levels than the reference ones [39].

The CEDVAL database also considers an incident angle of 45◦. Close to the roof, i.e., at a height of
z/D = 0.2, the normalised velocity increase is in the range 12–15%. The maximum value is reached
at a similar location as in the present study, i.e., close to the downstream point 54. As also found in
the present study, at 45◦, turbulence intensities IU and IW are comparable to or even lower than the
reference inflow values.

A significantly smaller separation bubble, as compared to the current case, is instead reported in
the AIJ dataset [37], which considers a square isolated flat-roof building, at 0◦, with a ratio of H/D = 2:1.
Based on the reversed flow detected, the reattachment length can be estimated at ~1/4D, which is
lower than in the present case. This can be attributed to the higher turbulence intensity in the inflow.
In addition, a slightly lower flow acceleration ~24% is found above the location at 1/4D at height
z/D = 0.375, compared to the current high-rise case, where similar turbulence intensities to the reference
one are recorded.

Comparing the surface pressure patterns on the flat roof from the low-rise buildings [37,39] and
the current high-rise building, it can be concluded that the surface pressure contours are consistent for
a given wind direction. These patterns reveal the existence of analogous flow structures, i.e., separation
bubble at α = 0◦ and conical vortices for the oblique wind direction, as observed in Figure 6.
The Architectural Institute of Japan published two databases on pressure measurement on low-rise
and high-rise buildings. Those experimental campaigns were mainly focused on the sides of the
buildings and only measurements on the low-rise buildings included measurement positions at the
flat roof. Figure 9 compares the mean pressure coefficient over the centre line of two cubes having
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respectively H/D = 1:2 and H/D = 1:1, taken from the AIJ database, for the two wind directions 0◦ and
45◦. As mentioned above, the size of the hump shape of the pressure coefficient curve, which is related
to the high negative pressure in the separation region, can be used as an estimate of the size of the
separation bubble. Figure 9 shows a possible trend for the hump shape, which is increasing alongside
the height of the building. A smaller increase in size seems to occur for 45◦, yet more windward
measurement points would be required for a more detailed analysis.
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Figure 9. Mean distributions of the surface pressure coefficient (Cp,mean) along alignment x/D = 0.5 for
different building configurations, a half cube H/D = 1:2 and a cube H/D = 1:1 from the Architectural
Institute of Japan (AIJ) database and high-rise H/D = 3:1 from the present experiment for two wind
angles: (a) 0◦ and (b) 45◦.

The increase in the size of the separation bubble is combined with an increase in the acceleration
effect above the roof. The velocity measurements over buildings with different aspect ratios, namely
H/D = 1:1 from the CEDVAL database; H/D = 2:1 from the AIJ database; and H/D = 3:1 from the current
study, reveal that the wind acceleration increases together with the building height. Further, the CFD
study by Abohela et al. [34] shows the same conclusion regarding the acceleration effect over the
barrel-vaulted roof of a high-rise building with three different heights.

A comprehensive study considering the same inflow conditions and measurement locations
above the flat roof would provide more general conclusions on the effect of building height to identify
favourable locations suitable for wind energy exploitation.

3.2. Deck-roof Building

3.2.1. Wind Velocity

The following subsection presents the results of the velocity measurements above the deck-roof
building, obtained for wind angles of 0◦ and 45◦. The mean velocity and turbulence intensity have
been measured above two points on the roof top, i.e., points 50 and 58, marked in red in Figure 4b.
The velocity has been measured at ten heights above the roof centre point (point 58 in Figure 4b) and
five heights above point 50 at 0◦, and four heights above both points at 45◦. The normalised velocity
profiles, based on the stream-wise and vertical velocity components above these points, are shown
in Figure 10, together with the longitudinal (IU) and vertical (IW) turbulence intensities calculated
using Equation (1). Figure 10 also shows the percentage increase in the mean value of the stream-wise
velocity component as in the previous section. In order to compare the behaviour of the deck-roof to
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that of the flat-roof building, Figure 10 also shows the wind profiles above x/D = 0.5 (points 20 and 36)
for the same wind angles.
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Figure 10. Velocity vectors profiles, based on the stream-wise and vertical velocity components, showing
the stream-wise turbulence intensity IU, the vertical turbulence intensity IW and the percentage increase
in the stream-wise wind speed. Each numerical value reported at every measurement point in the
figure shows the following statistics: IU [%] above on the left; IW[%] below on the left; (U-Uref)/Uref[%]
below on the right. Profiles over the deck-roof high-rise building are measured above points 18 and 50
(alignment x/D = 0.2, left-hand-side), for wind directions of: (a) 0◦ and (c) 45◦; and over the flat-roof
high-rise building above the points 20 and 36 (x/D = 0.5), for wind directions of: (b) 0◦ and (d) 45◦.
The arrows indicate the velocity magnitude normalised with reference velocity (Uref), as referred to the
unity vector represented in the legend.
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At 0◦, results in Figure 10a show that velocity vectors above point 50 point upwards, which
suggests that the flow separates at the windward edge of the deck-roof building. However, the velocity
vectors above point 58 are almost parallel to the roof, indicating that the size of the separation bubble
is much smaller than that above the flat-roof building presented in Figure 10b. It is interesting to
note that turbulence intensities are lower close to the top of the deck-roof building, in contrast to
high-turbulence intensity zones detected in the same zone in Figure 10b. This may be explained by
the effect of the shape of the deck roof. As the incoming air overcomes the obstacle provided by the
high-rise building, lifting over the roof of the building, the streamlines of the velocity vectors follow
the shape of the roof, thus preventing the development of the large separation bubble at the upstream
edge. This fact is supported by the flow acceleration noticeable in the vicinity of the roof.

At 45◦, a similar flow pattern can be observed above the central points (point 58 in Figure 10c and
point 36 in Figure 10d) for both roof shapes. The lack of a vertical velocity component at the lowest
measurement positions as well as low turbulence levels indicate that the flow is attached to the roof.
The difference is noticeable in the flow above point 50 for the deck-roof building case and point 20 for
the flat roof case. While point 20 is in the separation zone at flat-height z/D = 0.075, point 50 seems to
be above the separation zone due to the low turbulence intensities and the increase in the mean value
of the wind speed.

3.2.2. Surface Pressure

The plot of the distribution of the mean surface pressure coefficient on the deck roof is shown in
Figure 11 for wind angles of 0◦, 15◦, 30◦ and 45◦.

At 0◦, at the central flat portion of the deck roof, a reduction in the surface pressure close to
the leading edge is limited to a more confined area compared to the flat roof case (Figure 6). As the
approaching wind angle increases, the separated area linked to the leading edge decreases. At 30◦ and
45◦, the shape of the pressure contours still shows slight similarities to the flat roof case (Figure 6), as the
contours become denser close to the windward corner. Nevertheless, the number of measurement
points in this confined area is limited and it is not clear from the pressure plots if small conical vortices
exist. However, the results presented in Figure 10c confirm the existence. Thus, for all wind angles,
the shape of the deck roof suppresses considerably the separation area. In addition, at all plots, it can be
observed that downstream of this confined high-suction area the surface pressure distribution is rather
uniform. This uniform pressure indicates that the flow is generally attached to the roof. Looking at the
distribution over the decks of the roof, a similar pattern can be observed. The windward sides have a
high-suction zone close to the upwind edges, while on the leeward sides the pressure distribution is
mostly uniform.

3.2.3. Turbulence Intensity and Flow Acceleration

The measurements of turbulence intensities in the stream-wise (IU) and vertical (IW) directions
over the deck roof are shown in Figure 12 for two wind angles of 0◦ and 45◦, at four heights above
the measurement points on the alignment x/D = 0.5, together with the free-stream values marked
with black circles. The figure also includes the normalised velocity profiles of the mean value of the
stream-wise component in order to examine the speed-up effect above the roof.

Considering the results for both wind angles, the turbulence intensity profiles present favourable
conditions for the installation of wind turbines over the deck roof. Namely, measurements of the
stream-wise turbulence intensity at the majority of heights are comparable to the free-stream ones,
not exceeding 13%. The only exception is the value at height z/D = 0.075 above point 58 at 0◦,
which reaches 19%, indicating that it is affected by upstream separation. Vertical turbulence intensity
values are even lower than the reference ones for all cases, particularly close to the roof, as they are in
the range of 5–10%.
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In the vicinity of the roof, for both wind angles, the wind speed accelerates with a rate of more
than 20%. Moreover, a larger area seems to be affected at 45◦ with this favourable flow condition.
As the height increases, the speed-up effect gradually decreases.

Presented results for the deck-roof building show that the wind direction has a small effect on
both the mean wind velocity and turbulence intensity above the roof. In addition, although the deck
roof generates a velocity amplification of similar magnitude compared to the flat roof at 0◦, this occurs
at notably lower positions (closer to the roof surface). Moreover, the turbulence intensity in that zone is
equal or even lower compared to the free-stream at most measurement points. Similar flow conditions
are observed over the deck roof at 45◦ compared to the flat roof case.

4. Conclusions

A series of experimental tests has been carried out in a boundary layer wind tunnel to measure
both the velocity field and the surface pressure above the roof of a high-rise building. Besides providing
validation test cases of future numerical investigations, the study aims at improving the understanding
of the flow pattern of the roof region for wind energy harvesting. The effects of wind direction and
roof shape have been investigated in terms of flow pattern, turbulence intensity and accelerated
wind velocity.

For all wind angles, the flow separates at the leading edge of the flat roof. Nevertheless, different
separation patterns take place, depending on the angle of the wind, which are visible in both the surface
pressure and wind speed profiles. At 0◦, the separation bubble extends to about 2/3 of the building
width, with a height of about 0.3D. In contrast to the separation bubble, cone vortices dominate the
flow pattern at 30◦ and 45◦. The cone vortices grow in size as they evolve along the side of the building.
The largest size for cone vortices is found at 30◦.

As a broad region is affected by the separation, the 0◦ configuration is the most turbulent one.
In general, as the wind angle increases, the region of high turbulence intensity reduces gradually,
and 45◦ is found to be the most preferable wind direction, minimising turbulence. As regards the
flow acceleration, the 0◦ configuration provides the highest increase in wind speed, up to U~1.3Uref at
z~0.3H at the centre of the roof. However, this position is still influenced by relatively high turbulence
intensities. On the other hand, the 45◦ wind direction provides a substantial amplification of wind
speed up to 20%, at significantly lower positions close to the roof with a lower turbulence intensity.
This vicinity to the roof is the determining factor for the installation of small wind turbines.

A similar behaviour is observed in comparison with the flow over low-rise buildings. Namely,
similar flow patterns are recognised for different flow angles and besides, similar areas are detected as
the most favourable locations for the possible installation of wind turbines. In addition, an increase in
building height seems to be followed by an increase in wind acceleration. Yet, more detailed studies
are needed to provide more definitive conclusions on the relation between building features and
wind resource.

Decking the roof significantly improves the flow for wind energy purposes. Among the most
important observations is the insensitivity of the flow above the deck roof to changes in wind direction,
unlike in the flat roof case. Results also show a far smaller separation zone for all wind directions,
which is beneficial as wind turbines can be installed closer to the surface. Turbulence intensities
are equal to or lower than the reference value of the free-stream wind profile for all configurations,
highlighting the advantage of this shape. Besides the favourable effect on turbulence intensities at
lower heights, the deck-roof shape performs well in terms of enhanced wind acceleration, reaching a
maximum increase in wind speed of around 20%.
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Abbreviation

Cp pressure coefficient
Cp,mean mean surface pressure coefficient
Cp RMS standard deviation of the surface pressure coefficient
D width of building model
f frequency
H height of building model
IU stream-wise turbulence intensity
IW vertical turbulence intensity
LU longitudinal integral length-scale
p surface pressure
p∞ free-stream pressure
Re Reynolds number
SU(f) spectral density function for wind velocity
U mean stream-wise wind speed
Uref mean stream-wise wind speed at model height (H)
x, y, z coordinates
zfl height above wind tunnel floor
zref reference height equal to height of building model (H)
ρ air density
σU standard deviation of stream-wise wind velocity component
σW standard deviation of vertical wind velocity component
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