Logarithmic coefficients and a coefficient conjecture for univalent functions

Milutin Obradović ${ }^{1}$ • Saminathan Ponnusamy ${ }^{2}$. Karl-Joachim Wirths ${ }^{3}$

Received: 30 September 2016 / Accepted: 20 January 2017 / Published online: 3 February 2017
© Springer-Verlag Wien 2017

Abstract

Let $\mathcal{U}(\lambda)$ denote the family of analytic functions $f(z), f(0)=0=f^{\prime}(0)-$ 1 , in the unit disk \mathbb{D}, which satisfy the condition $\left|(z / f(z))^{2} f^{\prime}(z)-1\right|<\lambda$ for some $0<$ $\lambda \leq 1$. The logarithmic coefficients γ_{n} of f are defined by the formula $\log (f(z) / z)=$ $2 \sum_{n=1}^{\infty} \gamma_{n} z^{n}$. In a recent paper, the present authors proposed a conjecture that if $f \in \mathcal{U}(\lambda)$ for some $0<\lambda \leq 1$, then $\left|a_{n}\right| \leq \sum_{k=0}^{n-1} \lambda^{k}$ for $n \geq 2$ and provided a new proof for the case $n=2$. One of the aims of this article is to present a proof of this conjecture for $n=3,4$ and an elegant proof of the inequality for $n=2$, with equality for $f(z)=z /[(1+z)(1+\lambda z)]$. In addition, the authors prove the following sharp inequality for $f \in \mathcal{U}(\lambda)$:

$$
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4}\left(\frac{\pi^{2}}{6}+2 \operatorname{Li}_{2}(\lambda)+\operatorname{Li}_{2}\left(\lambda^{2}\right)\right)
$$

[^0]where Li_{2} denotes the dilogarithm function. Furthermore, the authors prove two such new inequalities satisfied by the corresponding logarithmic coefficients of some other subfamilies of \mathcal{S}.

Keywords Univalent • Starlike • Convex and close-to-convex functions • Subordination - Logarithmic coefficients and coefficient estimates

Mathematics Subject Classification 30C45

1 Introduction

Let \mathcal{A} be the class of functions f analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ with the normalization $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{S} denote the class of functions f from \mathcal{A} that are univalent in \mathbb{D}. Then the logarithmic coefficients γ_{n} of $f \in \mathcal{S}$ are defined by the formula

$$
\begin{equation*}
\frac{1}{2} \log \left(\frac{f(z)}{z}\right)=\sum_{n=1}^{\infty} \gamma_{n} z^{n}, \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

These coefficients play an important role for various estimates in the theory of univalent functions. When we require a distinction, we use the notation $\gamma_{n}(f)$ instead of γ_{n}. For example, the Koebe function $k(z)=z\left(1-e^{i \theta} z\right)^{-2}$ for each θ has logarithmic coefficients $\gamma_{n}(k)=e^{i n \theta} / n, n \geq 1$. If $f \in \mathcal{S}$ and $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, then by (1) it follows that $2 \gamma_{1}=a_{2}$ and hence, by the Bieberbach inequality, $\left|\gamma_{1}\right| \leq 1$. Let \mathcal{S}^{\star} denote the class of functions $f \in \mathcal{S}$ such that $f(\mathbb{D})$ is starlike with respect to the origin. Functions $f \in \mathcal{S}^{\star}$ are characterized by the condition $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ in \mathbb{D}. The inequality $\left|\gamma_{n}\right| \leq 1 / n$ holds for starlike functions $f \in \mathcal{S}$, but is false for the full class \mathcal{S}, even in order of magnitude. See [4, Theorem 8.4 on page 242]. In [6], Girela pointed out that this bound is actually false for the class of close-to-convex functions in \mathbb{D} which is defined as follows: A function $f \in \mathcal{A}$ is called close-to-convex, denoted by $f \in \mathcal{K}$, if there exists a real α and a $g \in \mathcal{S}^{\star}$ such that

$$
\operatorname{Re}\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}\right)>0, \quad z \in \mathbb{D}
$$

For $0 \leq \beta<1$, a function $f \in \mathcal{S}$ is said to belong to the class of starlike functions of order β, denoted by $f \in \mathcal{S}^{\star}(\beta)$, if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\beta$ for $z \in \mathbb{D}$. Note that $\mathcal{S}(0)=: \mathcal{S}^{\star}$. The class of all convex functions of order β, denoted by $\mathcal{C}(\beta)$, is then defined by $\mathcal{C}(\beta)=\left\{f \in \mathcal{S}: z f^{\prime} \in \mathcal{S}^{\star}(\beta)\right\}$. The class $\mathcal{C}(0)=: \mathcal{C}$ is usually referred to as the class of convex functions in \mathbb{D}. With the class \mathcal{S} being of the first priority, its subclasses such as $\mathcal{S}^{\star}, \mathcal{K}$, and \mathcal{C}, respectively, have been extensively studied in the literature and they appear in different contexts. We refer to $[4,7,10,12]$ for a general reference related to the present study. In [5, Theorem 4], it was shown that the
logarithmic coefficients γ_{n} of every function $f \in \mathcal{S}$ satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{\pi^{2}}{6} \tag{2}
\end{equation*}
$$

and the equality is attained for the Koebe function. The proof uses ideas from the work of Baernstein [3] on integral means. However, this result is easy to prove (see Theorem 1) in the case of functions in the class $\mathcal{U}:=\mathcal{U}(1)$ which is defined as follows:

$$
\mathcal{U}(\lambda)=\left\{f \in \mathcal{A}:\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<\lambda, \quad z \in \mathbb{D}\right\},
$$

where $\lambda \in(0,1]$. It is known that $[1,2,11]$ every $f \in \mathcal{U}$ is univalent in \mathbb{D} and hence, $\mathcal{U}(\lambda) \subset \mathcal{U} \subset \mathcal{S}$ for $\lambda \in(0,1]$. The present authors have established many interesting properties of the family $\mathcal{U}(\lambda)$. See [10] and the references therein. For example, if $f \in \mathcal{U}(\lambda)$ for some $0<\lambda \leq 1$ and $a_{2}=f^{\prime \prime}(0) / 2$, then we have the subordination relations

$$
\begin{equation*}
\frac{f(z)}{z} \prec \frac{1}{1+(1+\lambda) z+\lambda z^{2}}=\frac{1}{(1+z)(1+\lambda z)}, z \in \mathbb{D} \tag{3}
\end{equation*}
$$

and

$$
\frac{z}{f(z)}+a_{2} z \prec 1+2 \lambda z+\lambda z^{2}, z \in \mathbb{D}
$$

Here \prec denotes the usual subordination [4,7,12]. In addition, the following conjecture was proposed in [10].

Conjecture 1 Suppose that $f \in \mathcal{U}(\lambda)$ for some $0<\lambda \leq 1$. Then $\left|a_{n}\right| \leq \sum_{k=0}^{n-1} \lambda^{k}$ for $n \geq 2$.

In Theorem 1, we present a direct proof of an inequality analogous to (2) for functions in $\mathcal{U}(\lambda)$ and in Corollary 1, we obtain the inequality (2) as a special case for \mathcal{U}. At the end of Sect. 2, we also consider estimates of the type (2) for some interesting subclasses of univalent functions. However, Conjecture 1 remains open for $n \geq 5$. On the other hand, the proof for the case $n=2$ of this conjecture is due to [17] and an alternate proof was obtained recently by the present authors in [10, Theorem 1]. In this paper, we show that Conjecture 1 is true for $n=3,4$, and our proof includes an elegant proof of the case $n=2$. The main results and their proofs are presented in Sects. 2 and 3.

2 Logarithmic coefficients of functions in $\mathcal{U}(\lambda)$

Theorem 1 For $0<\lambda \leq 1$, the logarithmic coefficients of $f \in \mathcal{U}(\lambda)$ satisfy the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4}\left(\frac{\pi^{2}}{6}+2 \operatorname{Li}_{2}(\lambda)+\operatorname{Li}_{2}\left(\lambda^{2}\right)\right) \tag{4}
\end{equation*}
$$

where Li_{2} denotes the dilogarithm function given by

$$
\operatorname{Li}_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}=z \int_{0}^{1} \frac{\log (1 / t)}{1-t z} d t
$$

The inequality (4) is sharp. Further, there exists a function $f \in \mathcal{U}$ such that $\left|\gamma_{n}\right|>$ $\left(1+\lambda^{n}\right) /(2 n)$ for some n.

Proof Let $f \in \mathcal{U}(\lambda)$. Then, by (3), we have

$$
\frac{z}{f(z)} \prec(1-z)(1-\lambda z)
$$

which clearly gives

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} z^{n}=\log \sqrt{\frac{f(z)}{z}} \prec \frac{-\log (1-z)-\log (1-\lambda z)}{2}=\sum_{n=1}^{\infty} \frac{1}{2 n}\left(1+\lambda^{n}\right) z^{n} \tag{5}
\end{equation*}
$$

Again, by Rogosinski's theorem (see [4, 6.2]), we obtain

$$
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \sum_{n=1}^{\infty} \frac{1}{4 n^{2}}\left(1+\lambda^{n}\right)^{2}=\frac{1}{4}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}+2 \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n^{2}}+\sum_{n=1}^{\infty} \frac{\lambda^{2 n}}{n^{2}}\right)
$$

and the desired inequality (4) follows. For the function

$$
g_{\lambda}(z)=\frac{z}{(1-z)(1-\lambda z)},
$$

we find that $\gamma_{n}\left(g_{\lambda}\right)=\left(1+\lambda^{n}\right) /(2 n)$ for $n \geq 1$ and therefore, we have the equality in (4). Note that $g_{1}(z)$ is the Koebe function $z /(1-z)^{2}$.

From the relation (5), we cannot conclude that

$$
\left|\gamma_{n}(f)\right| \leq\left|\gamma_{n}\left(g_{\lambda}\right)\right|=\frac{1+\lambda^{n}}{2 n} \text { for } f \in \mathcal{U}(\lambda) .
$$

Indeed for the function f_{λ} defined by

$$
\begin{equation*}
f_{\lambda}(z)=\frac{z}{(1-z)(1-\lambda z)(1+(\lambda /(1+\lambda)) z)} \tag{6}
\end{equation*}
$$

we find that

$$
\frac{z}{f_{\lambda}(z)}=1+\frac{\lambda-(1+\lambda)^{2}}{1+\lambda} z+\frac{\lambda^{2}}{1+\lambda} z^{3}
$$

Fig. 1 The image of $f_{\lambda}(z)=\frac{z}{(1-z)(1-\lambda z)(1+(\lambda /(1+\lambda)) z)}$ under \mathbb{D} for certain values of λ
and

$$
\left(\frac{z}{f_{\lambda}(z)}\right)^{2} f_{\lambda}^{\prime}(z)-1=-\frac{2 \lambda^{2}}{1+\lambda} z^{3}=-\left(1-\frac{(1+2 \lambda)(1-\lambda)}{1+\lambda}\right) z^{3}
$$

which clearly shows that $f_{\lambda} \in \mathcal{U}(\lambda)$. The images of \mathbb{D} under $f_{\lambda}(z)$ for certain values of λ are shown in Fig. 1a-d. Moreover, for this function, we have

$$
\begin{aligned}
\log \left(\frac{f_{\lambda}(z)}{z}\right) & =-\log (1-z)-\log (1-\lambda z)-\log \left(1+\frac{\lambda}{1+\lambda^{2}} z\right) \\
& =2 \sum_{n=1}^{\infty} \gamma_{n}\left(f_{\lambda}\right) z^{n}
\end{aligned}
$$

where

$$
\gamma_{n}\left(f_{\lambda}\right)=\frac{1}{2}\left(\frac{1+\lambda^{n}}{n}+(-1)^{n} \frac{\lambda^{n}}{(1+\lambda)^{n}}\right) .
$$

This contradicts the above inequality at least for even integer values of $n \geq 2$. Moreover, with these $\gamma_{n}\left(f_{\lambda}\right)$ for $n \geq 1$, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\gamma_{n}\left(f_{\lambda}\right)\right|^{2}= & \frac{1}{4} \sum_{n=1}^{\infty}\left\{\frac{\left(1+\lambda^{n}\right)^{2}}{n^{2}}+2 \frac{(-1)^{n}}{n}\left(\left(\frac{\lambda^{2}}{1+\lambda}\right)^{n}\right.\right. \\
& \left.\left.+\left(\frac{\lambda}{1+\lambda}\right)^{n}\right)+\left(\frac{\lambda}{1+\lambda}\right)^{2 n}\right\}
\end{aligned}
$$

and by a computation, it follows easily that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\gamma_{n}\left(f_{\lambda}\right)\right|^{2}= & \frac{1}{4}\left(\frac{\pi^{2}}{6}+2 \operatorname{Li}_{2}(\lambda)+\operatorname{Li}_{2}\left(\lambda^{2}\right)\right) \\
& -\frac{1}{2} \log \left[\left(1+\frac{\lambda^{2}}{1+\lambda}\right)\left(1+\frac{\lambda}{1+\lambda}\right)\right]+\frac{\lambda^{2}}{4(1+2 \lambda)} \\
< & \frac{1}{4}\left(\frac{\pi^{2}}{6}+2 \operatorname{Li}_{2}(\lambda)+\operatorname{Li}_{2}\left(\lambda^{2}\right)\right) \text { for } 0<\lambda \leq 1,
\end{aligned}
$$

and we complete the proof.
Corollary 1 The logarithmic coefficients of $f \in \mathcal{U}$ satisfy the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \tag{7}
\end{equation*}
$$

We have equality in the last inequality for the Koebe function $k(z)=z\left(1-e^{i \theta} z\right)^{-2}$. Further there exists a function $f \in \mathcal{U}$ such that $\left|\gamma_{n}\right|>1 / n$ for some n.

Remark 1 From the analytic characterization of starlike functions, it is easy to see that for $f \in \mathcal{S}^{\star}$,

$$
\frac{z f^{\prime}(z)}{f(z)}-1=z\left(\log \left(\frac{f(z)}{z}\right)\right)^{\prime}=2 \sum_{n=1}^{\infty} n \gamma_{n} z^{n} \prec \frac{2 z}{1-z}
$$

and thus, by Rogosinski's result, we obtain that $\left|\gamma_{n}\right| \leq 1 / n$ for $n \geq 1$. In fact for starlike functions of order $\alpha, \alpha \in[0,1)$, the corresponding logarithmic coefficients satisfy the inequality $\left|\gamma_{n}\right| \leq(1-\alpha) / n$ for $n \geq 1$. Moreover, one can quickly obtain that

$$
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq(1-\alpha)^{2} \frac{\pi^{2}}{6}
$$

if $f \in \mathcal{S}^{\star}(\alpha), \alpha \in[0,1)$ (See also the proof of Theorem 2 and Remark 3). As remarked in the proof of Theorem 1, from the relation (7), we cannot conclude the same fact, namely, $\left|\gamma_{n}\right| \leq 1 / n$ for $n \geq 1$, for the class \mathcal{U} although the Koebe function $k(z)=z /(1-z)^{2}$ belongs to $\mathcal{U} \cap \mathcal{S}^{\star}$. For example, if we set $\lambda=1$ in (6), then we have

$$
\frac{z}{f_{1}(z)}=(1-z)^{2}\left(1+\frac{z}{2}\right)=1-\frac{3}{2} z+\frac{z^{3}}{2}
$$

where $f_{1} \in \mathcal{U}$ and for this function, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\gamma_{n}\left(f_{1}\right)\right|^{2}= & \sum_{n=1}^{\infty}\left(\frac{1}{n}+(-1)^{n} \frac{1}{2^{n+1}}\right)^{2}=\frac{\pi^{2}}{6}+\frac{1}{12} \\
& -\log \frac{3}{2}<\frac{\pi^{2}}{6}
\end{aligned}
$$

On the other hand, it is a simple exercise to verify that $f_{1} \notin \mathcal{S}^{\star}$. The graph of this function is shown in Fig. 1d.

Let $\mathcal{G}(\alpha)$ denote the class of locally univalent normalized analytic functions f in the unit disk $|z|<1$ satisfying the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<1+\frac{\alpha}{2} \quad \text { for }|z|<1
$$

and for some $0<\alpha \leq 1$. Set $\mathcal{G}(1)=: \mathcal{G}$. It is known (see [13, Equation (16)]) that $\mathcal{G} \subset \mathcal{S}^{\star}$ and thus, functions in $\mathcal{G}(\alpha)$ are starlike. This class has been studied extensively in the recent past, see for instance [9] and the references therein. We now consider the estimate of the type (2) for the subclass $\mathcal{G}(\alpha)$.

Theorem 2 Let $0<\alpha \leq 1$ and $\mathcal{G}(\alpha)$ be defined as above. Then the logarithmic coefficients γ_{n} of $f \in \mathcal{G}(\alpha)$ satisfy the inequalities

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{\alpha}{4(\alpha+2)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{\alpha^{2}}{4} \operatorname{Li}_{2}\left(\frac{1}{(1+\alpha)^{2}}\right) \tag{9}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\left|\gamma_{n}\right| \leq \frac{\alpha}{2(\alpha+1) n} \text { for } n \geq 1 \tag{10}
\end{equation*}
$$

Proof If $f \in \mathcal{G}(\alpha)$, then we have (see eg. [8, Theorem 1] and [13])

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-1 \prec \frac{(1+\alpha)(1-z)}{1+\alpha-z}-1=-\alpha\left(\frac{z /(1+\alpha)}{1-(z /(1+\alpha))}\right), \quad z \in \mathbb{D} \tag{11}
\end{equation*}
$$

which, in terms of the logarithmic coefficients γ_{n} of f defined by (1), is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(-2 n \gamma_{n}\right) z^{n} \prec \alpha \sum_{n=1}^{\infty} \frac{z^{n}}{(1+\alpha)^{n}} \tag{12}
\end{equation*}
$$

Again, by Rogosinski's result, we obtain that

$$
\sum_{n=1}^{\infty} 4 n^{2}\left|\gamma_{n}\right|^{2} \leq \alpha^{2} \sum_{n=1}^{\infty} \frac{1}{(1+\alpha)^{2 n}}=\frac{\alpha}{\alpha+2}
$$

which is (8).
Now, since the sequence $A_{n}=\frac{1}{(1+\alpha)^{n}}$ is convex decreasing, we obtain from (12) and [15, Theorem VII, p.64] that

$$
\left|-2 n \gamma_{n}\right| \leq A_{1}=\frac{1}{1+\alpha}
$$

which implies the desired inequality (10). As an alternate approach to prove this inequality, we may rewrite (11) as

$$
\sum_{n=1}^{\infty}\left(2 n \gamma_{n}\right) z^{n}=z\left(\log \left(\frac{f(z)}{z}\right)\right)^{\prime} \prec \phi(z)=-\alpha\left(\frac{z /(1+\alpha)}{1-(z /(1+\alpha))}\right)
$$

and, since $\phi(z)$ is convex in \mathbb{D} with $\phi^{\prime}(0)=-\alpha /(1+\alpha)$, it follows from Rogosinski's result (see also [4, Theorem 6.4(i), p. 195]) that $\left|2 n \gamma_{n}\right| \leq \alpha /(1+\alpha)$. Again, this proves the inequality (10).

Finally, we prove the inequality (9). From the formula (12) and the result of Rogosinski (see also [12, Theorem 2.2] and [4, Theorem 6.2]), it follows that for $k \in \mathbb{N}$ the inequalities

$$
\sum_{n=1}^{k} n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{\alpha^{2}}{4} \sum_{n=1}^{k} \frac{1}{(1+\alpha)^{2 n}}
$$

are valid. Clearly, this implies the inequality (8) as well. On the other hand, consider these inequalities for $k=1, \ldots, N$, and multiply the k-th inequality by the factor $\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}$, if $k=1, \ldots, N-1$ and by $\frac{1}{N^{2}}$ for $k=N$. Then the summation of the multiplied inequalities yields

$$
\begin{aligned}
\sum_{k=1}^{N}\left|\gamma_{k}\right|^{2} & \leq \frac{\alpha^{2}}{4} \sum_{k=1}^{N} \frac{1}{k^{2}(1+\alpha)^{2 k}} \\
& \leq \frac{\alpha^{2}}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}(1+\alpha)^{2 k}} \\
& =\frac{\alpha^{2}}{4} \operatorname{Li}_{2}\left(\frac{1}{(1+\alpha)^{2}}\right) \text { for } N=1,2, \ldots
\end{aligned}
$$

which proves the desired assertion (9) if we allow $N \rightarrow \infty$.
Corollary 2 The logarithmic coefficients γ_{n} of $f \in \mathcal{G}:=\mathcal{G}(1)$ satisfy the inequalities

$$
\sum_{n=1}^{\infty} n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{1}{12} \text { and } \sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4} \operatorname{Li}_{2}\left(\frac{1}{4}\right)
$$

The results are the best possible as the function $f_{0}(z)=z-\frac{1}{2} z^{2}$ shows. Also we have $\left|\gamma_{n}\right| \leq 1 /(4 n)$ for $n \geq 1$.

Remark 2 For the function $f_{0}(z)=z-\frac{1}{2} z^{2}$, we have that $\gamma_{n}\left(f_{0}\right)=-\frac{1}{n 2^{n+1}}$ for $n=1,2, \ldots$ and thus, it is reasonable to expect that the inequality $\left|\gamma_{n}\right| \leq \frac{1}{n 2^{n+1}}$ is valid for the logarithmic coefficients γ_{n} of each $f \in \mathcal{G}$. But that is not the case as the function f_{n} defined by $f_{n}^{\prime}(z)=\left(1-z^{n}\right)^{\frac{1}{n}}$ shows. Indeed for this function we have

$$
1+\frac{z f_{n}^{\prime \prime}(z)}{f_{n}^{\prime}(z)}=\frac{1-2 z^{n}}{1-z^{n}}
$$

showing that $f_{n} \in \mathcal{G}$. Moreover,

$$
\log \frac{f_{n}(z)}{z}=-\frac{1}{n(n+1)} z^{n}+\cdots,
$$

which implies that $\left|\gamma_{n}\left(f_{n}\right)\right|=\frac{1}{2 n(n+1)}$ for $n=1,2, \ldots$, and observe that $\frac{1}{2 n(n+1)}>$ $\frac{1}{n 2^{n+1}}$ for $n=2,3, \ldots$. Thus, we conjecture that the logarithmic coefficients γ_{n} of each $f \in \mathcal{G}$ satisfy the inequality $\left|\gamma_{n}\right| \leq \frac{1}{2 n(n+1)}$ for $n=1,2, \ldots$. Clearly, Corollary 2 shows that the conjecture is true for $n=1$.

Remark 3 Let $f \in \mathcal{C}(\alpha)$, where $0 \leq \alpha<1$. Then we have [18]

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-1 \prec G_{\alpha}(z)-1=\sum_{n=1}^{\infty} \delta_{n} z^{n} \tag{13}
\end{equation*}
$$

where δ_{n} is real for each n,

$$
G_{\alpha}(z)= \begin{cases}\frac{(2 \alpha-1) z}{(1-z)\left[(1-z)^{1-2 \alpha}-1\right]} & \text { if } \alpha \neq 1 / 2 \\ \frac{-z}{(1-z) \log (1-z)} & \text { if } \alpha=1 / 2\end{cases}
$$

and

$$
\beta(\alpha)=G_{\alpha}(-1)=\inf _{|z|<1} G_{\alpha}(z)= \begin{cases}\frac{1-2 \alpha}{2\left[2^{1-2 \alpha}-1\right]} & \text { if } 0 \leq \alpha \neq 1 / 2<1, \\ \frac{1}{2 \log 2} & \text { if } \alpha=1 / 2\end{cases}
$$

so that $f \in \mathcal{S}^{\star}(\beta(\alpha))$. Also, we have [16]

$$
\frac{f(z)}{z} \prec \frac{K_{\alpha}(z)}{z}= \begin{cases}\frac{(1-z)^{2 \alpha-1}-1}{1-2 \alpha} & \text { if } 0 \leq \alpha \neq 1 / 2<1, \\ -\frac{\log (1-z)}{z} & \text { if } \alpha=1 / 2\end{cases}
$$

and $K_{\alpha}(z) / z$ is univalent and convex (not normalized in the usual sense) in \mathbb{D}.
Now, the subordination relation (13), in terms of the logarithmic coefficients γ_{n} of f defined by (1), is equivalent to

$$
2 \sum_{n=1}^{\infty} n \gamma_{n} z^{n} \prec G_{\alpha}(z)-1=\sum_{n=1}^{\infty} \delta_{n} z^{n}, \quad z \in \mathbb{D}
$$

and thus,

$$
\begin{equation*}
\sum_{n=1}^{k} n^{2}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4} \sum_{n=1}^{k} \delta_{n}^{2} \quad \text { for each } k \in \mathbb{N} \text {. } \tag{14}
\end{equation*}
$$

Since f is starlike of order $\beta(\alpha)$, it follows that

$$
\frac{z K_{\alpha}^{\prime}(z)}{K_{\alpha}(z)}-1=G_{\alpha}(z)-1 \prec 2(1-\beta(\alpha)) \frac{z}{1-z}
$$

and therefore, $\left|\delta_{n}\right| \leq 2(1-\beta(\alpha))$ for each $n \geq 1$. Again, the relation (14) by the previous approach gives

$$
\sum_{k=1}^{N}\left|\gamma_{k}\right|^{2} \leq \frac{1}{4} \sum_{k=1}^{N} \frac{\delta_{k}^{2}}{k^{2}} \leq(1-\beta(\alpha))^{2} \sum_{k=1}^{N} \frac{1}{k^{2}}
$$

for $N=1,2, \ldots$, and hence, we have

$$
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{1}{4} \sum_{n=1}^{\infty} \frac{\delta_{n}^{2}}{n^{2}} \leq(1-\beta(\alpha))^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=(1-\beta(\alpha))^{2} \frac{\pi^{2}}{6}
$$

and equality holds in the first inequality for $K_{\alpha}(z)$. In particular, if f is convex then $\beta(0)=1 / 2$ and hence, the last inequality reduces to

$$
\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2} \leq \frac{\pi^{2}}{24}
$$

which is sharp as the convex function $z /(1-z)$ shows.

3 Proof of Conjecture 1 for $\boldsymbol{n}=2,3,4$

Theorem 3 Let $f \in \mathcal{U}(\lambda)$ for $0<\lambda \leq 1$ and let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1-\lambda^{n}}{1-\lambda} \text { for } 0<\lambda<1 \text { and } n=2,3,4, \tag{15}
\end{equation*}
$$

and $\left|a_{n}\right| \leq n$ for $\lambda=1$ and $n \geq 2$. The results are the best possible.
Proof The case $\lambda=1$ is well-known because $\mathcal{U}=\mathcal{U}(1) \subset \mathcal{S}$ and hence, by the de Branges theorem, we have $\left|a_{n}\right| \leq n$ for $f \in \mathcal{U}$ and $n \geq 2$. Here is an alternate proof without using the de Branges theorem. From the subordination result (3) with $\lambda=1$, one has

$$
\frac{f(z)}{z} \prec \frac{1}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n-1}
$$

and thus, by Rogosinski's theorem [4, Theorem 6.4(ii), p. 195], it follows that $\left|a_{n}\right| \leq n$ for $n \geq 2$.

So, we may consider $f \in \mathcal{U}(\lambda)$ with $0<\lambda<1$. The result for $n=2$, namely, $\left|a_{2}\right| \leq 1+\lambda$ is proved in $[10,17]$ and thus, it suffices to prove (15) for $n=3,4$ although our proof below is elegant and simple for the case $n=2$ as well. To do this, we begin to recall from (3) that

$$
\frac{f(z)}{z} \prec \frac{1}{(1-z)(1-\lambda z)}=1+\sum_{n=1}^{\infty} \frac{1-\lambda^{n+1}}{1-\lambda} z^{n}
$$

and thus

$$
\frac{f(z)}{z}=\frac{1}{(1-z \omega(z))(1-\lambda z \omega(z))},
$$

where ω is analytic in \mathbb{D} and $|\omega(z)| \leq 1$ for $z \in \mathbb{D}$. In terms of series formulation, we have

$$
\sum_{n=1}^{\infty} a_{n+1} z^{n}=\sum_{n=1}^{\infty} \frac{1-\lambda^{n+1}}{1-\lambda} \omega^{n}(z) z^{n}
$$

We now set $\omega(z)=c_{1}+c_{2} z+\cdots$ and rewrite the last relation as

$$
\begin{equation*}
\sum_{n=1}^{\infty}(1-\lambda) a_{n+1} z^{n}=\sum_{n=1}^{\infty}\left(1-\lambda^{n+1}\right)\left(c_{1}+c_{2} z+\cdots\right)^{n} z^{n} \tag{16}
\end{equation*}
$$

By comparing the coefficients of z^{n} for $n=1,2,3$ on both sides of (16), we obtain

$$
\left\{\begin{array}{l}
(1-\lambda) a_{2}=\left(1-\lambda^{2}\right) c_{1} \tag{17}\\
(1-\lambda) a_{3}=\left(1-\lambda^{2}\right) c_{2}+\left(1-\lambda^{3}\right) c_{1}^{2} \\
(1-\lambda) a_{4}=\left(1-\lambda^{2}\right)\left(c_{3}+\mu c_{1} c_{2}+\nu c_{1}^{3}\right)
\end{array}\right.
$$

where

$$
\mu=2 \frac{1-\lambda^{3}}{1-\lambda^{2}} \text { and } v=\frac{1-\lambda^{4}}{1-\lambda^{2}} .
$$

It is well-known that $\left|c_{1}\right| \leq 1$ and $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$. From the first relation in (17) and the fact that $\left|c_{1}\right| \leq 1$, we obtain

$$
(1-\lambda)\left|a_{2}\right|=\left(1-\lambda^{2}\right)\left|c_{1}\right| \leq 1-\lambda^{2},
$$

which gives a new proof for the inequality $\left|a_{2}\right| \leq 1+\lambda$.
Next we present a proof of (15) for $n=3$. Using the second relation in (17), $\left|c_{1}\right| \leq 1$ and the inequality $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$, we get

$$
\begin{aligned}
(1-\lambda)\left|a_{3}\right| & \leq\left(1-\lambda^{2}\right)\left|c_{2}\right|+\left(1-\lambda^{3}\right)\left|c_{1}\right|^{2} \\
& \leq\left(1-\lambda^{2}\right)\left(1-\left|c_{1}\right|^{2}\right)+\left(1-\lambda^{3}\right)\left|c_{1}\right|^{2} \\
& =1-\lambda^{2}+\left(\lambda^{2}-\lambda^{3}\right)\left|c_{1}\right|^{2} \\
& \leq 1-\lambda^{3},
\end{aligned}
$$

which implies $\left|a_{3}\right| \leq 1+\lambda+\lambda^{2}$.
Finally, we present a proof of (15) for $n=4$. To do this, we recall the sharp upper bounds for the functionals $\left|c_{3}+\mu c_{1} c_{2}+v c_{1}^{3}\right|$ when μ and v are real. In [14], Prokhorov and Szynal proved among other results that

$$
\left|c_{3}+\mu c_{1} c_{2}+v c_{1}^{3}\right| \leq|v|
$$

if $2 \leq|\mu| \leq 4$ and $v \geq(1 / 12)\left(\mu^{2}+8\right)$. From the third relation in (17), this condition is fulfilled and thus, we find that

$$
(1-\lambda)\left|a_{4}\right|=\left(1-\lambda^{2}\right)\left|c_{3}+\mu c_{1} c_{2}+v c_{1}^{3}\right| \leq\left(1-\lambda^{2}\right)\left(\frac{1-\lambda^{4}}{1-\lambda^{2}}\right)=1-\lambda^{4}
$$

which proves the desired inequality $\left|a_{4}\right| \leq 1+\lambda+\lambda^{2}+\lambda^{3}$.

Acknowledgements The work of the first author was supported by MNZZS Grant, No. ON174017, Serbia. The second author is on leave from the IIT Madras.

References

1. Aksentév, L.A.: Sufficient conditions for univalence of regular functions (Russian). Izv. Vysš. Učebn. Zaved. Matematika 1958(4), 3-7 (1958)
2. Aksentév, L.A., Avhadiev, F.G.: A certain class of univalent functions (Russian). Izv. Vysš. Učebn. Zaved. Matematika 1970(10), 12-20 (1970)
3. Baernstein, A.: Integral means, univalent functions and circular symmetrization. Acta Math. 133, 139-169 (1974)
4. Duren, P.: Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo). Springer, Berlin (1983)
5. Duren, P.L., Leung, Y.J.: Logarithmic coefficients of univalent functions. J. Anal. Math. 36, 36-43 (1979)
6. Girela, D.: Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. Ser. A1 25, 337-350 (2000)
7. Goodman, A.W.: Univalent Functions. Mariner, Tampa (1983)
8. Jovanović, I., Obradović, M.: A note on certain classes of univalent functions. Filomat No. 9, part 1, pp. 69-72 (1995)
9. Obradović, M., Ponnusamy, S., Wirths, K.-J.: Coefficient characterizations and sections for some univalent functions. Sib. Math. J. 54(1), 679-696 (2013)
10. Obradović, M., Ponnusamy, S., Wirths, K.-J.: Geometric studies on the class $\mathcal{U}(\lambda)$. Bull. Malays. Math. Sci. Soc. 39(3), 1259-1284 (2016)
11. Ozaki, S., Nunokawa, M.: The Schwarzian derivative and univalent functions. Proc. Am. Math. Soc. 33, 392-394 (1972)
12. Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)
13. Ponnusamy, S., Rajasekaran, S.: New sufficient conditions for starlike and univalent functions. Soochow J. Math. 21, 193-201 (1995)
14. Prokhorov, D.V., Szynal, J.: Inverse coefficients for (α, β)-convex functions. Ann. Univ. Mariae CurieSkłodowska 35, 125-143 (1981)
15. Rogosinski, W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48(2), 48-82 (1943)
16. Silvia, E.M.: The quotient of a univalent function with its partial sum. In: Topics in Complex Analysis (Fairfield, Conn.), pp. 105-111 (1983)
17. Vasudevarao, A., Yanagihara, H.: On the growth of analytic functions in the class $\mathcal{U}(\lambda)$. Comput. Methods Funct. Theory 13, 613-634 (2013)
18. Wilken, D.R., Feng, J.A.: A remark on convex and starlike functions. J. Lond. Math. Soc. 21(2), 287-290 (1980)

[^0]: Communicated by A. Constantin.
 \boxtimes Saminathan Ponnusamy
 samy@isichennai.res.in; samy@iitm.ac.in
 Milutin Obradović
 obrad@grf.bg.ac.rs
 Karl-Joachim Wirths
 kjwirths@tu-bs.de
 1 Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia

 2 Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India
 3 Institut für Analysis und Algebra, TU Braunschweig, 38106 Braunschweig, Germany

