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PROCENA TAČNOSTI POSTUPKA PRORAČUNA TEČENJA I 

SKUPLJANJA PREMA EC4 

Rezime  

U radu se prikazuje proračun tečenja i skupljanja u spregnutom nosaču od čelika i 

betona. Koriste se približne metode proračuna AAEM, EM, i postupak proračuna  

prema Evrokodu 4, kao i tačna metoda koja je zasnovana na integralnoj vezi između 

napona i deformacije za beton. Za obostrano uklešten spregnuti nosač određene su 

vrednosti napona u karakterističnim tačkama preseka za stalno opterećenje i skupljanje. 

Koristeći granične funkcije tečenja betona, određene su gornje i donje granice napona. 

Na osnovu tih granica, izvršena je procena tačnosti postupka proračuna datog u EC4.  

Ključne riječi  

Spregnuti nosač, tečenje, skupljanje, proračun, naponi, EC4.  

ACCURACY EVALUATION OF CREEP AND SHRINKAGE 

CALCULATION METHODS ACCORDING TO EC4  

Summary  

In the paper, the creep and shrinkage calculation methods for composite steel-concrete 

beams are presented. The approximate methods AAEM, EM and methods according to 

Eurocode 4, as well as, the exact method based on the integral relation between stress 

and strain for concrete are used. For doubly-clamped composite beam, stresses at 

characteristic points of the cross-section for permanent loading and shrinkage effects are 

determined. Using the creep limit functions for concrete, the upper and lower limits for 

stresses are determined. According to these limits, the accuracy of the methods for creep 

and shrinkage calculation given in EC4 is evaluated.   
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1. INTRODUCTION 

We analyze a general steel-concrete composite structure that consists of steel 

member (a), concrete slab (c), reinforcement (s) and prestressing steel (p). Because of 

viscoelastic properties of concrete, i.e. creep and shrinkage, and because of relaxation of 

prestressing steel, the redistribution of stresses and substantial changes in deformations of a 

composite structure occur in time. Hence, the analysis should take into account these 

mentioned effects.  The calculation of a composite beam is performed for time t=to (time of 

the first loading) and for time t (time at the considered moment which, usually, corresponds 

to the final state t→∞). Several methods have been developed so far that count for creep 

and shrinkage of concrete, as well as, relaxation of prestressing steel with different level of 

accuracy. The accuracy of these methods primarily depends on the adopted stress-strain 

relationship for concrete and prestressing steel.  

Under standard exploitation conditions for the most of composite structures, i.e. 

when the largest stress in concrete does not exceed 0.4 of the concrete compression 

strength, it is fully justified to accept the linear relation between concrete creep 

deformations under constant stress and the principle of superposition for concrete creep 

deformations due to stress increment. These assumptions lead to the integral relation 

between concrete stress and strain. Starting from this integral relationship, the exact and 

approximate calculation methods are established. The exact calculation methods adopt the 

integral relation between concrete stresses and strains and, therefore, apart from the 

inevitable approximations related to the rheological characteristics of constituent materials, 

no other mathematical approximations are introduced. In this paper, the exact method 

developed by Lazic [1] with linear integral operators will be used. The approximate 

calculation methods introduce few mathematical simplifications and modify the integral 

stress-strain relation for concrete into an algebraic relation. The accuracy of the obtained 

algebraic relation depends on the type of mathematical simplifications. In this paper, the 

following approximate methods are used: AAEM method, EM method, and calculation 

method proposed by Eurocode 4 (EC4) [4] which is based on the EM method. 

2. EXACT METHOD 

The stress strain relationship for concrete is integral and may be symbolically written 

in the following operator form [1]:  
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The concrete creep and relaxation functions 
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*R represent the following 

integrals: 
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In the analysis of composite structures, the common assumption is that concrete 

shrinkage is similar, through time, to creep of concrete [1, 2]. Hence, the shrinkage 

deformation of concrete s is given with the expression: 
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The stress-strain relation for prestressing steel has the form: 
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where the relaxation function 


pR  linearly depends on the concrete relaxation function 
R : 
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where )tt( opp    is relaxation of prestressing steel.  

Other steel parts, steel member (a) and reinforcement (s) follow the Hook’s law:  

m,ak,Ekk     (6) 

The analysis of a composite structure is the same as the analysis of the corresponding 

structure made of homogeneous elastic material with the exception that in composite 

structures, using the exact method, the integral equation is solved. 

Starting from the assumption that, for the composite cross-section, Bernoulli’s 

hypothesis of plain cross section is valid, the equilibrium conditions of external and internal 

forces in the cross-section together with the Equations (1.b), (4) and (6), the normal strain 

)t,t,x( o   and the change in the curvature of the member axis )t,t,x( o  can be 

obtained: 
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where Eu is the relative modulus of elasticity, Ai and Ji are transformed cross-section area 

and second moment of inertia of this area, and iii JAS  . Operators 2211 F,F 


 and 

12F 


are elements of operator matrix  
22,hlF


, and their principal values are 1F 


and 2F 


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For convenience, the following operators are also defined: hh FRB 


.  
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are the basic functions of the composite section [1]; γh are principal values of the matrix of 

the reduced geometric characteristics. For the known creep function 


hB , the solutions of 

the nonhomogeneous integral equation are determined. 

With the expression (7) for the section deformations η and κ, and using the principle 

of virtual forces, the expressions for the generalized displacements can be obtained, and 

also, the expressions for solving the statically indeterminate structures. 

 After some transformations, the coordinate stress is: 
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where nh and mh are constants [3]. 

Using the expressions (1.b), (4) and (6) the stresses at parts of the composite section 

can be determined and, for convenience, the following ratios between modules of elasticity 

are introduced nk=Eu/Ek,  k=a,m,c,p: 
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Where stress σs in concrete due to shrinkage, according to the expressions (1.b), (3) for εs 

and the relation (2),  is: )R(rERE coscos

 1


. 

3. APPROXIMATE METHODS 

The approximate calculation methods are based on the algebraic relation between 

stress and strain and their accuracy depends on the adopted expression for this relation. In 

this paper, the AAEM method, EM method and the method proposed by EC4 [4] are used.  

The algebraic relation of the AAEM method, proposed by Bazant (1972.), has the 

following form: 
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where Ec,aeff is the corrected effective elastic modulus of concrete (or effective elastic 

modulus of concrete with reduced aging); χ = χ (t,to) is the aging coefficient whose value is 

less then 1.0 (0.6-0.9);  φr(t,to) is the reduced creep coefficient of concrete. This method is 



more complex, but also more accurate then other approximate methods since it considers 

the age of concrete through the aging coefficient χ.  

 If the aging coefficient is adopted as equal to 1 (χ=1) the algebraic relation for 

concrete of the EM method, proposed by Faber (1927.), is obtained: 
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This relation is correct only for the creep function of the heritage theory in time 

t→∞. The Ec,eff is the effective elastic modulus of concrete; φr is the reduced creep 

coefficient of concrete. In time t=to, φr =0 and, therefore, Ec,eff =Eco. It is evident that, 

according to this method, the creep of concrete is taken into account simply by reduction of 

the modulus of elasticity of concrete and, consequently, the analysis in time t is analogues to 

the analysis in time to, with the only difference that in time to we use Eco for the elastic 

modulus of concrete, while in time t we use the effective modulus of concrete Ec,eff. Because 

of its simplicity, this method, with several modifications, is widely used in practice. Fritz 

(1961.) proposed the method that has been used in the analysis of a great number of 

composite structures. His method introduces the correction factor  into the effective 

modulus relation 
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E
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1
, . The correction factor   depends on the type of loading 

and characteristics of the cross-section and has the value of 1.1 for the calculation of 

concrete creep effects and the value of 0.52, for the calculation of shrinkage of concrete. 

 The EC4 [4], the contemporary European code for design of steel-concrete 

composite structures, is based on the limit state design philosophy. Depending on type of 

structure, a class of cross-section, a limit state and actions that are considered, the EC4 

proposes few simple methods for taking into account creeping and shrinkage of concrete. 

The effects of creep and shrinkage of concrete can be neglected in analysis for verifications 

of limit states other than fatigue, for composite members with all cross-sections in class 1 or 

2 and in which no allowance for lateral-torsional buckling is necessary. In other cases, as 

well as for serviceability limit states, these effects should be taken into account. When more 

accurate analysis in time t is necessary, the recommended algebraic equation is the algebraic 

equation of the EM method with the effective elasticity modulus of concrete Ec,eff  proposed 

by Fritz, with the creep multiplier ψL used instead of correction factor ψ, and Eco =Ecm: 
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where Ecm is the secant modulus of elasticity of concrete for short-term loading according to 

Eurocode 2; the creep multiplier ψL depends on the type of loading and takes the following 

values: 1.10 for permanent loading, 0.55 for shrinkage effects, 1.50 for prestressing by 

imposed deformations. 

For the approximate methods, the expressions for stresses at characteristic points of a 

composite section will be given next. When the relaxation of prestressing steel is 

considered, the algebraic stress-strain relation for the prestressing steel in time t may be 

written as follows: 
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where Ep,eff  is the effective elastic modulus of prestressing steel. The coefficient p is 

calculated from the value of relaxation R given in percent. In time to, p =1 and, therefore, 

the algebraic relation is σp=Epε. Steel member (a) and reinforcement (s) follow the Hook’s 

law (6). 

Determination of stresses and deformations at time t in the case of statically 

determinate and indeterminate composite girder is analogous to the analysis of the 

corresponding homogeneous girder made of an elastic material, whose modulus of elasticity 

is Eu, geometric characteristics are Ai and Ji, and modular ratios are nkt=Eu/Ekt,  k=a,s,p,c. 

Stresses at time t can be found from the following expressions: 
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where Nφ are Mφ fictive forces:  
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Nco, Mco  are forces in concrete part at time t=to; ns and ms are forces that count for the effect 

of shrinkage of concrete.  

4. EXAMPLE 

 

Figure 1. Composite girder and its cross-section 

The composite girder shown in Fig. 1 with constant  cross section 1-1 is analyzed. 

The stresses at characteristic points of the cross section at fixed end are calculated for time 

to and time t. Stresses are determined due to given uniform loading and due to shrinkage of 

concrete in accordance with the exact method, the approximate methods EM and AAEM 

with χ=0.85, and EC4. The results of the analysis are given in Table 1 and in Figs. 2-3. 



Example data are: Concrete (c) Eco=Ecm=30GPa, φr=3.5,  εs = -30·10
-5

; Prestressing 

steel (p): Ep=210GPa, Ap=100cm
2
, p=8%; Structural steel (a): Ea=200GPa=Eu; 

Reinforcing steel (s): Es=200GPa,  As=80cm
2
. 

In the analysis of this girder with the exact method, as is well known, the section 

forces due to the permanent loading do not depend on time (N=N1
*
, M=M1

*
), and stresses 

(10) can be determined directly from functions 


hB and 


hF (8). We used the function of the 

aging theory under the constant concrete modulus of elasticity, so that the expressions for 

the basic functions and relaxation are ,rheBh
    reR

  . 

Table 1. Results of analysis 

H MPa to EM EC4 AAEM Exact 

q 

σc4= 0.220 0.085 0.080 0.071 0.049 

σc2= 0.040 0.038 0.036 0.040 0.035 

σs3= 0.868 1.840 1.882 1.923 2.099 

σp3= 0.912 1.778 1.818 1.857 2.046 

σa2= 0.267 1.129 1.166 1.202 1.358 

σa1= -6.042 -6.341 -6.353 -6.369 -6.420 

sh
ri
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σc4=   2.676 4.450 3.097 3.063 

σc2=   2.545 4.185 2.935 2.952 

σs3=   18.320 24.192 19.933 23.303 

σp3=   17.697 23.370 19.250 22.459 

σa2=   16.357 21.604 17.798 20.906 

σa1=   -4.252 -5.566 -4.616 -5.415 

 

Figure 2. Stresses due to permanent loading q (the cross-section at the fixed end) 

The effect of shrinkage is taken into account as the external equilibrium loading with 

axial force and bending moment and, from the expressions (3) and (1.b), these forces are: 



)1(   RrAEN crus , )1(   RrzAEM cccrus . Then, stresses due to shrinkage 

according to expressions (10) can be found directly from the functions 


hB ,


hF and 
R .  

 

Figure 3. Stresses due to shrinkage (the cross-section at the fixed end) 

5. CONCLUSION 

Using the creep function in accordance with the ageing theory in the exact method 

and the creep function in accordance with the hereditary theory in the EM method, the 

upper and lower bounds are determined and results obtained by other theories should take 

place between them. As can be seen from Fig.2., the AAEM method fulfill this condition. 

The method proposed by EC4 gives results that are on the safe side, and since it is 

modification of the EM method, its results are closer to the lower bound (EM). For 

shrinkage stresses (Fig.3), the results of the AAEM method are still between the two limits, 

while the results of the EC4 method show that this method overestimates stresses in 

concrete and steel member. Though, obtained results are on the safe side, much closer to the 

exact method solution and with improved accuracy compared to the EM method solution.  
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