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POLYNOMIAL INTERPOLATION PROBLEM
FOR SKEW POLYNOMIALS

Aleksandra Lj. Erié¢

Let R = K|[z; 0] be a skew polynomial ring over a division ring K. We intro-
duce the notion of derivatives of skew polynomial at scalars. An analogous
definition of derivatives of commutative polynomials from K[z] as a function
of K[z] — K]|x] is not possible in a non-commutative case. This is the reason
why we have to define the derivative of a skew polynomial at a scalar. Our
definition is based on properties of skew polynomial rings, and it makes pos-
sible some useful theorems about them. The main result of this paper is a
generalization of polynomial interpolation problem for skew polynomials. We
present conditions under which there exists a unique polynomial of a degree
less then n which takes prescribed values at given points z; € K (1 < n). We
also discuss some kind of SILVESTER-LAGRANGE skew polynomial.

1. INTRODUCTION

Let K be a division ring, and let o be a monomorphism of K. For an indeter-
minate x over K, we write K [x; o] for the ring of skew polynomials over K. By this,
we mean that K[z; o] is the set of all left polynomials 3 ¢;2* which are added in the

usual way, and multiplied by using the distributive lava together with the rule that
xe = ¢’z for any ¢ € K ( by ¢ we will denote o-image of ¢). Thus, the coefficients
need not commute with the variable . The fact that (ab)” = a”b” guarantees the
associative law for polynomial multiplications, so K[x; o] is a ring. This so-called
skew polynomial ring is a basic object of study in noncommutative ring theory [1].
As it is easily seen,the usual division algorithm stays in R = K[z;0]: For f(z) € R
and g(x) € R\ {0}, we can uniquely define f(x) = h(z)g(x) + r(z), where r(x) =0
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or degr(z) < degg(x). In particular, R is a left PID (principal ideal domain) i.e.
any nonzero left ideal I has the form Rg; here, g is any polynomial in I of the
smallest degree [2].

To define evaluation of the left polynomials at scalar, it suffices to recall some
of its main properties as follows.

e The remainder Theorem [3]: f(x) = q(z)(z—a)+ f(a) where ¢(z) is uniquely
determined by f and by a. From this it follows that f is divisible by = — a iff
f(a) = 0. In this case, we say that a is right root of f.

e The Product Formula [3] for evaluating f = gh at any d € K:

0 if h(d) =0,
fd) = { g(d"D)h(d) if h(d) #0.

Here, a® is the o-conjugate of a by ¢, and it is defined by a¢ = o(c)ac™?, for
any c € K*.

e The evaluating formula [3]: if f(z) = > a;2%, then f(a) = > a;N;(a) for all
a € K where Ny(a) =1, and Ny(a) = 0" !(a)...0(a)a.

2. EVALUATING DERIVATIVES OF SKEW POLYNOMIALS AT
SCALAR

Let f(x) € R = K[z;o]. By dividing f(x) by polynomial (z — d)? = 2% —
(d + d°)x + d* we get the remainder cx + 7.

We can define the first derivative of polynomial f(x) at scalar d : f'(d) to be
c. We will denote by M, (d) the first derivative of polynomial 2™ at scalar d. For

example:
2?2 = (z—d)? + (d+ d°)z — d>

So, Ma(d) =d + d°. Also from
B =(r+d +d )z —d)?+(dd° +dd+d°d)z — (d° +d°)d>

we get
Ms(d) = d°°d° + d° d+ d°d.

Definition 1. Let f(z) = Y. c;z* € R. Then f'(d) = ¢;M;(d), where My(d) = 0,
i i
Mi(d) =1 and

M;(d) = 3 et

i—1>k1>ko>-->ki—1>0
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Note that, if o = 1, then M;(d) = id"~!. So f’(d) is the usual evaluation of
derivative of f.

ExXAMPLE. Let R = C[z; ~]. Then
My(d) =d+d, Ms(d)=d>+2|d? Mai(d)=2|d>(d+d).

If f(z) = iz? + (2 + i)z — 3, then f'(2 —i) = 2 + bi.
If f(x) =2 - (1+d)2? —z+1+i= (z—1—1)(z —14)? then, f'(i) =0, f(i) =
If f(x) = 2* — 20z, then f'(1+2i) =0 and f(1 + 2i) = 5 — 40i.

EXAMPLE. Let R = R(t)[z;0], o : f(t) — f(¢*). Then
Ma(f(t)) = f(t) + F(t%),  Ms(f(t)) = FOE) (%) + FEDF(E) + F(E) S (D).
If p(x) = (x +t)(x — t)> = 23 4+ (t — t* — tH2? + (t* — 3 — 1})2z + 3, then

(
p) =t"+ (-2 -t + (=P -+ tP =0,
Pty =+ +)+ -2 —tHt+ )+ =2 — ) =0.

Proposition 2.1. Let f(z), g(x) € R= K|[z;0] and d € K. Then

(f +9)'(d) = f'(d) + ¢'(d).
Proof. For f(z) = > a;x* and g(z) = Y b;z* (we can assume that the polynomials
i i
are of the same degree) (f + g)(z) = >_(a; + b;)z", so

(f +9)'(d) = >(ai + b)) Mi(d) = 3 Za;iMi(d) + 32 biMi(d) = f'(d) + g'(d).

k3

Proposition 2.2. M;,;(d) = N,(d)° M;(d) + M,;(d)"" N;(d).
Proof. M;,1(d) = d° M;(d) + N;(d) because of

kq k;
M 1(d) = > o d°
i>k1>ka>->k; >0
i ko kg k1 k;
=d° Z d° "'d07+ Z d° "'dal
i—1>ko>kz>-->k; >0 i—1>k1>ko>->k; >0

=d My(d)+d° " ...d=d° M(d) + Ni(d).

We proceed by induction on j. The case 7 = 1 follows from the first expression.
Now, suppose that the proposition is true for some j, i. e.

Migjar(d) = d° My j(d) + Nitj(d).
Then

Migjar(d) = d 7 Nj(d)” My(d) +d° " M;(d)” Ny(d) + Ny (d).
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Applying
(A Nj(d)” = (Nj11(d)7
Niy;(d) = Nj(d)” Ni(d),
oiti p ot e
d” " Mj(d)” + N;(d)” = Mja(d)”,
we get

i i

Mitji1(d) = Njs1(d)” Mi(d) + Mji1(d)” Ni(d). O

Proposition 2.3. Let f(x) = g(x)h(z) € R = K|z; 0], g(x) = Zbixi and h(z) =
S e;xd. Then
J

()= Zbia"iMi(d) + g(e“de e,

where a = h(d), e = h'(d) and e # 0.
Proof. Since f(z) =3 bic?i:c”j, we have
2]
F1(d) = S bic§ Miyj(d)
= 3 bic§ Nj(d)” My(d) + 3 bic] M;(d” )Ni(d)
ij ij
= 3 bi(e; N (d))” Mi(d) + X bi(c; M;(d))” Ni(d)
ij irj

= Y bia” My(d) + 3 bie” Ny(d).
Therefore,

> bie“iNi(d) =3 "b;Ni(e7de e = g(e“de")e. 0
. e

%,J

If o =1, then f/(d) = ¢'(d)h(d) + g(d)h'(d), which is the usual formula for a
derivative of product.

Theorem 2.4. Let f(z) € R = Klz;0] and d € K. Then

f(@) = g(2)(z — d)?

for some g(x) € R = K|z; 0] iff f(d) = f'(d) =0.
The proof is easy and thus omitted.
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3. EVALUATING DERIVATIVES OF THE HIGHER ORDER
OF SKEW POLYNOMIALS AT SCALAR

The derivative of order n of polynomial 2 at d € K for 1 < i < n is
M™Md) = n! D d°" .. e MP(d) = n! and MP(d) = 0 for
i—1>k1>ka > >ki_n >0
n > 1.
We get it as n!A,, where A,, is from

' =q(z)(z — )" + Az 4.+ Ay,
For example,
(z—d)? =a® — (d° +d° +d)2® + ((d°)% + d* + dd°)x — d°,
= (@—d)P+d +d +d)a? — ((d°) +d® + dd” )z + d°.
and so, M2(d) = 2(d°” + d° + d).
EXAMPLE. Let R = Clz; "] and f(z) = 2 + (1 +4)2> — 2 — (1 + i) from R. Then

M3(d) = 2(d +d +d) = 2(2d + d). Here we have f(1+1i) = 0, f/(1+14) = 5+ 3i,
' (1414) = 844i. For f(x) = 2® —ix® —x+i = (x —i)® we have f(i) = f'(i) = f"(i) = 0.

Definition 2. The n-th derivative of polynomial f(x) € R = Klz;0], f(z) =
Stcizt atd € K is
i

FU(d) = 2 M (d).
Note that M"(d) =0 if n > i.

Proposition 3.1. Ford € K, n> 1, we have
(1) M}y, (d) = d” M7'(d) +nM]~ (d).

(2) My () = () ME@ M.

k=0
Proof. (1)
M (d) = n! S g gt

i>k1>ka> - >ki_pnt12>0

= (dol MZ!(d) + ]\({5 1(5?) = d°' M} (d) +nM!(d).

(2) We proceed by induction. In case j =1 it is (1).

M}, +1(d):d" Ml"ﬂ(d) nM] S (d)

- zn:( ) Y ME@ ) MR ()

k=0

+n2( ) B(@e Y MP R (d).
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(d7) = do"" MEd") + kMF1 (), so

M@ = 3 ()M @ @) = 3 (D) @

k=0 k=0

—l—nZ( )M’“ (@ YM+=1(d)

oS (5 o =ni( M @A)
k=0 —1
S @i
So, Mij41(d) = Z (1) M (@ )M (). T f(@) = gl@)h(z) = Y bie @i,
k=0 1,
then

N

PO = 3 M) = 3 () 007
=2

(7 )il ME@)™ MPH(d) = S nkbiaf M7 7H(d),
.5,k ik

where a; = g(® (d). O
Proposition 3.2. Let g(z) = (x — d)". Then g(d) = --- = g™~ Y(d) = 0.

Proof. We prove the proposition by induction. In case n = 1 it is easy verified.
Suppose that Proposition is true for any k < n. Let g(z) = (z — d)" ™! = p(x)q(x),
where p(z) = (r — d) and ¢(z) = (z — d)™. Then, for 0 <{<n -1

9O = 37 (¢ )biaf ML),

where a;, = ¢*(d), so ar, =0 for 0 <k <n — 1.
)

Then g@* (d7) 0 for 0 <i < n — 1. We still need to prove g(™ (d) = 0.
g(x) = (acfd)”+1 = :c"“f(d+d"+~~+d" )z 4
g"(d) = My, — (dtd” + oo+ d7 )M;i(d),
My (d) = nl,
M2 (d) =nl(d+d° +---+d).

So, g™ (d) = 0. O
Theorem 3.3. Let f(z) € K[z;0] and d € K. Then

f(x) =g(@)(x —d)" for some g(z)
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iff f(d) = f'(d) == fr71(d) =0.
Proof. Assume f(d) = f'(d) =--- = f*1(d) = 0.Then

fx)=g@)(z—d)"+ ao+az+ - +a,_12"" (a; € K)
For G(z) = g(z)(z — d)"™ we have
G*(d) = 3 biaf, M~} (d),
where b; are coefficients of polynomial g(x) and ay is the k-th derivative of poly-
nomial (x — d)". So a =0, then G¥(d) =0 0<k<n-1

0= f(d) = an_an_l(d) +...+ alNl(d) + aog,
0= f/(d) = anfanfl(d) + ...+ alMl(d),
0= f"(d) = an_1M2_,(d)+ ...+ asMZ(d),

0= f"(d) = a1 M}~ }(d),

M?(d) = (n—1)! implies a,,—1; = 0 and by solving the system, we get a; = 0 for all
iie. f(z) = g(z)(x — d)™. The converse is easy to verify from Proposition 3.2 and
properties of derivatives. (I

Theorem 3.4. Let f(z) € K[z;0] and deg f = n. Then

f// d 9
2(! ) (x —d)

F(d)

n!

(x —d)+ (x —d)"™.

Proof. We proceed by induction on the degree of f. Let degf = 1. Then
f(z) = A(z — d) + f(d) and f'(d) = A, so

1 (x —d).

Assume that (%) holds, for any polynomial f with deg f = n.
Let f(z) be a polynomial with deg f = n+1. Then f(z) = g(z)(z—d)+ f(d)
for some g(z) and degg = n. Then

F(d) = (9(2)(z — )™ (d).

Using the product formula, we obtain

m+1 P
(9@ =)D =3 (") )b M),
where b; are coefficients of g and ay, value of k-th derivative of polynomial (z — d)
at d. So a; =1 and a; = 0 for i > 1, which implies: (g(z)(z — d))(mﬂ)(d) =
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(m + 1) 0;M™(d) = (m + 1)g"™(d). So, (m + 1)g™+tV(d) = ™+ (d) and
i
finally, we get () for n replace with n + 1. O

4. POLYNOMIAL INTERPOLATION FOR SKEW POLYNOMIALS

For a field K, it is well known that for xzg,...,x,—1,x, being different ele-
ments of K and yo, ..., Yn—1,yn € K, there exists the unique polynomial f € K|[x]
such that f(z;) = y; and deg f < n. However, the condition ; # z; is not sufficient
for existence of such a polynomial in a non-commutative case.

Let us first mention some facts about skew polynomials.

Proposition 4.1. Let A = {xg,...,2,} and z; € K, where K is a division ring.
Then

(1) There exists the nonzero polynomial f € K[x;0] such that f(x;) = 0.

(2) The set I of polynomials vanishing on A form a left ideal in K|x;0].

(3) If fa is monic polynomial of the smallest degree in I, then I = Rfa,
where R = K|z;0]. We will call fa minimal polynomial of A.
Proof. (1) Let A be doubleton i.e. A = {a,b}. Then, a polynomial f vanishing
on A is

f@)=(z—ob—a)(d—a)™")(z-a),
which follows from Product and Remainder Theorem.
If g is a polynomial vanishing on I' = {xo,...,2,—1}, then a polynomial f
vanishing on A =T'U {z,} is

f(@) = (z — a(g(xn))2ng(zn) " Hg().

(2) If f,g € I, then f(d) = g(d) = 0 for all d € A. So, (f + g)(d) =
f(d) +g(d) = 0. Also, for a € R (af)(d) = a(o(f(d)df(d)~")f(d) = 0 (from
Product formula). Then [ is the left ideal in left PID, so it is principal.

(3) If f € I, then f(xz;) = 0 for all ; € A. f = qfa + r where fa is
a polynomial of minimal degree in I, ¢, € K[z;0] and degr < deg fa. From
f(z;) =r(x;) = 0 it follows » = 0. The conclusion is that f € Rfa. O

Theorem 4.2. Let A = {xg,...,x,} and x; € K where K is a division ring. For
any Yo, - - -, Yn € K there exists a unique polynomial f € R such that f(x;) = y;
and deg f < n if and only if deg fn = n+1 where fa is the minimal polynomial of
the set A.

Proof. Let ® : R = K[z;0] — K™™' be a K-linear function of the left K-spaces
such that

f = (f(z())a- 7f(xn))

The kernel of the homomorphism & consists of all polynomials f such that f(z;) =0
for all i. So, Ker ® = Rfa, where fa is the minimal polynomial of the set A. Then
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Im® = R/Ker ® ([4], Th. 2.1).
dim Im® = dim R/Ker ® = dim R/Rfa = deg fa

dim R/Rfa = deg fa because for m = deg fa, {1,z,...,2™ 1} is a base of the left
K-space R/Rfa. Indeed, g = ¢fa + r and degr < m.

The homomorphism @ is surjective iff dim Im® = n + 1, which means that
deg fA =n + 1. Then, the interpolation polynomial for such a set A is

fz) = ; yiLo(w) ™ Li(x),

where L;(z) is the monic polynomial such that L;(x;) = 0 for ¢ # j. The degree of
the polynomial f is < n. If there is another polynomial g, degg < n and g(z;) = y;,
then (f — g)(z;) = 0 implies f — g € Rfa, so deg > n+ 1 and this is impossible.[]

EXAMPLE. Let R = Clz; "] and A = {1,¢,—1}. Then, the minimal polynomial of A
is fa =22 —1 of degree 2. It means that for this set, Theorem 4.2 does not hold. For
example, there is no polynomial f such that f(1) =1, f(¢) = 0 and f(—1) = —1. Also,
there are many polynomials such that f(1) =1, f(¢) =0 and f(—1) = 1.

f(x):ax2+1;1x+(1nga).

EXAMPLE. Let R = C[z; "] and A = {1,¢,2i}. Then, the minimal polynomial of A is
fa =2® —2iz? — x4+ 2i. (We get it from (xfm%(g(%))*l)g(x) where g(z) = 22 —1).
The degree of minimal polynomial is 3 so, there is a unique polynomial f of degree < 2
such that f(1) = A, f(2i) = B and f(—1) = C for any A, B,C.

Lo(z) = (2 —i2ii ") (z — i) = (v + 2i)(z — i) = 2° + 3iz + 2,

L) = (o~ i D2 Qi 1))~ 1) =2+ 3 3460z — 2 (4+30)

Lo(z) = (z—(i—1)i(i— 1) ")(z-1)=(=+1)(z—1) =2 - 1.

f@g:(lgiA+ig3B+%c)ﬁ+(

1414 142 1—1 3+1
3 A— 2 B>x+< 3 A+ 3

1
B-C).
EXAMPLE. Let R = Dlxz] where D is a division field of real quaternions. If A = {3, j, k},
then fa = 2%+ 1 is a polynomial of degree 2. There is no polynomial of degree < 2 such
that f(¢) =1, f(j) =0 and f(k) =0.

If A = {1,4,5}, then fa = (x—1)(z®+1) = 2® —2® 4= — 1 is a polynomial of degree
3. Then, there exists a unique polynomial of degree < 3 such that f(1) = A, f(i) = B
and f(j) =C.

There is a relation between the interpolation polynomial problem and the
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0-VANDERMONDE matrix. We define - VANDERMONDE matrix to be

1 1 1

Nl(xo) Nl(Il) Nl(xn—l)
Vng(l'o;-u;l'nfl) — Ng(xo) NQ(Il) NQ(In_l)

:qu(lﬂo) 'Nn71(931) . anl(.l'nfl)

T. Y. LaMm [3] proves that the rank of this matrix is same as the degree of
a minimal polynomial of the set A = {xg,...,2,—1} , and also gives the following
useful formulae for computing it:

(1) For any generalized quaternion division algebra D over a field F of cha-
racteristics # 2, then rank V= > min{2, |A;|} where A = A; U---UA,, is the

partition of A into o-conjugacy classes.
(2) For Clz; —] let 61, ..., 0., be different values among |d|,d € A. Then rank
m

V = > r; where r; = 1 if exactly one element in A has modulus §; and r; = 2

i=1
otherwise.

Using this, we can answer the question about a degree of minimal polynomial
of given set. Now, we will give an exposition on generalization of polynomial
interpolation problem.

Proposition 4.3. Let A = {z1,..., x5} and S = {(r,s,)|1 <r <k,0<s, <n,},
where ny,...,ni € N. Then

(1) There exists a nonzero polynomial f such that f@r)(z,) = 0 for all
(r,sy) € S.

(2) The set I of polynomials such that fCr)(x,) =0 for all (r,s,) € S form
a left ideal in R.

(3) If fa,s is a monic polynomial of the smallest degree in I, then I = Rfn.
We will call fa s the minimal polynomial for the pair (A,S).
Proof. (1) For n,, 1 < r < k the polynomial f has right factor (z — x,)" ~1. It
follows from Theorem 3.3. The left factor is determined by the Product Theorem.

(2) If f,g € I, then f+g € I. Tt follows from additive property of derivatives
at scalar. Let « € R, and f € I. Then (from Proposition 3.1.)

(@) (@) = 3 (3 )biat M),

ik

where ar, = ) (z,) = 0 and f(z) = Y. biat, b; € K. So, (af))(x,) = 0 for all
sy such that (r,s,) € S. Then af € I.

(3) Let f eI, f=qfas—+r where ¢,7 € R and degr < deg fa,s. Then,
0 = f&)(z,) = r(7)(2,) implies r € I. fa s is polynomial of the smallest degree
in I, so 7 = 0. The conclusion is: f € Rfas. O
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Theorem 4.4. Let A = {xy,...,2x} and S = {(r,s,)]1 <r < k,0 < s, < n,}
whereny,...,n, € N and y’~ € K. Then, there exists the unique polynomial f € R
of degree < n—1 wheren = (n,+1), such that f&)(x,.) = ysr for all pairs (r, s,.),
iff the minimal polynomial (in the sense of Proposition 4.3.) fa s is of degree n.

Proof. Let ® : K[z;0] — K™ be a K-linear function of left K-spaces given by
fe (e @) s (rysp)) € 8.

It follows from properties of derivatives. The rest of the proof is same as the proof
of Theorem 4.2. O

EXAMPLE. Let R = Clz;—] and A = {1,4}, S = {(1,0),(2,0),(2,1)}. The minimal
polynomial of the pair (A, S), i.e. the minimal polynomial such that fa s(1) = fa,s(i) =
fa s(i) =01is fa,s(z) = 2> — 1. This is polynomial of degree 2. There is no polynomial
f such that f(1) =1, f(i) =1 and f'(i) =

Let A = {1,i}, S = {(1,0),(1,1),(2,0)}. The minimal polynomial of the pair
(A,9)is fas(z)=(z—(2-20)i2-2) ) (z—1) =+ D)(@z-1)?=2+2" -2 -1
(2 — 2i is value of polynomial (z —1)? = 2% — 2z + 1 at 4). This polynomial is of degree
3, so there is a unique polynomial f of degree < 2 such that f(1) = A, f(¢) = B and
fl(y=c.

Lo(x) is the monic polynomial such that Lo(i) = Li(1) = 0, then Lo(z) =
—2x — 1 + 2i. Ly(z) is the monic polynomial such that Li(1) = (z) = 0. Then
Li(z) = 2> — 1. Lsz(x) is the monic polynomial such that L2(1) = Lj(1) = 0. Then
Lo(x) = (x — 1)%. We find that

f@) = (- 1IZA+§+ LYt A (A= O (

Let A ={1,¢} and S = {(1,0),(1,1),(1,2),(2,0)}. Then

fas(@)=(z—(4i—4)i4i-4)"")(z-1)°=(z+1)(z - 1)°

(45 — 4 is the value of polynomial (z — 1) at 4) is minimal polynomial of degree 4, so
there is unique polynomial of degree < 3 such that f(1) = A, f'(1) = B, f”(1) = C and
f(i) = D. The monic polynomial Lo(z) such that Ly(1) = Ly (1) = Lo(i) = 0 is

3—i B 1+
4 A*5+ 4 C)'

Lo(z) = 2° — 3¢% + 3z — 4i + 3.
The monic polynomial L1 (x) such that Li(1) = LY (1) = L1(i) = 0 is
Li(z) =2® — 32> — 2+ 3.
The monic polynomial La(z) such that La(1) = Ly(1) = L2(i) = 0 is
Ly(z)=(z+1)(z—1)> =2 -2 —2+1.

The monic polynomial Ls(z) such that L3(1) = L5(1) = L5(1) =0 is

)
Ly(z) = (z — 1) =2 — 32> + 32 — 1,
So, desired interpolation polynomial is

f(z) = ALo(1) 'Lo(z) + BLy (1) " Li(2z) + CLY (1) ' La(z) + DLY (1) ' La(z).
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In general, we can find the interpolation polynomial for condition from The-
orem 4.4

f(x) =>ar sfr,s,

where ar g € K are coefficients which we will find from condition f(")(x;) = !
and fr g is the minimal polynomial of the pair (T', S) where

s

I'= {1‘1,...,.I'i_l,I,H_l,...,l'k}

and
S={(r,s;)1 <r <k,r#1i,0<s, <ng}

orI'=A and
S:Smyg:{(T',ST)HgTSk,OSST Snk;()gsﬂgnffm}a

where 1 </ <kand1l<m <ny.
For example: if A = {z1,22} and S = {(1,0), (1,1),(2,0),(2,1)}

f(@) = a1f(ey. 0,0, + 02f (a2} {(2.0).2,1)}
+03 f{21,221,{(1,0),(1,1),(2,0)} T @4 {1 ,22},{(1,0),(2,0),(2,1)}-

If A ={z1,22} and S = {(1,0),...,(1,n —1),(2,0)}, then

n—2

f(x) = Az —21)" + B(x —22) + > aif{xl,wz},sm
1=0

where S; = {(2,0)} U {(1, $)]|0 < s < i}.
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