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DEFINING THE PRINCIPAL AXES OF THE QUADRIC CONE -
GENERAL CASE WITH ELLIPTIC BASE SECTION CURVE

Aleksandar Cucakovi¢’®
Magdalena Dimitrijevi¢'°

RESUME

This paper presents an constructive procedure of determining three
mutually orthogonal principal axes (three planes of symmetry) of the
quadric cone, the general case with elliptical base section curve.The
constructive procedure is based on establishing correlative
corespondance between the base curve plane (points and lines) and
bundle of lines and planes at the vertex of the cone.At the base curve
plane, two pairs of collocal, corelatively associated planes are set.
After overlapping two of them, the other two collocal planes become
collinear. Three double points in two generally collinear planes are
intersection points between three principal axes and base plain of the
cone.

Key words: The general case of cone; the main axes of cone; corellative
transformation; polarity; auto polar tetrahedron
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1. THE INTRODUCTION

It is well known that each cone has three mutually
orthogonal axes, so called - the principal axes of cone. They define
three orthogonal planes i.e. three planes of symmetry of cone. The
position of the principal axes of an right circular cone are not metter
of interest. In case of an quadric cone (general case), with elliptic,
parabolic or hyperbolic base curve, with one axis or plain of symmetry
specified, a simple geometric construction is available to determine
the other two axes, or the other two planes of symmetry. In case of
quadric cone (elliptical, parabolic or hyperbolic type of base section
curve), with no specified elements, constructive procedure for
determining three principal orthogonal axes i.e. three symmetry
planes, is complex geometric problem.

1.1 The correlative bundles of lines and planes in space

The cone 1 is set with base curve section - ellipse k, center
point K, in the horizontal plane H, and vertex V above. The minimal
distance from vertex V to the base plane is determined by radius of
circle k;. Center point K; is orthogonal projection V’ of point V on the
base curve plane H.

The points and lines in base plane H, with vertex V of cone T,
form the bundle of lines and planes. They are mutuallly in correlative
correspondance.

Each point in the base plane H, related to a base curve - ellipse
k of cone 1, induces on the correspondent polar line the involutory
sequence of points [2;10]. Also, each involutory mapped pair of points
on the polar line, with correspondent polar point of plain H form an
auto polar triangle [4;74]. Connection line of vrtex V and
corresponding polar point in the base plane H is carrier for an
involutory pencil of planes respectively to the cone t.This pencil of
planes induces in corresponding polar plane an pencil of lines. Each
pair of corresponding lines from involutory pencil of planes (in the
polar plane), with corresponding polar line forms an auto polar
tetrahedron of cone [2;11]. Each plane, from pencil of planes,
intersects cone in two generatricess, and polar plane in one straight
line. This three lines are in dual harmonic relation to a polar line. In
the involutory pencil of lines there is an orthogonal pair of lines.
Regarding this, it is necessary to determine polar line, which is
orthogonal to a polar plane.
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The observed cone t defines correlative bundle of lines and
planes {['}. The bundle {{'} consists of polar axes and associated polar
planes, respectively to the cone .

A new right circular cone t; is set within the same vertex (V).
It’s axis is perpendicular to a circular base of cone. Diameter of base
circle k; is equal to perpendicular distance from vertex V to the plane
H (all the generators make the angle of 45° to the plane H). This
circular right cone determines new correlative bundle of lines and
planes { [14}.There are only three mutually orthogonal axes mapped to
adequate polar planes in correlative bundle {(1}, respectively to cone
T, while in the correlative bundle { (14} respectively to cone t,, all
polar axes and corresponding planes are mutually orthogonal
[2;25].The double lines/double planes of those two corelative bundles
are principal axes/planes of summetry for the quadric cone .

2. COLLOCAL CORRELATIVE MAPPED PLANES

Plane H, with two base section curves: of cone t and cone 14,
intersect two collocal correlative bundles {1} and { T14} in two pairs of
collocal corelative corresponding planes (a,8) and (a;,B8,). After
overlaping planes B and B, the other two, a and a; become collinear.

S M®
hd

o
Fig. 1 Two cones with base section curves in generally collinear planes
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Two collocal, generally collinear planes a and a; are defined
with pair of mapped points K and K; and vanishing lines r and ijs.
Vanishing line r is polar line of pole - center point Kj, respectively to
ellipse k.Vanishing line i; is antipolar line of pole K (or polar line of
inversed pole Ki), respectively to circle k. (fig.1) The inversion came
out of the fact that cone t; is real representative of the imaginary
cone defined with vertex V and absolute conic curve.

In two collinear mapped planes a and a;, centar point K of
ellipse k, corresponds to center point K; of circle k;. Both are in
correlative correspondence to the infinite line t~= t;~ in base curve
plane B=B,. Conjugated diameters of elipse k; form an involutory
pencil of lines, while conugated diameters of circle k form circular
involutory pencil of lines. Pairs of parallel lines in planes B=8; (linking
lines between points A”, B” and C” on infinite line t~= t;~ and center
points K/K;) have their corresponding lines - conjugated diameters of
ellipse k (a, b, ¢) and circle k; (a1,b1,¢) in planes a and a 1.(fig.2)

Cy

Cy

Fig.2 Two involutory pencils of lines resbectively to ellipse k and circle k;
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2.1 Hyperbola of Apollonius as a result of two projective
mapped pencils of lines

Conjugated diameters a, b, ¢ and as,bs,cq, in planes a and a;
form two projective mapped pencils of lines in vertexes K and Kj;
(center points of ellipse k and circle k;). They produce an conic curve
of 2" order, in this case, hyperbola h; with orthogonal asimptotes -
hyperbola of Apollonius. (fig.3) Two projective mapped pencils of lines
were translated to one overlaping point K=K; in collocal “position”.
Using Steiner’s construction procedure over sequence of points on 2™
order curve (Steiner’s circle), for two perspective mapped pencils of
lines (with vertexes S and §,), the axis of perspectivity (double lines d;
and d,) determined directions of asymptotes of hyperbola.

Fig.3 Steiner’s construction (left top corner)
Two perspective mapped pencils of lines defining asymptotes of hyperbola
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The other two projective mapped pencils of parallel lines (R)
and (R;), with infinite vertexes R and R;, determined position of
asymptotes as; and as, and center point of hyperbola. Pencils of lines
(R) and (R;) were intersected with two lines a and a;, producing two
perspective mapped sequences of points. The vanishing points G and
G, on two perspective mapped sequences of points, on lines a and ay,
are referent points for position of asymptotes as; and as..(fig.3)

2.2 Projective mapped pencils of lines
with vertexes in focal points of two collinear planes

Double points Dy, D, and D; for two generally collinear planes a
and a; are intersecting points between two conic curves (any type)
derived from two pairs of projective mapped pencils of lines. One
conic curve is hyperbola of Apollonius h,, with orthogonal asymptotes.
The other appropriate choice of conic curve is circle, because of
accuracy of intersection (between circle and hyperbola).

In order to get a circle, as a result of mapping, it is necessary
to set vertexes of two projective mapped pencils of lines in focal
points of planes a and a;. In process of constructing focal points, the
first step is determination of vanishing points P and O; on vanishing
lines r and i; in planes a and a;. Those are corresponding points to
infinite points O~ and P;~ of directions nlr and p;Li;.The main
perpendiculars g, , gnr of planes a and a;pass through points P and O;.

According to a known rule: ,, Some lines in plane a ,from pencil
of parallel lines set through infinite vertexes, have their corresponding
lines in plane a; passing through corresponding vanishing points and
focal point L;“ (and vice versa), the focal points L and L; were
determined [1]. The important fact is that the angle which those
corresponding lines make with the adequate vanishing lines has the
same value. Following the rule [1], in plane «; , the direction w; (in
vertex K; ) and infinite point W;~ was addopted. Corresponding line w
in plane a (in vertex K) intersects vanishing line r in vanishing point W.
Eventualy, there is a line in plane a, set through point W, which make
the angle of 69° with vanishing line r (the same angle is between
direction w; and vanishing line i;, in plane a;) and intersecting the
main perpendicular g, in focal point L.The same procedure followed
for the focal point Ly, using arbitrary direction q and point Q= in plane
a.(fig. 4)
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The other pair of focal points M and M; is symetrical to L and L,
respectively to vanishing lines rand i;.

Two projective mapped pencils of lines with vertexes in focal
points L and L;, will produce a circle I as a conic curve. The circle I is
defined with three points: focal points L and L; and point of
intersection of two main perpendiculars g, and g,;. There are four
points of intersection between circle I and hyperbola h;.Three of them
are double points Dy, D, and Ds of two collocal mapped collinear planes
o and aj;.

Fig.4 The focal points within planes a and ot4
Steiner’s supplementary construction (right corner down)
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The new circle m was adopted using three points: focal points
M and M; and intersection point between main perpendiculars g, and
gn1- Two projective mapped pencils of lines in points M and M; produce
new hyperbola h,, also with orthogonal asymptotes (hyperbola of
Apollonius). Constructive procedure: in two projective pencils of lines
M (x, y, z) and M;°(Xo , Yo, Zo) Which produce a circle m, one pencil ,
in vertex M,;°, was symmetrically transformed around axis gns into
pencil M; (X1, Y1, Z1), in order to produce hyperbola h,. (fig.5)

Fig.5 Two projective mapped pencils of lines for hyperbola h,
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As the result of intersection of three curves: hyperbola h;,
circle I, hyperbola h,, three double points D;, D, and D; of an auto
polar triangle, in two generally collinear planes a and as,appear. Their
linking lines 04, 0, and 03 to a vertex V are three principal axes of
cone t, forming an auto polar tetrahedron (in space) with vertexes Dj,
D, D; and V. (fig.6) These axes form 3 mutually orthogonal planes of
symmetry of cone t. (fig.7)

Fig.6 Three principal axes of quadric cone T

3. CONCLUSION

The determination of principal axes of the quadric cone t, with
an elliptic base section curve and vertex V, is based on determination
of vertexes (double points) D, D, and D; of an auto polar tetrahedron
in generally collinear planes a and a;. Those are intersection points
between two conic curves: hyperbola h; and circle I, or circle I and
hyperbola h,, as results of mapping of two pairs of projective pencils
of lines in focal points. If determined focal points L, L; and M, M, for
two planes a and a;, the easiest way to determine an auto polar
tetrahedron i.e. axes of symmetry for the quadric cone t, is to make
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one more projective transformation in focal points M, M; deriving
hyperbola of Apollonius (h;).

Fig.7 Three planes of symmetry of quadric cone T
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