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ABSTRACT

In this work the Godunov method, modified by Colella
and Woodward for gas-dynamics discontinuous flows, is
adapted to discontinuous open-channel flow problems, in
particular to instantaneous dambreaks. Some of the most
commonly used numerical methods for discontinuous problems
are reviewed, showing the need for a new type of algorithm
which would be able to cope efficiently with mixed flow
regimes and very strong shocks in non—prismatic channels.

The proposed Godunov method is introduced through
application to two scalar problems: the linear advection
equation and Burgers' equation. The one-dimensional open-
channel flow equations (the de St.Venant equations) are then
solved with two variants of the Godunov method: one based on
linear interpolation, the other on Colella and Woodward's
piecewise parabolic interpolation (PPM). The latter
approach is first applied to open-channel flow problems in
this work. To evaluate the utility of the proposed Godunov
methods (linear and PPM) comparisons with the analytical
solution, the shock~fitting method of characteristics, the
Preissmann, Lax-Wendroff and MacCormack methods are

presented. Both Godunov methods agree well with the



2
analytical solutions, and perform significantly better then
the other compared methods, in solving discontinuous
problens.

Guidance for generalization of the Godunov method to
two-dimensional open-channel flow problems is also
presented, as well as some suggestions for the possible
future applications of the one-dimensional algorithm in an

industrial code.
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CHAPTER I. INTRODUCTION

I.1 Discontinuous flows in hydraulic practice

Flows with discontinuities are often encountered in
hydraulic practice. The most common of such flows is
certainly the hydraulic jump, a more-or-less stationary
roller of water through which the change from supercritical
to subcritical flow occurs. A discontinuity of the flow
variables (depths and velocities) occurs between the two
sections separated by the jump.

In addition to a stationary hydraulic jump in steady
flow, there are also unsteady flows which are characterized
by discontinuities of the same type. The difference is that
now the discontinuity is moving through the channel and is
constantly changing as a result of the evolution of the
forces acting upon it. The phenomenon is known as a moving
hydraulic jump, a surge, a shock or a bore. Flows with
moving jumps occur in some operations of hydropower canals,
in tidal flows, in flows resulting from the collapse of a
dam, and in other flows where sudden increase of depth
and/or discharge (or sudden decrease of discharge) is likely
te occur.

Accurate prediction of the flow variables in all of



these cases is of great importance. In designing a
hydropower channel, one needs to know the maximum depth of
water at the sections for all possible operating conditions
of the plant. (Spillage over the levees may not only flood
the protected area, but also damage the canal itself.)

Dam failures, though not common events, are by no means
impossible. The consequences of such disasters are not only
huge material damage, but the loss of human lives. There
are two means of protection from such catastrophes: first to
increase and enhance the maintenance of dams and spillways,
second to predict accurately the area endangered by the
possible failure, and to develop a system of efficient alarm
and evacuation of the population in an emergency.

In all these flows, the most important quantities
needed for design/prediction are maximum depths, and the

time of their occurrence, along the waterway.

I.2 Current state-of-the-art

For unsteady flows without discontinuities reliable
methods exist for computing the temporal and spatial
evolution of the flow variables. Usually, the one-
dimensional (de St. Venant) or, if needed, the two-
dimensional partial-differential equations, based on the
mass and momentum (or energy) conservation laws are used for

the mathematical description of the flow. But these



differential equations suppose that the variables are
continuous, and such an assumption fails in the case of
flows with moving hydraulic jumps, i.e., for discontinuous
flows. Here an integral approach should be exploited as an
appropriate mathematical representation obviating the
problems of discontinuities. It has been proven by
Lax(1954) that the differential equations derived directly
from the integral form preserve the properties of
discontinuous flows (so called weak solutions). This form
of the differential equations is commonly called the
conservative (or divergent) form, due to its ability to
conserve mass and momentum. Unfortunately, the theory can
be strictly applied only to the homogeneous set of
equations, i.e. for the idealized case of a frictionless
flow in a prismatic horizontal channel. Nevertheless, real
discontinuous flows in natural channels, described by the
full (non-homogeneous) equations, are also treated in
practice (more or less successfully) by the conservative
differential equations. Such an approach, commonly called
the "through" approach, is one way of dealing with
discontinuous flows. Its disadvantage is that one cannot
totally rely on the results of the computations, due to the
above-mentioned violation of the assumption of homogeneocus
equations. Also, one cannot expect to be able to obtain a

good resolution of the discontinuity (shock) itself, though



this is usually not important for practical purposes. If a
non-conservative scheme is used for discontinuous flows the
results are completely unreliable; mass and momentum are not
preserved, and the numerical loss of mass may well exceed

50

o

The other commonly used approach in dealing with
discontinuous flows is the shock-fitting method, whereby the
discontinuity (shock) is isolated from the rest of the flow
domain, and handled separately by an integral approach. The
flow outside of the shock is treated with the usual
differential equations (either conservative or non-
conservative). The shock-fitting method is a theoretically
correct way of dealing with shocks. 1In practical
applications, however, large difficulties arise in tracking
the shocks, especially in natural channels where, due to
irregular topography, one can expect a large number of
shocks surging and reflecting, both upstream and downstream.

Finally, methods based on simplified equations of
motion - so called hydrological methods - are alsoc used. 1In
such approaches, inertial terms are neglected (sometimes the
depth gradient also is omitted). For highly unsteady flows,
such as those resulting from an instantaneous dambreak, or a
shutdown of hydropower plant turbines, the inertial terms
are very important and must be included to obtain a correct

solution.



The consequence of the above-mentioned issues is that
at the present time all available methods used in industrial
codes for computing discontinuous flows are either
unreliable and overly sensitive to changes of the cross-
sections and occurrence of mixed sub/supercritical flow
regimes, or very difficult to implement for practical

applications.

I.3 Statement of purpose and overview of investigation

The need exists for a new type of algorithm which
should be based on highly conservative schemes, have the
capability of dealing with discontinuities and mixed
regimes, and at the same time be robust and not so elaborate
as to exclude implementation for real-world problenms.

One possible candidate for a new algorithm is the
Godunov scheme. Its main advantage is its conservative
property. The Godunov method was first introduced in 1959
and applied in aerodynamics (see Godunov,1959). Some
applications have been made in computational hydraulics, but
they were not generally satisfactory. It has been in gas
dynamics that Godunov's method, modified by Van-Leer,
Colella and Woodward, and other authors, has been
successfully applied since about 1980. Particularly
effective implementations have been reported for the

computation of shocks (discontinuities).



The objective of the present work is to analyze the
possibility of application of the modified Godunov method to
computational hydraulics problems, in particular to flows
with discontinuities. The main goal is to asses the
capability of the scheme for coping with the problems of
one-dimensional flow in non-prismatic channels, and hence to
provide a basis for possible further development of an
algorithm capable of being incorporated in industrial codes
which would be used for computations of flows with strong
shocks, especially for dam-break flows. A secondary goal is
to get some insight into, and experience with, the scheme
for possible further two-dimensional generalization.

A literature review, presented in chapter II, surveys
and evaluates state-of-the-art methods for open-channel
discontinuous flows, thus showing the need for an
investigation of a new method. Then follows a brief
presentation of the modified Godunov method, which is
successfully used for gas-dynamics discontinuous flows, and
therefore is proposed in the present work for application to
open-channel flow.

In chapter III, the modified Godunov scheme is applied
to the one-dimensional linear advection equation as a test,
or model, equation because of its simplicity in an
analytical sense, so that the results can easily be verified

and interpreted. Subsequently, in the same chapter III,



Burgers' equation is solved as an appropriate, but
simplified, model of the nonlinear flow equations.

In chapters IV and V the full de St. Venant one-
dimensional equations are dealt with; first in homogeneous,
and then non-homogenous, form. The algorithm is developed
in chapter IV, and the tests and interpretation of the
results are given in chapter V. These chapters contain the
original contributions of this work to the solution of
discontinuous open-channel flow problems.

Guidance for generalization of the Godunov method to
two-dimensional free-surface problems is presented in
chapter VI.

Finally, in chapter VII conclusions, and the most

important results of this work, are summarized.

I.4 Criteria for assessing the quality of simulation

Objective quantitative evaluation of the quality of
solution is difficult in computational hydraulics. The only
important aspect of the solution which can be (and usually
is) explicitly quantified is the mass-conservation error.
(It is defined as a ratio of the total error in the mass
conservation equation (computed for the entire computational
reach and the entire computational time) and the initial
mass of water for the entire reach.) The computational time

and memory requirements can be compared quantitatively,



also. However, these latter comparisons are not entirely
appropriate for the present work, since the effort was not
directed to produce an efficient code, but to explore a new
scheme which may be applied industrially in the future.

Visual examination and comparison are most commonly
used in computational hydraulics to judge the quality of
simulated results as one aspect of the performance of the
investigated schemes. The amplitude ratio between the
numerical and analytical solution (concentration, depths,
velocities, etc.) is one of the indicators which can be
expressed quantitatively, but in most cases there is no
analytical solution to compare with. Comparison between
alternative numerical solutions can be done, but one must be
alert to the extent of reliability of such a comparison
(i.e. none of the solutions may be correct). The comparison
of wave speeds can be even more difficult to quantify,
since determining the wavespeed of the front, in case of a
numerical method which diffuses the wave front over several
computational points, is a very delicate and subjective
procedure.

The important features of the solution that suggest
good performance of the method, or conversely indicate a
problem, are usually not quantified. One observes, for
example, that numerical diffusion (or oscillations,

overshoots and undershoots etc.) occur, and then tries to



judge if this behavior has a significant influence on
reliability of the simulation in a particular application;
however, quantitative evaluation of these phenomena is
seldom performed. As a rough measure of preservation (or
smearing) of the steep front resolution for discontinuous
flows, one can use the number of spatial steps within which
the steep front is confined at the end of the computation;
however, this is also subjective, since one has to define
how steep the front should be without recourse to an
analytical solution.

Therefore, in this work gquantitative comparisons of
amplitude are provided when the analytical solution is
available, and in some cases between numerical solutions
when such a comparison seems to provide significant and
reliable information. The resolution of the front is
evaluated comparing the solution of the considered method
with the analytical one, where it exists (or with the shock-
fitting method of characteristics for the de St.Venant
equations). For all cases the relative mass conservation
error is the only reliable quantitative indication of the

behavior of the numerical solution.
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CHAPTER IT. REVIEW OF LITERATURE

IT.1 Physical description of the phenomenon

Unsteady flow in open channels is characterized by the
constant temporal and spatial evolution of the flow
variables. Density is considered constant in such flows,
so the variables are the properties that describe the
quantity of water (such as the depth, area, or water surface
elevation) and its motion (the velocity or the discharge).
Those variables may have so-called discontinuities in some
of the flow regions, while they are continuous for the rest
of the flow domain. These "discontinuities" are not real
physical discontinuities, but the rate of change of flow
variables over the "discontinuous" regions is orders of
magnitudes greater than in the regions of continuous flow.
The terms "discontinuous flows" and "shocks" come from the
analogy with gas-dynamics shock phenomena (Stoker,1957;
Terzidis and Strelkoff,1970).

Discontinuities are not exclusively characteristics of
unsteady flows. They are the moving counterparts of their
steady-flow relative - the well known hydraulic jump
(Henderson, 1966). The discontinuity is characterized by a

fairly rapid change of the flow properties (depths and
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velocities) over a very short region. The transition occurs
within the roller comprising huge, powerful eddies, where
considerable energy is dissipated. The roller might be
absent in cases of very small discontinuities when weak, so-
called undular, jumps form. A thorough survey of hydraulic
jumps from both theoretical and practical points of view is
given by Peterka, (1964).

In unsteady flow, discontinuities (shocks) usually form
as a result of the successive superposition of elementary
positive waves, as described by Stoker (1957) and Henderson
(1966). A positive elementary wave is one in which the
depth increases in the direction of the wave propagation.

As the celerity of the wave is proportional to its depth
(see Stoker,1957), the disturbances (waves) of larger depth
will eventually overtake those initiated earlier (and
accordingly having smaller depths and celerities). The
result is a formation of an initially steep front, which
grows in height by the arrival of successive waves, and
finally curls over and breaks forming the turbulent roller
of a hydraulic jump. The effect of resistance, however, may
postpone, or even make impossible, the formation of shocks
initiated as a result of superposition of small waves
(Henderson,1966), and also diffuse those created by a sudden
increase of depth and/or discharge (for example dam-break

waves) .
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Another aspect of dam-break flow is the possibility of
a dry bed, where the trough downstream of the surge is
empty. This situation might arise in some applications, and

is an especially delicate one for numerical modelling.

IT.2 Mathematical models for open-channel flow

To obtain any kind of prediction of the flow variables
one needs to apply appropriate physical laws, and to put
them into quantitative--mathematical form, describing the
relationships among the variables in question. Fluid flow
is described by conservation laws applied to the mass of
fluid in a fixed or moving control volume: the conservation
of mass, momentum and energy. The equations which precisely
describe those laws are available in the literature
(Hajdin,1977; or Sclichting,1979).

Analytical solution of the full equations is possible
only for a few idealized cases (see White,1974), and at this
time even numerical solutions of the full equations are
practically feasible only for a very narrow range of real-
life problems. Consequently, one must limit oneself to a
less comprehensive set of equations, yet one which provides
a sufficiently accurate description of flow, and therefore
permits a good prediction of the relevant variables. The
usual simplifications of the full flow equations comprise

neglecting minor influences (such as surface tension effects
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and the variation in density of water in flood propagation),
and averaging the variables and their products in time
and/or space.

In current hydraulic practice for open-channel flow
computations, the most common mathematical models are based
on a one-dimensional flow approximation (the de St.Venant
equations), though the two-dimensional approach is being
increasingly exploited due to the rapid development of
computational facilities, and the greater demand for more
accurate flow predictions (Strelkoff,1989). These models
are often called dynamic models. In addition, so-called
hydrological models, which utilize a simplified momentum (or
energy) equation, are used. In a one-dimensional approach
the depth and velocity are averaged over the cross section.
The flow is considered to be in one direction, so there are
no velocity components in the directions normal to the flow
(vertically and laterally). In a two-dimensional approach
averaging is done over the depth only, allowing for
variations along the width of the cross-section; the
velocity is expressed by two vector components, both being
in the plane of flow.

The velocity component in the vertical direction, and
consequently the possibility of a non-hydrostatic pressure
distribution, are neglected in both approaches. In a flow

region where a hydraulic jump occurs (moving or stationary),
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huge vertical accelerations result, and the pressure
distribution is certainly not hydrostatic. On the other
hand a discontinuity (jump) occurs over a short region of
the flow, and can be successfully treated by the use of a
momentum approach, provided that the boundary sections of
the control volume are far enough from the discontinuity to
permit the assumption of a hydrostatic pressure
distribution. The computational consequence is that,
although there is no real physical discontinuity of flow in
the jump, the mathematical description treats it as a
discontinuity in flow variables. Another situation in which
an extremely non-hydrostatic pressure distribution occurs is
for the dam-break problem at the instant of the removal of
the dam (Strelkoff,1989; Basco,1989). Numerical soclution of
the equations which take into account the vertical
acceleration (so-called Boussinesqg equations) shows that the
duration of non-hydrostatic pressure conditions is short, so
that for practical applications, it does not need to be
taken into account (see Basco,1989).

In addition to the assumption of hydrostatic pressure
distribution, assumptions of the validity of the steady-flow
resistance evaluation for unsteady conditions, and small bed
slopes (so that the cosine of the angle between the bed and
the horizontal plane can be taken as a unity) for both one-

and two-dimensional dynamic models are applied (see Cunge
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et al.,1980; Liggett,1975; and Strelkoff,1969).

IT.2.1 Mathematical 1-D models (de St.Venant equations)

First derived by Barre de St.Venant in the nineteenth
century, these one-dimensional equations are still the most
commonly used mathematical tool for describing unsteady flow
problems in open channels. The assumption of one-
dimensional flow means that the depth and the velocity are
averaged over the whole cross—section, implying that the
non-uniformity of the velocity and the depth across the
section must not be such as to affect significantly the wave
propagation. (For example, the one-dimensional assumption
fails for the case of supercritical flow in a sharp bend.)
The other important limitation of the one-dimensional
approach, which stems from the previous one, is that the
rate of change of the cross-sectional area must not be
severe. In the case of an abrupt expansion, the main body
of flow will not fill the boundaries of the channel and the
flow will become essentially two-dimensional.

In the one-dimensional approach, the number of unknown
variables reduces to two, since the density is assumed
constant, and there is only one component of velocity. The
two independent variables must be chosen such that one of
them represents the quantity of water at the section (depth,

wetted area or water-surface elevation), and the other the
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flow motion at the section (the mean velocity or the
discharge). To solve for those two variables two equations
are needed. One equation is always the mass conservation
equation, and the other is either the momentum or energy
equation. If the flow variables are continuous, both
approaches are appropriate; when discontinuities appear only
the momentum principle is valid, since the energy losses in
the roller cannot be properly estimated. A rigorous
mathematical explanation of this is given by Abbott (1979).

One can obtain the one-dimensional equations by
integrating the Reynolds differential equations and
introducing appropriate averaging following the one-
dimensional flow assumptions (Strelkoff,1969). Another way
of deriving the equations is based on an integral approach
for a control volume between two cross-sections of the
channel (Cunge et al.,1980 and Liggett,1975).

The mass conservation, or continuity, equation is:

X, L2

(2.1): f[A(x, t,) -A(x, tl)]dx+f[Q(X2, t)-0(x,,t)1dt = 0,

X, =1

and the momentum, or dynamic equation is:
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2

(2.2): [lo(x, &) -0(x, £,) 1 dx+

t,

+f[Q(x2, £) ux,, t) -0(x,, t) ulx,, £)1de =
&

t; 2% 4

= grf[I1 (x,, £) -I,(x,, )] dt+gff12(x, £) dxdt +
ty 6%
£y,

+gf [a(x, ) 18,(x) -5,(x, ) 1 dxdt ,

G

where A is the wetted area, Q is the discharge, g is the
gravitational acceleration, I, and I, are the centroid
moment and the rate of its change due to the variation of
cross—-sectional geometry, So is the bottom slope, and Sf is
the friction slope. The first term in the continuity

Eg. (2.1) represents the mass accumulation in the control
volume, and the second one the net flux of mass out of the
volume in an incremental time. An additional term can be
included to describe the contribution of lateral inflow.
Similarly, the first and the second terms in the dynamic
Eg. (2.2) represent the accumulation of momentum in the
control volume and its net flux. These are commonly called
inertial terms. The right-hand side terms represent the
impulse of forces, acting on the control volume, during the

incremental time (t®-t'). The first term describes the
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pressure forces acting on the upstream and downstream
boundaries of the control volume, the second one the contour
force from the non-prismatic boundary, and the last one the
difference between the body force (component of the weight
of water along the direction of flow) and friction forces.

After obtaining the equations in integral form, one can
use Taylor-series expansion and the mean value theorem to
obtain the differential form if the variables are continuous

(Wylie, 1960):

. 0A 00 _
(2.3): 3t + 3% 0,
0 d
(2.4): _é% + a(Qz_1+gIl) = gA(S5,-S;) + gI,.

The Egs.(2.3) and (2.4) can be compactly expressed in

matrix form as:

oUu

(2.5): -a—t-

» L rwl = e x, t),
ox

where:
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(2.5a): U=[4,017%, F(U)=1[0,0u+gI,17,
G(U,x,t)=[0,9A(S,-S,) +gI,17.

To compensate for the non-uniform velocity distribution
over the cross section, a correction term may be added in
the momentum Eqg. (2.4) (see Strelkoff,1969; Cunge
et.al.,1980).

Egs.(2.3) and (2.4) comprise a system of two
hyperbolic, non-linear (or, in some references quasi-linear)
partial-differential equations of the first order. Such a
system requires one initial condition for each variable and
two boundary conditions to be properly posed. The initial
condition is the known value of the flow variables at the
initial time, and the boundary conditions depend on the type
of the problem and the type of flow.

As shown by Lax (1954} the above formulation of the
differential equations (the ones derived directly from the
integral equations) has the property of preserving the
discontinuous solution of the integral equations for the
case of a homogeneous system of Egs.(2.3) and (2.4). The
solution obtained in such a way is called a weak solution,
and it is commonly used for the full set of Egs.(2.3) and
(2.4) to compute unsteady flows with discontinuities;

numerical experiments have confirmed good agreement with
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analytical solutions or shock-fitting solutions
(Cunge,1975). This approach is called the "through" method
(Cunge.et.al.,1980; Cunge and Liggett,1975; Terzidis and
Strelkoff, 1970).

When one wants to isolate the discontinuity and treat
it separately from the rest of the continuous flow (shock-
fitting method), the equations based on a control volume
moving at the speed of the discontinuity are used
(Stoker,1957; Terzidis and Strelkoff,1970).

The continuity equation is:

(2.6): A (u-w) = A, (u,-w),

and the momentum equations is:

(2.7): 9I,+ A (u-w)? = gI,+ A, (u,-w)?,

where u is the mean cross-sectional velocity and w is the

speed of shock propagation.

IT.2.2 Mathematical 2-D models
In a two-dimensional approach, the variation of
variables along the width of the cross-section is

accommodated, since the averaging is performed only in the
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vertical direction. Here appears a new variable, the second
component of the velocity vector in the plane of flow.
Accordingly, three equations must be provided to solve for
the three variables (the depth h, and the two velocity
components, u in the x-direction, and v in the y-direction).

The equations are based on the mass-conservation law, and
the momentum conservation expressed for the x- and y-
directions (Liggett,1975; Radojkovic,1980).

The continuity equation is:

oh

(2.8): E

2 d _
+-€;(uh) +-§;(vh)-0,

the momentum equation in the x-direction is:

. d{uh)
(2.9): =

3 , 5 0 o ,h%, _ _
+ —a;(ll .h) +-53—,(Vu-h) +a(7) = gh(sox Sfx)’

and the momentum equation in the y-direction is:

(2.10): 90V 0 umy 1 O (v2p)s

o\vil) _é_pﬂi)
at ox oy 2

oy = 9h(Sg,=5g,)

In the x-momentum Ed.(2.9) a new term appears,
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describing the transfer of x-direction momentum by the
velocity in the y=-direction. There are no terms due to non-
prismatic contours, since a prismatic control volume is
chosen.

The matrix form of the Egs.(2.8)=(2.10) is:

° -a_q i _—@_ =
(2.11) : 5 aX[F(u)] + 3 [G(D)] = H(U,x,y,t),
where:
(2.11a): U=[h, uh, vh]7, F(U)=[uh,u2h+ﬁ§j]1',

2
G(U)z[Vb,uvh,V2h+é%;—]ﬁ

H(U,x,y,t)=[0,gh(8,,~5¢) ,gh(S,,-Sg) 17,

As in the one-dimensional approach, appropriate initial
and boundary conditions are required to solve the system of
partial-differential Eqgs. (2.8)-(2.10).

The advantage of the two-dimensional approach over the
one-dimensional is not merely in that the flow field is
represented more realistically, but in the capability to
treat any kind of topography (abrupt expansions and/or

contractions) without restriction. On the other hand,
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solving the system of three equations with three variables
is a more difficult task than is the case for the one-
dimensional approach. Difficulties also arise from the
constant change of the boundaries of flow, which complicates
handling the boundary conditions (dry-bed problems occur in

almost all applications).

IT.2.3 Mathematical models based on simplified equations

Since the one/two-dimensional systems of non-linear
partial-differential equations cannot easily be solved, in
some cases even with a digital computer, simplifications may
be introduced to obtain equations that can be handled more
easily (see Miller and Cunge,1975; or Cunge et al.,1980).

In using simplified methods, one must be careful not to
sacrifice the properties of the equations which are
important in the problem under study.

Many different procedures are used to simplify the
equations, beginning with the linearization of the equations
or particular terms, neglecting some of the terms, and
finally omitting the whole equation. In all such
applications the acceleration components (inertial terms)
are neglected.

In the initial stage of the instantaneous dam-break
problem the inertial terms are extremely important, and

cannot be neglected (Strelkoff et.al.,1977; Savic,1988).
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For the case of a partial and gradual dambreak, the inertial
terms can be neglected without signi}icant loss of accuracy.
The methods based on the continuity equation alone are
very unsafe to use for rapidly varied flows with
discontinuities. The very popular Muskingum flood-routing
method is reported to introduce errors of several orders of

magnitude for dam-break computations (Wurbs,1987).

IX.3 Analvtical solutions for discontinuous flows

There is no general analytical solution for the flow
Egs.(2.5) and (2.11). A few existing analytical solutions
have been obtained for simplified cases based on the
assumption of a rectangular, frictionless channel (ideal
fluid), with horizontal bottom slope (see Henderson,1966; or
Stoker,1957). The case of a sudden instantaneous dambreak
with either a dry or wetted downstream channel has been
analyzed by Stoker (1957), using the method of
characteristics, and the approximate effect of resistance on
the dry-bed solution has been studied by Dressler (1952) and
Whitham (1955).

Though the above-mentioned analytical solutions have
very little applicability in solution of real-life problems,
they are regularly used for assessment of the performance of

numerical solutions.
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I1.4 Numerical methods for discontinuous flows in

computational hvydraulics

Numerous numerical methods have been used in
computational hydraulics to solve the one/two-dimensional
flow equations, but no method has proven to be superior for
a broad range of real-life problems. In this review only
some of the methods used for the computation of
discontinuous flows are presented. The methods upon which
the algorithm proposed in the present work is based, and
those used for comparison, are given in more detail.

There are presently three major classes of methods that
are most commonly used for solving the open-channel flow
equations:

1. The method of characteristics,

2. The finite-difference method, and

3. The finite-element method.

The method of characteristics is theoretically the most
accurate one, but it is very difficult to implement, since
it requires shock-fitting for the treatment of
discontinuities. 1In an idealized prismatic channel this is
not a difficult problem, but for any discontinuous flow in a
real (non-prismatic) channel, this means detecting and
computing all reflected waves that form during the evolution
of the unsteady flow event - an almost impossible task

(Cunge,1975). Accordingly, the method of characteristics is
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seldom utilized for solution of the open-channel flow
equations, though there have been some numerical experiments
for the two-dimensional equations (Katopodes and
Strelkoff,1978). The method of characteristics is widely
exploited for the computation of the boundary conditions
within other methods (finite-difference methods in
particular). In the present work the method of
characteristics is used in the first (predictive) step of
the solution.

The finite-difference method is the most common
numerical method for solving both the one- and two-
dimensional equations (Liggett and Cunge,1975; Cunge
et.al.,1980). The method is capable of solving a wide range
of practical problems, and at the same time is very easy to
implement. The implementation for curvilinear coordinates,
first used in fluid mechanics (see for example Thompson
et.al.,1985), has greatly increased the potential of the
method for the solution of two-dimensional problems, though
it complicates the implementation to some extent. Some of
the finite-difference schemes that have been used for the
computation of discontinuous open-channel flows are
described in more detail later.

The finite-element method is less widely used in
computational hydraulics. For one-dimensional flow, the

finite-element method is inferior to the finite-difference
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method (Cunge et.al.,1980); it is much more difficult to
implement, and lacks the capability to adjust to mixed-flow
regimes, and to handle various hydraulic structures which
are described by laws different from the equations for the
rest of the flow. Since in two-dimensional applications the
finite-element method has a major advantage over finite-
difference in being able to represent the topography in much
more detail and much more naturally, efforts have been made
to overcome some of the above-mentioned shortcomings
(treatment of mixed regimes, in particular). Aknabi and
Katopodes (1988) developed a moving=grid finite-element
method, which is very complicated and not easy to implement.
The method is tested on an idealized hypothetical flow - no
practical application has been reported.

It is worth recalling that most of the numerical
methods reported in the literature perform very well for the
ideal case of a (frictionléss), prismatic, horizontal
channel, while in solving practical problems they fail to
give even physically meaningful results. The most difficult
problem seems to arise from the topography, especially from

sudden changes of the channel width (Strelkoff,1989).

IT.4.1 Method of characteristics
Since the method of characteristics is used in the

initial step of the algorithm proposed in the present work,
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as well as for comparison with the proposed method, it is
presented here in some detail. The description follows
closely the derivation by Stoker (1957), using the fixed-
grid method of characteristics. (See alsoc Henderson (1966)
for a brief account, and Courant et.al. (1948) for the
original application of the method in gas dynamics.)

The method of characteristics is based on the fact that
the hyperbolic partial-differential equations posses
characteristic paths - characteristics - in the space of
independent variables, along which the dependent variables
are expressed in terms of their total differentials. (The
resulting expressions, valid along the characteristics and
comprising the total differentials, are often called
compatibility conditions.) For practical computations, this
enables transferring the problem of solving two partial-
differential equations into a problem of solving four
ordinary differential equations (two characteristics
equations and two compatibility conditions), which is a much
easier task.

To obtain the characteristic relations one must work
with the non-conservative form of the flow equations. By
appropriate transformations (see Cunge et.al.,1980) the
mass and momentum conservation Egs.(2.3) and (2.4) can be

expressed as:
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oh dh , ,9du 0A
¢ B2 + uBot + A2C % =0

(2 . 12) H ot +u ox ¥ ox ! u( aX)h:const

ou du oh

. . e il —_ = S-S 7
(2 13) at + U aX + g aX g( fe) f)
where B-is the top width at the cross-section and, «@é)
OX | p-const

is the derivative of the area with respect to x, at constant

depth. Introducing the celerity of an elementary wave:

(2.14): c=. 94

together with its derivatives into flow Egs. (2.12) and
(2.13), and first adding, and then subtracting the resulting
equations, one obtains the characteristics form. In the

case of a rectangular, but non-prismatic, cross-section this

finally yields:

(2.15): BE (u+2¢c) = g(5,-5;
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along the positive characteristics (C+):

(2.16): % = u+C,
and

. D (y-2¢) = - _uc 98
(2.17): Dt(u 2c) = g(S,-8p) + 5 B’

along the negative characteristics (C-):

= Uu-cC.

. ax
(2.18): ar

The compatibility conditions Egs. (2.15) and (2.17) are
valid only along the characteristic paths Eqs (2.16) and
(2.18) (given as lines LA and RA in Fig.(2.1)). At point A,
an intersection of the characteristics LA and RA, both
compatibility conditions are valid, and given known
conditions at the points L and R (the "feet" of the
characteristics), the solution can be found. This requires
solving all four equations simultaneously, since the paths

themselves are the functions of dependent variables. The



Figure 2.1 The characteristic grid method
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problem becomes somewhat easier when the right-hand side of
the compatibility conditions is equal to zero (the case of a
horizontal, prismatic and frictionless channel). The
expressions under the differential operator, which are
constant along the characteristic paths, are then called
Riemann invariants. If in addition, the initial state is a
uniform flow, the exact analytical solution can be found
(Stoker,1957). 1In a general case, however the system of
ordinary differential equations must be integrated
numerically, and the accuracy of the integration determines
the accuracy of the whole method, since the original
equations have not been compromised to this point. Two
general approaches are used to solve the problem (Liggett
and Cunge,1975): the characteristic-grid method, and the
fixed-grid method.

In the characteristic-grid method, one starts from the
known time level t" (Fig.2.1) and solves the system of
Egs. (2.15-2.18) for the position X, and time t,, and the
velocity u, and celerity c,.

In the fixed-grid method the solution is obtained at
the points of the finite-difference~grid in the x-t plane,
i.e. for a known values of the independent variables
(Fig.2.2). Here, in addition to the unknown velocity and
celerity at point A, the positions (and therefore the

velocities and celerities) of the feet of characteristics LA
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Figure 2.2 The fixed-grid method of characteristics
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and RA are also unknown. They must be obtained from
interpolation between the points at the known time level t".
The type of interpolation greatly influences the accuracy of
the method. 1In addition to the most simple linear
interpolation, various types of parabolic interpolation have
been used. Higher-order interpolation procedures involve
the use of a greater number of points, complicating the
method. 1In order to obtain a method which uses only two
points for the interpolation, Toda and Holly (1988) applied
the Holly-Preissmann method (Holly and Preissmann, 1977),
which is successfully used for contaminant transport
problems, to Burgers' equation (a model equation for the
flow equations). The results were not entirely
satisfactory, due to the problem of unique determinacy of
the foot of the trajectory (characteristic path), and
difficulties in obtaining reliable guidance for the
parameters of computation.

The characteristics-grid method is potentially more
accurate, since no interpolation error is introduced.
However, after a few computational steps the solution points
become "randomly" dispersed all over the computational
domain, and a projection of the results onto a fixed grid
is necessary, at least to obtain a reasonable interpretation
of the calculations.

Regardless of the approach (fixed-grid
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vscharacteristic-grid) the method of characteristics fails
to yield a solution when the characteristics of the same
family (C+, or C-) intersect (see Stoker,1957 or
Cunge, 1975), as given in Fig.(2.3). Physically, this means
that at time t™' the particle L2 will be overtaken by the
particle L1, which is behind L2 at the time t", but has a
larger celerity (due to its larger depth - see Eg.2.14).

The resulting steep front (surge) moves at a speed different
from the speed of either of the particles before they met.
‘The speed of the surge is lower than the speed of the
perturbation behind it, but larger than the speed of the
particles downstream of it (Stoker,1957).

This problem of shocks is solved by the shock-fitting
technique (Cunge et.al.,1980; and Cunge,1975). The
conservation Egs. (2.6) and (2.7) for the moving control
volume are applied to the shock (whose path is designated as
the line SP in Fig.2.4), in addition to the equation of the
trajectory of the shock:

dx
(2.19):  —=

=W,

and the equation of the characteristics and compatibility

condition issuing from the point P. Again, when the fixed-
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Figure 2.3

Inception of the shock
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grid method is used, interpolation is necessary to obtain
the values of the variables at the feet of the trajectories
(characteristics). The problem then becomes a system of
fifteen nonlinear equations in fifteen variables, and is
usually solved by a combination of a simple iteration and
the Newton-Raphson method.

The method of characteristics also has been applied to
the two-dimensional equations - the so-called

bicharacteristics method (Katopodes and Strelkoff,1978).

IT.4.2 Finite-difference methods

The finite-difference method is the most commonly used
numerical tool for the solution of the partial-differential
equations for flow problems, not only in computational
hydraulics, but also in fluid mechanics and aerodynamics.

The basis for all finite-difference methods is in
approximation of (normally) continuous functions with
discrete values on particular grid points of the x-t plane,
and approximation of derivatives with divided differences.
Hence, the differential equations are approximated with
difference equations. The method and the order of
approximation is what makes a particular scheme attractive
for the solution of a given problem. Two major groups of
finite-difference schemes exist: explicit schemes, in which

the variables from only one of the "unknown points" appear
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in each of the difference equations (so that the solution
can be obtained explicitly), and implicit schemes, where at
least two unknown points appear in the equations (which
requires solving a system of equations).

To achieve convergence of the numerical solution to the
solution of the differential equations every finite-
difference scheme must satisfy two requirements: the
consistency condition, and the stability condition
(Richtmeyer and Morton,1957). While the consistency
condition is in general easy to fulfil, the stability
condition may require a limitation of the ratio of the time
step and the spatial step, usually expressed through the
Courant-Friedrichs-Lewy condition (or, less formally, the

Courant condition):

(2.20): Cr=|u+c|—§—§sl.o.

The limitation typically affects only explicit schemes; most
implicit schemes are unconditionally stable, regardless of
the value of the Courant number.

In addition to stability considerations, problems of
numerical diffusion and numerical oscillations also occur in

finite-difference methods. Both problems arise since the
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solution of the difference equations is equivalent to the
solution to some slightly modified form of the original
differential equations (Warming and Hyett,1974). For first-
order methods, where the truncation error has a leading term
containing the second derivative, the modified equation is
of a diffusion type, with the consequence of artificial
smearing, of diffusion of the solution. Numerical
oscillations characterize second-order methods, for which
the leading term in the truncation error is usually a third
derivative.

A broad survey of different schemes used in fluid
mechanics is given by Anderson et.al.(1984) and Patankar
(1980). In the following some of the schemes used for dam-
break computations, and in particular those used for
comparison with the method proposed in the present work, are
presented. Schemes upon which the proposed new algorithm is

constructed are also explained in more detail.

I1.4.2.1 Preissmann method

The Preissmann (or Sogreah, or four-point) scheme is
probably the most exploited of all methods for the solution
of the one-dimensional (de St.Venant) equations. The DAMBRK
model, presently the most widely used industrial code for
the calculation of dam-break waves, uses the Preissmann

scheme (Fread,1977).
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In the Preissmann scheme all functions and derivatives
are expressed using only four point values in the x-t plane

(see Fig.2.5):

(2.212): £ 0) = Doy » L0 epirny,
n+l n+i n n
n+l el no_ g

2.21b) : Of . glin—15 _ay sty

( ) ox Ax + (1-6) Ax 7

n+l n+1l n
(2.21c) : Of . fHa-Lia + £57 - 1;

ot 2AE !

where f(x,t) is any function to be approximated and 6 is a
temporal-weighting coefficient that can in principle be
assigned any value between zero and unity, though ©<0.5 is
required for unconditional stability. Application of the
above approximations to the de St.Venant Egs. (2.3 and 2.4),
with careful treatment of nonlinear terms and coefficients,
results in a system of non-linear algebraic equations, which
can be solved by a Newton-Raphson method. (0Of course, the
boundary conditions must be added to close the system.)

This leads to a system of linear algebraic equations, which
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form a tri-diagonal matrix, and can be solved by a double-
sweep algorithm in order to reduce computer time and memory
requirements. It can be shown (see Cunge et.al.,1980) that
the Preissmann scheme applied to the homogeneous
differential equations in conservation form, also satisfies
the appropriate integral equations, which makes it
especially attractive for "through" computations.
Unfortunately, the double-sweep algorithm is very awkward
and unnatural to apply for mixed-regime flows, which usually
occur in dam-break computations.

For a uniformly spaced grid the Preissmann scheme is
second-order accurate in space, and first/second-order
accurate in time. (The accuracy in time depends on the value
of weighting coefficient 0.) As an implicit scheme, it has
no theoretical stability limitation on the Courant number
(and accordingly on the time step). However, in application
to discontinuous problems, rather small time steps are
required, to avoid excessive diffusion (smearing) of the
wave front. The recommended value of the Courant number for
discontinuous calculations is around unity (Fennema and

Chaudhry,1986) .

IT.4.2.2 Lax-Wendroff method

The Lax-Wendroff method (Lax and Wendroff,1960) is used
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for solving conservative equations in gas-dynamics problems
involving discontinuities. The scheme has also been applied
to some open-channel flow problems by Houghton and Kasahara
(1968) .

The method is based on the capability of the
conservative equations to express the time derivative
through the spatial derivative, thus leading to an explicit
scheme with second-order accuracy in time, using only two
time levels to construct the grid (Fig.2.6). The
approximation of time derivatives by spatial derivatives is
obtained through Taylor-series expansion around the grid
point (xj,tm4), and then replacement of the time
derivatives by spatial derivatives, using the conservation
equations themselves. Applied to the conservative system

Eg.(2.5), this results in:

-2 n
(2.22): gt - pf - At oo’ Ui —Uja | At?

2 7 Ax 2
/ uh,-ui / ul-uf
—Al_ (F7 )22 +G2 | - (F7 1)? 2 Jl+G-ti1 +
X Jes Ax I3 J-3 Ax i-5
u?,-u’?
n! | oo’ J+_§ J—% n
*Gj | F; Gyl .
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where F? and G¥ are the jacobians of the column matrices

7 /
Fj and G} at the point j+1, and F?+ and G} ; are the

2

ve

jacobians at the midpoint j+%.

As do most of the (potentially) second-order accurate
methods, the Lax-Wendroff method suffers from numerical
oscillations, which sometimes must be controlled by adding
artificial viscosity.

To avoid computation of the jacobians, Richtmyer (1964)
reformulated the scheme as a two-step procedure, which was
implemented by Terzidis and Strelkoff (1970) for open-
channel discontinuous calculations. The algorithm performs
well for the cases of prismatic channels and flows with mild
discontinuities, but needs artificial viscosity (damping),
and extremely small time steps to produce a stable
computation for severely non-prismatic channels and very

strong shocks.

IT.4.2.3 MacCormack method

The MacCormack scheme also originated in aerodynamics
(MacCormack,1969), and is a very frequently used method for
discontinuous problems in fluid mechanics (Anderson et
al.,1984). It is a second-order accurate, explicit

predictor-corrector scheme. In the first (predictor) step a
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backward type of spatial differencing is used:

Thel At
(2.23): urt = uf - A (Fi'-Fjl;) +AtGy,

while for the final (corrector) step forward differences are

exploited for the spatial derivatives:

. n+l _ 1 [.rn, S5net At  =n n ~n
(2.24): u;= = > Uj+Uit - A (Fii, - F3") +AtGf.

The ordér of differencing can be reversed depending on the
particular case.

The scheme is very simple and easy to implement, though
it usually requires addition of artificial viscosity for
damping numerical oscillations.

Fennema and Chaudhry (1986) applied the MacCormack
scheme to the de St.Venant Egs.(2.5) for the computation of
flows with discontinuities. The results, obtained for a
prismatic channel and shocks less severe than those of dam-
break waves, were good. However, to obtain a stable
solution for very strong discontinuities in non-prismatic
channels, artificial damping (with significant smearing of

the results) must be added, and time steps (the Courant



48
number) must be reduced. Fennema and Chaudhry (1990) also
used the MacCormack scheme for the solution of the two-
dimensional equations, with not entirely satisfactory

results.

II.5 Summary assessment of state-of-the-art and needs

All the above-mentioned finite-difference methods,
when applied to nonhomogeneous equations, are based on
schemes that are not truly conservative, since the Lax
theorem can be strictly applied only to the homogeneous
(ideal) system of differential equations. Consequently,
they are able to produce satisfactory results only for
moderately strong surges (discontinuities) in prismatic
and/or nearly prismatic channels. However, the majority of
them cannot handle mixed-regime flow well (most finite-
difference schemes cannot handle it at all), though a mixed
regime is very likely to occur, at least in the earlier
stages of dam-break flow (Strelkoff,1989). (Not
infrequently the practice is to increase the roughness
artificially, and so avoid supercritical flow entirely
(Wurbs,1987)). In addition, the presently used schemes are
very sensitive to abrupt changes of cross-sectional geometry
and to the presence of very strong shocks. .

Consequently, there is a need for a new method, based

on a conservative scheme, and able to treat well both



49
discontinuities and mixed regime. Ideas for a new method
can be taken from other fields dealing with hyperbolic
equations with discontinuities, in particular from gas-

dynamics.

IT1.6 Numerical methods for discontinuous flows

used in other disciplines

Three general approaches are currently used for solving
the hyperbolic conservation laws for discontinuous flows in
gas—-dynamics (Roe,1980): random-choice methods, methods
based on linearized Riemann problems, and Godunov methods.
Each of those general groups has numerous variations,
depending on the application.

The finite-difference method for the gas-dynamics
equations, based on the linearized Riemann problem, has been
developed by Roe (1980 and 1981) and further improved by
Glaister (1988a). Glaister (1988b) applied the method to
the homogeneous de St.Venant Egs.(2.5) . The test results
of the application agree well with the Stoker (1957)
analytical solution, but it is not quite clear how the
generalization to the full equations, and in particular to
non-prismatic natural channels, is possible, without
significant modification of the algorithm.

The random-choice method, developed by Glimm (1965),

preserves the structure of the shocks with the uncertainty
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in their location. It is successfully applied to one-
dimensional porous-media flows, especially for petroleum
exploitation (Colella et al.,1983).

The Godunov method has an advantage over the previous
two methods in that it does not use any approximations
concerning the non-linearity of the Riemann problem and the
position of the shock. The method was first presented by
Godunov (1959) as a first-order conservative finite-
difference scheme with a monotonicity property. (The scheme
has the monotonicity property if it does not produce
artificial extremums (see Godunov,1959).) Both Lagrangian
and Eulerian descriptions of the method have been presented.
It is a two-step (predictor-corrector) method, in which the
conservative property is provided for by the conservative
(corrector) step, where the flow Egs.(2.5) are integrated
between the times t" and t™', and midpoints X;, and x;,, (see

Fig.2.7):

where <> and <5 are space-averaged values of the

“independent-variable vector U at times t" and t™!, while
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ﬁ?ﬁf and ﬁ?jf are the time-averaged fluxes at the midpoints

%, and '™, respectively, while the GJ"” is the time-

averaged source term. The most important part of the
problem is to obtain approximate values for the fluxes.

Many different procedures have been developed (and are still
being developed) to compute the fluxes since that is where
the potential of the method is gained, or lost. The way in
which the flow variables (vector U of Egs.2.5) are recovered

as piecewise functions from the averages <U>?i, is

extremely important for the accurate approximation of the

oy S9N —n+i o TR )
fluxes FJ'y and Fjy, and the source term GI*™*. The

original Godunov method uses constant values, i.e. a uniform
distribution of the functions, which can be shown to lead to
the upwind scheme.

The Godunov method was first applied to some
discontinuous gas-dynamics problems, but not with especially
good results due to the dispersive properties of the upwind
scheme.

One of the first applications of the Godunov-type
methods in computatidnal hydraulics (i.e. for solving the de
St.Venant equations) was the Vasiliev method of isolating
discontinuities (Vasiliev,1970). It is a predictor-

corrector moving-grid type method, where the flow is divided



53
into the zone of disturbance and the zone of initial state.
The moving boundary between the two zones is computed using
the method of characteristics at the upstream end, and the
shock Egs. (2.6 and 2.7) at the downstream end of the
disturbed zone. The position of the grid within the zone of
disturbance, and the variables at the intermediate time
steps (predictor step), are computed by a modification of
the method of characteristics, while the conservative
(corrector) step is used to ensure the conservative property
of the method. A special device is incorporated to handle
the dry-bed problem.

Although preserving the resolution of the shock (it is
a kind of shock-fitting method), and being able to deal
efficiently with the dry-bed problem, the Vasiliev method of
isolating discontinuities has many shortcomings for
successful application in practice. The constant expanding
of the grid diffuses the solutidn significantly, there is no
possibility of mixed-regime simulation, and certainly the
most important weakness of the method is its practical
incapability to treat reflected shocks. 1In order to cope
with a reflected wave one must construct another "sub-zone",
by which eventually the algorithm takes on the complexity
of a shock-fitting method, if not worse.

The Godunov method was rediscovered in the late

seventies, in particular in the work of Van-Leer described
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in a series of papers, and finalized by him through proposal
of a new variant of the scheme for compressible flow (Van-
Leer,1979). A Lagrangian step, based on the solution of the
Riemann problem (see Courant and Friedrichs,1948), is used
to obtain the fluxes, while the final results are obtained
from an Eulerian conservative step. This differs from the
original Godunov schemes, which was either Lagrangian or
Eulerian. Van-Leer used a sloped (linear) distribution to
obtain piecewise functions from the averages, which greatly
contributed to the accuracy of the results (see also Colella
et al.,1983 and Vila,1988). The requirement for monotonic
functions is provided for by a "monotonicity algorithm", a
device almost unanimously adopted in subsequent
developments.

The Godunov scheme has been further improved by Colella
and Woodward (1984) (see also Woodward and Colella,1984).
They developed a special interpolation procedure (piecewise
parabolic interpolation PPM) which produces third-order
accurate schemes. In addition to the Lagrangian-Eulerian
scheme, they created a purely Eulerian scheme for the full
compressible flow equations with very good results.

The implicit variation of the Godunov scheme is
presented by Fryxell et al.(1986). A new procedure for the
computation of fluxes, using an alternative interpolation,

removed the Courant number restrictions, but the accuracy of
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the method is now reduced to second-order.

Bell et al.(1988) introduced a characteristics-based
approach for flux computation (predictor step), and applied
it to the two-dimensional advection-diffusion equation. For
recovering the distribution of the averaged functions they
used a two-dimensional equivalent of the Colella-Woodward
PPM method. Although the results of the test computations
show even better agreement with analytical results than the
Colella-Woodward method, the authors claim that the
generalization to the flow equations would be impossible
without introducing considerable difficulties in an already
complicated scheme.

Some other possibilities for recovering distributions
for the reach-averaged functions are described by Woodward
(1986) .

Vila (1986) presented a thorough theoretical evaluation
of Godunov-type schemes and introduced a new solution for
the predictor step (flux determination) based on Riemann
solvers. Vila (1987) applied his second-order scheme (based
on linear interpolation) to the one-dimensional and two-
dimensional open-channel flow equations. Though the scheme
is intended for the full equations, only the results for a
prismatic frictionless channel are presented.

In the computation of discontinuous compressible flow

problems the major difficulty is very strong shocks. For
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computational hydraulics, most of the difficulties come from
non-prismatic channel geometry and mixed-regime flows
(though mixed regime presents a problem in aerodynamics,
also). The method proposed in this work for computing
unsteady open-channel flow with strong discontinuities is
based on a Godunov type scheme. It uses an Eulerian-
explicit approach, and Colella-Woodward piecewise-parabolic
interpolation for recovering the distribution of functions
from the reach-averaged values. For the computation of
fluxes several options of the characteristic-based
procedures in combination with a Riemann problem soclver are
considered. The goal is to obtain a stable, oscillation-
free scheme capable of handling strong discontinuities in

mixed regimes and for non-prismatic, frictional channels.
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CHAPTER ITI. MODIFIED GODUNOV SCHEME APPLIED TO LINEAR

ADVECTION EQUATION AND BURGERS' EQUATION

The modified Godunov scheme is first applied to the
one-dimensional linear advection equation as a model
equation because of its simplicity in an analytical sense,
so that the results can easily be verified and interpreted.
In addition, the numerical damping (diffusion) problems
associated with advection equation make it ideal for
assessment of some of the capabilities of the scheme. An
objective was to get thoroughly familiar with the method, to
learn its good features and to try to improve those that
seem to be less satisfactory, and thus lay the foundations
for implementation of the method for the de St.Venant
equations.

Subsequently, another scalar equation - Burgers'
equation - is solved as an appropriate, but simplified,
model of the non-linear flow equations.

First, the idea of the method is explained through a
detailed presentation of the two major computational steps:
1) conservative step based on the integral equations, 2)
flux predictor step based on the method of characteristics.

The interpolation procedure used for recovering the spatial
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distribution of reach averages, is then presented. Then
follows the implementation of the interpolation procedure in
explicit and implicit schemes for the linear advection
equation, and Von-Neumann stability analysis. Test
computations for the advection equation, and comparison of
the results with the Holly-Preissmann scheme, are then
presented.

The modifications needed to implement the scheme for
Burgers' equation, appropriate test computations, and
conclusions on the performance of the Godunov scheme for the

scalar equations are given at the end of the chapter.

IIT.1 Conceptual basis

The one-dimensional linear advection equation is

written herein as:

(3.1): -g-% + a—‘l[w(p)] -0,

where P 1is a dependent variable and ¥(p) is a function of
this variable. One can recognize the above equation as an

equation of mass conservation, where ¥ is then the product

of the density P and velocity Y in the x direction.
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Eqguation (3.1) can also describe one-dimensional contaminant
advection, in which case P is either the contaminant point

concentration, or depth averaged concentration multiplied by

the depth of the channel.

Whatever Eg.(3.1l) represents, it can be integrated

between times t" and t™', and spatial reaches X and X,
Fig.(3.1):
tn+1Xj+‘/x a a
3.2): e . 9 dxdt = 0,
(3.2) tfnxf{at * 5 (o)1}
3-%

Using the divergence theorem (from which arise the
conservation properties) the integral Eg. (3.1) is now

rewritten as:

DER Xjve
(3.3): f p(t”“,x)dx-—]1p(tn,x)dx +
Xj-‘lz Xj-‘/:

tnﬂ.

+f{llf[p(xj+1,2, £)1-¥p(x,,,, t)1}dt = 0
tn

or if one introduces the notation:
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Xj+!&
1
(3.4): <p>_’; =E- f p(t?, x)dx , AX; = K= X5 1s
7 Xjy
Eg. (3.3) becomes:
tn+1
(3.5):  <p>3* - <p>F + A; [ W 1p Gy, 01U Ip (54, £) 1)dE = 0
J ¢m

The space averaged values <p>§ of the variable P

resemble a grid function in the finite-difference sense.

Once the time integrals of "fluxes" ¥lp(x;,,,t)] are

obtained, the difference Eg.(3.5) can be solved for the grid

function <p>3.

Note that one actually solves ah integral equation,
which offers the conservation properties of the integral
approach even if the variables are not continuous. (For the
case of discontinuous variables, Eq.(3.5) has to be derived
directly from the integral conservation equations.) Note,
also, that so far no approximation has been made, and if one

could evaluate the flux integral exactly, one would have the
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exact solution. This is, of course, impossible for the
general case, but at least the source of an error is known -
it is always introduced through the evaluation of the flux
integral.

The computation is performed in two steps, the
algorithm being of a predictor-corrector type.

In the first (predictor) step the flux integrals at the
midpoints X;., and X;,, are approximated. In the second

(corrector or, conservative) step the reach-averaged values

of <p>5" are computed at the grid points X; (therefore a

staggered grid must be used).

IIT.1.1 Approximation of fluxes

Approximation of fluxes is of the utmost importance in
the Godunov method. How must one evaluate the integral for
the time "reach" (t™' - t")? Godunov's idea was to use the
method of characteristics to transform the temporal
integration problem to a spatial integration problem at the
previous time step t".

The case of uniform, steady water flow is considered,
so that the velocity u is constant in the entire X,t plane,

and thus can be taken out of the X derivative in Eg.(3.1):
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(3.1a): == + u—=- =0,

which can be readily cast in the form of the characteristics

approach:

(3.6): P  =const,

along the characteristic (path) u = dx/dt.

It should be observed that Eq.(3.l1la) is in non-
conservative form (as required for the method of
characteristics), and hence the computation of the fluxes is
based on the non-conservative equations. However, in the

final step, the grid-averaged function <p>5" is computed

from Eg.(3.5), which is based on the conservative form

(Eg.3.1).
In the case of a constant velocity the flux ¥ = pu

is also constant along the characteristics. Therefore, for

each value of the flux ¥l[p(xj,,,t)] at the variable time t

and fixed spatial point X;us there exits some point X at

the previous time level t" (see Fig.3.2), such that:
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(3.7): Vip(Xj )1 = Ylplx,-ul(t-t®), 21} = ¥lp(x, t2)].

For a uniform velocity field all characteristics are
parallel straight lines, as shown in Fig.(3.2). Hence, the
integral along the X axis for constant time t" can be
expressed by the integral along the t axis for fixed

position Xispr using a simple change of variables :

X=Xj+1/2—u ( t_ t n) }

3.8): e B)dE =
( ! !;W(X;/ dx=-udt

Ky p=Xy/
At j' ¥ (x, £7) dx.
XB,

Xj+1/2_XB/

In a more general case of a non-uniform velocity field
(either in time, in space, or both), the characteristics
will not be parallel straight lines, so that Eqg.(3.8) is not
strictly applicable. Nevertheless, the characteristics are
approximated as both straight and parallel, supposing that
the time step is small enough to allow for this assumption.

The flux problem has not yet been solved. Since the
final task is to integrate the fluxes of Eg.(3.8) over the

interval Xpi Xy, OnNe needs to know the values of the
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continuous function ¢ (p(x,t?)) = ¢(x) on the interval
(which is, for the case of a uniform velocity field,
equivalent to knowing the function p(x,t") ). Consequently,

one has to reconstruct the distribution of the function

p(x,t?) from the known grid-averaged values <p>Jj.

Recovery of the function p(x,t") from its previously

computed interval average <p>; is extremely important; it

is the point where the accuracy of the method is obtained,

or lost.

Originally, Godunov used a constant function i.e.

Y(x,t?) = <P>j, leading to an upwind difference scheme

which is unsatisfactory with regard to numerical damping.
Van Leer (1979) introduced linear interpolation, which
yields a second-order accurate scheme. Finally, Woodward
and Colella (1984) introduced a piecewise parabolic
interpolation (PPM)'which proved to be third-order accurate
and showed very good behavior, in particular for the

treatment of discontinuities.

ITI.2 Interpolation procedure (PPM)

To obtain the continuous function on the interval

iy < X < X, which is needed for the integration of fluxes,



67
a piecewise parabolic interpolation (PPM) is used. In what
follows, a brief account of the PPM, which is necessary for
understanding further development of the method, is
presented. A detailed description of the interpolation
procedure is given in Appendix A.
The goal is to obtain a piecewise monotonic function,

whose integral over the computational reach (Xj X

j+‘/z)

=V 7

equals the known grid-averaged value <{>7 multiplied by the

length of the interval. In addition, some modifications are
introduced to provide a good representation of
discontinuities.

A second-order polynomial, the coefficients of which
are obtained through the integral conditions (see Appendix

A), is used for approximation. The resulting expression is:

R X=Xy X-X; v,
where:
(3.10): A“H = Yp -V, ; , and,
(3.11) Wy = 6|y, - —Yrst¥uy) |
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The values at the left and right limits of the reach,

Y., ; and ¢, ;, are obtained from another interpolation,

based again on the integral condition. An auxiliary
integral function of the wvariable ¥ (x) is approximated by a
quartic polynomial, and then differentiated at the
appropriate point (X;=%g ; OF X;,=X ;) to obtain the desired
limit values ¢, ; and V¥, ; (Appendix A).

To avoid artificial oscillations of the results, and to
improve representation of discontinuities, modifications of
the algorithm are introduced, the most important one being
Van Leer's monotonicity procedure (see Colella and Woodward,

1984). Monotonicity is obtained by not allowing wvalues at

the midpoints ¢}% to overshoot adjacent reach-average
values <y>; and <¢>?ﬂ. This principle results in a

modified expression (3,¥;) for the differences awgzawj (see

Appendix A):

min(lawj|,2|1|:j+1-1|:j‘|,z|¢j-¢j_1|) *sgndy;,
lf(¢j+1"‘|’j) (d’j"‘ll’j_l) >0

0 IF (Y- (P-d; ) <0

(3.12) S, ¢, =
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where the factor 2, multiplying the absolute values of

|¥,.,-¥,| and |¥;~¥,,|,is adopted to ensure that the
modification takes place only when <{>5 is very close to
either ¥,, or ¥,, .

In the vicinity of shocks the algorithm is further
modified to produce a narrower discontinuity profile,

without creating overshoots or undershoots.

IIT.3 Explicit scheme for linear advection

Once the unknown flux functions ¥ (x, t") have been

obtained through interpolation, one can integrate them in

Eg. (3.8), and hence solve the conservation Eq.(3.5) for the

grid-averaged function <p>3. The following notation is

introduced for convenience (see Fig.3.3):

1 Xj+‘/€
° _17,*'/2________ n
(3.13) - f V2 (x) dx. ,

xB’

so that the conservation Eq. (3.5) can be rewritten as:

(3.14):  <p>7* = <p>’;——AAYt (T -T50)
E
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n+1

Figure 3.3 Locating the foot of the characteristic
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The integrand ¥ (x,t” in Ed.(3.13) is a known

polynomial function Eqg. (3.9), obtained through the PPM

interpolation (as described in the previous section).

Therefore, to obtain the time-averaged flux ¥ji; one needs

first to determine the lower limit of integration, that is,
to calculate the position X;, of the foot of the
characteristic (Fig.3.3), and then to perform the
integration in Eqg. (3.13).

Determining the location of the foot of the
characteristic is a trivial problem for the case of a
uniform velocity field, but when velocities change in time
or in space (or both) one needs to integrate the
trajectories u(x,t)=dx/dt in order to obtain the point of an

intersection (the foot B'):

tl’H’l

(3.15) 1 Xyu-Xp = [ ulx, t) dx.
tn

To evaluate the integral of Eq.(3.15) the trapezoidal

rule is used:

(3.16) H Xj+1/z_XB/ = % (UBI+U;2-:‘}£2) 7



where u;, is known and u; is to be obtained through linear

interpolation as:

Xpr— X,

(3.17) ¢ Ug = ug + Idu,

where the velocity difference 6u; is computed by the same

monotonicity procedure used for 3§,§; Eg.(3.12). Finally,
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the value of X;, is expressed from Egs.(3.16) and (3.17) as:

du; ;
(3.18): Xy X; AL TY; AL ”*’=+uj”)}

et Ax. 2 I 5 Uik
J

il
=3
Lol
[ ]
<
.
Py

After locating the foot of the characteristic X5, one

can easily integrate Eq.(3.13). A change of variables is

used to facilitate the integration:

(3.19): E =X“'Xj__1/2.

With this, the interpolation function for V¥ (x)

(Eg.3.9) is substituted into Eq.(3.13), yielding the flux
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integral:

(3.20) ¢ P = z—Xi_—g—;{lll'L',j(AXj-Ea') *
i7%B

'I’es,jn 5X.73'_E3?3/

3 AX3

N Ayi+yg, 5
ZAX%

(AX3-E2) -

To summarize the entire procedure:

1. First the velocity gradients 8u,;=8uj and Suj™ are

computed, using a monotonicity procedure equivalent to

Eq.(3.12), and the velocity uf} is linearly

interpolated between the points "j" and "j+1%;

2. Then X;, is computed using Eq.(3.18);

3. The time-averaged flux T4 at the midpoint X,

is obtained from Eqg. (3.20):;

4. The flux P}y at the midpoint X;, is retrieved

(since it has been already computed for the previous
interval); and

n+'s

5. The reach-averaged <p>j is finally computed

from the conservation Eq.(3.14).
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ITIT.4 Von-Neumann stability analysis

A Von Neumann stability analysis has been performed for

the case of uniform flow velocity (u=const) and uniform

spatial step AX; = const. With u and AX; constant, and the

Courant number Cr defined as Cr=u 2;, the expression for

<p>5"* becomes:

(3.21): <p> it = pj_3{—%(0r—1)}+
+pj_2{_§-c'r2(0r—1) = [CI(C’I—Z)]}+
+—pj{%%§CT[1+CT(CT—2)] +3CT2(1—%§CT)}+
2 2 2 2
+ pj{l—[§C’r (Ccr-1) +3Cr (1-—3—0r)]}+
2
+ pjﬂ{i_rz (cr-1) —%C’r[l+C’r(C’r—2)]}+

+pj+,/2{—f—§ [1+Cr(Cr-2)] }

where <p>?Epj are concentrations at the previous time step

t, (refer to Fig.3.1l). The numerical solution is then

expressed in terms of a Fourier series:

(3.22): pit = Y a4, e ibalnr) A ity () Ax
m
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where A is an amplitude, and B, and ¢, are time and spatial

frequencies of m-th Fourier component. Since Eq. (3.21) is

linear, stability analysis can be focused on one component

OnlY! (p?)m:
(3.23): P p = A, o ibnmAr 18,05 Ax

After introducing Eq. (3.23) into Eg.(3.21) and

rearranging one obtains:

. ) 2 , -
(3.24): e ifeAt _ e‘““{—% (CI—1)}+e-zla{%ﬂ (7C‘r+1)}+

. 2
+e-1°‘{%£ (2+5C’r—4Cr2)} ¥ {1 _53{_ (7 —4C’r)}+

vete[ CLLCIL) (g q0r)) +e2ie[EE (cr-1)7],
> 12

where:

The amplification factor and the phase error, and
consequently amplitude and phase portraits R1 and R2, are
obtained from Eq.(3.24). (The R1 and R2 coefficients are the

ratios of amplification factor and celerities between the
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numerical and analytical solutions for a particular Fourier
component (Eg.3.23). For detailed explanation see
Abbott,1979 or Cunge et al.,1980.) Plots of those useful
indicators of stability, numerical damping and phase error
for the Godunov and the Holly-Preissmann (fourth-order)
schemes are compared in Fig.(3.4).

As for most explicit schemes, stability requires
limitation of the value of the Courant Number. For the
explicit Godunov scheme the critical Courant number is
Cr=1.5, which is a larger value than the usual one of unity
(Cr=1.0). This is the result of using a larger number of
points in the PPM interpolation, which, for the case of
larger Courant numbers (but not larger than Cr=1.5), enables
successful extrapolation, when the feet of the
characteristics fall outside of the interpolation domain.

Amplitude and phase portraits (Fig.3.4a) show good
behavior of the Godunov scheme, though the Holly-Preissmann
method has significantly better performance for

dimensionless wavelengths (wavenumbers Im/AX, where L, is a

wavelength) less then five. For wavenumbers above six (and
Courant number below unity) numerical damping is
insignificant for both schemes. Similar Godunov scheme
behavior can be observed for the phase-error (Fig.3.4b).

For the Holly-Preissmann scheme the phase-error is
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imperceptible in the stable range.

III.5 Implicit scheme for linear advection

As has been shown by the Von Neumann analysis in the
previous section, the explicit Godunov scheme becomes
unstable for values of the Courant number greater than 1.5.
To be able to compute for values of Courant number greater
than 1.5, Fryxell et al. (1986) developed an implicit
scheme, requiring an entirely different approach for the
approximation of fluxes.

Only the main features of Fryxell's algorithm, applied
to the 1ineér advection equation, are presented in this
chapter, since it has not been further used in this work for
Burgers' and de St.Venant equations. As explained in the
previous chapter, the relatively small time steps needed to
preserve the resolution for very sharp discontinuities
(Fennema and Chaudhry, 1986) compromise the main potential
advantage of the implicit scheme. 1In addition, the results
obtained with Fryxell's implicit algorithm show significant
numerical diffusion compared with the explicit method
(Figs.3.8 - 3.11). Still, the implicit scheme is briefly
presented here because of potential future developments, in
which it might be implemented to speed up the computation
after a sharp discontinuity has already been smeared by

resistance effects. A detailed development of the scheme is
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presented in Appendix B.
In the Fryxell implicit algorithm characteristics are
used to convey information from the grid-point section X; at

some time t to the midpoint section Xy at time t™ (see
Fig.3.5). To improve the performance of the solution an
intermediate time level "n+%" is introduced, and accordingly
another characteristic AB (Fig.3.5) issuing from the
midpoint level.

In the first step the conservation Eqg.(3.5) is used to

relate the unknown grid-averaged concentrations <p>3™* and

<p>3*" to the fluxes Uiy and oi:

+ 1 Yo ==n+k
(3.25) : <p>3™t = <p>f - —= [WTE-TI,
AX
+ +¥% —n+ 1 ,+ T+
(3.26) : I = <>t - [ (prB-grh - 2 (GL-TL |,
ax;| 4 2

where the coefficients 3/4 and 1/4 come from the time

interpolation (see Appendix B).
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In the next stage the flux functions iy and Uiy, are

n+'%

expressed in terms of the grid-averaged functions<y>3, <{y>7

and <y>3", using the method of characteristics to transfer

information from the line ED to line AA'.

Finally, the expressions for the fluxes are substituted
into the relations for the concentrations Egs. (3.25) and
(3.26), which, in the case of uniform flow, results in a

n+'e

system of two linear equations in two unknowns <p>j and

<p 5.

Stability analysis for the implicit scheme, performed
by Fryxell et al (1986), shows that the implicit method is
unconditionally stable for Courant numbers greater than
unity, while it is unstable for values of the Courant number
less than unity (in which case the explicit scheme must be
used). The amplitude and phase portraits for the implicit
and explicit Godunov schemes are compared in Fig.(3.6). The
analytical solution is obtained for both implicit and
explicit approaches for a Courant number of unity, since in
that case the coefficients Rl and R2 are equal to unity for
the entire range of dimensionless wavelengths. Both
amplitude and phase errors are much larger for the implicit

scheme. The errors increase with the Courant number, and
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they persist for rather large values of wavenumbers (up to
50 for a Courant number of four). Therefore one can
anticipate both large numerical damping and oscillations for
the implicit scheme, and this is conformed in test

computations described in the following section.

III.6 Test computations for linear advection

The previously described algorithms have been
incorporated in a computer code and tests performed in order
to assess the performance of the proposed Godunov method,
and compare it with methods currently used for pure
advection. For comparison the Holly-Preissmann fourth- and
sixth-order methods are chosen, both being very accurate
methods for advection problems. Particular attention is
devoted to examples with steep fronts, because the method is
supposed to give good performance for discontinuities, and
as such is taken as a possible candidate for a new
generation of open-channel steep-front solvers.

Results of the computations are presented in Figures
(3.7)=-(3.11). First, an example with a continuous initial
condition of Gaussian shape, with no influx at the boundary,
is considered; then the case of a steep front discontinuity
is tested. For all cases, tests for Cr=1 reproduced the

exact solution.
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The first (continuous) case is taken from Holly and
Preissmann (1977). Pure advection in an infinitely long
channel of unit width and constant advection velocity u=0.5
m/s is considered. A zero flux of contaminant is introduced
through the (upstream) boundary. The initial condition is
given as a Gaussian curve with standard deviation 0=264m and
a mean concentration of ten units. The computational grid
is uniform in space with a spatial step of dx = 200 m. The
computational time is t,, =9600 s, and the Courant number is
varied by changing the time step.

Results of computations for the explicit Godunov method
for Courant numbers Cr=0.25 and Cr=0.75 are presented in
Fig.(3.7). The peak concentration error is approximately
10% for Cr=0.75, while in case of Cr=0.25 the error
increases to about 18%. Phase shift (observed through the
location of the peak), though present, does not appear to be
significant. This reasonably good amplitude and phase
preservation might have been expected from the small damping
of the majority of the Fourier components as shown in
Fig.(3.4). Negative concentrations are obtained for both
tests; in the case of Cr=0.25 they are not insignificant.
(The monotonicty algorithm which controls
over/undershooting, was not used for this computation in
order to preserve the angularity of the solution.) The

larger negative concentrations for the Courant number of
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0.25 reflect the larger phase error.

Comparison of the Godunov and Holly-Preissmann fourth-
order schemes for Courant number Cr=0.5, given in Fig. (3.8),
shows moderate advantages of the latter method. Both
amplitude errors and negative concentrations (undershoots)
are less in the Holly-Preissmann method, which was expected
from the amplitude/phase-error analysis (Fig.3.4). The sane
trend is observed for other Courant numbers. The sixth-
order Holly-Preissmann method gives even better results; the
deviations from the exact solution are visually
undetectable.

The implicit Godunov scheme was tested for the same
data with Courant numbers Cr=2 and Cr=4 (Fig.3.9). The
performance worsened significantly compared to the explicit
algorithm; for larger values of Courant number numerical
diffusion practically ruins the computations - an outcome
predicted by the analysis of the amplitude/phase portraits
(Fig.3.6).

In the second test case a moving steep discontinuity in
concentration is considered. The grid spacing, advection
velocity, and computational time are the same as in the

first example. The upstream boundary condition is now

p (1)=10 units. The initial condition is given as a steep
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front with the concentration on the upstream side of the
front equal to the boundary concentration p=10 units, and
the concentration p=1 unit on the downstream side.

In Fig.(3.10) the explicit Godunov scheme is compared
with the fourth-order Holly-Preissmann scheme for Courant
number Cr=0.5. Here the Godunov scheme performs slightly
better. The monotonicity algorithm in the Godunov method
assures that there is no overshoot and undershoot, and
for most of its length the discontinuous front is reproduced
well.

Comparison between the Holly-Preissmann and Godunov
implicit schemes is shown in Fig.(3.11). The implicit
scheme, though performing much better than for the Gaussian
example, is still by far the worst. In addition to
significant diffusion of the front, large undershoots occur.
This is due to the fact that for the implicit method the
monotonicity device is not implemented, and the phase-error
is significant even for large wavenumbers (Fig.3.6). (The
monotonicity algorithm is not developed for the implicit
scheme, since the huge numerical damping and phase error
have already compromised the approach, and it was considered
that the time needed to develop a monotonicity algorithm

would not be justified.)
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Almost perfect mass conservation is observed for all
explicit Godunov computations, relative errors being less
then 10" . The implicit scheme was less conservative,
presumably due to errors in the temporal interpolation.

Test cases with variable grid size also have been
performed, as well as computations with a nonuniform
velocity field. They all showed, in general, the same type
of performance (same trend in numerical diffusion,
oscillations, stability and conservation properties) as the
runs with constant grid size and uniform velocity field.

In summary, the linear-advection test computations have
shown that the explicit Godunov scheme gives very good
performance, particularly for the case of a steep-front
discontinuity. Both conservation properties and spatial
resolution of the front were good.

The implicit algorithm, however, gives excessively
diffusive and far less conservative results, hence further
research is needed to try to improve it's performance.

Given the implicit method's large diffusion, complexity of
the algorithm, and the fact that relatively small time steps
are needed to resolve very sharp discontinuities (Fennema
and Chaudhry, 1986), it is not further considered in this

work.
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IXT.7 Developnent of the Godunov algorithm and

test computations for Burgers'! eguation

The goal here is to assess the performance of the
Godunov method for nonlinear scalar equations, in particular
Burgers' equation (Burgers, 1948). Since the main features
of the scheme are the same as for the linear-advection case,
in what follows only the important differences are pointed
out.

Burgers' equation is a first-order nonlinear (or, in
some definitions, quasi-linear) partial-differential
advection equation. Its nonlinearity (advection velocity is
itself the transported scalar quantity) makes Burgers'
equation more similar to the flow equations than to the
previously considered linear-advection equation. The

homogenous equation is usually written in the form:

or in conservative form as:

(3.28): 284 ] =0, r=i
X
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As in the case of linear-advection, the conservative
Burgers' Ed.(3.28) is integrated in space between the

midpoints X;,, and X; and in time between levels t" and t™'

=Y ¥

(Fig.3.1):

tn+1

f[F(u( e ©)) ~Flu(x,,, £)) 1dt =

Jtn

(3.29): <t -<w i+

n+1

where <u>; and <u>3" are grid averages defined as in the

case of linear advection. Equation (3.29) is simplified as:

(3.30): <P = <w? - AL (Frk g
AXJ £3 2

n+/z

where the time-averaged fluxes Fy,, are defined as:

(3.31):  FEE - Ai fF[u(x e £)1dE.
tr

As in the case of linear advection the flux integral
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Eg.(3.31) is approximated using values from the previous
time level t™', based on the characteristics notion

(Fig.3.12):

ghvt X%

T+’ 1 n
(3.32):  Fit = L [ Flu(x;,,, t)]1dt = —E!EF[u(x,t )1dx .

The integration in time for a fixed position (X, in
Fig.3.12) is approximated by the integration in space, over
the domain of dependence of the point A (at X;s, and at time
t™!), for a fixed time (t"). It should be repeated that
since the flow field is not uniform, the characteristics are
not straight and parallel. Therefore the Eqg.(3.32) is an
approximation, not an exact statement as is the case for

uniform flow and linear advection.

For Burgers' equation one can analytically integrate
the function Flu(x,t?)] in Eq.(3.32). For the case of the
de St.Venant equations, however, such integration is
impossible, due to the complexity of the integrand, and
therefore the dependent variable (in this case it would be

velocity u) is instead averaged:

Kieth

. 1 .
3.33 H l_fr'],,_‘lé = ——_— u(X, tn)dX
( ) 7+ BC
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Figure 3.12 The approximation of fluxes
for Burgers' equation
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and the fluxes approximated as:

(3.34):  FIE = F(TIE) .

Since the purpose of investigating Burgers' equation is
to provide guidance for further application to the de
St.Venant equations, the above procedure for flux
approximation (averaging the velocities rather then the flux
functions) has been adopted. The PPM interpolation
procedure, described in section III.2, is used to recover

the piecewise continuous functions from the grid-averages

<u>y s

(3.35): u(x,t“)Eu“(x)Eu(x)=uLj+j?§§§2AAuj+u&j(1—3%;%fé),
where:

(3.36): Au; = up j-up ;i U5 = GL{f—iﬁﬂ%;ﬂﬁl),

The polynomial approximation of the velocity (Eg.3.35)
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is substituted into the integral Eq.(3.33) to yield the

expression for the space-averaged velocity:

. Au.+u . u. .
(3.37):  mip = -1 up 5 (1-E5) +—L—51 (1-E3) -—2:2 (1-E3) |,
1€, ™ 2 3
where:
X_X-_V
3.38 = — 272
( ) 13 A

The time-averaged fluxes ﬁ?;f are then computed with

0 a 3 1, L3 v
time-averaged velocities i}y , and finally grid-averages

<uw>¥? are obtained from the conservation Egq. (3.30).

To obtain the domain of dependence of point A, the foot

of the trajectory (point B in Fig.3.12) must be determined.

This is accomplished by the method of characteristics. If

the velocity u satisfies the characteristic equation:
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then the non-conservative Eg.(3.27) becomes a total
differential, and consequently the velocity is constant (u,
= u,;) along the characteristic path described by Eq. (3.39).

The characteristic Eqg.(3.39) is approximated as:

Xj +Va ‘—XB

(3.40): Ug = AL

and substituted into the polynomial expression (3.35) to

yield a quadratic equation which is solved analytically as:

Ax; Ax, X,
(3.41): Auj+u6,j+A—tJ R (Auj+yg ;+ Atj)z_‘lufi,j(_l_ur. ,

B

2Ug 5

To recapitulate the procedure:

1. The foot of the characteristic AB (Fig.3.12) is
calculated from Eq. (3.41):;

2. The velocity u is averaged over the domain of
dependence BC using Eqg.(3.37), and the time-
averaged fluxes are obtained from (3.34);

3. The conservative Eg.(3.30) is solved for the

n+l

grid averaged velocity <uw>j .
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Test computations for Burgers®' egquation show promising
behavior. In Fig.(3.13) a test of discontinuous flow is
presented. The initial condition is a steep front with a
velocity u=10 m/s upstream and with flow at rest (u=0)
downstream of the front. The upstream boundary condition is
a constant velocity of u=10 m/s. The spatial step of 200 m
and time step of 5 seconds yield a Courant number of
Cr=0.25. (The computations for other values of the Courant
number gave similar results.) After 192 time steps (the
computation time was t=960 sec.) the front is still confined
within one spatial step and the result is almost identical
to the analytical solution (Strang,1986). The conservation
of mass is excellent, with a relative error of approximately
10", one should bear in mind that the Holly-Preissmann
method, applied by Toda to Burgers'®' equation (Toda and
Holly,1988), does not give satisfactory results.

In this chapter the modified Godunov scheme is
successfully applied to scalar linear and nonlinear
hyperbolic equations for both continuous and discontinuous
problems. The results suggest that the method shows promise
for solution of the de St.Venant equations when

discontinuities are present.
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Figure 3.13 Burgers' equation solved
with the Godunov method:
Steep—front initial condition
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CHAPTER IV. MODIFIED GODUNOV SCHEME APPLIED TO

DE St.VENANT EQUATIONS

In this chapter the modified Godunov scheme is applied
to the full de St.Venant equations. Of the several
alternatives developed during the investigation, only two
(which are suggested as the best) are presented in detail
here; the most important aspects of the other examined
alternatives are explained.

First the basis of the method is reviewed in the
context of the differences introduced with the de St.Venant
equations. Then follows a detailed explanation of the
conservative step.

The most delicate issue is approximation of the
fluxes. The continuous and discontinuous cases are
discussed separately. For both cases the domain of
dependence is determined using the characteristics approach,
but in two different ways. For the continuous solution,
various options of averaging the flux variables in time are
considered; those giving good results are presented in more
detail. For the discontinuous solution the Riemann solver
is applied to the flow equations, with Stoker's solution

used for initiation of dam-break type computations.
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Finally, treatment of the boundary conditions by the
method of characteristics is described, as well as the
procedure close to the boundaries where there are not enough
points to permit application of the PPM interpolation.

A simplified channel geometry is chosen for the
analyses. Again, one should bear in mind that the goal of
this work is to develop a method; practical models for
natural channel geometry will be developed in the future,

provided the method shows promising results.

Iv.1 Conceptual basis

There are significant differences in treatment of the
scalar equations, considered in the previous chapter, and
the de St.Venant equations. New challenges arise from the
need to deal with a set of two equations; two streams of
information are needed to provide good estimates of the flux
functions. This deprives one of the opportunity for exact
analytical integration for the computation of fluxes offered
by the scalar equations, but in all other respects the ideas
of the Godunov method, as explained in the previous chapter,
can be successfully implemented.

The de St.Venant equations are presented in the
literature review of chapter II. The continuity equation,

momentum equation, and the compact matrix form are:
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, a0 _
(2.3) ¢ I + Fx 0,
0 5}
('2.4): _3% + _a_E(ngIl) = gA(S,-S;) + gI,,
, U . 8 .
(2.5): 3t + —a—)z[F(u)] = G(U,x,t),

where:

(2.5a): U=[A4,01%, F(U)=[0,Qu+gI,17,
G(U,x,t)=[0,9A(S,-S,) +9I1,]17.

For the case of a rectangular channel, the above

equations can be rewritten as:

. 0A | 90 _
(4.1): 3t + 3 0,

. 90 0 h2, _ _2.u |y 0B h?
(4.2): 3 * _aX(Q”+gB_z ) = gA(S,-n P ) + 9375
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where A is the wetted area, B is the width of the channel, Q
is the discharge, h and u are the average depth and velocity
of the cross-section, R is the hydraulic radius, g is the
gravitational acceleration, n is the Manning roughness
coefficient, I, and I, are the centroidal moment and the
rate of its change due to the variation of cross-sectional
geometry, So is the bottom slope, and Sf is the friction
slope, which is expressed by the Manning equation. The

expressions of the matrix Eqg.(2.5) are now defined as:

(4.3): U=1a,0]7, F(U)=[Q,QU+9'B—]-1;]T,

) _au |y OB h?yr
G(U,x,t)=[0, gA(S,-n R4/3 )+gax 2 17

The matrix Eq.(2.5) is integrated between times t™' and
t", and midpoints Xy and X;, (Fig.4.1), as in the case of a

scalar equation:

tn+1xj+‘/z aU tn+1xj+% a
4.4 : —_ - =
(4.4) [ S dedx + [ [ = [F(0)] dxdt
R Xin tR Xin
2y

f f G(U, x, t) dxdt.

ER X
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Figure 4.1 Definition sketch for de St.Venant
equations
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After performing exact integration in time for the
first term, and in space for the second term of Eqg.(4.4),

and averaging the vector variable U over the reach between

the midpoints X;,, and X;, , one obtains:
tn+1
(4.5): <Et = <i- A; f{F[U(Xj,%, £)1-FlU(x;.,, t1}dt +
J en
tnﬂ'xjﬂlz
+ = [ [ 6lu,x, 0 axdt,
Ax;
tR Xjy

where the grid average <I»>j is defined as:

PSRN
(4.6): <WF = 1 flﬂ&tnhk.
Ax;
K14

When the flux terms and source terms of the

conservative Eq. (4.5) are expressed as:

tn+1

o on+e 1
(4.7):  FEOf = fF[U(ijz, t)]dt ,
tn
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and:

[Pl ST
a.8)y: grt- L1 ,
(4.8) Gt 5 [ [ cux t)dxde

J £8 Xy
the grid average <I>§™ at the time t™' can be obtained as:

(4.9 <O = O Lk (T cAcE

J

which completes the conservative step.

The approximation of the fluxes Eq.(4.7) and the source
term Egq.(4.8), which is the most delicate part of the
method, is described in the following section.

Since non-prismatic channels with non-uniform bottom
slope are considered, the channel geometry must be defined
at discrete computational points. The adopted scheme for
defining geometry is presented in Fig.(4.1). The description
at the midpoints, which is in spirit of the Godunov method
itself, is preferred to the alternative description at the
gridpoints, though the former approach introduces additional

coding complications.
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Iv.2 Approximation of fluxes

To solve the conservative Eq.(4.9), for an unknown

grid-averaged vector <U>§' , one needs to approximate the

time integral of the flux terms (Eg.4.7), and the double
(time and space) integral of the source term (Eg.4.8). The
approximation of the time integrals is the most sensitive
part of the scheme, and the behavior of the method depends
strongly upon it. The spatial integration of the source
term presents no special difficulties, hence the following
discussion is devoted primarily to the approximation of the

time integrals - time averaging - of flux and source terms.

—n+7 o e
The flux term Eﬁf 1s taken as a representative one

throughout the discussion, but the conclusions are
applicable to all terms described by Egs. (4.7 and 4.8).

Several alternatives have been examined, and those
which gave good performance are presented in detail. There
are two general approaches for approximation of the time
integral (at the point iy, ) -

In the first approach the values of the vector U at the

midpoint X, are first approximated at some point in time
t2<t<t™!, where the function F(U) is then evaluated, and

numerically integrated. If the trapezium rule is used for

integration one obtains:
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(4.10):  Fiif = 2 [F(Ofy) +FIOED ],

and for the Simpson rule the expression is:

(4.11):  Ff = = [F(Ofy) +4 FOORSE) +FUORD ],

where the values with hats (U2, U%%, 0%'}) represent the
j+% F+¥e F+

approximations of the vector U at the times t", t™*, and
t™, and are computed by the method of characteristics. For
both trapezium and Simpson integration this method of
averaging showed considerable instability when used for
strong shocks in dambreaks, and was accordingly abandoned.
In the second approach the vector U itself is
"averaged" , and then the flux function is applied to the

averaged vector:

(4.12): F2% = F(URYE),

4+ o ]
where t@ﬁf 1s some representative ("average®™) value of the

vector U along the time of integration. It cannot be

strictly thought of as the averaged value of U on the
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interval t - t since the integral of a function is not

n+t?

equal to the function of an integral, i.e.:

(4.13): fF(U) dt + F[fUdt] .

Some attempts of actual time averaging (by the trapezium and
Simpson rules) were carried out, the theoretical inaccuracy
of Eg.4.13 notwithstanding; it is argued that the averaging
in flux-approximation might be corrected in the final
conservative step. The results of these attempts were
inconsistent. For prismatic channels and expansions they
produced proper results, but for the case of a sudden

constriction the results were completely senseless.

The approximation of the vector i@ﬁf is finally

focussed upon as the main problem in flux approximation.
Two approaches are presented here. The first approach
manipulates the conveying of the Riemann invariants along
the characteristics, and originated from the algorithm used
by Colella and Woodward (1984) and recommended by Cunge
(1988) . The second approach, which is a simplified

modification of the technique applied by Vila (1987),

approximates the vector iﬁﬁf with the value obtained by

the method of characteristics for the mid-time t"%,
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Because of the essential difference in treatment of
continuous and discontinuous flows, each of the flow regimes
is considered separately in the following sub-section.
Regardless of the approach for approximation of the

vector U and the type of flow (continuous or discontinuous),

once the vector Lﬁ*é is obtained, the conservative Eq. (4.9)

can be solved for the grid-averaged vector <> as:

At
Ax,

J

(4.14): <Y = G- == [FUN) -F(UFA) 1 +AtG(UT™, UR)

or in a developed (scalar) form as:

(4.15): <A>F?* = <A>?“Aé;<t‘. [ (W5 hIEB ) - (T hEEB, )1,
J

for the average area <A>}™" , and:
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Ax, || s Bt 95— 55

. At v s (h75e)
(4.16): <Q>?+1 _ <Q>?— (T2 2 hn+/z QLABW% -
J

nhy 2 s (hiE) 2
- ( ) h 1/23_1/2+gTBj_1/2) +

—n+'/z —n+%

gAt Theth Ujte |Ujs%
+ = h S -n* 212 2% +
_7+‘/z j+le i~ o Stk 4/3
2 (RIS /3 )
=n+i2 --n+‘/z
+ gAt hn+‘/z S -n2 Uj-v, - +
T |Fi-% o _1—_“
2 (RI4E) 4/3

7

W . Theth\2
L gAt Bjw=Biw hI5e+ iy
2 Axa 2

n+l

for the averaged discharge <0>;". (The bottom slope is

approximated as S;=(Z%M—Z%%)/Ax3.)

IV.2.1 Continuous solution

The procedure for approximation of the flux vector Eﬂﬁf

is now presented. In both approaches for computing the

approximate vector U7, introduced above, (conveying and
J+e 7

averaging the Riemann invariants over the domain of
dependence, or using the value from the mid-time t™"*) the
problem is based on the method of characteristics, which is

therefore described in detail in the following sub-section.
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IV.2.1.1 Application of the PPM method to the

method of characteristics

Two algorithms for the method of characteristics are
used in the present work: one based on piecewise parabolic
interpolation (PPM), another on simple linear interpolation.
Only the procedure based on the PPM interpolation is
presented here, as it is original for open-channel flow
computations. The procedure based on linear interpolation
can be found in the literature (for example Liggett and
Cunge,1975). The variables for interpolation will be
referred to, henceforth, as a primary variables. Three
combinations of the primary variables have been
investigated: the area-discharge (A,Q), the velocity-depth
(u,h) and the depth-discharge (h,Q) sets. The (A,Q) and
(u,h) sets gave significantly more stable results then the
(Q,h) alternative, which is consequently abandoned. The

(A,Q) set seems to be the most natural choice, since the

grid averages of area <A>; and discharge <Q>j are the

results of the conservative step (Egs.4.15 and 4.16), and as
such are consistent with the method in general. However,
for the case of very strong shocks and severe changes of the
cross-sectional geometry (width), the (A,Q) combination
gives unreasonable results while the (u,h) set performs

well. This comes from the unnatural distortions of depths
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and velocities in the (A,Q) variant (since areas and
discharges are interpolated, and then depths and velocities
computed from them), which in cases of sudden expansion
leads to unreasonable results.

On the other hand, working with the (u,h) set one must

work with further approximations <h>j=<A>}/B; and

<u>3=<P>3/<A>5, realizing that the integral of a product is

not equal to the product of integrals,i.e:

X5 i
(4.17) 2 Ax;<A>j = f A(x) dx = f'B(X)h(X)dX #
Xj-vs Xi-%
1 Xje XT%
# B(x) dx h(x) dx = <h>’}Bijj,
AXHX!% s
and:
X541 Xiv
(4.18): Ax;<f= [0 dx= [ A0 ulx dx »
Xj-v Ky
1 Hjup RS
= n a ,
£ [ 2 ax [ uodx = afaniax,.

J Xy X v
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Nevertheless, tests have shown that the final conservative

step corrects this inaccuracy of the predictor value.

Namely, the discrepancy between <A>; and <0>j, and <Ah>j and

<u>j in the (u,h) variant can be eliminated by an iteration

procedure for obtaining such values for the grid averages of

u and h (i.e. <w>j and <A>% ), which correspond to the

values of grid averages of A and Q (<A>? and <Q>? }. The

procedure has been tested, but with no significant
improvements in results. Apparently the conservative step
filters the irrégularity.

In the algorithm presented in this chapter the (u,h)
variable set is used. The procedure with the (A,Q) set is
similar, the only difference being that the areas and
discharges are obtained in the interpolation procedure,
instead of velocities and depths.

The theoretical development of the fixed-grid method of
characteristics is outlined in the literature review. The
problem of solving two partial differential equations is
transformed into one of solving four ordinary differential
equations: two compatibility conditions along the two
characteristics. Equations (2.15)-(2.18), valid for a
rectangular, but non-prismatic, cross-section, are rewritten

here for convenience. The compatibility condition along the
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positive characteristic (LA in Fig.4.2) is:

and the positive characteristic (C+) itself is:

(2.16) ¢ = u+c,

ale

while the compatibility condition:

uc 0B

. D (u- - - uc o8
(2.17) ¢ 4Dt(u 2c) = g(8,-S,) + 5 B’

is valid along the negative characteristic (C-):

. ax _
(2.18): Jp - u-c

One can obtain the solution at point A by solving four
differential Egs. (2.15)-(2.18) simultaneously, since at a
point of intersection of the characteristics (LA and RA

Fig.4.2), both compatibility conditions are valid. The
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second-order approximation of the differential Egs. (2.15-

2.18) according to Fig.(4.2) yields:

(4.19) ¢ Up+2c, = uL+2cL+gf%§

_ , urlug _ 5 Ua|Ual B
(SOL n R£/3 + SOL n R§/3

5 (&), 5 (&
B, \ox/, B, \ox/,|

At
2

and

(4.20): U,-2C, = uR—ch+g—A§‘i

—n2 uRluRl a2 UAILZAl
(SOR n R§/3 + SOR g R§/3 +

UrCr ( OB\ , UaCa[OB
By (ax)R BA( )R"

+ At
2

for the compatibility conditions, and:

(4.21): X = Xjﬂé_'éég (ugtcy+uptey),

and:

(4.22): Xp = j+‘/’z_% (u-Cp+Up=Cp),
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for the positive AL and the negative AR characteristic.

Equations (4.19-4.22) are in eight unknown variables:
the velocity u, and depth h, at the "unknown" point A, and
the velocities, depths and the positions of the feet of the
characteristics at the points L and R. (The values of
celerity ¢ and hydraulic radius R, are obtained from the
depth, and are not independent unknowns.) Interpolation
relations for the velocities u and u,, and depths h and h,
provide the required additional four equations. The
piecewise parabolic interpolation, which is explained in
detail in Appendix A and applied to the scalar equations in
the previous chapter, is used in the algorithm. The only
difference with respect to the scalar equation is that now
one needs to interpolate not one, but four variables, since
both the number of equations and the number of variables for
each equation are doubled. If subcritical flow is

considered, as in Fig.(4.2), one obtains:

(4.23): by =hy ; + E [Ah;+ hg ;(1-E;)],
and:
(4.24): uy =uy; + E [Au;+ ug ;(1-E)) ],



in the "j" domain of interpolation (between the points X;

and X;,, ), and:

(4.25):  hgp=hy 5, + E[Ahy + B 5, (1-Ex)]1,

and:

(4.26): Up = Up 5,4 + EplAu; + U 5, (1-8R) T,

in the "j+1" zone of interpolation. The dimensionless

lengths £, and &, are given as:

.X —X'__‘l/é XR_X'+1/2
(4.27): §L=_L___~"__, o= =5 _JI%,
AXJ AXj+1

and for any interpolated variable ¥:

LINSA I

(4.28) Ay, = Y -0, 4, ws,j=6(<‘|’>?‘ 2

121

-%

where <y>% is a grid point average over the interval (zone)

"y% ., and Y,,; and Y. ; , the values at the limits of the
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zone "j" (Fig.4.2), are obtained by the procedure described
in Appendix A.

To obtain the geometric quantities needed for Egs.
(4.19 and 4.20) (the widths B , and B, , width derivatives
and bottom slopes) linear interpolation and central

differences are used:

(4.29): B,

Bj—% + EL (ij/z_ Bj—‘/z) 4

(4.30) H BR = Bj+1/2+ EL(Bj+3/2_Bj+‘/2) 7

7

. (6B\ _ BiapBjas
(4.31): (aX)L v

14

(4.32) (aB) - Biap=Biase
R

ox AX;.,,

4.33) ¢ = iju/z_ ij-l/z

(4.33): S, = - ¥ ,
Zb- - Zb.

(4.34):  Spp = - ”KX. aat

J+1
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The appropriate interpolation zone (domain) for the
points L and R must be determined according to the type of
flow regime (sub/supercritical, negative/positive
direction), in order to obtain the proper stream of
information necessary for the correct solution of the
problem. The type of flow regime is determined from the
relative positions of the feet of the positive and negative
characteristics and the computational point A, as described
in Fig.(4.3). Therefore for subcritical flow, regardless on
the flow direction, zone "j" is used for the positive LA,
and zone "j+1" for the negative RA characteristics. 1In
supercritcal flow, however, the feet of both characteristics
are in one interpolation zone only: zone "j" for positive,
and zone "j+1" for negative (reverse) flow. The possibility
of interpolation in adjacent zones "j-1", "j-2%, etc., which
would allow Courant numbers greater then unity, and
consequently larger time steps, is not considered, since
this increasing of the Courant number would diffuse the
steep-front (see Fennema and Chaudhry, 1986).

At this point all the equations necessary to solve the
problem (characteristics/compatibility Eqs. 4.19-4.22,
interpolation Egs. 4.23-4.26, and supplementary geometrical
Egs.4.29-4.34) are available. The system of Egs. (4.19-
4.26) is nonlinear, but can be solved by the Newton-Raphson

method. This inveolves a matrix inversion and additional
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complications with location of the zone of interpolation for
mixed-regime flows. Therefore an alternative procedure,
combining simple iteration and the Newton-Raphson method, is
adopted herein.

The initial approximation for the variables at the
"unknown" point A (Fig.4.2) is computed as an average
between the right boundary of the "j" interpolation zone and

the left boundary of the "j+1% interpolation zone

(hp=Y2(hg ;+h; ;,,), etc.). For initial values of variables at

the feet of the characteristics L and R the same values are

chosen as for the point A (h;=hy,=h,).

First, the locations of the feet of characteristics X
and X, are computed from the characteristics Egs. (4.21) and
(4.22).

The interpolation Egs. (4.23)-(4.34) are then used to
obtain new approximations for the variables at the feet of
the characteristics.

An iteration terminates with computation of the
velocity u, and depth h, at the "unknown" point A, based on
use of the Newton-Raphson method to solve the system of
compatibility-condition approximations Egs. (4.19) and
(4.20). The procedure for the Newton-Raphson method is
explained in detail in Appendix C. If the first-order

integration of compatibility conditions (Egs.2.15 and 2.17)
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is used, the following system of linear equations in u, and

hA results:

ug || uLCy (3B
(4.19a): u,+2c, = uL+ZcL+gAt:Sd;n2——27;--—At—é?ﬁ(ég);
Ry L L
ug |u URC
(4.20a): U,-2C, = Up—2Cx+gAt SoR—HZM + At UCr (OB ,
R;/:’ B, \0x R

and one does not need to solve the nonlinear system
Egqs. (4.19) and (4.20).
To control the convergence of the process, the values

of variables u, and h, from the new iteration are compared

A
with those from the previous iteration. Iterations are
continued until the required accuracy for the variables u,

and h, is achieved, i.e. until:

(4.35):  |h™V-hi™| <e, and |u™Y-ui™| < e,

where h,™ and h™ are the values of the depth h, at the m-

th and m+l-st iteration, respectively.

The procedure for obtaining the values of the depth and
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velocity at the midpoint X., and mid-time t™*, used to

J¥h

obtain the approximation vector 5ﬁ$ is the same, the only

difference being that now the time step is halved.

Iv.2.1.2 cComputing approximation vector

Now the values of the flow variables at mid-point X=X,

(either at time t=t™" or mid-time t=t™* ) are obtained, and

° ° N |
one can proceed to compute the approximation vector C@ﬁf

(time averaged vector), which is the final goal of the
predictor step. Two methods, introduced at the beginning of
this section, are presented.

The first approach, which follows Vila's method, simply

equates the value of the approximation vector f@ﬁf (time-

averaged vector) with the vector C@ﬁf computed by the method

of characteristics at mid-time t™%.

The second approach, based on conveying the Riemann
invariants along the characteristics, has its roots in the
method exploited for the scalar equations. As with the
scalar equations, the idea is to change the problem of an

integration in time at the fixed space position X. to an

jHh 7
integration in space at the fixed and known time level t".
A simplified variant of this approach (based on the

algorithm by Colella and Woodward, 1984) is to average the
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flow variables (velocity and depth) over the domain of
dependence of point A (Fig.4.4). This produces numerical
oscillations for strong dam-break waves, i.e. for large
ratios of upstream to downstream depths. However, the
procedure is used for the discontinuous part of the flow,
where the characteristics approach simply cannot be applied.

An alternative concept is to perform the change from
temporal to spatial integration through the characteristics-
based approach, which is more natural. Here the Riemann
invariants, conveyed by the characteristics, are averaged,
and then the averaged velocity and depth (i.e. the

components of the approximation vector 5ﬁ$ ) are calculated

from them.
The Riemann invariants, as presented in chapter II,

are:

(4.36) ¢ W, u+ 2c,

and:

(4.37) ¢ w, =u-2c,



129

Averaging the Riemann invariants:
domain of dependence of point A

n+l

t
t
u(x)

Figure 4.4
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where W, and W, are the Riemann invariants along the
positive and negative characteristics, respectively. For
convenience in subsequent discussion, the expressions
Egs(4.36) and (4.37) are referred to as Riemann
"invariants®, even for the case of nonhomogeneous
compatibility conditions, where "invariants" are by no means
invariant.

Compatibility conditions (2.15) and (2.17) along the
characteristics A'L', and A'R' (Fig.4.4) can be expressed in

terms of Riemann invariants W, and W, as:

(4.38): W =u(t)+2c(t) =u(x) +2c(x) +

t
2 u(x) |u(x) | u(x) c(x)
+f [Q(S =11 R(X)4/3 ) B(X) (aX)] dt

tn

(4.39): Wy,=u(t) -2c(t) =u(x) -2c(x) +

t
2 u(x) |u(x) | u(x) c(x)
+f [Q(S ~11 R(x)4/3 )+ B{(x) (ax)] de

tn

where u(t) and c(t) designate the values at the point A‘
(for the fixed spatial position X+v )}, and u(x) and c(x)
designate the values at points L'and R' (for the fixed time
t" ). If a first-order approximation of the integrals in

Egs.(4.38) and (4.39) is used, one obtains:
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Wy=u(x) +2c(x) +

(4.40) ¢
_¢n zU(X lu(x) |} _ u(x) c(x) (0B
(4.41): W,=u(x) -2c(x) +

+(t-t ")

2 u(x)|u(x) ), ulx) c(x) (9B
g( —I R(x) 4/3 )+ B(x) (aX)]

(A second-order approximation of Egs.(3.38) and (3.39) has

also been used without improvement of the behavior of the

method; indeed, artificial oscillations were introduced.)

The Riemann invariant W, is integrated between times t"

and t™';
gn+l gn+l
(4.42): =L f[u(t)+2c(t)]dt-—f [u(x) +2¢(x)] dt+
1 () [u(x) ) ulx) elx)
o 2 u(x) |ux) ) ulx) c(x
+-A—ttfn(t t )[g( - ) 2 (ax)]dt.

A change of variables, motivated by the equation of the

characteristic LA , is then introduced (see Fig.4.4):
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AXx

= - L4
.X = Xj+1/§ A_t(t tn)l
Ax, = X.,,,-X =—£(u+c-u1+c)
L F+te TAL > AT LT ULT ey
(4.43): < r g
_AXx
dx = At Ldt,
X = X;.4, for t=t"; X=X, for t=t"*.
leading to:

tn+1 X]. e

(4.44): ﬁ:ALtf [u(t) +2¢c(t)] de= f[u(x)+zc(x)]dx+
n X

XJH&

f o x[ (S -n? u(x)lu(x)l) u(x) c(x) (—a—}é)]dx

+
R(x)4/? B(x) ox

A‘XLZ Xy

It is worth noting that in the integral expression
(4.42) the values of u(t), h(t) at different times "t" are
related with those of u(x) and c(x) at different locations
"x" always by a particular characteristic which corresponds
to only one time and spatial position. Since the velocity
and depth (and accordingly ceierity) differ in time, those
characteristics differ in slope - they are not parallel.

Consequently, the change of variables Eq.(4.43), though
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mathematically correct, introduces another approximation by
assuming that the slope for all characteristics (of one
family) is the same and equal to the slope of the
characteristic issuing from the point A.

By a similar argument, the expression for the averaged

W, invariant can be obtained as:

£l Xz
. = 1
(4.45): W,= =%t f fu(t)-2c(t)] dt= AXka [u(x) -2c(x)] dx+
K (x) [u(x) ), ux) elx) (3
1 -x. 2 U(X) |U(X ulx) clx) (0B .
+ AXR f' (x XJ+1,Q)[9'(S - R(X)4/3 )+ B (%) (ax)]dx

When the integrals of Egs.(4.44) and (4.45) are evaluated
and the averaged Riemann invariants obtained, the time-

averaged depth and velocity are finally computed as:

2

(4.46) : E;-’LZ‘ =

7

WS
|
Sl

(4.47): chg

S
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—n+Vey 2
e Thtle _ (Cﬂy)
(4.48) ]%1% = ___zf;_.

Integration of Egs.(4.44) and (4.45) can be done in
several ways. For the case of a rectangular channel it is
possible to obtain an analytical solution for the first term
only, but for the general case of a natural channel,
numerical integration must be used for all terms.
Analytical integration of the first term slightly improves
steep-front resolution, but only for the hypothetical case
of frictionless horizontal channel, while for real
(frictional) channels no improvement in the resolution can
be observed; therefore numerical integration is applied for
all terms of Egs.(4.44) and (4.45).

For numerical integration of Egs. (4.44) and (4.45)
three methods are used: trapezium-tangent, trapezium-chord,
and Simpson rule. The following expressions can be applied

to all three of them:
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1

(4.49): W,= 55 P

Lo (Up+2C,+U,1,+2C5,,) +P (U +20y,) ] +

At

+
20+p

4

o Q{S -n? uLluLl)— uLCL(Q@)
oL

R/ B, \ox

L

4
v e

/3 B, \0x

Rm L

g(S -n2 UML|UML|)_ uMLCML(aB)
oL

and:

1

(4.50) ¢ ﬁl:m

[a (UR_ZCR+uj+1/2_2Cj+1,Q) +ﬁ (ubﬂi_zcm) ] +

At
+2u+ﬁ

+

R§/3 B, \0x/p

ag{S _nzuRh&|)+uwa§§)
OR

<+
NY -

Uy | Uy | Uy Coe | OB
s —p2tmltmi ) YwrCur( OB
g( OR R}%:; ) BMR aX

R

where u h

we ¢ Dy s Yp » etc. are the values of the flow
variables interpolated at points between the feet of the
characteristics and the point Xy (Fig.4.5). (As described
at the beginning of the section, it is necessary to use the
appropriate interpolation zone, which is dictated by the
type of flow, to convey appropriate information into the

solution (see Fig.4.3).) For a=1 and B=0 the trapezium-
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u(x) = zone "j" . zone "j+1"

Figure 4.5 1Interpolation for the integration of
the Riemann invariants
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chord rule is recovered from Egs.(4.49) and (4.50); for a=0
and B=1 the trapezium-tangent rule results, and for a=1 and
B=4 the Simpson rule is obtained.

All three methods lead to results similar to those of

the first approach - where the approximation vector ﬁ?jf is

n+Ve

simply taken as the mid-time vector Uj,, obtained by the

method of characteristics. Since the latter approach gives
equally good results, without the complications of
integration of the Riemann invariants, it is suggested as a

better choice, and used henceforth.

IV.2.2 Discontinuous solution
When the relative difference between the values of
velocities and/or depths at the midpoint Xis (in Fig.4.6)
for the different interpolation zones "j" and "j+1" exceeds
some tolerance (which depends on the particular case), i.e.

when:

h, .,-h, U, +—U, -
(4.51): [ Bp, 5=y, o | > &,, or 2,5~ U, g | > €4
he 5+ 0y 50

Up, 37U, 541

it is assumed that a discontinuity exists, and a procedure

different from the one described above is applied (since the
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basic method of characteristics cannot be used for
discontinuities).

The problem to be solved is called a generalized
Riemann problem. It differs from the "ordinary" Riemann
problem (or simply the Riemann problem) in that at the
initial time for the former the velocities and depths on
both sides of discontinuity are functions of the spatial
variable, while they are strictly uniform for the latter.
The generalized Riemann problem can be solved using the
shock-fitting technique, which leads to tremendous practical
difficulties, as described earlier in chapter II.

The approach used in the present work is based on the
solution of the "ordinary" Riemann problem, where the depths
and velocities on both sides of the discontinuity are
approximated as uniform (dashed line in Fig.4.6). The idea
from Colella and Woodward (1984), which uses averaging of
velocity and depth over the domain of dependence, separately
for each side of the discontinuity, is applied to obtain the

Yaverage uniform" state on both sides of discontinuities.

IV.2.2.1 Averaging left and right state for Riemann problem

The first goal is to obtain representative values for
depths and velocities on both sides of discontinuities to
initiate the Riemann problem. It is considered that the

best approach is to use the information from the domain of
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dependance of the point A, separately for both sides of the
discontinuity. Since the method of characteristics cannot
be used for discontinuous flow, an approximation must be
introduced to obtain the domains of dependence. The values
of depth and velocity at point A, used for determining the
domain of dependance, are approximated with the values at

the boundaries of interpolation zones: h;;, y, ; for the

left side of the discontinuity, and h; ,,., y,,, for the

right side:

(4.52): XL = Xj‘*“/ﬁ - At(uR'j+CRIj) 7

(4.53): Xp = X; - At (uy 4001 40 -

After the left and right domains of dependence are
determined, the averaging of depths and velocities is
performed by integration of appropriate PPM interpclation

polynomials Egs. (4.23-4.26), which yields:

4.54) ¢ 1 I_E% 1—%
(4.54): by = hy ;+ 1-¢, (Ahy+hg, ;) —= = B 37— |/

and:
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for the zone "j%", left of the discontinuity, and:

. 3 3
(4.56): hg =hp ;. + (Abj+1+h6,j+1) 712 - hs,j+1_§"
and:

(4.57): A S 3
: ° Ugp = Up 5,1 % ( uj+1+u6,j+1) > 6,34173 °

for the zone "j+1", on the right side of the discontinuity.

Here &; and £, are dimensionless lengths introduced in

Eg.(4.27). 1If the flow in the zone ahead of the
discontinuity is supercritical (Fig.4.7), the foot of the
characteristic for that 2zone will lie outside the zone, and
the above-mentioned averaging equations will not be valid.
In such a case the characteristic is "moved" back to the

point X.,, which, for flow in the positive x direction

]+

results in:
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Figure 4.7 Domain of dependence for supercritical flow



143

(4.58) H 'hR = hL,j+1 and Up = uL,j+1’

and for flow in the negative direction (reverse flow) in:

(4.59): hL = 'hR,j al’ld uL = uR,j'

IV.2.2.2 Riemann solver

The Riemann problem is treated in detail in the
literature (Courant and Friedrichs,1948; Stoker,1957); only
a basic explanation and the solution procedure are presented
here.

A discontinuity in a horizontal frictionless channel is
considered. This is a reasonable simplification, since the
resistance and gravity forces are small over the short
length of horizontal channel containing the discontinuity.
At the initial time t" a discontinuity exists at the point

X , and in the zones left and right of it the flow is

J+h

uniform with variables u, and h , and u, and h, ,

L R

respectively (dashed lines in Fig.4.8).

Two general cases are possible. For the first case,
where the velocity u is greater then u, (Fig.4.8) a so-
called simple surge (Stoker,1957) occurs. The steep front

(discontinuity) moves with some speed W from the zone of
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Figure 4.8 Riemann problem
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higher depth into the zone of lower depth, changing the
uniform flow ahead of the front into a type of uniform flow
behind it. This means that between times t" and t™!, a

constant state occurs at the point X., , and therefore the

J+tk

desired time averages are:

. Ve +V4
(4.60) ° h;:,/; = 'bL and u—nj+1/: = uL,

for the flow in the positive x direction and:

o 1. N+ V2 Ve
(4.61): A = h, and T = u,.

when the flow is in the negative direction.

If at the initial time t" the velocity u, is less than

L
u, , a different type of flow results. The positive steep-
front surge advances into a zone of smaller depth, but a
negative fan-shaped wave moves into the zone of larger depth
(Fig.4.9). This problem is treated in detail by Stoker
(1957), as an analytical solution of the dam-break problem
in a horizontal frictionless rectangular channel. As for
the case of the previously explained simple wave, the surge
can move in either direction along the x-axis, depending on

the flow conditions. For both cases the physics of the

phenomenon, and accordingly the mathematical treatment,
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are the same, the only difference being in the form of final
expressions. Therefore, only the case of the surge moving
in the positive direction is described herein; similar
expressions are valid for a surge moving in the reverse
direction.

Depending on the ratio of the initial depths upstreanm
and downstream of the "dam-site" (discontinuity), the flow
in the surge can be subcritical or supercritical. However,
in both cases (sub/supercritical flow) the depth and
velocity at the "dam-site" are constant in time at the point
X, (see Stoker,1957, or Henderson,1966), which, as in the
case of the simple surge, means that they are the needed
averaged values for the time interval t" - t™I,

When the flow in the surge is subcritical, the velocity

and depth of the surge prevail at X,

jep ¢ ieees

(4.62): AP = h, and T = ug-

The surge variables (velocity ug , depth h; , and speed
W) are computed from the continuity and momentum
conservation equations for the moving discontinuity (Egs.2.6
and 2.7), along with the compatibility condition along the
positive characteristic connecting the surge (point S$) with

the undisturbed zone behind the "“fan" (Fig.4.9). For a
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frictionless, horizontal rectangular channel these relations

can be simplified. The continuity equation becomes:

(4.63): hg(ug-w) = hp(u-w) ;

the momentum eguation becomes:

hz
(4.64): gTS + (ug-W2hg = g5 + (u,-W)2h,#

and the compatibility condition (Riemann invariant) becomes:

(4.65) ¢ u, + 2,/gh, = u + 2J/gh = uy + 2,/gh,.

Equations (4.62)-(4.65) are manipulated to express the depth
hy implicitly:

h h
(4.66): ZW_UL _2cL+ uR+(1—_R)\J g-HE- (hS+hR) =0

which is easily solved by the bisection method. Velocity ug

is then computed from the compatibility condition Eq. (4.65).
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For the case of supercritical flow in the surge, the

flow variables at the dam-section X., are obtained using the

jth

compatibility condition Eq. (4.65) and the equation of the

negative characteristic:

X =X o
(4.67): DX - TSR g - yoc = @Rt - G

which yields the desired depth and velocity:

(4.68): Ul = % (u,+ 2¢,) ,

and:

(4.69): AME=_L (4 +2¢,)2,
J+ 99. L L

This completes the procedure for cbtaining the averaged

rr+Ye
vector Uy, .

The entire algorithm for the Godunov method, for one
time step and at one point, is summarized in the following:

1. From the previously computed reach averages
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<U>%, the spatial distribution of primary
J

variables is obtained using PPM interpolation (or,
for the case of the linear model, using linear
interpolation) ;

2. The predictor values - time averaged vectors

&ﬁ% - are then computed by the appropriate

procedure for the type of flow (continuous vs.
discontinuous, subcritical vs. supercritical,
etc.);

3. These values are, finally, substituted into the

conservation Eq.(4.14) to solve for the grid averaged

vector <LD?“.

IV.3 Boundary conditions

The de St.Venant equations are a system of two
hyperbolic partial-differential equations in two variables,
and as such need two initial and two boundary conditions for
a properly posed problem. The boundary requirements are
determined by the type of flow; according to principles
based on the method of characteristics, for subcritical flow
one boundary condition is needed at each (upstream and
downstream) boundary, while for supercritical flow both

boundary conditions are at the upstream boundary (otherwise
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the flow information could not be conveyed into the flow
region).

In the present work, for the upstream boundary
condition prescribed discharge is considered, and at the
downstream boundary prescribed depth or a rating curve is
used. The various special boundary conditions (such as
weirs, gates branches, etc.) have not been treated herein,
since the objective of the work is not to obtain an
industrial code, but to develop and test a scheme which can

be later used as the basis of a complex model.

IvV.4 Points between the boundaries

and the "Godunov points®

One of the main disadvantages of the piecewise
parabolic method (PPM) is that one needs to know the values
of variables at two points left and right of the point of
computation (in the case of a nonuniform grid, three points
are needed if the shock-steepening algorithm is used). This
means that the points close to the boundary must be treated
with a different method. Any method capable of treating
discontinuities can be used (Lax-Wendroff, MacCormack, even
characteristics with "local" shock-fitting), but the most
natural way is to use the linear interpolation variant of
the Godunov method. Moreover, the linear variant does not

suffer from this anomaly of the PPM variant, which is the
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most important advantage of the former.
Again, the best way of handling the points between the
boundary and the "Godunov points" should be developed during

subsequent industrialization of the method.
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CHAPTER V. TEST COMPUTATIONS FOR

DE St.VENANT EQUATIONS

V.1l General description and purpose of tests

The primary goal of this chapter is to assess the
performance of the modified Godunov method (for both the PPM
and linear schemes) in computation of discontinuous open-
channel flow, and to compare it with other methods commonly
used. A secondary goal is to assess the performance of the
two variants of the Godunov method (the PPM and linear
method) .

To this end, a computer code for the Godunov scheme
using PPM interpolation, based on the algorithm developed in
the previous chapter, has been written. Another code for
the Godunov method with linear interpolation has also been
developed. Program listings with annotation and examples of
input and output data files are available in Savic and
Holly, (1991). As stated before, rectangular but
nonprismatic channels are considered, since the objective of
the present work is not to prepare an industrial code, but
to develop and test the method; for these purposes
nonprismaticity is the most important property of channel

geometry (Strelkoff,1989). The Godunov scheme is compared
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with the analytical solution when available, i.e. for the
case of horizontal prismatic frictionless channel. For
frictional and sloped channels, the method of
characteristics with shock fitting is used as a "true®
solution in judging the accuracy of steep-front resolution.
Methods commonly used for discontinuous open-channel flow
computations - the Preissmann scheme (applied in DAMBRK,
CARIMA and most other flood-propagation codes), the Lax-
Wendroff scheme, and the MacCormack scheme - are coded and
used for comparison. The performances of the MacCormack and
the Lax-Wendroff methods differ primarily in that the former
is less stable for computing strong shocks, and artificial
viscosity must be added to alleviate the problem. This
additional damping distorts the results significantly,
especially for very strong shocks (Fig.5.1), and therefore
no further comparisons with the MacCormack method are
presented herein.

First the tests for a frictionless horizontal prismatic
channel, for which analytical solutiéns exist, are
performed. Then the tests for a real flow in a sloped,
frictional, but still prismatic channel are described.
Finally, the most general case of a nonprismatic frictional
channel is investigated, and conclusions about the
performance of the schemes, in particular the Godunov

scheme, are presented.
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In all of these groups of tests the dam-break
computations are considered to be the most important, being
both the primary goal of this work and the most
representative and severe cases of discontinuous open-
channel flow. In addition to dam-break flows, some other
examples are given depending on the type of flow under
study.

The results of computations are typically presented in
three forms. The most common form is water-surface profiles
at different times, which offers the most complete view of
the unsteady evenf. In addition, it gives the most useful
practical information, since the maximum water levels and
the time of their occurrence are the most important
parameters required for dam-break flood protection. Two
other forms of results presented here are the discharge and
depth hydrographs at characteristic sections in a channel.
The discharge hydrographs proved to be more sensitive to
numerical oscillations (see Figs.5.34, 5.35 and 5.66 and
5.67), and are therefore more frequently presented.

The dam-break computations are conceived to encompass a
wide range of cases. To this end, the channel parameters
which are considered to be the most important to test the
performance of the scheme are varied within some reasonable
limits (see Fig.5.2). To permit observation of the

influence of inertial effects, the ratio of the initial
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depth behind the dam (upstream depth) to the initial depth
below the dam (downstream depth) , hwﬂ%' is varied from 10/1
to 100/1. To estimate the effect of the flow resistance on
the performance of the computations, the Manning roughness
coefficient is varied from zero (for the frictionless
channel) to 0.04 (representative value for natural rivers).
To test the influence of nonprismatic channel geometry, the

change of width in one spatial step (B /B is varied from

end)
1/5 to 5/1. Such abrupt changes of channel width are
adopted as being typical of the topography of canyon rivers.
The initial condition is a uniform flow downstream of the
dam, and horizontal water level upstream. The time step for

the Godunov method and for the other tested methods is set

as large as possible for a stable solution.

V.2 Tests for a frictionless prismatic channel

In this section the frictionless flow in a horizontal
and prismatic channel is considered. The goal is to use the
available analytical solutions (which can be obtained only
for this type of flow) for comparison with the Godunov
method. Comparisons of Godunov method with the Preissmann
and Lax-Wendroff schemes are also presented.

The analytical solutions for the open channel unsteady
flow are described in the literature (see Stoker,1957;

Henderson,1966), and only brief descriptions and
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explanations for the presented cases are given here. Three
general cases are considered in this section:

1. A simple negative wave,
2. A positive wave, and

3. A total instantaneous dambreak.

V.2.1 Simple wave

The first case deals with the so called simple wave,
which is a negative elementary wave produced (in this case)
by reducing the discharge at the upstream boundary. The
objective of this test is to demonstrate the capability of
the Godunov method to obtain accurate results for continuous
(non-shock) flows. The results of the simple-wave
computations are presented in Figs.(5.3)=(5.7).

A frictionless, prismatic and horizontal channel
8 km long and 50 m wide is adopted with a spatial step of
125 m. The initial condition is a constant depth of 5 m and
a constant discharge of 250 cms. The discharge at the
upstream boundary is linearly decreased from 250 cms to 50
cms in 40 seconds. The downstream boundary condition is a
prescribed constant depth of 5 m.

In Figs.(5.3)=(5.7) the evolution of the water-surface
profiles in time is presented. In Fig.(5.3) the two Godunov
methods differing in interpolation procedure (PPM and

linear) are compared. One can observe significantly more
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diffusion in the results of the linear method. Also it is
noted that the error is diminishing in time for the PPM
method, but increasing for the linear method. The latter is
a logical consequence of numerical damping, and the former
comes from the fact that for the PPM method the linear
method is used for the first two near-boundary points (see
section IV.5); consequently the diffusion error introduced
from the linear method has large influence for the points
close to the boundary, while it fades out for points that
are far enough from the boundary. If the near-boundary
points are treated with the Lax-Wendroff method, numerical
oscillations result, as shown in Fig.(5.4). This can be
expected from the results of the Lax-Wendroff method alone
(Fig.5.5) showing strong numerical oscillations (which is a
characteristic of this second-order scheme, as explained in
section II.4).

In Fig.(5.6) the Godunov method is compared with the
fixed-grid method of characteristics. Since linear
interpolation is used for the fixed-grid method, the
presence of numerical diffusion is noticeable. Even though
the computation is made with the maximum value of Courant
number close to unity (Cr=0.96), it is impossible to
maintain a Courant number near unity for all the points of
an unsteady flow field; consequently when linear

interpolation is used those points having smaller Courant
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numbers suffer from damping of small wavenumber components
and numerical diffusion results.

The Preissmann method with a temporal-weighting
coefficient of 0.52 and a Courant number of Cr=0.96 gives
almost the exact analytical solution, as shown in Fig. (5.7)
where it is compared with the analytical solution and the
PPM Godunov method.

The relative mass (volume) conservation error for
Godunov points (excluding the boundary points and near-
boundary points, as defined in section III.6) for both
Godunov schemes was of the order of the computer accuracy
(close to the 107'®). The overall conservation error
(including the boundaries and the near-boundary points) was
2:103 for the PPM method and 3-103 for the linear method.
The Lax-Wendroff method yielded an error of 2:-107%, the
fixed-grid method of characteristics 4:107%, and the

Preissmann method 5-107.

V.2.2 Positive wave
The second test case presents a positive wave,
resulting from increasing the discharge at the upstream
boundary, causing a steep-front surge comprising the
superposition of elementary waves (as explained in section
IT.1). A channel with the same characteristics as for the

previous case is used, with the same initial conditions;
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only the upstream boundary condition is changed. Now the
discharge is linearly increased from 250 cms/m to 500 cms,
again in 40 seconds.

The time evolution of water surface profiles for the
PPM and linear Godunov method is presented in Fig. (5.8).

The steep-front resolution is much better preserved for the
PPM method, remaining confined within one computational
reach for the entire time of the computation, while it is
gradually smeared by numerical diffusion for the case of the
linear method. The agreement of the results of both Godunov
methods with the analytical solution is good; the computed
values of velocity, depth and wave-speed agree with the
analytical solution up to the third significant digit.
Again, a small mass conservation error is obtained: 9-107*
overall, and 5-107' for the Godunov points.

No stable solution could be obtained with the Lax-
Wendroff method, regardless of grid resolution or the time
step (i.e. the Courant number). As anticipated from the
results for the simple negative wave (Fig.5.5), without a
source of dissipation (channel roughness), large numerical
oscillations destroy the Lax-Wendroff solution.

The Preissmann and the PPM Godunov methods are compared
in Fig.(5.9). To avoid numerical oscillations the temporal-
weighting cdefficient for the Preissmann method has to be

increased to 0.65, thus resulting in numerical diffusion and
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smearing of the wave front. The mass conservation error for

the Preissmann method for this case is 2-107%.

V.2.3 Dambreak for a low dam

The last test case for the frictionless channel
concerns the dam-break problem. The physical description
and analytical solution for the case of a total and
instantaneous dambreak in the wetted downstream channel (the
Stoker solution), which is treated here, is already
explained in section IV.2.2 on the Riemann solver.

Twe values for the upstream-to-downstream depth
ratio,h /h=10/1 and h/h~=100/1 (see Fig.5.2) are
considered. (For the sake of simplicity, in the following
these are referred as to the cases of a low and a high dam.)

For the case of a low dam a 20 km long and 50 m wide
horizontal channel is adopted, with the dam located 10 km
from the upstream boundary. A spatial step of 250 m is
used. The initial condition is a uniform depth of 1 m
downstream of the dam, 10 m upstream of the dam, and a
constant discharge of 50 cms. The upstream boundary
condition is a prescribed constant discharge of 50 cms, and
the downstream boundary condition is a uniform-flow rating
curve.

In Figs.(5.10) and (5.11) the results of the PPM and

linear Godunov methods are compared with the analytical
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Stoker solution. In Fig.(5.10) the time evolution of the
water-surface profiles is presented. Both Godunov methods
agree well with the analytical solution, though the PPM
method performs significantly better than the linear
method = both in terms of numerical diffusion, and the
resolution and wave-speed of the shock. The wave speed for
the Godunov methods is slightly higher than for the
analytical solution. This speed error (being around 2 % at
the end of the computations) is a consequence of mass
conservation; numerical diffusion in the zone of surge close
to the steep front results in slightly reduced depths within
the surge, and the outcome of mass conservation principle is
an extension of the surge length, which increases the speed
of the front. The front is practically confined within one
spatial step for the PPM method (though small smearing is
observed for the adjacent reaches). Smearing of the linear
method is much larger and is a result of stronger diffusion,
which is the consequence of linear interpolation. For the
flow zone outside the steep-front region the maximum
relative error in depths does not exceed 3 % for the PPM
method, and 9 % for the linear method, while on the average
the error is much smaller (around 0.5% for the PPM method,
and 1.5% for the linear method). It is worth noting that a
mixed flow regime occurs (subcritical flow in the reservoir

and downstream of the surge, and supercritical flow within
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the surge, where the Froude number is Fr=1.29), which is a
situation difficult to handle efficiently (or to handle at
all) for most numerical schemes. No problems of this kind
have been observed with the Godunov scheme, which operated
with Courant numbers close to unity.

In Fig.(5.11) the discharge hydrographs at sections A
(10 km from the upstream end, i.e. the dam section), B (12.5
km from the upstream end) and C (15 km from the upstream
end) for the PPM and linear Godunov methods are compared
with the analytical solution. The same general behavior
observed in the water-surface profile time evolution
(Fig.5.10), can be seen here. The PPM method follows
closely the analytical solution with small diffusion and
some shift, while significantly more diffusion can be
observed for the linear method. The relative discharge
errors for the points out of the shock zone were less then
0.1 % for the PPM method, and 1.5 % for the linear method.
(The original Godunov method, without interpolation, was
also tested, but it could not produce reasonable results.)

In Figs.(5.12) and (5.13) a comparison is made between
the Godunov PPM and the fixed-grid shock-=fitting method of
characteristics. The shock itself is better represented for
the shock-fitting method (due to the shock-fitting
algorithm); on the other hand, the flow in the reservoir is

better represented by the Godunov method (see Fig.5.12),
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because of the large numerical diffusion of the fixed-grid
characteristics method based on linear interpolation (as
explained earlier). In Fig.(5.13) the discharge hydrographs
are compared for the shock-fitting and PPM Godunov methods.
As expected, the shock fitting method gives better results
for the times during which the steep front passes across the
section.

The overall relative mass conservation error for the
PPM method was 0.8-10™* (all points), and 0.7-10°" (Godunov
points only). Similar values are obtained for the linear
method, while for the shock-fitting method the error was
0.4-1072.

No successful computations could be obtained with the
Lax-Wendroff and Preissmann methods. For the Lax-Wendroff
method the absence of roughness eliminated the potential
damping of numerical instability. For the Preissmann
method, the mixed flow regime (the Froude number of the
surge is 1.29) cannot be accommodated in the double sweep
algorithm. (To alleviate the problem, complete matrix
inversion can be used for the Preissmann method instead of
the double sweep algorithm, but this requires careful
treatment of the shock as an internal boundary condition and
leads to a tremendous increase in computer time and memory

requirements.)
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V.2.4 Dambreak for a high dam

In Figs.(5.14)=-(5.17) the case of the high dam (i.e.
the case of an upstream-to-downstream depth ratio of
h /h=100/1 (see Fig.5.2) is considered. A channel 100 km
long and 50 m wide is adopted, with the dam located 50 km
downstream of the upstream boundary. A spatial step of 1000
m is used. The initial condition is a uniform depth of 1 m
downstream of the dam, and 100 m upstream of the dam, with a
constant discharge of 50 cms. The upstream boundary
condition is a prescribed constant discharge of 50 cms, and
the downstream boundary condition is a uniform-flow rating
curve.

In Figs.(5.14) and (5.15) the results of the PPM and
linear Godunov methods are compared with the analytical
solution. First, in Fig.(5.14) the time evolution of the
water-surface profiles is given. Good agreement with the
analytical solution is observed for both of the Godunov
methods. Again, the PPM method performs better then the
linear method, especially with respect to much smaller
numerical diffusion in the reservoir, and better shock
resolution. The wave speed error is approximately 1% at the
end of the computations, and the maximum error in depths for
the region outside of the discontinuity is less then 1.5%
for the PPM method and 6 % for the linear method. The shock

is confined to one spatial step. The same observation
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stands for the discharge hydrographs (Fig.5.15) which are,
for this case, presented at sections A (50 km from the
upstream end - the dam section), B (60 km from the upstream
end) and C (70 km from the upstream end). The results of
the PPM method agree very well with the analytical solution,
except for a small phase shift in the vicinity of the shock.
The maximum relative error in discharges (for times outside
of the shock-passing interval) is 4.2%, wﬁile for the most
of the computational time the error is less than 0.5%. For
the linear Godunov method larger diffusion error (maximum of
5.3 %, and "averaged" less than 2 %), and worse overall
agreement with the analytical solution is observed.

In Figs.(5.16) and (5.17) the Godunov PPM and the
fixed-grid shock-fitting method of characteristics are
compared. Although the shock is preserved exactly for the
shock-fitting method, the wave speed is now slightly better
determined by the Godunov method (Fig.5.16), i.e. one can
observe that the speed for the shock-fitting method is
increasing faster relative to the analytical, than is the
speed of the Godunov method. The flow in the reservoir is
represented significantly better by the Godunov method (for
the reasons explained earlier). 1In Fig.(5.17) the discharge
hydrographs are compared for the shock-fitting
(characteristics) and PPM Godunov method. Contrary to the

case of the low dam, here the Godunov method is superior to
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the shock-fitting method, except for the small length of
time of the arrival and passage of the shock. The
explanation is that for the method of characteristics (the
shock-fitting method) in the case of larger upstream-to-
downstream depth ratio, larger differences in Courant
numbers at different points of the flow field greatly
reduces the accuracy of linear interpolation, thus making
numerical diffusion more pronounced.

The overall relative mass conservation error for the
PPM method is 0.3-107” (all points), 0.3:-10" (Godunov points
only), and 0.1-10"' for the shock-fitting method of
characteristics.

Again, no successful computations were obtained using
the Lax-Wendroff and Preissmann methods.

From the above tests one can conclude that for the case
of a frictionless horizontal channel the Godunov scheme (in
particular the PPM method) applied to steep-front
computations outperforms the competitive Lax-Wendroff and
Preissmann schemes. It copes naturally with the mixed flow
regime. Good mass conservation is achieved and, in
particular for the PPM method, good resolution of the front,

which is on the average confined to one computational step.

V.3 Tests for a frictional prismatic channel

This section tests the performance of the Godunov
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method for the case of a real frictional and sloped channel.
The prismatic case is presented separately from a
nonprismatic case to isolate the influence of the resistance
and gravity effects contained within the source term, and
problems in their integration in time and space. This is a
step towards treatment of the more realistic case of
nonprismatic channels, with their additional source-term
contributions, which are then treated in section V.4. The
analytical solution for the frictional sloped channel does
not exist, because of the nonlinearity in the source term.

Two test situations are presented in this section:

1. A positive surge (induced by upstream boundary

operations); and

2. A total and instantaneous dambreak.

The first test case is a kind of introductory
illustration of the effect of roughness on the numerical

solution and on the flood waves themselves.

V.3.1 Positive surge
A prismatic rectangular channel, 100 km long and 50 m
wide with a slope of 0.1 % and Manning roughness coefficient
of 0.04, is used with a spatial step of 1000 m. The initial
condition is a uniform flow with a depth of 3 m and the
corresponding discharge of 228.72 cms. The upstream

boundary condition is a prescribed discharge, increasing
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linearly from 250 to 1000 cms in 40 seconds. The downstream
boundary condition is a uniform-flow rating curve.

In Figs.(5.18)=(5.20) the time evolution of the water-
surface profiles is shown for the Godunov (PPM and linear),
Lax-Wendroff, and Preissmann methods. High resistance,
obtained through the large roughness coefficient, produces
enough natural damping to diffuse a steep front. At the
same time it dampens artificial oscillations, otherwise
present for the Lax-Wendroff method (and Preissmann method
with a temporal-weighting coefficient close to 0.5).
Consequently, very good agreement among all compared

methods, as well as small conservation errors, are achieved.

V.3.2 Dambreak for a low dam with small roughness

Now for the dam-break cases, two ratios of the
upstream-to-downstream depth are considered: a low dam with
a depth ratio of 10/1, and a high dam with the ratioc of
100/1. Two different roughnesses, one a Manning coefficient
of 0.015, corresponding to a crude concrete channel, and the
other 0.040, corresponding roughly to natural rivers, are
used.

First the case of a low dam is considered. A channel
20 km long and 50 m wide, with a slope of 0.1 %, is used
with a spatial step of 250 m and a Manning roughness

coefficient of 0.015. The initial condition (see Fig.5.2)
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is a uniform flow downstream of the dam, with depth of 1 m
and a corresponding discharge of 102.89 cms. It is assumed
that the water level is initially constant and horizontal in
the reservoir upstream; this suppression of upstream
backwater effects has no effect on the dam-break
computations. (The discharge is initially 102.89 cms in the
entire computational region, regardless of whether this
presents a true steady state or not). The upstream boundary
condition is a constant discharge of 102.89 cms, and the
downstream boundary condition is a uniform-flow rating
curve.

In Fig.(5.21) the time evolution of water-surface
profiles for the Godunov PPM and linear Godunov methods are
compared. One can observe better agreement between the two
methods then for the case of a frictionless channel (compare
Fig.5.10). Still, it is clear that the PPM method gives
better resolution in the zone of discontinuity, and produces
less numerical diffusion, particularly in the reservoir. It
is important to note that the discontinuity is still
confined to a zone of approximately one spatial step for the
PPM method, and is slightly more smeared for the linear
method. For both methods, and in general for all Godunov
computations for prismatic and nonprismatic frictional
channels, overall mass conservation error is less than 107,

and around 107'® for the Godunov points only.
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In Figs.(5.22) and (5.23) the Godunov PPM method is
compared with the shock-fitting method. From Fig.(5.22) one
can observe that the resolution of the front for the shock-
fitting method is clearly better (since there can be no
smearing for the shock-fitting method). However, as
mentioned before, the Godunov method is weaker in that
respect (front resolution) only for the smearing within one
spatial step; this shortcoming is of little practical
importance. Based on the experience from the frictionless
cases (where the results for the shock-fitting method
suffered from significant numerical diffusion), disagreement
between the two methods in the reservoir is attributed to
diffusion of the shock-fitting method. Again, the shock-
fitting method of has a large mass conservation error of
1-10%2. cComparison of the discharge hydrographs for the
Godunov PPM and the shock-fitting methods at the sections A
(the dam section, 10 km from the upstream boundary), B (12.5
km form the upstream boundary) and C (15 km from the
upstream boundary) are given in Fig.(5.23). Some numerical
oscillations are present for the Godunov method, but they
are easily removed by reduction of the spatial step. The
hydrographs at sections B and C ascend more abruptly for the
shock-fitting method than for the Godunov method, reflecting
the instantaneous arrival of the perturbation (the shock).

It can be observed that the values of the shock=fitting
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discharges at large times are consistently smaller then
those of the Godunov method, a consequence of the large
conservation error for the former method.

In Figs. (5.24) and (5.25) the Godunov PPM and the
Preissmann methods are compared. Successful computation
with the Preissmann method was possible only for a large
time step (inducing a Courant number of 2.7), which jumps
over the mixed flow regime occurring in the first stages of
the computation. The result is (as expected by Fennema and
Chaudhry, 1986) large numerical diffusion and smearing of
the front (Fig.5.24). The mass conservation error for the
Preissmann method is 3-107°.

A successful computation with the Lax-Wendroff method
could not be obtained, no matter how small the time step;
numerical oscillations were still too strong for the small

resistance to diffuse then.

V.3.3 Dambreak for a low dam with large roughness

The same channel is used as for the previous set of
computations except that now the Manning roughness is 0.040,
producing a scenario of realistic dambreak in a natural
river. The discharge for the initial and upstream boundary
conditions is reduced to 38.51 cms, to Kkeep the same normal
depth of 1 m in a uniform flow downstream of the dam.

Due to the influence of the high resistance, the shock
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is very soon diffused, mixed regime does not occur, and the
computations for all methods are more stable. In general,
the results of all methods agree well with one another,
although the shock-fitting method has a significant
conservation error (1:10%) and diffusion in the reservoir
zone Fig. (5.28).

The two Godunov methods agree here almost perfectly in
water-surface profiles (Fig.5.26), except for some small
differences in the shock zone and in the upstream portions
of the reservoir. The discharge hydrographs on Fig. (5.27)
also agree well, except for the peak discharge at the dam
section - a quantity of little practical significance.

The results of water-surface elevation profiles
computed by the PPM Godunov and the shock-fitting methods
are presented in Fig.(5.28). One can observe very good
agreement in the shape of the surge, which confirms that the
resolution of the Godunov method is excellent.

The computation for the Preissmann method is now
possible with a Courant number of unity, though still
requiring a large value of the temporal-weighting
coefficient, 1.0. Consequently, the smearing (Figs.5.29 and
5.30) is now much smaller then in the case of smaller
roughness. The results of the Lax-Wendroff and PPM Godunov
method are compared in Figs.(5.31) and (5.32). Very small

differences can be observed for the water-surface elevations
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(5.31), while the hydrographs (Fig.5.32) for the Lax-

Wendroff method still suffer from numerical oscillations.

V.3.4 Dambreak for high dam with small roughness

The case of a high dam (upstream-to-downstream depth
ratio of 100/1) is considered next. Mixed regime is
inevitable for such a large ratio of upstream to downstream
depths, so that under no circumstances could successful
computations be obtained with the Preissmann method in a
double sweep context.

First, the case of smaller roughness (Manning
coefficient of 0.015) is considered. A channel 100 km long,
50 m wide, with a slope of 0.1% and a spatial step of 1000 m
is used. The initial and boundary conditions are the same
as for the case of a low dam, except for the reservoir
elevation, which is in compliance with the 100 m high dam.

In Figs.(5.33)=(5.35) the Godunov PPM and linear
methods are compared. As in the case of the low dam better
agreement is achieved than for the frictionless channel
(consequence of the influence of roughness). The PPM method
sill performs better with respect to the diffusion in the
reservoir and smearing of the shock front. The front
resolution for the PPM method is again confined to a zone of
approximately one spatial step. 1In Fig.(5.34) the discharge

hydrographs are presented for the sections A (dam section 50
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km from the upstream end), B (60 km from the upstream end),
and C (70 km from the upstream end). The PPM method shows
some oscillations, which can be eliminated at the expense of
smaller time or\and spatial steps, and the linear method is
more diffusive, as one can expect from the previous
considerations. In Fig.(5.35) the depth hydrographs at the
same sections (A, B, and C) are presented. They do not
contribute much to the analysis of the results, since they
cannot offer any more information (there is even no
oscillations as in the case of the discharge hydrographs for
the PPM method).

As in the previous case of a low dam, mass conservation
is poor for the shock-fitting method (Fig.5.36), and
smearing in the reservoir zone is observed. The
conservation error (1.5°-107%) is still small enough to allow
for a fairly reliable comparison between the two methods and
judgment on the influence of the shock-=fitting algorithm on
the quality of the resolution. Since in the shock-fitting
results the shock almost completely dies out some 40 km
downstream of the dam, and the resemblance with the Godunov
method is still very good, it seems that the Godunov method
representation, with the shock zone of one spatial step,
would be quite satisfactory in all possible practical
applications.

For the reasons mentioned earlier, the Lax-Wendroff



210

80
\
70 ——— GODUNOV PPM
— — GODUNOV LINEAR
60—

o]
Q
l

DEPTH (M)
&
i

30
20—
10
o £ | | | | ] |
0 250 500 750 1000 1250 1500 1750 2000
TIME (SEC)
PLAN VIEW ' .
AR
i
Bo=50 m sec A, isec B |sec C Bend=50 m
DM | i
P i
L | t | ! | 1 i !
0 20000 40000 60000 80000 100000

DISTANCE (M)

Figure 5.35 Depth hydrographs for high-dam dambreak
in a prismatic channel of small roughness;
comparison between the PPM Godunov and
linear Godunov methods



211

150

140 —

130 —

120
=110
~100
90 ~
80
70 -
60
50
40
30
20~
10

M

W.S. ELEVATION

—— GODUNOV PPM
— = SHOCK-FITTING

t=1800
t=600

t=1200

1 ] i ' | ) I !

20000 40000 80000 80000 100000
DISTANCE (M) |

PLAN VIEW

Bo=50 m sec A sec B |sec C Bend=50 m

[ QU U . P

L | A 1 ) A L | I

Figure 5.36

20000 40000 60000 ) 80000 100000
DISTANCE (M)

Time evolution of water-surface profiles for
high-dam dambreak in a prismatic channel

of small roughness; comparison between the
PPM Godunov and shock~fitting methods



212
method could not give a stable solution; it becomes unstable
within a few time steps at the beginning of the

computations.

V.3.5 Dambreak for high dam with large roughness

The case of a large resistance is the last case treated
in this section. The same channel is used as before; only
the roughness is increased to 0.040, and consequently the
initial and boundary condition discharges are reduced to
maintain the same normal depth of 1 m for the reach
downstream of the dam.

In Figs.(5.37) and (5.38) the two Godunov methods are
compared. The same trend is observed as for the case of a
low dam, namely, the agreement increases with the roughness
coefficient, and the only perceptible discrepancy is at the
ends of the disturbed region (i.e. at the front of the surge
and at the back of the reservoir, see Fig.5.37).

The discharge hydrographs also agree well, the only
difference being in the peak of the dam-section hydrograph
(Fig.5.38).

Figures (5.39) and (5.40) compare the PPM Godunov
method with the shock-fitting method. The linear
interpolation used for the shock-fitting method, in this
case with strongly curved water-surface profiles (see

Fig.5.39), leads to a large mass conservation error (over
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4%), and consequently to a speed error (as explained earlier
in section V.1 on the frictionless dambreak). Apparently,
some type of parabolic interpolation is required if a more
reliable shock-fitting method is needed. Nevertheless,
there is no reason to suspect that the shape of the front is
distorted, therefore the shock-fitting result can still
serve its purpose of providing an estimate for the shock
smearing of the Godunov method. Comparison of water-surface
elevations between the Godunov PPM and shock-fitting methods
(Fig.5.39) shows that the shape of the surge of the Godunov
method is in good agreement with that of the shock-fitting
method. The discharge hydrographs (Fig.5.40) also agree
well, except for the one at section C, where the erroneous
speed affects arrival of the perturbation.

The results of the computations for the Lax-Wendroff
method are compared with the PPM Godunov method in
Figs.(5.41) and (5.42). It is important to note that a
stable computation for the Lax-Wendroff method has been
possible only with a Courant number five times less (i.e.
time step five times smaller) than that used for the Godunov
method (the Courant number for the Godunov method is close
to 0.9). From the time evolution of the water-surface
elevations one can observe very good agreement in all zones
of the flow field, with slightly better resoclution and less

diffusion in the Godunov method. However, the unavoidable
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numerical oscillations of the Lax-Wendroff method are
present in the discharge hydrographs (Fig.5.42). They
gradually die out, without much affecting the water-surface
elevation profiles (Fig.5.41), which are the results of
primary practical importance.

In summary, the Godunov method (particularly the
Godunov PPM method) shows the best performance among all the
compared methods. It works with mixed flow regimes at large
time steps (still limited by the Courant-Friedrichs-Levy
law) ; the resolution of the front is on the average confined
to one spatial step for the PPM; and to two or three spatial
steps for the linear method. The conservation properties of

the scheme are excellent.

V.4 Tests for a frictional non-prismatic channel

Finally, the case of a non-prismatic sloped and
frictional channel is considered. This is the most delicate
problem to deal with for the one-dimensional open-channel
flow equations (Strelkoff, 1989), and the capability
successfully to compute dam-break flow in channels with
sudden changes of cross-sectional geometry (sudden
expansions and sudden constrictions) is indispensable for
“any future practical application.

Three flow situations are tested in this section:

1. Steady flow for a channel with sudden
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expansion;
2. Flood propagation in a highly non-prismatic
channel with randomly distributed widths;
3. Instantaneous and total dam-break flows for the

sudden expansion and sudden constriction cases.

V.4.1 Steady flow

The first test case deals with steady flow in a channel
for the case of sudden expansion in the cross-sectional
width in one spatial step. This example is chosen to
demonstrate and explain some ambiguities resulting from
using the staggered grid in the Godunov predictor-corrector
algorithm (see chapter IV for an explanation of the
algorithm).

A rectangular channel 20 km long, with a slope of 0.1 %
and a Manning roughness coefficient of 0.040 is used. The
width of the channel is 10 m for the first 10 km (measured
from the upstream boundary), then within a single spatial
step of 1000 m, it changes to 30 m, remaining constant to
the downstream end of the channel. The unsteady initial
condition is a constant depth of 2 m and constant discharge
of 36.06 cms for the entire channel. The upstream boundary
condition is a prescribed constant discharge of 36.06 cns,
and the downstream boundary condition is a uniform-flow

rating curve. After approximately 20,000 seconds a steady
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state is established.

A comparison between the Godunov PPM and the Preissmann
method (with the a temporal-weighting coefficient of 0.52)
is presented in Figs.(5.43)=(5.46). In all figures for the
Godunov method the values at the mid-points (the predictor-
step flux values) are plotted in addition to the grid-
averaged values. 1In Figs.(5.43) and (5.45) the depths at
the initial condition, and after the steady state is
established (around 20,000 seconds), are presented. In
Figs. (5.44) and (5.46) the discharge hydrographs at sections
10 and 16 km from the upstream end are presented. In
Figs. (5.43) and (5.44) a spatial step of 1000 m was used,
while in Figs. (5.45) and (5.46) it is reduced to 500 m.

The most intriguing behavior is observed in the
hydrograph of Fig.(5.44) for the expansion section A (10 km
from the upstream end). Here the grid-averaged discharge
for the Godunov method apparently does not converge to the
steady state discharge. However, the corresponding mid-
point discharge agrees well with that of the Preissmann
method, and converges to the appropriate steady-flow value.
Moreover, this discrepancy is reduce by decreasing the
spatial step (compare Figs.5.44 and 5.46).

Explanation of this behavior is found in the fact that
the values obtained in the conservative Godunov step by

integral Egs.(4.15) and (4.16) are averages of reach



223

4
—— GODUNOV GRID-POINTS
""" GODUNOV MID~POINTS
— — PREISSMANN
3 —
TN
=
~—r
T 5 -
= 2
a
L
[
1
o ) i 1 1 L I L I 11 L I ! | ) I 1 1 )
0 2000 4000 6000 8000 10000 12000 14000 18000 18000 20000
DISTANCE (M)
PLAN VIEW
l
ﬁ/ :
Bo=10 m seciA sec;B Bend=30 m
[ '
\ :
L | L | 1 ] L ] 1 | 1 i I i 1 L ] } 1
0 2000 4000 8000 10000 12000 14000 16000 18000 20000

Figure 5.43

6000
" DISTANCE (M)

Water-surface profiles for the steady-flow
in a frictional channel with

sudden expansion; comparison between the
PPM Godunov and Preissmann methods



224

70
——= GODUNQV GRID—-POINTS
so-f N e GODUNOV MID—POINTS
— — PREISSMANN
0 50
=
&)
g
Ly 40
(@}
o
T
o 30—
<2
(]
20 1
10—
0 L | | | | ! i | i
o 2000 4000 8000 8000 10000 12000 14000 18000 18000 20000
TIME (SEC)
PLAN VIEW
i
Bo=10 m seciA secEB Bend=30 m
\\\ ;
1 L 1. 1 4 | : | 1 | 1 | L I 1 ] 1 3 !
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Figure 5.44

DISTANCE (M)

Discharge hydrographs for the steady-flow
in a frictional channel with

sudden expansion; comparison between the
PPM Godunov and Preissmann methods



225

4
- GODUNQVY GRID—POINTS
""" GODUNQV MID—-POINTS
— — PREISSMANN
3_.
N
=
~—
T ~
=2 -
O
Ll
(]
1 =
o) ] l 1 } 1 | ) | 1 | I ] \ I ) { ! { 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
DISTANCE (M)
PLAN VIEW
/ :
Bo=10 m secEA sec;B Bend=30 m
I 1 \ t 1 ' | ! 1 1 | 1 1 1 i I | ! 1 t
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Figure 5.45

DISTANCE (M)

Water-surface profiles for the steady-flow
in a frictional channel with

sudden expansion; comparison between the
PPM Godunov and Preissmann methods,
refined (halved) spatial step



226

70 —

—— GODUNQY GRID=POINTS
""" GOBDUNQV MID~POINTS

60
— — PREISSMANN

. gl L | 1 1 1 1 n i 1 { 1 | 1 1 ) i !

0 2000 4000 6000 8000 100CO 12000 14000 16000 18000 20000
DISTANCE (M)

0 50
=
O
S
L 40—
O
> O
T
5 30+
2
o

20

10

0 | 1 1 | | | 1 i i

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
: TIME (SEC)
PLAN VIEW
Bo=10 m seci A sec'B | Bend=30 m

Figure 5.46 Discharge hydrographs for the steady-flow
in a frictional channel with
sudden expansion; comparison between the
PPM Godunov and Preissmann methods,
refined (halved) spatial step



227
quantities: the grid-averaged area is the mass per unit mass
and unit length, and the grid-averaged discharge is the
momentum per unit mass and unit length. Only when the
reach shrinks to a point do the averaged values become the
"true” area and discharge, as confirmed by comparison
between Figs.(5.44) and (5.46). This corroborates the
convergence property of the scheme, defined through the Lax
theorem (see Cunge et. al., 1980). For a finite length of
reach neither the averaged area nor the averaged discharge
represent anything relating to the discrete cross section
(and both discharge and area are section quantities). They
are what has been stated before: average measures of the
mass and momentum in the reach per unit mass and unit
length. As such, these grid-averages perform their function
of perfectly preserving mass and momentum in the reach, but
(particularly for strongly nonprismatic channels) they are
not appropriate representations of the cross-sectional
quantities. Since the cross-sectional discharges and areas,
where geometry is prescribed, are needed for practical
application, one must obtain them at the midpoints where the
time averaged fluxes are computed (flux is by definition
linked with section properties). The same observations can
be made for the linear Godunov method.

The steady flow profile presented in Fig.(5.45) can be

corroborated by any procedure for backwater computation,
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though for such a simple case one can use elementary open-
channel flow analysis. It is clear (see Henderson, 1966)
that in the narrow reach of the channel, upstream of the
transition, an M2 backwater curve occurs, converging to a
normal depth of 3.00 m further upstream, while in the wider
reach of the channel a normal depth of 1.33 m occurs for the

entire region.

V.4.2 Flood propagation in a channel with
randomly distributed widths

In the second test the intention is to present some
difficulties with both the Godunov and Preissmann methods in
treating highly nonprismatic channels, and to propose a way
of coping with these problems. To this end flood
propagation in a channel with randomly distributed widths is
chosen. The channel is 20 km long, with a bottom slope of
0.1 %, Manning roughness coefficient of 0.040, and the width
normally distributed with a mean of 400 m and a standard
deviation of 200 m. It is considered that such a channel
may be considered a fairly good approximation of an
extremely nonprismatic natural river. The spatial step is
1000 m. The upstream boundary condition is an imposed
hydrograph of triangular shape, with a base discharge of 500
cms and a peak discharge of 9000 cms. The downstream

boundary condition is a uniform-flow rating curve. The
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initial condition is a constant depth of 2 m and discharge
of 500 cms.

In Fig.(5.47) and (5.48) the two Godunov methods (PPM
and linear) are compared. Both water-surface profiles
(Fig.5.47) and discharge hydrographs (Fig.5.48) agree well
with each other. Some oscillations can be seen on the
ascending limb of the PPM hydrograph for section B (which is
not unusual for higher-order methods); this can be
eliminated by decreasing the time step, or refining the
computational grid (see Fig.5.52).

In Figs.(5.49) and (5.50) the PPM Godunov method is
compared with the Preissmann method. In general,
unsatisfactory agreement is achieved for the water-surface
profiles; for some reaches the differences in water-surface
elevations (Fig.5.49) exceeds 10 %, and considerable phase
shift occurs also. Discharge hydrographs agree much better
(Fig.5.50), but still with a noticeable phase shift. The
agreement in both water-surface profiles and hydrographs
improves significantly with grid refining of a factor of two
(linearly interpolating additional section between the
original sections, retaining the same gradient in width
change). This does not mean that for a nonprismatic channel
one always has to interpolate profiles to get acceptable
results, but for abrupt changes of a cross-section this

device certainly helps.
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Now the instantaneous dam-break problem is considered.
The same cases are treated as in the previous section on
prismatic channels, but now the width of the channel varies.
The most characteristic cases, sudden expansion and sudden
contraction, where the width changes within one spatial
step, are chosen. Again, two different upstream-to-
downstream depth ratios are considered (Fig.5.2): a low dam
(with a depth ratio of 10/1), and a high dam (with a depth
ratio of 100/1); also two different roughnesses, Manning
coefficients of 0.015 and 0.040, are tested to appreciate
the influence of the frictional resistance.

First the case of the low dam is considered. The same
channel is used as for the prismatic tests, 20 km long and
with a slope of 0.1 %, and a spatial step of 250 m. The
constant width of the reach before the width transition,
located 12.5 km from the upstream end, is 50 m, then it
changes within one spatial step to 250 m for the expansion
case, and to 10 m for the constriction case, remaining the
same for the rest of the downstream channel length. The dam
is located 10 km downstream of the upstream end. The
initial and boundary conditions are the same as for the
prismatic case: constant depth downstream of the dam,
constant level in the reservoir, and constant discharge for
the initial condition; constant inflow for the upstream

boundary condition, and a uniform-flow rating curve for the
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downstream boundary condition.

V.4.3 Dambreak for a low dam with sudden expansion
and small roughness

First the case of a sudden expansion, with a small
roughness coefficient (0.015) is presented. In Figs.(5.53)-
(5.55) the Godunov and shock-fitting methods are compared.
From time evolution of water-surface profiles (Fig.5.53) one
can observe that after the wave has reached the wider part
of the channel, the depth decreases, and accordingly the
wave speed also decreases (compared with the case of a
prismatic channel in Fig.5.21). The change in water-surface
elevation at the transition reach seems to be too sharp for
the Godunov method. As in the random-width channel test
this can be smoothed by refining the grid, which however
requires a smaller time step to meet the stability
requirement. Besides some small smearing in water-surface
profiles in the reservoir region (Fig.5.53), and some small
diffusion in hydrographs (Fig.5.54), the two Godunov methods
agree well.

Successful computations have not been possible with
either the Preissmann or the Lax-Wendroff methods, for the
reasons explained in the previous sections. On the other

hand the shock-fitting method of characteristics suffered
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from a large mass conservation error (above 10 %).
Comparing the Godunov and the shock-fitting methods
(Fig.5.55) one observes the same differences noted for the
prismatic cases: diffusion (smearing) in the reservoir for
the shock-fitting method, and fast diffusion of the steep
front produced by frictional effects. The overall mass
conservation error for all nonprismatic Godunov computations
is between 2:107° and 4-10*, while the error for the Godunov
points is again much smaller (between 8-10"" and 5-107').
For all subsequent cases the mass-conservation errors
of the shock-fitting method were unacceptably large (25% and
more) ; consequently the results of the shock-fitting method

are not used for comparisons in further discussion.

V.4.4 Dambreak for a low dam with sudden expansion
and large roughness

In Figs.(5.56)=(5.60) the case of the low dam with
higher roughness (Manning coefficient of 0.040) is
presented. Again, the depth decreases in the wider part of
the channel (Fig.5.56), but it is considerably higher
compared with the previous case, due to the effect of
stronger resistance. 1In Figs.(5.56) and (5.57) the PPM and
linear Godunov methods are compared. Very good agreement is

achieved, both in water-surface profiles (Fig.5.56) and
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discharge hydrographs (Fig.5.57). This corroborates the
observation made for the frictional prismatic channels, that
for the larger roughness coefficient natural dissipation due
to the resistance effects tends to decrease the difference
between the two Godunov methods.

In Figs.(5.58)-(5.60) the PPM Godunov method is
compared with the Preissmann and the Lax-Wendroff methods,
which were able to produce a stable solution for this high
roughness case; large frictional resistance suppressed
occurrence of supercritical flow and mixed regime, enabling
successful performance of the Preissmann method, and at the
same time dampened numerical oscillations for the Lax-
Wendroff method.

In general good agreement between the compared methods
is attained. To obtain a successful computation with the
Preissmann method large time steps and a temporal-weighting
coefficient of 1.0 must be used, so some diffusion of the
profiles occurs in the reservoir, the transition, and the
surge front itself (Fig.5.58). The water-surface elevations
for the Lax-Wendroff method agree even better with the
Godunov method (Fig.5.59) than do the Preissmann
predictions. The only difference can be observed in the
zone immediately upstream of the transition. On the other
hand a three-times smaller time step was needed for the Lax-

Wendroff method compared to the Godunov method to obtain the
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solution. Spurious oscillations still persist in the
discharge hydrographs for the Lax-Wendroff method
(Fig.5.60), though they do not greatly affect the practical
(utility of the results (i.e. water surface-elevation and
wave speed). The mass-conservation errors are 2-107 for
the Preissmann method, and 7-107° for the Lax-Wendroff

method.

V.4.5 Dambreak for a low dam with sudden constriction
and small roughness
Now we consider the case of a sudden constriction for

the low dam (10/1 depth ratio). First the channel with
small roughness (Manning coefficient of 0.015) is
considered. The only methods that could produce a result
were the two Godunov methods (PPM and linear); as in earlier
cases, mixed flow regime disabled the Preissmann method, and
large numerical oscillations plagued the Lax-Wendroff
method. The results are presented in Figs. (5.61) and
(5.62). The physical phenomenon is correctly represented;
after the surge reaches the constriction (see Fig.5.61),
whose conveyance is insufficient to pass the oncoming flow,
water accumulates upstream of the constriction in order to
increase the energy (pressure gradient) required to pass the
flow. This produces a wave moving upstream. The effect of

superposition of elementary positive waves (explained in
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chapter 2) produces a steep front moving back towards the
reservoir, and flooding the initially spared (unflooded)
region on its way back. This is a very common practical
situation for dam-break flood predictions in canyons, where
accumulation of water upstream of the constriction produces
much larger depths, both upstream and downstream of the
constriction, than those which would result if there were no
constriction. Nevertheless, the constriction has also a
positive effect on the region far downstream, by reducing
the discharge as observed in Fig.(5.62) (the same principle
as in flood control with spillways of narrow width).

From Fig. (5.61) one can observe good agreement between
the Godunov PPM and linear methods for water-surface
profiles with the usual increased diffusion for the linear
method. Spurious oscillations occur for the PPM method in
discharge hydrographs (Fig.5.62) at the constriction
section, but as shown before they can be reduced on the

expense of using smaller spatial steps (refining the grid).

V.4.6 Dambreak for a low dam with sudden constriction
and large roughness
In Fig.(5.63)=(5.67) the case of a sudden constriction
for the low dam and a larger roughness coefficient of 0.040
is presented. 1In Fig.(5.63) evolution of water-surface

profiles for the Godunov PPM and linear methods is compared.
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The same physical description of the low-roughness case is
valid. The only difference is produced by the effect of
higher resistance on smoothing the steep fronts of both
surges: the one passing from the constriction towards the
downstream boundary and the other moving back to the
reservoir. Also, the spurious oscillations in the
constriction-section hydrograph are now smoothed (Fig.5.64).

The Preissmann method could not yield a stable solution
here, and the Lax-Wendroff method needs three times smaller
time step to produce an acceptable stable solution, but
still with noticeable oscillations in water-surface profiles
(Fig.5.65), and particularly in hydrographs (5.66). If one
excludes those numerical oscillations the results of the
Godunov and Lax-Wendroff schemes agree very well, except for
the insignificant smearing of the wave front for the Lax-
Wendroff method (Fig.5.65), and some shift in discharge and

depth hydrographs (Figs.5.66 and 5.67).

V.4.7 Dambreak for a high dam with sudden expansion
and small roughness
Now the case of a high dam (upstream-to-downstream
depth ratio of 100/1) is considered. The same channel is
used as for the prismatic tests: 100 km long, with a slope
of 0.1 %, and a spatial step of 1000 m. The constant width

of the reach upstream of the transition, located 55 km from
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the upstream end, is 50 m; then it changes within one
spatial step to 250 m for the expansion case, and to 10 m
for the constriction case, remaining the same for the rest
of the channel. The dam section is 50 km downstream of the
upstream boundary. The initial condition is a constant
depth downstream of the dam, constant level in the
reservoir, and constant discharge. A constant inflow is
prescribed for the upstream boundary condition, and a
uniform-flow rating curve is used for the downstream
boundary condition.

The case of a sudden expansion with a small roughness
coefficient is presented in Figs.(5.68) and (5.69). Only
the Godunov methods were capable of yielding results for
such a severe case. The temporal evolution of water
surface-profiles for the two Godunov methods is shown in
Fig.(5.68). The depths drop through the expansion section
which consequently reduces the speed of the surge. Except
for some diffusion in the reservoir for the linear method,
good agreement between the two methods is observed. The
discharge hydrographs also agree well, with some
oscillations for the PPM method, and very small diffusion

for the linear method.
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V.4.8 Dambreak for a high dam with sudden expansion
and large roughness

The case of a sudden expansion for the channel with
higher resistance (Manning coefficient of 0.040) is
considered next. 1In Fig.(5.70) the results of the Godunov
PPM method computations with and without an interpolated
profile, analogous to the one introduced for the steady-flow
test within the width transition, are presented. In both
cases the same gradient of channel widening is preserved.
This comparison is shown to confirm the results of the
steady-flow case (see Fig.5.43-5.46 and accompanying
discussion), namely that refining the grid for the Godunov
method smooths artificial fronts and peaks. The PPM and
linear Godunov methods produce solutions which are
graphically indistinguishable!

In Figs.(5.71) and (5.72) the Godunov PPM and the Lax-
Wendroff methods are compared. To obtain a successful
solution for the Lax-Wendroff method one must use ten times
smaller time steps then for the Godunov method. The water-
surface profiles for the two methods agree very well, the
only perceptible difference being in the reservoir for the

first stages of computation. Again, the discharge
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hydrographs for the Lax-Wendroff method suffer from strong
oscillations, and some shift can also be observed. The mass
conservation error for the Lax-Wendroff method is

3-107°,

V.4.9 Dambreak for a high dam with sudden constriction
and small roughness
Finally the case of a sudden constriction for the high

dam is presented. Again, in the case of small roughness
(Manning coefficient of 0.015) only the Godunov methods
produce stable results. The comparison between the Godunov
PPM and linear methods is shown in Fig.(5.73) and (5.74).
The physical phenomenon is qualitatively the same as in the
case of a low dam, but now the changes in variables are much
stronger, which results in very strong shocks; some
oscillations can be observed in water-surface profiles for
the PPM method (Fig.5.73). One can also notice that the
linear method smears somewhat the front of the surge moving
in a positive direction, and also produces some diffusion in
the reservoir. The front of the PPM method is still
confined to one spatial step. The spurious oscillations in
discharge hydrographs for the PPM method (Fig.5.74), can be
expected from the water-surface profiles. They are
particularly strong for the constriction section, and though

gradually die out, should be reduced by refining the spatial
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grid.
Again the Lax-Wendroff method becomes unstable in a few

time steps; no stable computations are possible.

V.4.10 Dambreak for a high dam with sudden constriction
and large roughness

The last test case deals with the sudden constriction
for a high dam and a channel of large roughness. The effect
of roughness smooths out the steep fronts of both surges,
and in addition reduces spurious oscillations. 1In
Fig.(5.75) the temporal evolution of water-surface profiles
for the PPM and linear Godunov methods is presented. The
two methods agree well except for some smearing of the
linear method in the zones of fronts and the reservoir.
Oscillations in the PPM method are greatly reduced compared
to the case of smaller roughness (Fig.5.76).

The water-surface profiles for the Lax-Wendroff and
Godunov methods are compared in Fig.(5.77). The
"successful® computation for the Lax-Wendroff method is
obtained for a time step ten times smaller than that of the
Godunov method. Apparently, artificial damping (viscosity)
has to be added in the Lax-Wendroff method in order to
obtain reasonable results, but this also produces diffusion
and smearing of the front (see Fig.5.1).

The computations for nonprismatic channels have again
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shown the advantages of the Godunov method over conventional
methods (the Preissmann and the Lax-Wendroff methods) in
coping with mixed-flow regimes and with very strong shocks.
However, they have also shown that refining the
computational grid is often required for abrupt expansions,
to avoid artificial oscillations; this involves reducing the
time step to satisfy the stability condition, and therefore

increasing significantly the computational time.

V.4.11 Dambreak for a high dam with sudden change

in bed elevation

The sudden change in bed elevation (bottom slope) has
also been tested, but is not presented here systematically.
This situation does not pose computational challenges like
those of severe nonprismaticity.

One illustration of the computation for a channel with
variable bottom slope is presented in Fig.(5.78)-(5.80).
The same type of channel, and the same type of boundary and
initial conditions, are used as for the prismatic channel
computations for a high dam, with the same upstream-to-
downstream depth ratio of 100/1, width of 50 m, and a
Manning roughness coefficient of 0.04. A higher downstrean
depth of 3 m is now chosen to avoid using a very dense
spatial grid, since a larger number of spatial steps is

required to obtain a stable solution for a shallow depth of
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1 m in the transition. A dam height of 300 m is chosen to
retain the same upstream-to-downstream depth ratio of 100/1.
The bottom slope in the reservoir is the same as before,
i.e. 0.1 %; then follows a horizontal reach between the dam
section and section 61 (located 10 km downstream of the
dam), then a sudden drop in the bottom elevation, with a
slope of 4.0 %, occurs between sections 61 and 62 (1 km

apart), and the rest of the channel is almost horizontal

o0

with a slope of 0.03

A comparison between the PPM and linear Godunov methods
in shown in Figs.(5.77) and (5.78), while the Lax-Wendroff
method is compared with the PPM Godunov in Fig.(5.80). The
results in general agree well, though noticeable
oscillations are present for the Lax-Wendroff method, in
particular for the first stage of the flood (see Fig.5.80).
The solution reflects the physical phenomenon: after the
surge has passed the steep transition and reached the mild-
slope zone, the backwater effect produces a wave in the
upstream direction (similarly to the effect of a sudden
constriction).

Again, the time step required for a successful run with
the Lax-Wendroff method is ten times smaller than the
appropriate time step for the Godunov method.

In all examined cases the shock-modifying procedure for

the PPM interpolation, which is explained in Appendix A,
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does not contribute much to the quality of the results. The
resolution of the front can be only marginally improved, and
determination of the necessary coefficients is a cumbersome
task (in particular for nonprismatic channels), involving
many trials and experience, which seriously jeopardizes the
robustness and practical utility of the scheme.
Consequently, use of the shock-modifying procedure is not

recommended.

V.5 General remarks

This chapter closes with some general comments in an
attempt to summarize the presented tests and present a clear
picture of the advantages and disadvantages of the examined
methods, in particular the Godunov methods.

In general, the Godunov method (actually both the PPM
and the linear methods) show significantly better
performance, compared to the Preissmann, Lax-Wendroff and
MacCormack methods, for the computation of instantaneous
dambreaks. The Godunov method can successfully compute
mixed-flow regimes for both frictionless and frictional
channels, whereas the Preissmann method fails whenever a
mixed regime occurs, and the Lax-Wendroff method requires
much smaller time steps for those few cases it can deal
with. The shock=fitting method of characteristics is

primarily used for the steep front resolution comparison,
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since the complications in detecting and tracking reflected
discontinuities makes the method almost hopelessly
complicated for any practical application. In addition,
very large mass-conservation errors result for the shock-
fitting method, attributable to the linear interpolation,
rendering it inferior to the Godunov methods, for which the
conservation error is negligible.

Comparisons with the shock-fitting method show that the
resolution of the front for the Godunov PPM method, for all
the examined cases, stays within one spatial step, i.e.
there is practically no smearing of the front. The linear
Godunov method produces more smearing, due to numerical
diffusion (which comes from the linear interpolation),
confining the wave front to, on the average, three spatial
steps. Nevertheless, it is observed that for the case of
higher roughness, appropriate for natural rivers, the steep
front is gradually smoothed out by resistance effects, which
somewhat weakens the advantages of the PPM method's sharp
front resolution. On the other hand the linear method is
less susceptible to numerical oscillations. A more thorough
evaluation of the two Godunov methods is presented in
chapter VII.

The average relative computational times for the
schemes (with the same time and spatial steps), related to

the linear Godunov method, are:
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GOAUNOV PPM  ¢.cveceocconcacoacos 1.03
Godunov 1inear ...ccccccocscscsoo 1.00
Preissmann (3 iterations) ....... 1.82
Lax-Wendroff ....cccccccceccoscns 0.47
Shock=-fitting characteristics ... 0.72.

Although the Lax-Wendroff method has the lowest
computational time per time step, one has to keep in mind
that for most of the computations presented, it required
much émaller time steps than the Godunov method to obtain a
stable solution. The implicit Preissmann scheme cannot use
its potential of a (theoretically) unlimited time step,
since the resulting smearing compromises the solution (see
Figs.5.24, and also Fennema and Chaudhry, 1986). In this
light, if the shock-fitting method is disregarded due to its
complexity, the Godunov method has a computational time
advantage over the other methods considered.

The main problem cbserved here for the Godunov method,
is the need to interpolate additional cross-sections between

sections where severe expansion occurs.
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CHAPTER VI. TOWARDS GENERALIZATION TO TWO DIMENSIONS

In this chapter some ideas and guidance for applying
the modified Godunov scheme to the two-dimensional open
channel flow equations are presented. There is a definite
need for a two-dimensional approach to the dam-break
problem. The sudden expansion of a narrow canyon into a
wide valley, and the case of a partial (but instantaneous)
dam breach, are not properly represented by a one-
dimensional model. Immediately below a channel expansion
the flow is not always confined by the valley boundaries
(walls), but rather can remain jetlike before filling the
entire cross-section further downstream. In addition to
this inadequacy in a one-dimensional physical description of
the phenomenon, difficulties also occur in application of
numerical methods to the one-dimensional equations for
severely abrupt expansions, as shown in chapter V.

Despite these weaknesses of one-dimensional methods,
two-dimensional methods, though investigated and developed
for hypothetical cases (see for example Katopodes and
Strelkoff, 1978; Fennema and Chaudhry, 1990), are still not
widely used for practical dam-break problems. The reasons

include requirements for large computer storage and much
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more computer time than needed for one-dimensional methods;
more complicated algorithms; and delicate treatment of
boundary conditions. It is perhaps not possible to avoid
these sorts of problems with the Godunov algorithm; but it
may be possible to obtain a two-dimensional method which may
retain the advantages of the one-dimensional implementation:
capability to work with mixed flow regimes, and to deal with
very strong shocks and preserve good resolution of the
front. The goal is also to avoid the difficulties of the
one-dimensional method produced by the nonprismatic term
for the case of a severe expansion.

The purpose of the this chapter is not to provide a
complete algorithm for the two-dimensional dam-break method,
but rather to outline a procedure for potential application
of the Godunov PPM (and linear) methods to the two-
dimensional open-channel flow equations. First the two-
dimensional flow equations are revisited. Then the Godunov
conservation step is presented as two-dimensional extension
of the one-dimensional method, developed in detail in
chapter IV. Finally, some ideas for the flux-approximation

procedure are presented.
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VI.1 Proposed numerical implementation

The numerical implementation of the Godunov method to
the two-dimensional flow equations should not be considered
as a direct generalization of the one-dimensional algorithm.
The ideas remain the same, but the implementation becomes
more delicate, particularly for the computation of the time-
averaged fluxes in the predictor step, since now the method
of characteristics becomes the so-called method of
bicharacteristics, where the trajectories are conoides
instead of the simple lines of the one-dimensional approach.

The two-dimensional open-channel flow equations are
presented in chapter II, and are rewritten here for
convenience.

The continuity equation is:

oh

(2.8): —a—E

d d -
+-§§(uh) +-5;(Vh)-—0,

the momentum equation in the x-direction is:

O(uh) | 9 (,2p) +i(vuh)+i(_h;.) - gh(S,,-5,.) .

(2.9): 3t 3% 3y 3%

and the momentum equation in the y-direction is:
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o (vh)
at

9
oy

(2.10) + a—‘z{(uvh)+ (vzh)+—%(—}-12—2—) = gh(S,,-Sg,) ,

where the friction slopes S, and S4, are expressed as:

(112 +v2 [172 + 12
(2.10a): S,=n>HE Y and g, = n2 NLEV,

fx h4/3 R4/3

The matrix form of the Egs. (2.8)-(2.10) is:

oU

(2.11) : a5

v _aa_ [Fw] + -2 6] = BH(U, %, v, t),
X oy

In the conservative step Eq.(2.11) is integrated
between the times t" and t™!', and spatial positions X, and

X and Y,, and Y,, (see Fig.6.1), which yields:

it
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(6.1): <ig=<wi;

tn+1y1¢Vz
1
T Ax.A f f (FLU(Xj1. ¥, €)1 ~FLU(X5, v, £) 1}dy dt -
J t? Vi
1 tn+lxj+%
- AXA_V f f {G[U(X’yi”/ﬁ’ t) 1] —G[U(lei_vz, t)]}d}{dt+
J i £R X
tn+l xJ’.% y‘“"/g
m;: [ [ [#xy 0 dvaxde,

E? X Vin

where the spatial average <U>Ji is defined as:

Xje Vien
(6.2): ﬂb;i=——3;—-f Ulx,y, t?)dydx.
Ax;Ay;
Xj-ve Vi-n

As in the case of one-dimensional equations, the following

notation is introduced:

(6.3): <OIT =< - DL (A ) -
J

At +% +% %
5 (Gt Giw) + ACH]

i

—n+le Gn+/2

where the time-averaged fluxes F.., ;. G;'[i, and the source



n+/z

term H;';* are defined as:
™ Vion
. Sn+¥e  _
(6.4): FE .= AtAylf [ Fluxip v, ) dyde,
t® Vi
tn+1xj+%
(6.5): Gl = — [ [ 6lutx, vy, ©) dxdt,
AtAx, X
R Xju
£ Xy Vi
6.6): 1}"9+3/==______f f fo , t) dydxdt
( ) g AtAxAyl (x,y,t)dy ’

tn Xj % Vi

and similarly for the rest of the flux terms.
Approximation of the time-averaged fluxes and the

source term, which comprises the predictor step, is the
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most

delicate portion of the method. The proposition, based on

experience from the one-dimensional case (see chapter IV),

is first to obtain the time-averaged approximation of the

dependent variable vector U, and then to compute the time-

averaged flux as:
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(6.7) ¢ F?;:é/z,l F(Un:;fl)’

rather than averaging the fluxes themselves. With such an

approximation the conservative (Godunov) step Eg.(6.3) can

be rewritten in scalar form as:

(6.8): <Y = <wf - DL [(@)FF - @I -

J

- (VR 3 h - (VR TR,

Jei+Ve

for the continuity equation;

S _—
(6.9): <ul>}=<um} ;- fx’: (u2h+gh7);%:1§:,l (u2h+g__)“*1§:1

)

~[(TVE) 5 s (TVR) 5] +
3

J. i+

hn+1/& Z Vo, i Z_7+1/é i 2 '—n+1,§‘/('—n+/2)2+ (_H+1/§)
AX (hn+‘/2) 4/3

+gAt

for the X-momentum equation; and



(6.10) : VR =<vhyt - A Ao [( vh) T ;- (avh) 3%
7
2 A n+ve
- (v2h+g§2—-)’}ffw2 (v2h+g_)J %
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]

i-% Zj,i+% n2 Vi, i

—n+‘/&‘/(—-n+1/z) 2, (—n+‘/2) 2

—_ Z
+gAt B
g F, 1 Ayl

for the Y-momentum equation, where:

n+le 1 n+l%e L n+Va L n+le 1 n+lk
hi’;t = = ('hj+% i ‘h ~-¥, 1 h] i+% h] i- 1/z)
—n+'e =n+% =n+Va —n+e =n+
(6. 11) 3 4 uj,j = — (uj+% 1 uj—%,i+ u] i+ J i- '/z)
—m+te _ 1 ,—n+% P I A —n+lh
F.i = z (VJ+% 1 V_7 Y, i VJ it Vy,i- 1/z)
n+l

The spatially averaged velocities <u>3j; and <w

computed from:

<uh>?}
. n1 o SUYG G
(6.12):  <w¥ T
J.1
n+l
(6.13): <w¥i-= —<—Z§>—HJ+TI
<h>3T;

J.1

+e
(hE)e/3

n+1l

;.1 are then
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Now the problem of approximation of the time-averaged

— ryn+Ve . .
vectors U, ; and Uj ;4 must be dealt with. A suggestion

based on the one-dimensional case is to adopt the values of

UM s and UNE, , computed at the mid-time t™* by the

method of characteristics, for the time-averaged vectors

5?3:i and i@fﬁ%. The algorithm for computing the mid-time

vectors Ul ; and U}'li, should be able to deal with

continuous and discontinuous problems, though it is
suggested, based on experience with the one-dimensional
method, that for initial investigations only continuous
cases should be considered.

) ° v o 1, 1/
For obtaining the mid-time vectors Uy ; and Ui, two

characteristics approaches for two dimension can be used.
One approach is to use the so-called bicharacteristics
method (see Courant and Hilbert, 1937), applied to dam-break
flows by Katopodes and Strelkoff, 1978. The other approach,
which is suggested for initial research, is to us the split-
operator algorithm applied by Benque et al., (1982) to tidal
flows. In addition to offering significant computational
simplifications compared to the bicharacteristics approach,
the latter approach can be relatively easily adjusted to

deal with the dry-bed problem, which is an essential
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capability for practical application of any two-dimensional
methods (as explained in chapter II).

Some preliminary explanations of the split-operator
method are now presented; for the details needed for future
investigations, one should refer to Benque et al., (1982).

The method originally consisted of three steps:
advection, diffusion and propagation. Although momentum
diffusion is important for accurate modeling of momentum-
transfer processes, it may be omitted for the initial
investigation for the sake of simplicity; therefore only two
steps will be considered, namely: the advection step, where
inertial terms of the momentum equations are treated, and
the propagation step, where the continuity equation and the
remaining terms of the momentum equations are dealt with.

In the advection step the inertial terms (defined in
chapter II as the terms describing the advective transfer
and accumulation of momentum) of Egs.(2.9) and (2.10) are

treated separately as:

. Ol 9 (a9 -
(6.14) ¢ 5 * aX(u h)+ay(vuh) 0,
(6.15): olvh) —Q—(uvh)+—§—(vzh) = 0,

ot ox ay
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After extracting the continuity Eg.(2.8), one can cast

Egs.(6.14) and (6.15) into the characteristic form:

ou du ou

(6.16): % + UE + Va—y = (
. ov ov ov _
(6.17): 3 +1L5; + v7§; o,

which can be rewritten as total derivatives in the velocity

components u and v:

Du

(6.18): D_t = O,
Dv

. : —_— =0

(6.19): 57 =0,

along the path:

(6.20) u - I and V'=-2Z.
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Equations (6.18), (6.19) and (6.20) state that along
the path AB (see Fig.6.2) there is no change in either of
the velocity components (u and v) between the two time
levels t" and t™'. The task is to obtain the foot of the
trajectory (Eg.6.20), point B, at which u; =u, , and v, =v,
This is accomplished through an iteration procedure, and

involves interpolation of velocity values from the previous

time step t,. The velocities obtained during the advection

n+1l

™1 and v,

step are denoted as u;

In the propagation step the flow Egs.(2.8), (2.9) and
(2.10) are solved without the advective inertial terms,
since advection has been accounted for in the previous
advection step. Accordingly, the "propagation" momentum

equations are:

. d(uh) d , h? 2 uyul+v?
6.21): + 2y = -~ e v,
( ) 3 3 ( 5 ) gh(sgx n Ve ),

in the x-direction and:
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t
A n+l
N i
V—'d *
dt
At
>
N
n+1 > n
t £ Bx ' —
X
BY
/ 5
Y
Figure 6.2 Definition sketch for the advection step

in the flux computation
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oy h4/3

o (vh) N d , h?, _ gh(S _ p? VVu2+v2)”

in the y-direction, while the continuity equation remains as
before (Eqg.2.8). Equations (6.21), (6.22) and (2.8) are

then approximated as:

- M i n+l __a_ n+l
(6.23) : e o (uh) +ay(vh) }+

+ (1-a) [a—i(uh)" + a—i’(vh)"] -0

for continuity;

+

n n+l n
(6.24): _(ub)™ - (uh), _Q_(_fzi) _ _a_(h_z)
At T gl ox\ 2 + (1-a) ox\ 2

g h7/3

anz( <uh>\/<uh>2+(vh)z)’“+

(uh)y/(uh) 2+ (VA) 2 )’”12

2
+(1l-a)n ( PXUE

a

= gS, [ah™+ (1-a) h "]
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for the xX-momentum; and

-+

n n+1l n
(6.25): (V)™ - (vh), i(h_z) o) 2 _h_)
At +ga8y 2 v (1-a) ay\ 2

+g

anz( (Vh)\/(uh)2+(vh)2)n+l+
R7/3

(vh) y (uh) 2+ (v 2 ||
+(1—a)n2( Y P ) ]_

a

= g8, [ah™ + (1-a)h?]

for the y-momentum, where the subscript "a" designates the
value obtained in the advection step, and a is a time-
weighting coefficient less then unity (superscripts "n" and
"n+1l" denote consecutive time levels). For convenience the
unit discharges (uh) and (vh) are treated as dependent
variables in the propagation step, instead of the velocities
u and v (see Bengque et al., 1982).

The terms of Egs.(6.24) and (6.25) which involve unit
discharges at time t™', are then linearized around the
values known from the advection step, using a Taylor series

expansion:
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+

ox

At 2 +(-e) 55

n+ n+i n
(6.26): (uh)™-(uh);™ a(hz) a(m)
T gl ox

+

+gn?

( (uh)/(uh) 2+ (vh) 2 )"*l
h7/3

a

+ 0

9 ( (uh)y(uh) 2+ (vR)2 "™
B_h( h7/3 ) Ah +

a

9 [ (uh)y(uh) %+ (vl 2 ™" et aeie ]
e a(uh)( R7/3 ) [(uh)?*- (uh) 31 |=

a

= g8, [ah™ + (1-a)h"],
for the x-momentum equation; and

n+l _ n+1
(6.27):  (vl)™-(vh)g N

n+l n
3 [ n2 ., o n?
a@(—;) v (1-a) a—y(‘z—)

At
p) 7 \2+1
+gn? ( (Uh)‘/(ﬁmfh) ) .
8 ( (vh)y/(um) 2+ (v 2 \*™*
+a—a—E( v IXIE ) Ah +

n+l

0 (vh)y (uh) 2+ (vh) 2 nel_ n+iq |_

a

= gS,, lah™+ (1-a) h"],
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for the y-momentum equation. Expressions for the unknown
unit discharges (uh)™' and (vh)™' are then obtained from
Egs.(6.26) and (6.27) and substituted into the continuity
Eg.(6.23), which is linearized and solved for the remaining
unknown h™! . Finally, the unit discharges are computed
from Egs. (6.26) and (6.27).

Whichever algorithm is used in a predictor step
(Benque's operator-splitting, or Katopodes-Strelkoff's
bicharacteristics), one has to recover the continuous

functions U(x,y,t) from the spatial averages <U>;, ; obtained

i
as the result of the conservative step (Eg.6.3). To this
end the linear or the PPM (piecewise parabolic)
interpolation procedure may be used. The PPM procedure is
more elaborate to develop and implement, and in addition
requires an auxiliary method at the points where there is
not enough information to apply the PPM interpolation (so
called close-to-the-boundary points, explained in section
IV.4). On the other hand the PPM method proved to give
somewhat better performance than the linear one for the one-
dimensional case; and it is strongly recommended by both
Benque et al., and Katopodes and Strelkoff, to use parabolic
interpolation in order to avoid the numerical diffusion

which would result from linear interpolation. The final

decision on the type of interpolation should be made in the
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course of development of the method for the two-dimensional
case. Again, for the beginning of the investigation, it is
suggested to adopt the simpler linear method.

For the discontinuous case one first needs to detect
the discontinuity, which should be obtained by a procedure
similar to those used for the one-dimensional flow equations
and described in section IV.3.2. It must be anticipated
that discontinuities can appear in both spatial directions,
since lateral surges can result from abrupt changes in
geometry. For the computation of the discontinuities
themselves the Riemann solver used for the one-dimensional
method must be extended to the momentum equation in the Y-
direction (the direction, normal to the main flow). The
domains of dependence, needed to provide the initial stages
for the Riemann problem (see chapter IV), are to be computed
using the split-operator method (explained above) for each
side of the discontinuity.

It is re-emphasized that the material presented in this
chapter is guidance towards development of a two-dimensional
method - not the complete algorithm; considerable research
may be required to obtain a final algorithm capable of
producing reliable results. Particular attention must be
paid to the part of the algorithm which approximates the
time-averaged fluxes, and to the development of the boundary

conditions. Some completely new ideas may be required (e.qg.
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the fluxes for the discontinuous solution), but first the

old ones should be thoroughly investigated.
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CHAPTER VII. SUMMARY AND CONCLUSIONS

The primary goal of the present work was to analyze and
assess the possibility of application of the modified
Godunov method to discontinuous one-dimensional open-channel
flow problems, and thus provide a basis for potential
industrial applications. The secondary goal was to lay the
foundations for further generalization of the Godunov method
for two-dimensional open-channel flow problems.

The need for this work, explained in detail in chapter
ITI, comes from the lack of reliable numerical tools for
computation of open-channel flows with strong shocks, in
particular those associated with instantaneous dambreaks.
Presently available and commonly used numerical methods for
dam-break computations are reviewed and evaluated in chapter
II, as are potentially new methods, all of them coming from
gas dynamics. The Godunov method, modified first by Van
Leer, and then refined by Colella and Woodward through their
piecewise parabolic interpolation method (PPM), is chosen
for further investigation because of its good performance,
especially in mass-conservation and steep-front resolution.

In chapter III, the modified Godunov scheme is applied

to the one-dimensional scalar equations (linear advection
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and Burgers' equations) as test, or model equations, to get
an insight into and experience with the behavior of the
method, before generalization to the full open-channel flow
equations. Tests of the explicit variant of the modified
Godunov method for the scalar equations show good agreement
with the analytical solution and the Holly-Preissmann
method. Particularly good performance is observed for
problems involving discontinuities. On the other hand, the
implicit variant of the method suffers from excessive
numerical diffusion and oscillations, and is accordingly
abandoned. (In addition, since the time step must be
limited for discontinuous flow computations in order to
preserve the resolution and avoid smearing, the implicit
scheme is deprived of its main advantage - a large time
step.)

In chapters IV and V the de St. Venant one-dimensional
equations are treated. New algorithms for two variants of
the Godunov method are developed and presented in chapter IV
(a detailed derivation is given for Colella and Woodward's
PPM method, and the method based on linear interpolation is
outlined).

In chapter V the tests intended to show the behavior of
the Godunov methods (PPM and linear) and compare them with
other commonly used methods for discontinuous open-channel

flow computations are presented.
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The tests have shown the superiority of the Godunov
methods for computation of discontinuous open-channel flows
(in particular dam-break flows) over the other compared
methods. The Godunov methods are able to produce stable
solutions for a much wider range of problems (i.e. wider
ratio of upstream-to-downstream depths, channel roughness,
etc.). An especially important feature is the capability of
the Godunov methods to work successfully with so-called
mixed flow regimes, where within the same reach both
supercritical and subcritical flow occur. The
"conventional" type of Preissmann method (i.e. the one using
the double sweep algorithm) cannot deal with mixed flow
regimes; a complete matrix inversion must be performed, thus
significantly increasing the computational time. For very
strong shocks (resulting from a large ratio of upstream-to-
downstream depths, see Fig.5.2) the Lax-Wendroff and
MacCormack methods require time steps several times smaller
than those of the Godunov methods to achieve a stable
solution. Even for such small time steps large spurious
oscillations occur for the Lax-Wendroff and MacCormack
methods, so that introduction of artificial viscosity
(damping) is necessary to reduce them, and sometimes even to
obtain a stable solution; however, for the discontinuous
flows this diffusion produces an undesirable smearing of the

front. Both Godunov methods (PPM and linear) produce a
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stable solution for very strong socks without artificial
damping and with large time steps, limited only by the
Courant condition (i.e. the Courant number should be less
than unity).

The Godunov methods are the only methods among those
analyzed herein able to produce a stable solution for cases
of frictionless dambreaks with mixed flow regimes. The
results of these computations, in particular the results of
the PPM Godunov method, agree very well with the analytical
(Stoker's) solution. The front is confined within one
computational step, insignificant smearing occurs for the
rest of the flow, and the celerity (speed) error is small.
Somewhat larger diffusion occurs for the linear method for
frictionless flows, with more smearing of the front.
However, when the realistic case of a frictional channel (in
particular with higher roughness) is considered, the two
Godunov methods produce more or less the same results, with
slightly more smearing for the linear method, but with some
spurious oscillations in discharges for the PPM method.
Very good mass conservation is achieved with the Godunov
methods, though for the test cases presented herein, only
the shock-fitting method of characteristics suffered from a
large mass-conservation error.

Concerning computational time, the Lax-Wendroff and

MacCormack methods are the most efficient per time step, but
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since they require much smaller time steps than the Godunov
methods to produce a stable solution, the Godunov methods
are still more economical. The computational time per time
step for the Preissmann method is approximately two times
larger than that of the Godunov methods. Since front
resolution requires that the time step be kept small enough
to maintain a Courant number close to unity, the Preissmann
method cannot use its potentially large time step, and is
therefore inferior to the Godunov methods with respect to
computational time, as well. The computational times for
the PPM and linear Godunov methods are almost the same, so
neither of the two variants has an advantage in that
respect. One could argue that the computational time is not
an important issue in this era of powerful supercomputers;
but in the engineering PC and work-station environment, CPU
considerations are still relevant.

The disadvantages of the PPM Godunov method are an
algorithm more complicated than for other explicit methods,
requirements for using a staggered grid, and the problems
involved with the boundaries. In particular, the points
close to the boundaries must be computed by some other
method (presumably the linear Godunov method) since there
are not enough neighboring points to provide information for
the PPM interpolation. The linear Godunov method does not

suffer from this problem (i.e. it does not require an
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auxiliary method for the close-to-the-boundary points), and
is preferred over the PPM method in that one respect.

The only problem for both Godunov methods (PPM and
linear) is observed for the case of an abrupt expansion of
the channel width, where artificially steep water-surface
profiles are produced upstream of the expansion reach (see
Figs.5.43-5.46). To avoid this spurious steepening, one has
to refine the spatial grid within the transitional reach,
i.e. to introduce additional interpolated sections between
the actual sections of an abrupt expansion. This reduction
of spatial step also requires a reduction of the time step
(to meet the stability requirements), and consequently
increases the overall computational time.

An introduction to generalization of the Godunov method
to two-dimensional open-channel flow problems is presented
in chapter VI, providing a basis for further research in
that direction.

For application of the Godunov methods (PPM and linear)
to practical one-dimensional dam-break problems, one needs
to introduce changes necessary to treat arbitrary cross-
sectional geometry. Generalized internal and external
boundary conditions (such as weirs, inundations,
tributaries, localized energy loss, etc.) alsoc must be
provided.

Since neither of the two Godunov methods examined here
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has a clear advantage over the other, both algorithms should
be used as possible candidates for practical application in
the initial stage of developing an industrial code (for
example a single channel with particular boundary
conditions).

More research should also be conducted to identify and
investigate new ideas for improving the performance of the
Godunov methods for the case of an abrupt expansion.

Finally, the need for a quantitative assessment and
comparison of methods, acknowledged in section I.4, must be
reiterated. Benchmarks (conventions) for defining the
length of the steep front (and accordingly its wavespeed),
and for measuring the agreement in flow variables (depths,
discharges, wave-speeds, etc.) between two methods (or
between a tested method and the analytical solution), based
on a statistical approach, should be established and applied
in comparative studies. However, the experience of this
study suggests that it is not obvious that statistical
measures such as root-mean square differences, algebraic
differences, etc. would strengthen the qualitative

comparisons used herein.
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APPENDIX A. PPM INTERPOLATION PROCEDURE

For the flux integration at the midpoints X;., One needs
a piecewise representation of the function {[p(x,t?)]=¢ (x)

on the interval iy < X <X The only information about

i

the function Y (x) is its averaged value <Y>j=¢(<p>3) on the

given interval (Fig.A.l). The procedure is based on the
piecewise parabolic interpolation (PPM) developed by
Woodward and Colella (1984). The aim is to obtain a

representation of the function that will:

1. Satisfy the averaged values <{y>; over the interval,

2. Give a good representation of discontinuities,

3. Produce a monotonic function if the original
function is monotonic (avoid all artificial overshoots
and undershoots).

For approximation of the function ¥ (x) a second-order

polynomial is used:

(A.1): Ylp(x, t™] =¢(x) = ax? + bx + ¢

Coefficients a, b and ¢ of the polynomial are



314

1

i

I

i

!

I = R R [

<Y

I R ) - D RR EE om R

i

! Ax Axi,q

N e e L B

i

' Xy-1 Xy X441 Xq+2
O 2 . S
Xj-—% . Xj—f Xj+§ Xj+z_ Xj+§ X

Figure A.1 Reconstructing a function
' from its averages



determined from the integral condition:

(A.2):

Xiv RCIRTY

Ax.

Xj_1ﬁ J Xj_%

¢(<P>§)E<¢>?E¢3=7é;jfl¢(x)dxé 1 ]'(ax2+bx+c)dx.
J

and from supposedly known values of ¥ (x) at both ends

the interval:

(A.3): Vlp(Xjy tD] = ¥ (x5, =¥, = Ue

(A.4): Yy lp (Xj_1/21 t™] = ‘I’(Xj—"/z) = ll"j—‘/z = 1IJ’L.j

From the above conditions one obtains the desired

polynomial representation:

4‘5{—.}{7'_1/2

X=X 4
(A.5): ‘IJ(X) = wL'j+—A—£—[A¢j+wG,j(l—TJj/)]:

J

where:

(A.6): AYy,; =¥, ;-¥,; , and,
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(B.7): Wy, =6 (‘I’R,j;‘I’L,j)

The next step is to obtain the end values Y. 5, and

Pg ;- This is also accomplished using the averaged grid

values (P)}. The integral function A(x) is introduced, such

that:

(A.8):  A(x) =f1|r(x’) dx’.
0

Keeping in mind that the reach-average is:

Xj+%

(A.9): {p); = ﬁ f\lr(x’) dx’,

I %y

one can obtain exact values of the integral function A(x) at

the midpoints Xj-%, Xj+%,... as:
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Xjﬂé

(B.10):  A(Xxy,,) = j'w(xﬂ)dx’= Y (WiAx; see Fig.(a.1).
0

i<3i

The point X;,, where V¢,,=¢, , is now considered. The
integral function A(x) on the interval Xj 372 < X < Xji5,5, 1s

approximated by a quartic interpolation polynomial passing

through points j-3/2, j-1/2, j+1/2, j+3/2 and j+5/2:

(A.11) . A(X) 2 a(X-Xj,a,) 4D (X-X,,,) 3+ C(X-X,,,,) 2+ d(x-x,,,) +e.

Since A(x) is an integral of the function ¢ (x) , the
first derivative with respect to X, taken at the point X

of the polynomial Eq.(A.11), is the desired value ¥ (x;,,) :

(A.12): =d = llJn(Xj,p/z) = ‘IJ?N/z = ‘-lfg-

RS

X=Xj+'/&

Evaluation of all of the coefficients of the polynomial

(A.11) is not necessary. It is enough to obtain the

coefficient *d"™ ,i.e. the value of ¥7(x;,,) . The resulting

expression for Y"(xy,,) is:



wg,j = ¢~ (qu.%) =

s M 1
BN Ax; +Ax (‘IIJ” 3 - Ax;  +Ax;+Ax; Ax,,
2Ax, AX A,  +Ax, Ax. +Ax,
° F+1 Jj-1 7 J+2 F+1 no ey
(A.13): AX+AXQ 2Ax,+Ax, , 2Ax, +Ax, (Wja=¥3)
5 3 3 j je1 3
AX' +Ax Ax,  +Ax
3 e tR X5,
AX-72:AX+AX g +Ax ﬁle+2AX &h}

where the "flux gradient" 3y, is defined as:

Ax

) n_ 1

(A.14): 3y Ax, ,+Ax;+Ax,,,
2Ax, ,+Ax, Ax +2A X,
R i e Q1 O 1 e’ M S G R
Ax; . +Ax; (Wn¥s) * Ax;,+Ax; o)

For the case of a uniform grid the above expressions

simplify to:

(.13 Wi = ¥R; = =5 (W3wha) - =5 (W) rvd)

and:

(A.14%'): &8y7 = Wy V5
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In order to avoid artificial oscillations (especially
in the vicinity of discontinuities), and to obtain a sharp
representation of discontinuities, three procedures are
incorporated into the interpolation algorithm.

First, to obtain monotonicity, values at the midpoints

Jj., are not allowed to overshoot adjacent averaged-point
values <¢>5 and <¢y>3,,. This is provided by using a

modified expression for 6¢§E§Wj, as follows:

min (13W,], 2|¥ 5., W5, 2|¥;-9,.,]) *sandy,,
(A.15): 5m¢j = IE(P5,-,) (f-9,.4) >0 ,

0 if(¢j+1"'~|’j) (q’j“l’j-l) <0

where the factor 2, multiplying the absolute values of

|¥;.,-¥;] and |¥,-¥; |, is adopted to ensure that the
modification is made only when ¥; (the value of ¢ at the
point X;) is very close to either ¥;, or V¥, .

In the vicinity of discontinuities the algorithm is
modified to allow for the narrower profile of the
discontinuity; procedures for both detecting and computing
are needed.

A discontinuity is considered to be present in the zone
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if:

1.The third derivative of the solution (Egs.A.18 and
A.19) is “sufficiently large®;
2.The second derivative changes sign within the zone
(the first condition in Eg.A.19);
3.The third and the first derivatives have
opposite signs (Eg.A.19); and finally
4 .The change within the reach is "significant" (second
condition in Eg.19).
The values of ¢ at the point of discontinuity (if any)

are modified using the following procedure:

(B.16)2 W25 = Wy (1) + [yt 58,0500,

(R-17) 5 ¥R = ey (1o0,) + (W= 5858500,

where wgd and wﬁj are the values modified due to the

discontinuity, ¢, ; and ¢, ; are the values computed by
Eg. (A.14), 6,¢,,, is the difference operator obtained from
Eg.(A.15), and 7; is a weighing factor depending on the

intensity of the shock:



(A.18):
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n; = MAX (0, ,min[n* (f,-1%), 11).

If n; is equal to zero, no modification is made. If 7, is

equal to unity, the value of Y, ; depends on the values left

of the point X; only, and wij depends on the values right

of the point X; only. Auxiliary variable fi; is defined as:

(A.19):

7

_ —( 52¢j+1_62¢j—1][ (Xj——Xj_l)3+ (Xj+1'Xj)3

n; =
Xje1 = X5 LT S

{ (-82y,,,) (8%¢, ;) >0 with,
if ,
[|¢j+1_¢j—1|_€ min(|¢j+1|' |¢j..1|)]>0

otherwise fi; = 0;

and here:

(A.20):

1 ¢j+1_¢j _ ‘I’j“l’j-l

Axy  +Ax;+Ax; | Axy,+Ax;  Axi+Ax; )

Parameters ! and 12 as well as € are "empirical®
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constants evaluating the conditions for the shock, and have
to be determined for each case.

One more "device" is added to ensure monotonicity of
the functions (especially in the neighborhood of

discontinuities). If undershoots or overshoots due to the

relative position of ¢z, ¢35 and ¢y occur, the following

procedure is used to smooth them and render the function

monotonic in the reach, Fig.(A.2):

1. If ¢% is a local extremum i.e, if:

(A.21): (Yz;-F9 (¥5-¥) <0, then ¥g ;=v¥] ;=]

2. If ¢j is between ¥7 ; and ¢3 ;, but so close to one
of them that the interpolation parabola goes beyond the
range of ¥; ; and ¥, ; (Fig.A2), then one of the limits (¥¢7j,
or Yr) is raised or lowered, so that the extremum can be

transferred onto the opposite limit. This is mathematically

expressed as:

1|’1,j+‘|’R,j) N (‘I’R,j_‘l’l,j) 2

(A.22):  If (g ;- ;) (‘I’-I;" 2 6
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Figure A.2 Modifications due to overshooting
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then:

U, 5= 3¢?_2¢RJ , and:

¢Lj+¢RJ) <__(¢Rd_wld)2

(A.23):  If (¥g;-¥; ;) (‘I’?‘ > 6

then:

lIJR,j = 3";_17?_211’1..7"
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APPENDIX B. IMPLICIT SCHEME FOR LINEAR ADVECTION

The explicit Godunov scheme becomes unstable for values
of the Courant number greater than unity (as is the case
with most explicit schemes). To be able to compute for
values of Courant number greater than unity, Fryxell et al.
(1286) developed an implicit scheme.

In the implicit scheme an entirely different procedure
for the approximation of the fluxes is applied, the only
similarity with the explicit method being its reliance on
the method of characteristics. However, here the
characteristic is used to convey information from the grid-
point section X; at some (in general unknown) time to the
midpoint section X;, at time t™ (see Fig.B.1).
Consequently, interpolation in time (not in space, as for
the explicit scheme) is used for expressing the fluxes

¥;,%,(t) . To improve the performance of the solution

(achieve unconditional stability and lessen numerical
diffusion) an intermediate time level "n+%" is introduced,
and accordingly another characteristic AB (Fig.B.1l) issued
from the midpoint level.

The procedure comprises the following steps:

1. Based on the integral conservation Eq. (3.5),

the unknown concentrations <p>5™ and <p>5t, are
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o p— 1 J—
expressed as functions of the fluxes i and §ig:

n+%

2. To obtain expressions for fluxes ¥j.; and T

F+Va
through the method of characteristics one first locates

the feet of characteristics B and B'; and

3. Expresses the flux values Y, and ¢, through the
reach-averaged values of <y>J,<y>%™ and <y¢>3*' using

parabolic interpolation between the points E, F and D

Fig.(B.1); (Observe that <¢>3" and <y>%"' are the

unknown values, and can be expressed as functions of

>n+‘/z n+l

the concentrations <p>§,<p 3 and <p>j; Note also

that here ¥ denotes an approximated, not time-
averaged, value of the fluxes.)
4. The resulting system of algebraic equations (linear

for the case {Y=up ) is finally solved for the unknown

n+% n+l

variables <p>; " and <p>j " .

In the first step the conservation Eq. (3.5) is
formally manipulated. The limits of the time integration

are changed, so that the upper limit becomes a variable "t¥:

1
AX 5

t
(B.1): <pYEL(E) = <p>? - f[wj+,,z(c) P, (1) 1dt.
0
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To get continuous values of the integrand Y., () linear
interpolation between fluxes Uiy and Ul is used, which
results in:

=—n+% -—n+lk 2T ,;o5n+l =n+k
(B.2): l|’j+1/=.,("-') = (2¢?+1/2_1p?—1/ﬁ) + AE (q’?&z"q’?—%) .

The interpolation formula Eg.(B.2) is then substituted

into Eq.(b.1), which is then integrated for the values of

the upper limit ¢t=At , and t=%At , respectively to yield:

+ 1 e ==n+th
(B.3): <p>it = <pdt - = [PH%-Ti], for t=At and:
AX
n+k n 1 3 n+'% —n+Ve 1 ,=—n+1 =~n+1

(B.4): <p2>5 7 = <p>5 - ax, Z<‘I’j+1/z_¢j—1/z) 7 (U5%~V5%) |,

1

for t=—=At
2

The next stage is to express the flux functions $§j§

and ﬁ?ﬂg in terms of the grid-averaged functions
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(<¥>F, <P>5™ and <P>§7) at the point X; along the line ED

Fig.(B.1l). The method of characteristics is used to
transfer information from the line ED to line AA'., The
"feet" of the characteristics B and B' must be first

obtained. The path integration is approximated as:

(B.5): Xjp=X5 = <u*>T (A E-Tg5) ,

which gives the desired "time-foot® 7B':

X o, =X
(B.6): 'rBlet—& = Atil1- 1 ;
ko Sl 20
where:
(B.7): cur>T - %. (uP”euteuls)

and os is a "superior" Courant number:

(B.8): o, = At cyrymt,
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Similarly for the point B one has:

(B.6"%): Ty = ———(l———J,

(B.71):  <whi™ = L (ufvufeuli)
t * n+¥e
(B.8'): 0; = A—F __<unT”,
! Xjae™X;

Once the feet of the characteristics are determined,

the values of <y>2*' and <y>*™ at the times Ty and 7, are
expressed in terms of the grid-averaged functions

n n+a n+l . . . .
Y>35, P>y and <{>; , using a parabolic interpolation

polynomial through the points E,B and D Fig.(B.1):

.2(<qr>,,—2<\|1>F+<qr>E)1_2 N
At?

A<Y> —<Y> -3<P>
T+HY> .

(B.9): P>, (t) =
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The desired relations for the flux functions T3 and

P35, are obtained by substituting expressions Egs.(B.6) and

(B.6') for 7, and 7, into interpolation formula Eq(B.9):

s 1-0 20_-1 202-30_+1 .
(B.10) : Yh=<y>T"= S Y+ S SR TS T s T gy 2
2 2 2
Ty O 20
1+0 z -

i n oi“:L n+¥z O; n+1
<ll,’>]+ P <lIJ>J + 5 <1IJ’>J o

(B.11): Whiae=<y>T"= -
20% a3 207

It remains to substitute expressions for fluxes
Egs. (B.10) and (B.1l1l) into the relations for the
concentrations Egs. (B.3) and (B.4). 1In the case of uniform
flow, the substitution Y=up results in a system of two

n+f n+l

linear equations in two unknowns <p>} ™, and <p>J (since

the values from the previous spatial step "j-1" are known),

which is solved for each spatial step:
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(B.12): <p>3t-<p>? At | nof 1+0; 146G,
J prst u; 1l ¢p>8-yn i
i | Ger | P S| @l
J i i1

At n+e 02-—1 2
us 1 nvte_ n+Ye ;-1
AX- J 2 <p>_7 Uj_l <p>nt1/2 +
(] 2 J-1
/5 o; /.
J-1

207

A t n+l l“O' .

+ ; 1 n+l vl 1-0;

Ax,|% rall B 24 Ea = <p>31|=0,
1/ 203 )5,

B.13): 2_
( 3 ) < p>I?+1/2 3 At I~1+1 9i - < >I?+1/z_ n+ 0?"1 n+
P 4 2 P51 |+

J o5
; o2
1 j—l

l-0; _
+u;+1( l) <p>?+l_uﬁll(1 Oi) <p>§i|r-
205 7"
0% )i,

At n+v 205—1

e n+% wl 20.-1

<p>; —u}-’_l(_i__) <ol
7 J-1

20%- 2
+ul']+1 _S_M < n+l n+1 205—30 +1
J 2 p>j =Uj-q _ s 5 = < >13+1
205 202 p j-1
J ¥ .
J-1
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Stability analysis for the implicit scheme, performed
by Fryxell et al (1986), shows that the implicit method is
unconditionally stable for Courant numbers greater than
unity, while it is unstable for values of the Courant number
less than one (in which case the explicit scheme must be

used) .
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APPENDIX C. NEWTON-RAPHSON PROCEDURE FOR THE

METHOD OF CHARACTERISTICS

The Newton-Raphson method is used to compute the
velocity u, and depth h, from the nonlinear compatibility

equations:

At
(C.1): uz+2c¢, = uL+2cL+g—§—

2 u, |u,] 2 U, | U, _
(SOL n R£/3 + SOL n R§/3

_ At uLcL(aB) . uAcA(aB)]
T A Ry 7
2 B, \ox/, B, \dx/,
and:
Up|U u,|u
v - wseg i ) o
R R
R A
A () (),
2 B, \0x/p B, \ox/,

The Newton-Raphson method (see Carnahan et al., 1969, or
Hildebrand,1956) is based on the Taylor-series expansion of
a function at the mt+l-st iteration around its previous ,i.e.
m-th, iteration. To this end the system of compatibility

Egs. (C.1 and C.2) is rewritten as:
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u,|u
(C.3): Fy(u,, hy) =UA+ZCA"'UL‘2CL—gA2t (Soz,_n2 ;L/BL')+
L
U, |u
[smar el A¢f e 20, s 39) 1o,
Ry 2 | B, \dx|, B, \dx/,

and:

(C.4): P}(UA,hA)=uA—2ch—uR+20R—gJ%£

2 Up | U]
(SOR n R}%/3 *

At uRCR<@) + uACA(@) }:0.
R R

2

Bp \0x B, \ox

u, |u,|
+[Sok_n2 ;4/: )
A

The functions F, and F, at the mt+l-st iteration level are
now expanded in a Taylor series of first-order around the

previous iteration level (m):

JF. oF
(c.s5): F™V=py L) Au,+—L| Ah, =0,
du, oh,
m m
and:
. OF. OF
(c.6): FM™V= My 2\ Ay, +—2| Ah, = 0.
ou, oh,
mn m




336

where OF,/du,|, and OF,/dh,|, are the partial derivatives
evaluated at the "known" m-th iteration, and Ah, and Au,

are incremental corrections of the variableSIH‘and h, :

(C.7): Ah, = B{™Y-p™ and Au, = ui™" -u™ .

After the notation is introduced:

OF. OF.
A=, B=__%,6c6=-F"™,
du, oh,| *
(C.8): <
al= BFE , B'= aF} , G/ —Fém,
du, oh,
m m

the linear system of Egs. (C.5 and C.6) is solved for the

corrections Ah, and Au,:

GB'-G'B
Au, = =—— =~ ~,
4  aAB'-a’B
(C.9):
/ _ /
Ah, = G'A-GA

AB' -aA'B’
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from which the values for the new iteration are obtained.

For the initial, zero-th, iteration the first-order

approximation (integration) of the compatibility conditions

is used:
u |u,| u,C; (0B
(C. 10): LIA+2CA = uL+2CL+gAt(SoL—H2——R;—ZE— "At—é;——(&)zl,
L
u,|u u,c
(C.11) : U,-2¢C, = Up—-2Cr+gAt soR—nz—%‘;I_Rl +Ar &R (OB ,
R;/3 R ox R

whereupon the initial iterations uém and héw can be easily

cbtained.
It remains, now, to obtain the expressions for the

partial derivatives of Eqg. (C.8) for use in the Newton-

Raphson iterations:

F.
(C.12): A= OF, =1+gAt

n?lu,| At CajdB
du, R§/3 2 B, '

ox



(C.13) ¢

(C.14):

(C.15) :

5. O
ah,
A/— an
ou,
B/= aFZ
oh,

=1+gAt

n?|u,| _At C,

RA/3

2 B,

|

OB

ox

).

Ry B

7
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