

UNDER THE AUSPICES OF:

Republic of Serbia - Ministry of Science and Technological Development

Faculty of Architecture in Belgrade

Faculty of Mechanical Engineering in Belgrade

Faculty of Civil Engineering in Belgrade

Faculty of Forestry in Belgrade

Faculty of Transport and Traffic Engineering in Belgrade

Faculty of Applied Arts in Belgrade

25th National and 2nd International Scientific Conference

moNGeometrija 2010

Publisher | Izdavač

Faculty of Architecture in Belgrade Arhitektonski fakultet u Beogradu

Serbian Society for Geometry and Graphics Srpsko udruženje za geometriju i grafiku SUGIG

Editor-in-Chief | Glavni urednik

Ph.D. Miodrag Nestorović

Title of Publication

PROCEEDINGS | BILTEN Reviewers | Recezenti

Ph. D. Miodrag Nestorović

Ph. D. Aleksandar Čučaković

Ph. D. Marija Obradović

Ph. D. Branislav Popkonstantinović

M. Sc. Magdalena Dimitrijević

M. Sc. Slobodan Mišić

Co-Editor | Zamenik urednika

M. Sc. Magdalena Dimitrijević

Text formatting

Miljan Radunović, Ph. D. Candidate

ISBN 978-86-7924-040-8

Numbers of copies printed | Tiraž: 100

Printing | Štampa:

All rights reserved. No parts of this publication may be reprinted without either the prior written permission of the publisher.

Izdavač zadržava sva prava. Reprodukcija pojedinih delova ili celine nije dozvoljena.

Conference Organizers

Main Organizers

Faculty of Architecture, Belgrade Faculty of Mechanical Engineering, Belgrade

Co-organizers

Faculty of Civil Engineering, Belgrade Faculty of Forestry, Belgrade Faculty of Transport and Traffic Engineering, Belgrade Faculty of Applied Arts, Belgrade

Conference Committees

Executive Committee

Ph.D. Miodrag Nestorović, Full professor, Faculty of Architecture, Belgrade

Ph.D. **Branislav Popkonstantinović**, Associate professor, Faculty of Mechanical Engineering, Belgrade

Ph.D. **Biserka Marković**, Full professor, Faculty of Civil Engineering and Architecture. Niš

Ph.D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade

Ph.D. Radovan Štulić, Full professor, Faculty of Technical Sciences, Novi Sad

Ph.D. **Ljubica Velimirović**, Full professor, Faculty of Science and Mathematics, Niš

Supervisory Committee

- Ph.D. Miodrag Stoimenov, Associate professor, Faculty of Mechanical Engineering, Belgrade
- M.Sc. **Zorana Jeli**, Lecturer Assistant, Faculty of Mechanical Engineering, Belgrade
- Ph.D. **Ratko Obradović**, Associate professor, Faculty of Technical Sciences, Novi Sad
- Ph.D. **Jelisava Kalezić**, Associate professor, Faculty of Civil Engineering, Podgorica, Montenegro
- M.Sc. **Marija Jevrić**, Lecturer Assistant, Faculty of Civil Engineering, Podgorica, Montenegro
- Ph.D. Ljiljana Petruševski, Associate professor, Faculty of Architecture, Belgrade
- Ph.D. **Dragan Petrović**, Associate professor, Faculty of Mechanical Engineering, Belgrade
- Dr Mirjana Devetaković Radojević, Docent, Faculty of Architecture, Belgrade M.Sc. Gordana Đukanović, Lecturer Assistant, Faculty of Forestry, Belgrade Maja Petrović, architect, Faculty of Transport and Traffic Engineering, Belgrade

Organizational Committee

- Ph.D. Vladimir Mako, Dean of the Faculty of Architecture, Belgrade
- Ph.D. Dorđe Vuksanović, Dean of the Faculty of Civil Engineering, Belgrade
- Ph.D. Milorad Milovančević, Dean of the Faculty of Mechanical Engineering, Belgrade
- Ph.D. Milan Medarević, Dean of the Faculty of Forestry, Belgrade
- Ph.D. **Slobodan Gvozdenović**, Dean of the Faculty of Transport and Traffic Engineering, Belgrade
- Ph.D. Vladimir Kostić, Dean of the Faculty of Applied Arts, Belgrade
- Ph.D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade
- Ph.D. **Branislav Popkonstantinović**, Associate professor, Faculty of Mechanical Engineering, Belgrade
- Ph.D. Marija Obradović, Docent, Faculty of Civil Engineering, Belgrade
- M.Sc. Magdalena Dimitrijević, Lecturer assistant, Faculty of Civil Engineering, Belgrade
- M.Sc. **Slobodan Mišić**, Lecturer assistant, Faculty of Civil Engineering, Belgrade
- M.Sc. **Biserka Nestorović**, Lecturer assistant, Faculty of Forestry, Belgrade
- M.Sc. Biljana Jović, Lecturer assistant, Faculty of Forestry, Belgrade

Scientific Review Committee

Professor **Đorđe Zloković**, Member of Serbian Academy of Sciences and Arts, Department of Technical Sciences, Belgrade

- Ph.D. Miodrag Nestorović, Full professor, Faculty of Architecture, Belgrade
- Ph.D. Hellmuth Stachel, University of Technology Vienna, Austria
- Ph.D. Gunter Weiss, Technical University of Dresden, Germany
- Ph.D. Emil Molnar, Technical University of Budapest, Hungary
- Ph.D. **Aleksander Dvoretsky**, Kiev National University of Building and Architecture, Ukraine
- Ph.D. Milena Stavrić, TU Graz, Institut für Architektur und Medien, Austria
- Ph.D. **Aleksandar Veg**, Full professor, Faculty of Mechanical Engineering, Belgrade
- Ph.D. Aleksandar Čučaković, Associate professor, Faculty of Civil Engineering, Belgrade
- Ph.D. Natasa Danilova, Faculty of Civil engineering, Architecture and Geodesy, Sofia, Bulgaria
- Ph.D. Carmen Marza, Technical University of Cluj-Napoca, Romania
- Ph.D. Sonja Gorjanc, Faculty of Civil Engineering, Zagreb, Croatia, Hrvatska
- Ph.D. Marija Obradović, docent, Faculty of Civil Engineering, Belgrade
- M.Sc. Branko Pavić, Full professor, Faculty of Architecture, Belgrade
- Ph.D. Ivana Marcikić, Full professor, Faculty of Applied Arts, Belgrade
- Ph.D. Hranislav Anđelković, Retired full professor, Faculty of Civil Engineering and Architecture, Niš
- Ph.D. Miroslav Marković, Retired full professor, Faculty of Civil Engineering and Architecture, Niš
- Ph.D. Lazar Dovniković, Retired full professor, Faculty of Technical Sciences, Novi Sad

Topics

Theoretical geometry, exposed by synthetical or analytical methodology:

- * Descriptive and constructive geometry
- * Projective geometry
- * Central projection, Perspective and Restitution
- * Cartography
- * Theory of Polyhedra
- * Fractal geometry

Geometry and Graphics applied in Engineering and Architecture:

- * Engineering graphics
- * Computational geometry (algorithms, computer modeling of abstract geometrical objects, structures, procedures and operations)
- * Computer Aided Design and Drafting; Geometric and Solid Modeling; Product Modeling; Image Synthesis; Pattern Recognition; Digital Image Processing; Graphics Standards; Scientific and Technical Visualization
 - * Kinematics Geometry and Mechanisms
 - * Applications of Polyhedra theory
 - * Fractals
 - * Computational restitution
 - * Stereoscopy and Stereography
 - * Virtual reality

Geometry applied in Visual Arts and Design:

- * Theory and application of Visual Aesthetics
- * Geometrical and mathematical criteria of Aesthetic values
- * Perception and meaning of colors
- * Geometrical forms applied in Visual Arts
- * Optical illusions and its applications

History of Geometry:

- * Famous scientist and their contribution
- * Origin, derivation and development of particular geometrical branches
- * History of geometrical education

Education and didactics:

- * Descriptive Geometry and Graphics Education, including the Reform of Education
 - * Education Technology Research
 - * Multimedia Educational Software Development
 - * Virtual Reality Educational Systems
 - * Educational Software Development Tools Research and so on

DEFINING THE PRINCIPAL AXES OF THE QUADRIC CONE - GENERAL CASE WITH ELLIPTIC BASE SECTION CURVE

Aleksandar Čučaković⁹ Magdalena Dimitrijević¹⁰

RESUME

This paper presents an constructive procedure of determining three mutually orthogonal principal axes (three planes of symmetry) of the quadric cone, the general case with elliptical base section curve. The constructive procedure is based on establishing correlative corespondance between the base curve plane (points and lines) and bundle of lines and planes at the vertex of the cone. At the base curve plane, two pairs of collocal, corelatively associated planes are set. After overlapping two of them, the other two collocal planes become collinear. Three double points in two generally collinear planes are intersection points between three principal axes and base plain of the cone.

Key words: The general case of cone; the main axes of cone; corellative transformation; polarity; auto polar tetrahedron

⁹ PhD Associate proffessor, Faculty of Civil Engineering, Belgrade, cucak@grf.bg.ac.rs

¹⁰ MSc Teaching Assistant, Faculty of Civil Engineering, Belgrade, dim@grf.bg.ac.rs

1. THE INTRODUCTION

It is well known that each cone has three mutually orthogonal axes, so called - the principal axes of cone. They define three orthogonal planes i.e. three planes of symmetry of cone. The position of the principal axes of an right circular cone are not metter of interest. In case of an quadric cone (general case), with elliptic, parabolic or hyperbolic base curve, with one axis or plain of symmetry specified, a simple geometric construction is available to determine the other two axes, or the other two planes of symmetry. In case of quadric cone (elliptical, parabolic or hyperbolic type of base section curve), with no specified elements, constructive procedure for determining three principal orthogonal axes i.e. three symmetry planes, is complex geometric problem.

1.1 The correlative bundles of lines and planes in space

The cone τ is set with base curve section - ellipse k, center point K, in the horizontal plane H, and vertex V above. The minimal distance from vertex V to the base plane is determined by radius of circle k_1 . Center point K_1 is orthogonal projection V' of point V on the base curve plane H.

The points and lines in base plane H, with vertex V of cone τ , form the bundle of lines and planes. They are mutually in correlative correspondance.

Each point in the base plane H, related to a base curve - ellipse **k** of cone τ , induces on the correspondent polar line the involutory sequence of points [2;10]. Also, each involutory mapped pair of points on the polar line, with correspondent polar point of plain H form an auto polar triangle [4;74]. Connection line of vrtex \boldsymbol{V} and corresponding polar point in the base plane H is carrier for an involutory pencil of planes respectively to the cone τ . This pencil of planes induces in corresponding polar plane an pencil of lines. Each pair of corresponding lines from involutory pencil of planes (in the polar plane), with corresponding polar line forms an auto polar tetrahedron of cone [2;11]. Each plane, from pencil of planes, intersects cone in two generatricess, and polar plane in one straight line. This three lines are in dual harmonic relation to a polar line. In the involutory pencil of lines there is an orthogonal pair of lines. Regarding this, it is necessary to determine polar line, which is orthogonal to a polar plane.

The observed cone τ defines correlative bundle of lines and planes $\{\Box\}$. The bundle $\{\Box\}$ consists of polar axes and associated polar planes, respectively to the cone τ .

A new right circular cone τ_1 is set within the same vertex (V). It's axis is perpendicular to a circular base of cone. Diameter of base circle k_1 is equal to perpendicular distance from vertex V to the plane H (all the generators make the angle of 45° to the plane H). This circular right cone determines new correlative bundle of lines and planes { \Box_1 }. There are only three mutually orthogonal axes mapped to adequate polar planes in correlative bundle { \Box_1 }, respectively to cone τ_1 , all polar axes and corresponding planes are mutually orthogonal [2;25]. The double lines/double planes of those two corelative bundles are principal axes/planes of summetry for the quadric cone τ .

2. COLLOCAL CORRELATIVE MAPPED PLANES

Plane H, with two base section curves: of cone τ and cone τ_1 , intersect two collocal correlative bundles $\{\Box\}$ and $\{\Box_1\}$ in two pairs of collocal correlative corresponding planes (α, β) and (α_1, β_2) . After overlaping planes β and β_1 , the other two, α and α_1 become collinear.

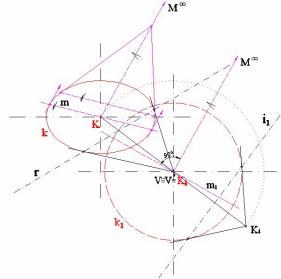


Fig. 1 Two cones with base section curves in generally collinear planes

Two collocal, generally collinear planes α and α_1 are defined with pair of mapped points K and K_1 and vanishing lines r and i_1 . Vanishing line r is polar line of pole - center point K_1 , respectively to ellipse k. Vanishing line i_1 is antipolar line of pole K (or polar line of inversed pole Ki), respectively to circle k_1 . (fig. 1) The inversion came out of the fact that cone τ_1 is real representative of the imaginary cone defined with vertex V and absolute conic curve.

In two collinear mapped planes α and α_1 , centar point K of ellipse k, corresponds to center point K_1 of circle k_1 . Both are in correlative correspondence to the infinite line $t \infty \equiv t_1 \infty$ in base curve plane $B \equiv B_1$. Conjugated diameters of elipse k_1 form an involutory pencil of lines, while conugated diameters of circle k form circular involutory pencil of lines. Pairs of parallel lines in planes $B \equiv B_1$ (linking lines between points A^{∞} , B^{∞} and C^{∞} on infinite line $t \infty \equiv t_1 \infty$ and center points K/K_1) have their corresponding lines - conjugated diameters of ellipse k (a, b, c) and circle k_1 (a_1, b_1, c_1) in planes α and α_1 . (fig.2)

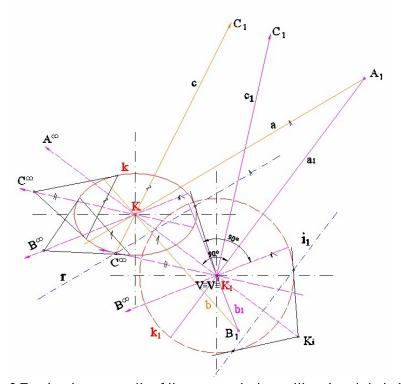


Fig.2 Two involutory pencils of lines respectively to ellipse k and circle k_1

2.1 Hyperbola of Apollonius as a result of two projective mapped pencils of lines

Conjugated diameters a, b, c and a_1,b_1,c_1 , in planes α and α_1 form two projective mapped pencils of lines in vertexes K and K_1 (center points of ellipse k and circle k_1). They produce an conic curve of 2^{nd} order, in this case, hyperbola h_1 with orthogonal asimptotes – hyperbola of Apollonius. (fig.3) Two projective mapped pencils of lines were translated to one overlaping point $K \equiv K_1$ in collocal "position". Using Steiner's construction procedure over sequence of points on 2^{nd} order curve (Steiner's circle), for two perspective mapped pencils of lines (with vertexes S and S_1), the axis of perspectivity (double lines d_1 and d_2) determined directions of asymptotes of hyperbola.

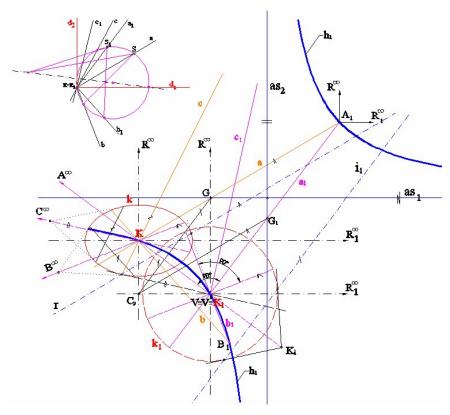


Fig.3 Steiner's construction (left top corner)
Two perspective mapped pencils of lines defining asymptotes of hyperbola

The other two projective mapped pencils of parallel lines (R) and (R_1) , with infinite vertexes R and R_1 , determined position of asymptotes as_1 and as_2 and center point of hyperbola. Pencils of lines (R) and (R_1) were intersected with two lines a and a_1 , producing two perspective mapped sequences of points. The vanishing points G and G_1 on two perspective mapped sequences of points, on lines a and a_1 , are referent points for position of asymptotes as_1 and as_2 . (fig. 3)

2.2 Projective mapped pencils of lines with vertexes in focal points of two collinear planes

Double points D_1 , D_2 and D_3 for two generally collinear planes α and α_1 are intersecting points between two conic curves (any type) derived from two pairs of projective mapped pencils of lines. One conic curve is hyperbola of Apollonius h_1 , with orthogonal asymptotes. The other appropriate choice of conic curve is circle, because of accuracy of intersection (between circle and hyperbola).

In order to get a circle, as a result of mapping, it is necessary to set vertexes of two projective mapped pencils of lines in focal points of planes α and α_1 . In process of constructing focal points, the first step is determination of vanishing points P and O_1 on vanishing lines r and i_1 in planes α and α_1 . Those are corresponding points to infinite points O^{∞} and O^{∞} a

According to a known rule: "Some lines in plane α ,from pencil of parallel lines set through infinite vertexes, have their corresponding lines in plane α_1 passing through corresponding vanishing points and focal point L_1 " (and vice versa), the focal points L and L_1 were determined [1]. The important fact is that the angle which those corresponding lines make with the adequate vanishing lines has the same value. Following the rule [1], in plane α_1 , the direction w_1 (in vertex K_1) and infinite point W_1^∞ was addopted. Corresponding line w in plane α (in vertex K) intersects vanishing line r in vanishing point w. Eventually, there is a line in plane α , set through point w, which make the angle of 69° with vanishing line r (the same angle is between direction w_1 and vanishing line r, in plane r) and intersecting the main perpendicular r0 in focal point r1. The same procedure followed for the focal point r2, using arbitrary direction r3 and point r4 in plane r6. (fig. 4)

The other pair of focal points M and M_1 is symmetrical to L and L_1 respectively to vanishing lines r and i_1 .

Two projective mapped pencils of lines with vertexes in focal points L and L_1 , will produce a circle I as a conic curve. The circle I is defined with three points: focal points L and L_1 and point of intersection of two main perpendiculars g_n and g_{n1} . There are four points of intersection between circle I and hyperbola h_1 . Three of them are double points D_1 , D_2 and D_3 of two collocal mapped collinear planes α and α_1 .

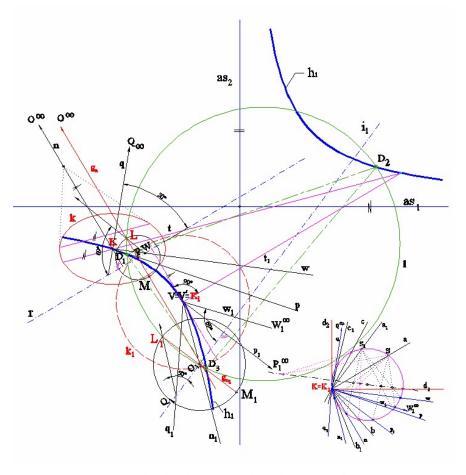


Fig. 4 The focal points within planes α and α_1 Steiner's supplementary construction (right corner down)

The new circle m was adopted using three points: focal points M and M_1 and intersection point between main perpendiculars g_n and g_{n1} . Two projective mapped pencils of lines in points M and M_1 produce new hyperbola h_2 , also with orthogonal asymptotes (hyperbola of Apollonius). Constructive procedure: in two projective pencils of lines M (x, y, z) and $M_1^o(x_0$, y_0 , z_0) which produce a circle m, one pencil, in vertex M_1^o , was symmetrically transformed around axis g_{n1} into pencil M_1 (x_1 , x_2), in order to produce hyperbola x_2 . (fig.5)

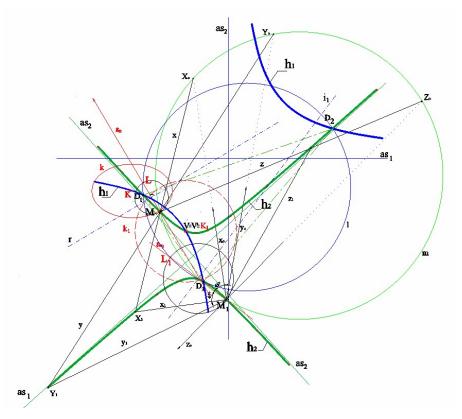


Fig. 5 Two projective mapped pencils of lines for hyperbola h₂

As the result of intersection of three curves: hyperbola h_1 , circle I, hyperbola h_2 , three double points D_1 , D_2 and D_3 of an auto polar triangle, in two generally collinear planes α and α_1 , appear. Their linking lines o_1 , o_2 and o_3 to a vertex V are three principal axes of cone τ , forming an auto polar tetrahedron (in space) with vertexes D_1 , D_2 , D_3 and V. (fig.6) These axes form 3 mutually orthogonal planes of symmetry of cone τ . (fig.7)

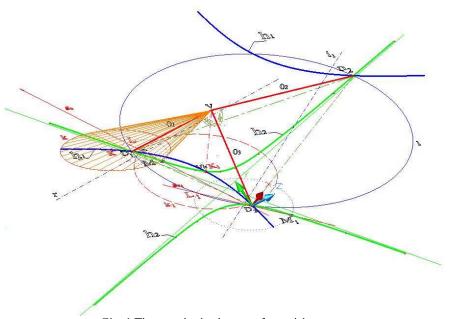


Fig. 6 Three principal axes of quadric cone τ

3. CONCLUSION

The determination of principal axes of the quadric cone τ , with an elliptic base section curve and vertex V, is based on determination of vertexes (double points) D_1 , D_2 and D_3 of an auto polar tetrahedron in generally collinear planes α and α_1 . Those are intersection points between two conic curves: hyperbola h_1 and circle I, or circle I and hyperbola h_2 , as results of mapping of two pairs of projective pencils of lines in focal points. If determined focal points L, L_1 and M, M_1 for two planes α and α_1 , the easiest way to determine an auto polar tetrahedron i.e. axes of symmetry for the quadric cone τ , is to make

one more projective transformation in focal points M, M_1 deriving hyperbola of Apollonius (h_2).

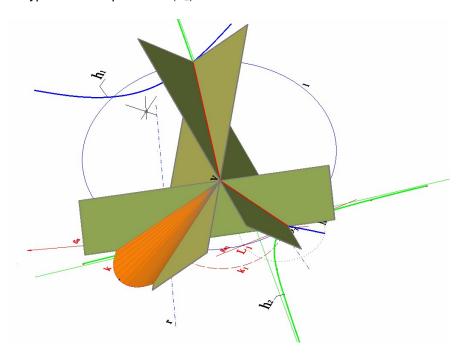


Fig.7 Three planes of symmetry of quadric cone τ

4. LITERATURE

- 1. A. Zdravković Jovanović, *Metric and alignment invariants of collinear spaces*, PhD thesis, Faculty of Architecture, Belgrade 1985.
- 2. R. Janićijević, Spatial disposition of circle sections on cone surfaces preseka (constructive approach), MSc thesis, Faculty of Architecture, Belgrade 1989.
- 3. V. Niče, Introduction to synthetic geometry, Školska knjiga, Zagreb, 1956
- **4.** V. Sbutega, *Synthetic geometry I*, Script for postgraduate studies, Faculty of Architecture, Belgrade, 1975.