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Abstract. The wave propagation on the surface of a half-space due to a moving load is 
analyzed using the Integral Transform Method. By using of the Helmholtz’s decomposition 
and threefold Fourier transformation the body wave equation is transformed in the wave 
number-frequency domain and solved numerically. The obtained displacement field is 
transformed in time domain by the Inverse Fourier Transform. The analysis is carried out 
using computer program written in MATLAB program language. The load is vertical 
sinusoidal force P=1 MN moving along the line defined by x=0 with constant speed. The 
influence of source velocity on the displacements of the half-space and on the frequency 
content of the displacements at three locations at different distances from the load line is 
presented.  

 
 

1. Introduction  
 
Needs for easily accessible, available and mobile public transport have caused higher level 
of traffic induced vibrations in the urban zones. The rail/road - vehicle system 
imperfections, such as road and wheel roughness, are the main causes of ground vibrations. 
These vibrations induce waves that propagate through the soil and affect surrounding 
buildings. Different methods of analysis may be applied for evaluation of the ground 
response to moving sources. For simple geometry of the soil region analytical or semi-
analytical solutions in the wavenumber–frequency domain are the most applicable, like 
Integral Transform Method (ITM), [1].  As an alternative to the semi-analytical solution, 
the thin-layer method can be employed, [2]. For the analysis of subsoil with complex 
geometry a numerical method, like Finite Element Method (FEM) with different type of 
transmitting boundaries, or Boundary Element Method (BEM) [3], are available in the time 
or frequency domain.  The overview of the numerical methods for the analysis of ground 
vibrations due to the moving load is given by [4].  
 
This paper presents the analysis of ground vibrations caused by a moving force with a 
constant speed in the x-direction along the surface of visco-elastic half-space. The force is 
half-cosine load, which represents the distribution of the moving wheel force.  For this case 
the response is expressed in terms of a double integral with respect to ky and . The 
solution is presented in the moving frame of reference. In that case it is the same as the 
solution for a stationary force.  The dynamic responses at different load speed (subsonic, 
transonic and supersonic) are calculated using the ITM and presented. The results are 
compared with the results obtained by Chouw using the BEM [3]. 
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2. Half-space solution according to ITM 
 
The ITM was applied in the last years to several problems of halfspace dynamics [5] and 
soil structure interaction [6], in particular, to problems of road/track/soil interaction, [7]. 
Method is based on the Helmholz’s decomposition of the Lamé’s equations and their 
threefold Fourier transform from the time-space to the frequency-wavenumber domain. 
Therefore, it is restricted to linear systems and to the frequency domain analysis. The short 
description of this method will be presented in the following. 
The Lamé’s equations of motion of the continuum 

  2 ( ) ꞏ      u u u  (1) 

can be brought into the form of wave equations 
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if the displacement vector is expressed by the scalar field   and the vector field , 
according to Helmholtz’s principle,  as 

   u    ψ . (3) 

In Eqs. (2)  cp and cs are the velocities of the dilatational and shear waves, respectively 
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where  is the mass density of the material and  and  are the Lamé’s constants.  
If we assume that z =0, the displacement components can be obtained form Eq. (3) in the 
following form  
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By a threefold Fourier transform 
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Eqs. (2) can be transformed into a system of 2 decoupled ordinary differential equations in 
the frequency-wavenumber domain 

 

    

2
2
1 2

2
2 i
2 i 2

ˆ
ˆ 0

z

0, i x, y,
ˆ

ˆ z
z




 




  




   


 (7) 

where 
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The solution of differential equations (7) in the transformed domain should satisfy the 
Sommerfield’s radiation condition, which means that there is no propagation of waves from 
infinity toward the source. Therefore A1=Bx1=By1=0, giving the solutions in the form 

       ,         1 2 2z z z
2 x x2 y y2

ˆ A e ˆ ˆ, B e B e         . (9) 

Substituting Eq. (9) into the Eqs. (5) results in the following relation between the 
displacement vector û  and vector of unknown coefficients C     

  uˆ ꞏu A C  (10) 

where 
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The unknown coefficients A2, Bx2 and By2 can be obtained from the boundary conditions at 
the surface of the half space, defined as  
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where z x yp̂ ( k ,k , )  is the Fourier’s transform of the applied moving load pz(x,y,t)  
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Using well known relations between stress and displacements, the stress in wavenumber 
domain can be written as 

σ A C                                                                                                 (14) 
where    
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and 2 2 2
r x yk k k  .   

Substituting solution for C obtained from the Eq. (14) into the Eq. (10), regarding the Eq. 
(12), gives the displacement vector in the frequency-wavenumber domain in the form  
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  , x y x y x y
ˆ ˆˆ ( k ,k , ) ( k ,k , ) ( k ,k , )  u H p  (16) 

where  ( )u 1ˆ     H A A  is the transfer function matrix (compliance) of the half-space.  

The response in the frequency-wavenumber domain requires the transformation in the 
space-time domain by usage of the inverse Fourier transform  
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In these evaluations, damping is taken into account by using complex values for the Lamé’s 
constants according to the principle of correspondence 

                ˆÊ E 1 2i , G G 1 2i      (18) 

where  is the damping coefficient. 
 

2.1. Moving load 
 
Consider the vertical load that moves in x-direction along the surface of a half-space with a 
constant speed v, starting from the point xk=0 

     z o 1 2p ( x, y,t ) p p ( x vt )p ( y )   .                                               (19) 

By substituting Eq. (19) into Eq. (13) and applying the shifting theorem obtained is the 
moving force in the frequency-wavenumber domain as 

    z x y o x 1 2,k , p ( k v )pp̂ ( k ) ( x )2 p ( y )                                        (20) 

where 1p ( x )  and 2p ( y )  are wavenumber transform of  p1(x) and p2(x). 

The solution in the space domain is found by substituting Eq. (20) into Eq. (16) and 
applying inverse Fourier transform. Taking into account shifting theorem obtained is final 
result in the form  
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where 
,        xx x vt k v       ,                                                                 (22) 

represent the moving coordinate system x  and frequency  at the source, respectively. 
From Eq. (20) follows that xk v    i.e 0  , which means that integral (21) is constant 

in time and the response of the half-space due to the moving load can be expressed in the 
moving frame of reference as 
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The obtained integral is the same as in the case of stationary force. The only difference is 
that in the case of moving load the compliance of the soil has to be calculated with the 
shifted frequency xk v   [7].   

3. Evaluation of numerical model 
 
The response of the half-space is calculated using computer program using Matlab [8].  The 
characteristics of the half-space and the moving force distribution are taken as in [3]. The 
characteristics of the half-space are:  cs=120 m/s, cp=240 m/s, =2000 kg/m3, =5%.  
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Figure 1.    Figure 2. 

The force is half-cosine load that moves in x-direction with a constant speed v, starting 
from the point xk=0, Fig. 1. The force is half-cosine load 

iz i i
i

x
P ( x, y,t ) P cos ( x v t ) ( y )

l

                                              (24) 

where Pi=Pt/li is the maximum,  Pt =1 MN is the total load,  li is the length of half-cosine, 
Fig. 2. Load duration is 0.025 s. The responses are obtained for the following velocities vi 
of the force: 200, 300, 400, and 500 km/h, respectively.  
The displacements at the receiver 18.75 m from the starting point, at a distance y=0, 3.5 and 
7 m, respectively are displayed in Fig. 3. The higher the source speed the quicker response 
occurs. The displacement uy=0, for y=0. The displacements decrease with increasing 
distances from the load path. The dependency of the displacements on the ratio between the 
source speed and the wave speed in the soil is obvious.  The highest displacements ux, uy, uz 
occur when the force velocity is 400, 500 and 200 km/h, respectively. 
  
4. Conclusion 
 
In this paper presented is the application of the ITM to dynamic analysis of the half-space 
due to a moving load. The advantage of the ITM is based on the fact that in the 
wavenumber domain the displacement due to the moving force in the moving frame of 
reference is equal to the displacement due to the stationary force calculated with the 
shifting frequency. 
The displacements due to the half-cosine force obtained by present approach are in a good 
agreement with those obtained by the Boundary element method [3] . 
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Figure 3. Influence of the moving force velocity on the displacements  
of the half-space surface at x=18,5 m 
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