Applicable Analysis and Discrete Mathematics, 1 (2007), 403–414.

Available electronically at http://pefmath.etf.bg.ac.yu

Presented at the conference: Topics in Mathematical Analysis and Graph Theory, Belgrade, September 1–4, 2006.

POLYNOMIAL INTERPOLATION PROBLEM FOR SKEW POLYNOMIALS

Aleksandra Lj. Erić

Let $R=K[x;\sigma]$ be a skew polynomial ring over a division ring K. We introduce the notion of derivatives of skew polynomial at scalars. An analogous definition of derivatives of commutative polynomials from K[x] as a function of $K[x] \to K[x]$ is not possible in a non-commutative case. This is the reason why we have to define the derivative of a skew polynomial at a scalar. Our definition is based on properties of skew polynomial rings, and it makes possible some useful theorems about them. The main result of this paper is a generalization of polynomial interpolation problem for skew polynomials. We present conditions under which there exists a unique polynomial of a degree less then n which takes prescribed values at given points $x_i \in K$ $(1 \le n)$. We also discuss some kind of SILVESTER-LAGRANGE skew polynomial.

1. INTRODUCTION

2000 Mathematics Subject Classification. 16S36, 16U30, 15A03. Key Words and Phrases. Interpolation, skew polynomials.

or $\deg r(x) < \deg g(x)$. In particular, R is a left PID (principal ideal domain) i.e. any nonzero left ideal I has the form Rg; here, g is any polynomial in I of the smallest degree [2].

To define evaluation of the left polynomials at scalar, it suffices to recall some of its main properties as follows.

- The remainder Theorem [3]: f(x) = q(x)(x-a) + f(a) where q(x) is uniquely determined by f and by a. From this it follows that f is divisible by x-a iff f(a) = 0. In this case, we say that a is right root of f.
- The Product Formula [3] for evaluating f = gh at any $d \in K$:

$$f(d) = \begin{cases} 0 & \text{if } h(d) = 0, \\ g(d^{h(d)})h(d) & \text{if } h(d) \neq 0. \end{cases}$$

Here, a^c is the σ -conjugate of a by c, and it is defined by $a^c = \sigma(c)ac^{-1}$, for any $c \in K^*$.

• The evaluating formula [3]: if $f(x) = \sum_{i} a_i x^i$, then $f(a) = \sum_{i} a_i N_i(a)$ for all $a \in K$ where $N_0(a) = 1$, and $N_n(a) = \sigma^{n-1}(a) \dots \sigma(a)a$.

2. EVALUATING DERIVATIVES OF SKEW POLYNOMIALS AT SCALAR

Let $f(x) \in R = K[x; \sigma]$. By dividing f(x) by polynomial $(x - d)^2 = x^2 - (d + d^{\sigma})x + d^2$ we get the remainder cx + r.

We can define the first derivative of polynomial f(x) at scalar d: f'(d) to be c. We will denote by $M_n(d)$ the first derivative of polynomial x^n at scalar d. For example:

$$x^{2} = (x - d)^{2} + (d + d^{\sigma})x - d^{2}.$$

So, $M_2(d) = d + d^{\sigma}$. Also from

$$x^{3} = (x + d^{\sigma} + d^{\sigma^{2}})(x - d)^{2} + (d^{\sigma^{2}}d^{\sigma} + d^{\sigma^{2}}d + d^{\sigma}d)x - (d^{\sigma} + d^{\sigma^{2}})d^{2}$$

we get

$$M_3(d) = d^{\sigma^2} d^{\sigma} + d^{\sigma^2} d + d^{\sigma} d.$$

Definition 1. Let $f(x) = \sum_i c_i x^i \in R$. Then $f'(d) = \sum_i c_i M_i(d)$, where $M_0(d) = 0$, $M_1(d) = 1$ and

$$M_i(d) = \sum_{i-1 \ge k_1 > k_2 > \dots > k_{i-1} \ge 0} d^{\sigma^{k_1}} \cdots d^{\sigma^{k_{i-1}}}.$$

Note that, if $\sigma = 1$, then $M_i(d) = id^{i-1}$. So f'(d) is the usual evaluation of derivative of f.

Example. Let $R = \mathbb{C}[x; -]$. Then

$$M_2(d) = d + \overline{d}, \quad M_3(d) = d^2 + 2|d|^2, \quad M_4(d) = 2|d|^2(d + \overline{d}).$$

If
$$f(x) = ix^2 + (2+i)x - 3$$
, then $f'(2-i) = 2+5i$.
If $f(x) = x^3 - (1+i)x^2 - x + 1 + i = (x-1-i)(x-i)^2$, then, $f'(i) = 0$, $f(i) = 0$.
If $f(x) = x^4 - 20x$, then $f'(1+2i) = 0$ and $f(1+2i) = 5-40i$.

EXAMPLE. Let $R = \mathbb{R}(t)[x;\sigma], \ \sigma: f(t) \mapsto f(t^2)$. Then

$$M_2(f(t)) = f(t) + f(t^2), \quad M_3(f(t)) = f(t^4)f(t^2) + f(t^4)f(t) + f(t^2)f(t).$$

If
$$p(x) = (x+t)(x-t)^2 = x^3 + (t-t^2-t^4)x^2 + (t^4-t^3-t^2)x + t^3$$
, then
$$p(t) = t^7 + (t-t^2-t^4)t^3 + (t^4-t^3-t^2)t + t^3 = 0,$$
$$p'(t) = (t^6+t^5+t^3) + (t-t^2-t^4)(t+t^2) + (t^4-t^3-t^2) = 0.$$

Proposition 2.1. Let $f(x), g(x) \in R = K[x; \sigma]$ and $d \in K$. Then

$$(f+q)'(d) = f'(d) + q'(d).$$

Proof. For $f(x) = \sum_i a_i x^i$ and $g(x) = \sum_i b_i x^i$ (we can assume that the polynomials are of the same degree) $(f+g)(x) = \sum_i (a_i + b_i) x^i$, so

$$(f+g)'(d) = \sum_{i} (a_i + b_i) M_i(d) = \sum_{i} a_i M_i(d) + \sum_{i} b_i M_i(d) = f'(d) + g'(d).$$

Proposition 2.2. $M_{i+j}(d) = N_j(d)^{\sigma^i} M_i(d) + M_j(d)^{\sigma^i} N_i(d)$.

Proof. $M_{i+1}(d) = d^{\sigma^i} M_i(d) + N_i(d)$ because of

$$M_{i+1}(d) = \sum_{i \ge k_1 > k_2 > \dots > k_i \ge 0} d^{\sigma^{k_1}} \cdots d^{\sigma^{k_i}}$$

$$= d^{\sigma^i} \sum_{i-1 \ge k_2 > k_3 > \dots > k_i \ge 0} d^{\sigma^{k_2}} \cdots d^{\sigma^{k_i}} + \sum_{i-1 \ge k_1 > k_2 > \dots > k_i \ge 0} d^{\sigma^{k_1}} \cdots d^{\sigma^{k_i}}$$

$$= d^{\sigma^i} M_i(d) + d^{\sigma^{i-1}} \dots d = d^{\sigma^i} M_i(d) + N_i(d).$$

We proceed by induction on j. The case j=1 follows from the first expression. Now, suppose that the proposition is true for some j, i. e.

$$M_{i+j+1}(d) = d^{\sigma^{i+j}} M_{i+j}(d) + N_{i+j}(d).$$

Then

$$M_{i+j+1}(d) = d^{\sigma^{i+j}} N_j(d)^{\sigma^i} M_i(d) + d^{\sigma^{i+j}} M_j(d)^{\sigma^i} N_i(d) + N_{i+j}(d).$$

Applying

$$(d^{\sigma^{j}} N_{j}(d))^{\sigma^{i}} = (N_{j+1}(d))^{\sigma^{i}},$$

$$N_{i+j}(d) = N_{j}(d)^{\sigma^{i}} N_{i}(d),$$

$$d^{\sigma^{i+j}} M_{j}(d)^{\sigma^{i}} + N_{j}(d)^{\sigma^{i}} = M_{j+1}(d)^{\sigma^{i}},$$

we get

$$M_{i+j+1}(d) = N_{j+1}(d)^{\sigma^i} M_i(d) + M_{j+1}(d)^{\sigma^i} N_i(d).$$

Proposition 2.3. Let $f(x) = g(x)h(x) \in R = K[x; \sigma], g(x) = \sum_i b_i x^i$ and $h(x) = \sum_i c_j x^j$. Then

$$f'(d) = \sum_{i} b_i a^{\sigma^i} M_i(d) + g(e^{\sigma} de^{-1})e,$$

where a = h(d), e = h'(d) and $e \neq 0$.

Proof. Since $f(x) = \sum_{i,j} b_i c_j^{\sigma^i} x^{i+j}$, we have

$$f'(d) = \sum_{i,j} b_i c_j^{\sigma^i} M_{i+j}(d)$$

$$= \sum_{i,j} b_i c_j^{\sigma^i} N_j(d)^{\sigma^i} M_i(d) + \sum_{i,j} b_i c_j^{\sigma_i} M_j(d^{\sigma^i}) N_i(d)$$

$$= \sum_{i,j} b_i (c_j N_j(d))^{\sigma^i} M_i(d) + \sum_{i,j} b_i (c_j M_j(d))^{\sigma^i} N_i(d)$$

$$= \sum_{i} b_i a^{\sigma^i} M_i(d) + \sum_{i} b_i e^{\sigma^i} N_i(d).$$

Therefore,

$$\sum_{i,j} b_i e^{\sigma^i} N_i(d) = \sum_{i,j} b_i N_i(e^{\sigma} d e^{-1}) e = g(e^{\sigma} d e^{-1}) e.$$

If $\sigma = 1$, then f'(d) = g'(d)h(d) + g(d)h'(d), which is the usual formula for a derivative of product.

Theorem 2.4. Let $f(x) \in R = K[x; \sigma]$ and $d \in K$. Then

$$f(x) = q(x)(x-d)^2$$

for some $g(x) \in R = K[x; \sigma]$ iff f(d) = f'(d) = 0.

The proof is easy and thus omitted.

3. EVALUATING DERIVATIVES OF THE HIGHER ORDER OF SKEW POLYNOMIALS AT SCALAR

The derivative of order n of polynomial x^i at $d \in K$ for 1 < i < n is $M_i^n(d) = n! \sum_{i-1 \ge k_1 > k_2 > \dots > k_{i-n} \ge 0} d^{\sigma^{k_1}} \cdots d^{\sigma^{k_{i-n}}}, M_n^n(d) = n!$ and $M_i^n(d) = 0$ for n > i.

We get it as $n!A_n$ where A_n is from

$$x^{i} = q(x)(x-d)^{n+1} + A_{n}x^{n} + \ldots + A_{0}.$$

For example,

$$(x-d)^3 = x^3 - (d^{\sigma^2} + d^{\sigma} + d)x^2 + ((d^{\sigma})^2 + d^2 + dd^{\sigma})x - d^3,$$

$$x^3 = (x-d)^3 + (d^{\sigma^2} + d^{\sigma} + d)x^2 - ((d^{\sigma})^2 + d^2 + dd^{\sigma})x + d^3.$$

and so, $M_3^2(d) = 2(d^{\sigma^2} + d^{\sigma} + d)$.

EXAMPLE. Let $R = \mathbb{C}[x; \ ^-]$ and $f(x) = x^3 + (1+i)x^2 - x - (1+i)$ from R. Then $M_3^2(d) = 2(d+\overline{d}+d) = 2(2d+\overline{d})$. Here we have f(1+i) = 0, f'(1+i) = 5+3i, f''(1+i) = 8+4i. For $f(x) = x^3 - ix^2 - x + i = (x-i)^3$ we have f(i) = f'(i) = f''(i) = 0.

Definition 2. The n-th derivative of polynomial $f(x) \in R = K[x; \sigma], f(x) = \sum_{i=1}^{n} c_i x^i$ at $d \in K$ is

$$f^{(n)}(d) = \sum_{i} c_i M_i^n(d).$$

Note that $M_i^n(d) = 0$ if n > i.

Proposition 3.1. For $d \in K$, n > 1, we have

(1)
$$M_{i+1}^n(d) = d^{\sigma^i} M_i^n(d) + n M_i^{n-1}(d)$$
.

(2)
$$M_{i+j}^n(d) = \sum_{k=0}^n \binom{n}{k} M_j^k(d^{\sigma^i}) M_i^{n-k}(d).$$

Proof. (1)

$$M_{i+1}^{n}(d) = n! \sum_{i \ge k_1 > k_2 > \dots > k_{i-n+1} \ge 0} d^{\sigma^{k_1}} \cdots d^{\sigma^{k_{i-n+1}}}$$
$$= n! \left(d^{\sigma^i} \frac{M_i^n(d)}{n!} + \frac{M_i^{n-1}(d)}{(n-1)!} \right) = d^{\sigma^i} M_i^n(d) + n M_i^{n-1}(d).$$

(2) We proceed by induction. In case j = 1 it is (1).

$$\begin{split} M_{i+j+1}^n(d) &= d^{\sigma^{i+j}} M_{i+j}^n(d) + n M_{i+j}^{n-1}(d) \\ &= \sum_{k=0}^n \binom{n}{k} d^{\sigma^{i+j}} M_j^k(d^{\sigma^i}) M_i^{n-k}(d) \\ &\quad + n \sum_{k=0}^{n-1} \binom{n-1}{k} M_j^k(d^{\sigma^i}) M_i^{n-k-1}(d). \end{split}$$

From (1),
$$M_{j+1}^k(d^{\sigma^i}) = d^{\sigma^{i+j}} M_j^k(d^{\sigma^i}) + k M_j^{k-1}(d^{\sigma^i})$$
, so

$$M_{i+j+1}^{n}(d) = \sum_{k=0}^{n} \binom{n}{k} M_{j+1}^{k}(d^{\sigma^{i}}) M_{i}^{n-k}(d) - \sum_{k=0}^{n} \binom{n}{k} k M_{j}^{k-1}(d^{\sigma^{i}}) M_{i}^{n-k}(d) + n \sum_{k=0}^{n-1} \binom{n-1}{k} M_{j}^{k}(d^{\sigma^{i}}) M_{i}^{n-k-1}(d)$$

$$\begin{split} n\sum_{k=0}^{n-1} \binom{n-1}{k} M_j^k (d^{\sigma^i}) M_i^{n-k-1}(d) &= n\sum_{k=1}^n \binom{n-1}{k-1} M_j^{k-1} (d^{\sigma^i}) M_i^{n-k}(d) \\ &= \sum_{k=1}^n \binom{n}{k} k M_j^{k-1} (d^{\sigma^i}) M_i^{n-k}(d). \end{split}$$

So,
$$M_{i+j+1}^n(d) = \sum_{k=0}^n \binom{n}{k} M_{j+1}^k(d^{\sigma^i}) M_i^{n-k}(d)$$
. If $f(x) = g(x)h(x) = \sum_{i,j} b_i c_j^{\sigma^i} x^{i+j}$, then

$$f^{(n)}(d) = \sum_{i,j} b_i c_j^{\sigma^i} M_{i+j}^n(d) = \sum_{i,j,k} \binom{n}{k} b_i c_j^{\sigma^i} M_j^k(d^{\sigma^i}) M_i^{n-k}(d)$$
$$= \sum_{i,j,k} \binom{n}{k} b_i (c_j M_j^k(d))^{\sigma^i} M_i^{n-k}(d) = \sum_{i,k} nk b_i a_k^{\sigma^i} M_i^{n-k}(d),$$

where $a_k = g^{(k)}(d)$.

Proposition 3.2. Let $g(x) = (x - d)^n$. Then $g(d) = \dots = g^{(n-1)}(d) = 0$.

Proof. We prove the proposition by induction. In case n=1 it is easy verified. Suppose that Proposition is true for any k < n. Let $g(x) = (x-d)^{n+1} = p(x)q(x)$, where p(x) = (x-d) and $q(x) = (x-d)^n$. Then, for $0 \le \ell \le n-1$

$$g^{(\ell)}(d) = \sum_{k} {\ell \choose k} b_i a_k^{\sigma^i} M_i^{\ell-k}(d),$$

where $a_k = q^k(d)$, so $a_k = 0$ for $0 \le k \le n - 1$.

Then $g^{(i)}(d) = 0$ for $0 \le i \le n-1$. We still need to prove $g^{(n)}(d) = 0$.

$$g(x) = (x - d)^{n+1} = x^{n+1} - (d + d^{\sigma} + \dots + d^{\sigma^n})x^n + \dots,$$

$$g^{(n)}(d) = M_{n+1}^n - (d + d^{\sigma} + \dots + d^{\sigma^n})M_n^n(d),$$

$$M_n^n(d) = n!,$$

$$M_{n+1}^n(d) = n!(d + d^{\sigma} + \dots + d^{\sigma^n}).$$

So, $q^n(d) = 0$.

Theorem 3.3. Let $f(x) \in K[x; \sigma]$ and $d \in K$. Then

$$f(x) = g(x)(x-d)^n$$
 for some $g(x)$

iff
$$f(d) = f'(d) = \dots = f^{n-1}(d) = 0$$
.

Proof. Assume $f(d) = f'(d) = \cdots = f^{n-1}(d) = 0$. Then

$$f(x) = g(x)(x-d)^n + a_0 + a_1x + \dots + a_{n-1}x^{n-1} \qquad (a_i \in K)$$

For $G(x) = g(x)(x-d)^n$ we have

$$G^{k}(d) = \sum_{i} b_{i} a_{k}^{\sigma^{i}} M_{i}^{n-1}(d),$$

where b_i are coefficients of polynomial g(x) and a_k is the k-th derivative of polynomial $(x-d)^n$. So $a_k=0$, then $G^k(d)=0$ $0 \le k \le n-1$

$$0 = f(d) = a_{n-1}N_{n-1}(d) + \dots + a_1N_1(d) + a_0,$$

$$0 = f'(d) = a_{n-1}M_{n-1}(d) + \dots + a_1M_1(d),$$

$$0 = f''(d) = a_{n-1}M_{n-1}^2(d) + \dots + a_2M_2^2(d),$$

$$\vdots$$

$$0 = f^n(d) = a_{n-1}M_{n-1}^{n-1}(d),$$

 $M_n^n(d) = (n-1)!$ implies $a_{n-1} = 0$ and by solving the system, we get $a_i = 0$ for all i i.e. $f(x) = g(x)(x-d)^n$. The converse is easy to verify from Proposition 3.2 and properties of derivatives.

Theorem 3.4. Let $f(x) \in K[x; \sigma]$ and deg f = n. Then

(*)
$$f(x) = f(d) + \frac{f'(d)}{1!}(x-d) + \frac{f''(d)}{2!}(x-d)^2 + \dots + \frac{f^{(n)}(d)}{n!}(x-d)^n$$

Proof. We proceed by induction on the degree of f. Let $\deg f = 1$. Then f(x) = A(x-d) + f(d) and f'(d) = A, so

$$f(x) = f(d) + \frac{f'(d)}{1!}(x - d).$$

Assume that (*) holds, for any polynomial f with deg f = n.

Let f(x) be a polynomial with deg f = n + 1. Then f(x) = g(x)(x - d) + f(d) for some g(x) and deg g = n. Then

$$f^{(m)}(d) = (g(x)(x-d))^{(m)}(d).$$

Using the product formula, we obtain

$$(g(x)(x-d))^{(m+1)}(d) = \sum_{i,k} {m+1 \choose k} b_i a_k^{\sigma^i} M_i^{m+1-k}(d),$$

where b_i are coefficients of g and a_k value of k-th derivative of polynomial (x-d) at d. So $a_1 = 1$ and $a_i = 0$ for i > 1, which implies: $(g(x)(x-d))^{(m+1)}(d) = 0$

 $(m+1)\sum_{i} b_{i} M_{i}^{m}(d) = (m+1)g^{(m)}(d)$. So, $(m+1)g^{(m+1)}(d) = f^{(m+1)}(d)$ and finally, we get (*) for n replace with n+1.

4. POLYNOMIAL INTERPOLATION FOR SKEW POLYNOMIALS

For a field K, it is well known that for $x_0, \ldots, x_{n-1}, x_n$ being different elements of K and $y_0, \ldots, y_{n-1}, y_n \in K$, there exists the unique polynomial $f \in K[x]$ such that $f(x_i) = y_i$ and $\deg f \leq n$. However, the condition $x_i \neq x_j$ is not sufficient for existence of such a polynomial in a non-commutative case.

Let us first mention some facts about skew polynomials.

Proposition 4.1. Let $\Delta = \{x_0, \ldots, x_n\}$ and $x_i \in K$, where K is a division ring. Then

- (1) There exists the nonzero polynomial $f \in K[x; \sigma]$ such that $f(x_i) = 0$.
- (2) The set I of polynomials vanishing on Δ form a left ideal in $K[x;\sigma]$.
- (3) If f_{Δ} is monic polynomial of the smallest degree in I, then $I = Rf_{\Delta}$, where $R = K[x; \sigma]$. We will call f_{Δ} minimal polynomial of Δ .

Proof. (1) Let Δ be doubleton i.e. $\Delta = \{a, b\}$. Then, a polynomial f vanishing on Δ is

$$f(x) = (x - \sigma(b - a)b(b - a)^{-1})(x - a),$$

which follows from Product and Remainder Theorem.

If g is a polynomial vanishing on $\Gamma = \{x_0, \dots, x_{n-1}\}$, then a polynomial f vanishing on $\Delta = \Gamma \cup \{x_n\}$ is

$$f(x) = (x - \sigma(g(x_n))x_ng(x_n)^{-1})g(x).$$

- (2) If $f, g \in I$, then f(d) = g(d) = 0 for all $d \in \Delta$. So, (f + g)(d) = f(d) + g(d) = 0. Also, for $\alpha \in R$ $(\alpha f)(d) = \alpha (\sigma(f(d))df(d)^{-1})f(d) = 0$ (from Product formula). Then I is the left ideal in left PID, so it is principal.
- (3) If $f \in I$, then $f(x_i) = 0$ for all $x_i \in \Delta$. $f = qf_{\Delta} + r$ where f_{Δ} is a polynomial of minimal degree in I, $q, r \in K[x; \sigma]$ and $\deg r < \deg f_{\Delta}$. From $f(x_i) = r(x_i) = 0$ it follows $r \equiv 0$. The conclusion is that $f \in Rf_{\Delta}$.

Theorem 4.2. Let $\Delta = \{x_0, \ldots, x_n\}$ and $x_i \in K$ where K is a division ring. For any $y_0, \ldots, y_n \in K$ there exists a unique polynomial $f \in R$ such that $f(x_i) = y_i$ and $\deg f \leq n$ if and only if $\deg f_{\Delta} = n+1$ where f_{Δ} is the minimal polynomial of the set Δ .

Proof. Let $\Phi: R = K[x; \sigma] \to K^{n+1}$ be a K-linear function of the left K-spaces such that

$$f \mapsto (f(x_0), \dots, f(x_n)).$$

The kernel of the homomorphism Φ consists of all polynomials f such that $f(x_i) = 0$ for all i. So, Ker $\Phi = Rf_{\Delta}$, where f_{Δ} is the minimal polynomial of the set Δ . Then

 $Im\Phi \cong R/\operatorname{Ker}\Phi$ ([4], Th. 2.1).

$$\dim Im\Phi = \dim R/\operatorname{Ker}\Phi = \dim R/Rf_{\Delta} = \deg f_{\Delta}$$

 $\dim R/Rf_{\Delta} = \deg f_{\Delta}$ because for $m = \deg f_{\Delta}$, $\{1, x, \dots, x^{m-1}\}$ is a base of the left K-space R/Rf_{Δ} . Indeed, $g = qf_{\Delta} + r$ and $\deg r < m$.

The homomorphism Φ is surjective iff dim $Im\Phi = n+1$, which means that deg $f_{\Delta} = n+1$. Then, the interpolation polynomial for such a set Δ is

$$f(x) = \sum_{i=0}^{n} y_i L_i(x_i)^{-1} L_i(x),$$

where $L_i(x)$ is the monic polynomial such that $L_i(x_j) = 0$ for $i \neq j$. The degree of the polynomial f is $\leq n$. If there is another polynomial g, deg $g \leq n$ and $g(x_i) = y_i$, then $(f - g)(x_i) = 0$ implies $f - g \in Rf_{\Delta}$, so deg $\geq n + 1$ and this is impossible.

EXAMPLE. Let $R = \mathbb{C}[x; -]$ and $\Delta = \{1, i, -1\}$. Then, the minimal polynomial of Δ is $f_{\Delta} = x^2 - 1$ of degree 2. It means that for this set, Theorem 4.2 does not hold. For example, there is no polynomial f such that f(1) = 1, f(i) = 0 and f(-1) = -1. Also, there are many polynomials such that f(1) = 1, f(i) = 0 and f(-1) = i.

$$f(x) = ax^{2} + \frac{1+i}{2}x + \left(\frac{1-i}{2} - a\right).$$

EXAMPLE. Let $R=\mathbb{C}[x;\ ^-]$ and $\Delta=\{1,i,2i\}$. Then, the minimal polynomial of Δ is $f_{\Delta}=x^3-2ix^2-x+2i$. (We get it from $\left(x-g(2i)\right)2i(g(2i))^{-1}\right)g(x)$ where $g(x)=x^2-1$). The degree of minimal polynomial is 3 so, there is a unique polynomial f of degree ≤ 2 such that $f(1)=A, \ f(2i)=B$ and f(-1)=C for any A,B,C.

$$L_0(x) = (x - \overline{i} \, 2i \, i^{-1})(x - i) = (x + 2i)(x - i) = x^2 + 3ix + 2,$$

$$L_1(x) = (x - \overline{(2i - 1)} \, 2i \, (2i - 1)^{-1})(x - 1) = x^2 + \frac{1}{5} \, (3 + 6i)x - \frac{2}{5} \, (4 + 3i),$$

$$L_2(x) = (x - \overline{(i - 1)} \, i(i - 1)^{-1})(x - 1) = (x + 1)(x - 1) = x^2 - 1.$$

Then,

$$f(x) = \left(\frac{1-i}{6}A + \frac{i-3}{6}B + \frac{1}{3}C\right)x^2 + \left(\frac{1+i}{2}A - \frac{1+i}{2}B\right)x + \left(\frac{1-i}{3}A + \frac{3+i}{3}B - \frac{1}{3}C\right).$$

EXAMPLE. Let R = D[x] where D is a division field of real quaternions. If $\Delta = \{i, j, k\}$, then $f_{\Delta} = x^2 + 1$ is a polynomial of degree 2. There is no polynomial of degree ≤ 2 such that f(i) = 1, f(j) = 0 and f(k) = 0.

If $\Delta = \{1, i, j\}$, then $f_{\Delta} = (x-1)(x^2+1) = x^3 - x^2 + x - 1$ is a polynomial of degree 3. Then, there exists a unique polynomial of degree ≤ 3 such that f(1) = A, f(i) = B and f(j) = C.

There is a relation between the interpolation polynomial problem and the

 σ -Vandermonde matrix. We define σ -Vandermonde matrix to be

$$V_n^{\sigma}(x_0,\ldots,x_{n-1}) = \begin{bmatrix} 1 & 1 & \ldots & 1\\ N_1(x_0) & N_1(x_1) & \ldots & N_1(x_{n-1})\\ N_2(x_0) & N_2(x_1) & \ldots & N_2(x_{n-1})\\ \vdots & \vdots & \ddots & \vdots\\ N_{n-1}(x_0) & N_{n-1}(x_1) & \ldots & N_{n-1}(x_{n-1}) \end{bmatrix}.$$

- T. Y. LAM [3] proves that the rank of this matrix is same as the degree of a minimal polynomial of the set $\Delta = \{x_0, \dots, x_{n-1}\}$, and also gives the following useful formulae for computing it:
- (1) For any generalized quaternion division algebra D over a field F of characteristics $\neq 2$, then rank $V = \sum_{i} \min\{2, |\Delta_i|\}$ where $\Delta = \Delta_1 \cup \cdots \cup \Delta_m$ is the partition of Δ into σ -conjugacy classes.
- (2) For $\mathbb{C}[x;-]$ let δ_1,\ldots,δ_m be different values among $|d|,d\in\Delta$. Then rank $V=\sum_{i=1}^m r_i$ where $r_i=1$ if exactly one element in Δ has modulus δ_i and $r_i=2$ otherwise

Using this, we can answer the question about a degree of minimal polynomial of given set. Now, we will give an exposition on generalization of polynomial interpolation problem.

Proposition 4.3. Let $\Delta = \{x_1, ..., x_k\}$ and $S = \{(r, s_r) | 1 \le r \le k, 0 \le s_r \le n_r\}$, where $n_1, ..., n_k \in \mathbb{N}$. Then

- (1) There exists a nonzero polynomial f such that $f^{(s_r)}(x_r) = 0$ for all $(r, s_r) \in S$.
- (2) The set I of polynomials such that $f^{(s_r)}(x_r) = 0$ for all $(r, s_r) \in S$ form a left ideal in R.
- (3) If $f_{\Delta,S}$ is a monic polynomial of the smallest degree in I, then $I = Rf_{\Delta}$. We will call $f_{\Delta,S}$ the minimal polynomial for the pair (Δ, S) .
- **Proof.** (1) For n_r , $1 \le r \le k$ the polynomial f has right factor $(x x_r)^{n_r 1}$. It follows from Theorem 3.3. The left factor is determined by the Product Theorem.
- (2) If $f, g \in I$, then $f + g \in I$. It follows from additive property of derivatives at scalar. Let $\alpha \in R$, and $f \in I$. Then (from Proposition 3.1.)

$$(\alpha f)^{(s_r)}(x_r) = \sum_{i,k} {s_r \choose k} b_i a_k^{\sigma^i} M_i^{s_r - k}(d),$$

where $a_k = f^{(k)}(x_r) = 0$ and $f(x) = \sum b_i x^i$, $b_i \in K$. So, $(\alpha f)^{(s_r)}(x_r) = 0$ for all s_r such that $(r, s_r) \in S$. Then $\alpha f \in I$.

(3) Let $f \in I$, $f = qf_{\Delta,S} + r$, where $q, r \in R$ and $\deg r < \deg f_{\Delta,S}$. Then, $0 = f^{(s_r)}(x_r) = r^{(s_r)}(x_r)$ implies $r \in I$. $f_{\Delta,S}$ is polynomial of the smallest degree in I, so $r \equiv 0$. The conclusion is: $f \in Rf_{\Delta,S}$.

Theorem 4.4. Let $\Delta = \{x_1, \ldots, x_k\}$ and $S = \{(r, s_r) | 1 \le r \le k, 0 \le s_r \le n_r\}$ where $n_1, \ldots, n_k \in \mathbb{N}$ and $y_r^{s_r} \in K$. Then, there exists the unique polynomial $f \in R$ of degree $\le n-1$ where $n = \sum (n_r+1)$, such that $f^{(s_r)}(x_r) = y_r^{s_r}$ for all pairs (r, s_r) , iff the minimal polynomial (in the sense of Proposition 4.3.) $f_{\Delta,S}$ is of degree n.

Proof. Let $\Phi: K[x;\sigma] \to K^n$ be a K-linear function of left K-spaces given by

$$f \mapsto (f^{(s_r)}(x_r) : (r, s_r)) \in S.$$

It follows from properties of derivatives. The rest of the proof is same as the proof of Theorem 4.2.

EXAMPLE. Let $R = \mathbb{C}[x; -]$ and $\Delta = \{1, i\}$, $S = \{(1, 0), (2, 0), (2, 1)\}$. The minimal polynomial of the pair (Δ, S) , i.e. the minimal polynomial such that $f_{\Delta,S}(1) = f_{\Delta,S}(i) = f'_{\Delta,S}(i) = 0$ is $f_{\Delta,S}(x) = x^2 - 1$. This is polynomial of degree 2. There is no polynomial f such that f(1) = 1, f(i) = 1 and f'(i) = 1.

Let $\Delta=\{1,i\}$, $S=\{(1,0),(1,1),(2,0)\}$. The minimal polynomial of the pair (Δ,S) is $f_{\Delta,S}(x)=\left(x-\overline{(2-2i)}\,i(2-2i)^{-2}\right)(x-1)^2=(x+1)(x-1)^2=x^3+x^2-x-1$ (2-2i) is value of polynomial $(x-1)^2=x^2-2x+1$ at i). This polynomial is of degree 3, so there is a unique polynomial f of degree ≤ 2 such that f(1)=A, f(i)=B and f'(1)=C.

 $L_0(x)$ is the monic polynomial such that $L_0(i) = L'_0(1) = 0$, then $L_0(x) = x^2 - 2x - 1 + 2i$. $L_1(x)$ is the monic polynomial such that $L_1(1) = L_1(i) = 0$. Then $L_1(x) = x^2 - 1$. $L_2(x)$ is the monic polynomial such that $L_2(1) = L'_2(1) = 0$. Then $L_2(x) = (x-1)^2$. We find that

$$f(x) = \left(-\frac{1+i}{4}A + \frac{B}{2} + \frac{1+i}{4}C\right)x^2 + \frac{1+i}{2}(A-C)x + \left(\frac{3-i}{4}A - \frac{B}{2} + \frac{1+i}{4}C\right).$$

Let $\Delta = \{1, i\}$ and $S = \{(1, 0), (1, 1), (1, 2), (2, 0)\}$. Then

$$f_{\Delta,S}(x) = (x - \overline{(4i-4)}i(4i-4)^{-1})(x-1)^3 = (x+1)(x-1)^3$$

(4i-4) is the value of polynomial $(x-1)^3$ at i) is minimal polynomial of degree 4, so there is unique polynomial of degree ≤ 3 such that f(1) = A, f'(1) = B, f''(1) = C and f(i) = D. The monic polynomial $L_0(x)$ such that $L'_0(1) = L''_0(1) = L_0(i) = 0$ is

$$L_0(x) = x^3 - 3x^2 + 3x - 4i + 3.$$

The monic polynomial $L_1(x)$ such that $L_1(1) = L_1''(1) = L_1(i) = 0$ is

$$L_1(x) = x^3 - 3x^2 - x + 3.$$

The monic polynomial $L_2(x)$ such that $L_2(1) = L_2'(1) = L_2(i) = 0$ is

$$L_2(x) = (x+1)(x-1)^2 = x^3 - x^2 - x + 1.$$

The monic polynomial $L_3(x)$ such that $L_3(1) = L_3'(1) = L_3''(1) = 0$ is

$$L_3(x) = (x-1)^3 = x^3 - 3x^2 + 3x - 1,$$

So, desired interpolation polynomial is

$$f(x) = AL_0(1)^{-1}L_0(x) + BL_1'(1)^{-1}L_1(x) + CL_2''(1)^{-1}L_2(x) + DL_3''(1)^{-1}L_3(x).$$

In general, we can find the interpolation polynomial for condition from Theorem 4.4

$$f(x) = \sum a_{\Gamma,S} f_{\Gamma,S},$$

where $a_{\Gamma,S} \in K$ are coefficients which we will find from condition $f^{(r_s)}(x_i) = y_i^{r_s}$ and $f_{\Gamma,S}$ is the minimal polynomial of the pair (Γ,S) where

$$\Gamma = \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k\}$$

and

$$S = \{(r, s_r) | 1 \le r \le k, r \ne i, 0 \le s_r \le n_k \}$$

or $\Gamma = \Delta$ and

$$S = S_{m,\ell} = \{(r, s_r) | 1 \le r \le k, 0 \le s_r \le n_k, 0 \le s_\ell \le n_\ell - m\},\$$

where $1 < \ell < k$ and $1 < m < n_{\ell}$.

For example: if
$$\Delta = \{x_1, x_2\}$$
 and $S = \{(1, 0), (1, 1), (2, 0), (2, 1)\}$

$$f(x) = a_1 f_{\{x_1\},\{(1,0),(1,1)\}} + a_2 f_{\{x_2\},\{(2,0),(2,1)\}}$$
$$+ a_3 f_{\{x_1,x_2\},\{(1,0),(1,1),(2,0)\}} + a_4 f_{\{x_1,x_2\},\{(1,0),(2,0),(2,1)\}}.$$

If
$$\Delta = \{x_1, x_2\}$$
 and $S = \{(1, 0), \dots, (1, n-1), (2, 0)\}$, then

$$f(x) = A(x - x_1)^n + B(x - x_2) + \sum_{i=0}^{n-2} a_i f_{\{x_1, x_2\}, S_i},$$

where $S_i = \{(2,0)\} \cup \{(1,s)|0 \le s \le i\}.$

REFERENCES

- 1. N. Jacobson: Theory of Rings. Amer. Math. Soc., Providence, 1943.
- 2. P. M. Cohn: Skew Fields. Theory of General Division Rings. Encyclopedia in Math., Vol. 57, Cabridge Univ. Press, Cambridge, 1995.
- 3. T. Y. Lam: A general theory of Vandermonde matrices. Expositions Math., 4 (1986), 193 - 215.
- 4. E. Artin: Geometric Algebra. Interscience Publishers, Inc., 1957.

Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73 11000 Beograd, Serbia E-mail: eric@grf.bg.ac.yu

Received October 24, 2006.