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Some Results for a Class of Subordinate Functions
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Abstract. In this article, a class of subordinate functions is introduced. The bounds of the coefficients of
the functions in this class are investigated.

1. Introduction

Let A denote the family of all analytic functions in the unit disk D := {z ∈ C : |z| < 1} satisfying the
normalization f (0) = 0 = f ′(0) − 1. Let S be the subset of A consisting of functions f that are univalent in
D. A function f ∈ S is called starlike if f (D) is starlike with respect to the origin. The class of all starlike
functions is denoted by S∗. A function f ∈ S∗ if and only if

Re
z f ′(z)

f (z)
> 0 (|z| < 1).

A function f ∈ S is called convex if f (D) is a convex set. The class of all convex functions is denoted by K.
A function f ∈ K if and only if

Re[1 +
z f ′′(z)
f ′(z)

] > 0 (|z| < 1).

A function f analytic inD is said to be typically real if it has real values on the real axis and nonreal values
elsewhere. Let T denote the class of all typically real functions f such that f (0) = 0 and f ′(0) = 1.

Let f (z) and 1(z) be analytic in the unit diskD. We say that f (z) is subordinate to 1(z), written f (z) ≺ 1(z),
if

f (z) = 1(ω(z)), |z| < 1

for some analytic function ω(z) with |ω(z)| ≤ |z|. If 1(z) is univalent, then f (z) ≺ 1(z) if and only if f (0) = 1(0)
and f (D) ⊂ 1(D).

Let

U f (z) :=
(

z
f (z)

)2

f ′(z) − 1
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and let
U(λ) :=

{
f ∈ A : |U f (z)| < λ, z ∈ D

}
,

where 0 < λ ≤ 1. We put U(1) = U. It is well known that the functions in U are univalent[1]. Since
U(λ) ⊂ U for 0 < λ ≤ 1, the functions inU(λ) are also univalent when 0 < λ ≤ 1. Up to now, the classU
have been studied in detail for many years[2–6].

LetUa, 0 ≤ a ≤ 1, denote the class of functions f ∈ A such that

z
f (z)
≺ 1 − 2az + az2, (1)

that is
z

f (z)
= 1 − 2aω(z) + aω2(z) (2)

with ω(z) analytic inD and satisfying |ω(z)| ≤ |z|.
In the case of a = 0, the only function in the classU0 is f (z) = z. If a = 1, the condition (1) becomes

z
f (z)
≺ (1 − z)2,

Or equivalently,
f (z)
z
≺

1
(1 − z)2 .

It is known that if f ∈ S∗, then
f (z)
z
≺

1
(1 − z)2 .

Thus S∗ ⊂ U1([7], p.37). In [8] M.Obradović proved thatU ⊂ U1. In the subsequent part of this article, we
assume that 0 < a ≤ 1.

Examples.

1. Let h(z) = z
1−az , 0 < a ≤ 1. Then h(z) ∈ Ua. To prove this, we need to show that

q1(z) := 1 − az ≺ 1 − 2az + az2 := q(z).

Since the function q is univalent in D (we can check it directly by definition) and q1(0) = q(0) = 1, it is
enough to prove that q1(D) ⊂ q(D)([9], p.190). The boundary of q(D) is given by

q(eiθ) = 1 − 2aeiθ + ae2iθ = u + iv,

where
u = 1 − 2a cosθ + a cos(2θ), v = −2a sinθ + a sin(2θ).

If we denote by d(1,M) the distance between the points 1 and M, where M belongs to the boundary of q(D),
then

d2(1,M) = (u − 1)2 + v2 = 5a2
− 4a2 cosθ ≥ a2,

that is, d(1,M) ≥ a, which means that q(D) contains the disk with center 1 and with radius a, and this disk
is just q1(D). It is clear that h(z) = z

1−az , with 0 < a ≤ 1, is univalent.

2. The function fa(z) ∈ Ua defined by (2) with ω(z) = z is of the following form:

fa(z) =
z

1 − 2az + az2 = z + 2az2 + (4a − 1)az3 + 4a2(2a − 1)z4 + .... (3)
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We can prove directly by definition that fa is univalent inD.

3. Let’s put ω(z) = zk in (2), where k ≥ 2 is an integer number, then we have the function

fk(z) =
z

1 − 2azk + az2k
∈ Ua

and

f ′k (z) =
1 + 2a(k − 1)zk

− (2k − 1)az2k

(1 − 2azk + az2k)2
.

After some elementary calculation we conclude that f ′k has zeros inD if k >
[

1
4

(
1
a + 3

)]
, which implies that

the function fk is not univalent for such k.

In this article we obtain additional information on the classUa.

2. Main results

Lemma 2.1. Let ω(z) be a nonconstant analytic function in D with ω(0) = 0. If |ω| attains its maximum value on
the circle |z| = r < 1 at z0, then there exists m ≥ 1 such that z0ω′(z0) = mω(z0).

Lemma 1 is due to Jack[10].

Theorem 2.2. Let f ∈ U(a), 0 < a ≤ 1, with z
f (z) , 1 − a for every z ∈ D, then f ∈ Ua.

Proof. Let f ∈ U(a), 0 < a ≤ 1, and let f satisfy the relation (2). Then ω(0) = 0 and since

a(ω(z) − 1)2 =
z

f (z)
− (1 − a) , 0,

we claim that ω is analytic in D. We want to prove that |ω(z)| < 1, z ∈ D. If not, then there exists a
z0, z0 ∈ D, such that |ω(z0)| = 1. If we put ω(z0) = eiϕ for some real ϕ, then by using Jack’s lemma we have
z0ω′(z0) = meiϕ, m ≥ 1. So, by using these facts and (2) we have

|U f (z0)| =

∣∣∣∣∣∣ z
f (z)
− z

(
z

f (z)

)′
− 1

∣∣∣∣∣∣
z=z0

=
∣∣∣(1 − 2aω(z) + aω2(z)) − z(−2aω′(z) + 2aω(z)ω′(z)) − 1

∣∣∣
z=z0

=
∣∣∣2a(m − 1)eiϕ

− a(2m − 1)ei2ϕ
∣∣∣

≥ a
(∣∣∣(2m − 1)ei2ϕ

∣∣∣ − 2
∣∣∣(m − 1)eiϕ

∣∣∣)
= a,

which contradicts f ∈ U(a). Thus, |ω(z)| < 1, z ∈ D and by using (2) we have the statement of the
theorem.

If f (z) = z +
∑
∞

n=2 anzn
∈ U1, that is

f (z)
z
≺

1
(1 − z)2 ,

then
∞∑

n=2

anzn−1
≺

∞∑
n=2

nzn−1.

For f ∈ Ua, 0 < a < 1, We can get a similar conclusion.
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Theorem 2.3. Let f ∈ Ua, 0 < a ≤ 1, and f (z) = z + a2z2 + .... Then we have the next relation
∞∑

n=2

anzn−1
≺

∞∑
n=2

sin(nα)
sinα

(
√

a)n−1zn−1, (4)

where α = arccos(
√

a). In the case of a = 1, α = 0, sin(nα)/ sinα should be understood as n.

Proof. since α = arccos(
√

a), 0 < a ≤ 1, we have cosα =
√

a, 0 ≤ α < π
2 . We also have that 1 − 2az + az2 = 0

for z = 1
√

a
e±iα and the next factorization:

1 − 2az + az2 = a
(
z −

1
√

a
e−iα

) (
z −

1
√

a
eiα

)
=

(
1 −
√

azeiα
) (

1 −
√

aze−iα
)
.

Now, from (1) we obtain that

f (z)
z

≺
1

1 − 2az + az2

=
1(

1 −
√

azeiα
) (

1 −
√

aze−iα
)

=
1

(2i sinα)
√

az

(
1

1 −
√

azeiα
−

1
1 −
√

aze−iα

)
= 1 +

∞∑
n=2

sin(nα)
sinα

(
√

a)n−1zn−1,

and therefore the relation (4) holds.

If f (z) = z +
∑
∞

n=2 anzn
∈ U1, then

f (z)
z
≺

1
(1 − z)2 .

So
f (z)
z

=

∫
|x|=1

1
(1 − xz)2 dµ(x), (5)

or equivalently,

f (z) =

∫
|x|=1

z
(1 − xz)2 dµ(x), (6)

where µ is a probability measure on ∂D = {z : |z| = 1}([7], p.51). It follows from (6) that |an| ≤ n.
In the case of 0 < a < 1, estimating the sharp bounds of the coefficients of f ∈ Ua seems to be difficult.

However, we can give a rough estimation on the bounds of the coefficients of f ∈ Ua by using a result of
Rogosinski.

Lemma 2.4. [11] If 1(z) ∈ T and f (z) = a1z + a2z2 + a3z3 + · · · ≺ 1(z), then |an| ≤ n.

Theorem 2.5. Let f (z) = z + a2z2 + a3z3 + · · · ∈ U(a), 0 < a ≤ 1, then |an| ≤ 2a(n − 1).

Proof. Since f (z) ∈ U(a), 0 < a ≤ 1, it follows that

1
2a

( f (z)
z
− 1

)
≺

z − 1
2 z2

1 − 2az + az2 =: 1(z).

As 1(z) is a univalent function with real coefficient and 1′(0) = 1, 1(z) ∈ T. So, by Lemma 2.4, we get
|an| ≤ 2a(n − 1).
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In the following theorem we try to give the sharp estimation of |a2|, |a3| and |a4| for f (z) = z+a2z2+a3z3+· · · ∈
Ua with 0 < a < 1. For the proof of the theorem we need the following lemma, which is due to D. V.
Prokhorov and J. Szynal.

Lemma 2.6. [12] If ω(z) = c1z + c2z2 + · · · is analytic inD and satisfy the condition |ω(z)| < 1 for |z| < 1,

Ψ(ω) = |c3 + µc1c2 + νc3
1|, µ, ν are real,

then the following sharp estimate |Ψ(ω)| ≤ Φ(µ, ν) holds, where

Φ(µ, ν) =



1, (µ, ν) ∈ D1
⋃

D2
⋃
{(2, 1)}

|ν|, (µ, ν) ∈
⋃7

k=3 Dk
2
3 (|µ| + 1)

(
|µ|+1

3(|µ|+1+ν)

)1/2
, (µ, ν) ∈ D8

⋃
D9

1
3ν

(
µ2
−4

µ2−4ν

)(
µ2
−4

3(ν−1)

)1/2
, (µ, ν) ∈ D10

⋃
D11 − {(2, 1)}

2
3 (|µ| − 1)

(
|µ|−1

3(|µ|−1−ν)

)1/2
, (µ, ν) ∈ D12

(7)

and

D1 = {(µ, ν) : |µ| ≤ 1
2 , − 1 ≤ ν ≤ 1}

D2 = {(µ, ν) : 1
2 ≤ |µ| ≤ 2, 4

27 (|µ| + 1)3
− (|µ| + 1) ≤ ν ≤ 1}

D3 = {(µ, ν) : |µ| ≤ 1
2 , ν ≤ −1}

D4 = {(µ, ν) : |µ| ≥ 1
2 , ν ≤ −

2
3 (|µ| + 1)}

D5 = {(µ, ν) : |µ| ≤ 2, ν ≥ 1}
D6 = {(µ, ν) : 2 ≤ |µ| ≤ 4, ν ≥ 1

12 (µ2 + 8)}
D7 = {(µ, ν) : |µ| ≥ 4, ν ≥ 2

3 (|µ| − 1)}
D8 = {(µ, ν) : 1

2 ≤ |µ| ≤ 2, − 2
3 (|µ| + 1) ≤ ν ≤ 4

27 (|µ| + 1)3
− (|µ| + 1)}

D9 = {(µ, ν) : |µ| ≥ 2, − 2
3 (|µ| + 1) ≤ ν ≤ 2|µ|(|µ|+1)

µ2+2|µ|+4 }

D10 = {(µ, ν) : 2 ≤ |µ| ≤ 4, 2|µ|(|µ|+1)
µ2+2|µ|+4 ≤ ν ≤

1
12 (µ2 + 8)}

D11 = {(µ, ν) : |µ| ≥ 4, 2|µ|(|µ|+1)
µ2+2|µ|+4 ≤ ν ≤

2|µ|(|µ|−1)
µ2−2|µ|+4 }

D12 = {(µ, ν) : |µ| ≥ 4, 2|µ|(|µ|−1)
µ2−2|µ|+4 ≤ ν ≤

2
3 (|µ| − 1)}

Theorem 2.7. Let f (z) = z + a2z2 + a3z3 + ... ∈ Ua, 0 < a ≤ 1. Then we have
(i) |a2| ≤ 2a ;

(ii) |a3| ≤

{
2a, 0 < a ≤ 3

4
(4a − 1)a, 3

4 ≤ a ≤ 1
(iii) |a4| ≤ 2aΦ1(a),
where

Φ1(a) =


1, 0 < a ≤ a1

8a
3

√
2

3(2a+1) , a1 ≤ a ≤ a2

1
3 (64a4

− 64a3 + 4a2 + 6a)
√

16a2−8a−3
3(4a2−2a−1) , a2 ≤ a ≤ a3

2a(2a − 1), a3 ≤ a ≤ 1

and a1 = 27+
√

4185
128 , a3 = 2+

√
22

8 and a2 = 0.83085... is the root of the equation

32a3
− 16a2

− 10a + 1 = 0.

In cases (i), (ii) and (iii) (first and last line) the results are the best possible.

Proof. If we put ω(z) = c1z + c2z2 + ..., then from relation (4) we have
∞∑

n=2

anzn−1 =

∞∑
n=2

sin(nα)
sinα

(
√

a)n−1
(
c1z + c2z2 + ...

)n−1
, (8)
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where α = arccos(
√

a). By using the fact cosα =
√

a and the next formulas

sin(2α)
sinα

= 2 cosα,
sin(3α)
sinα

= 4 cos2 α − 1,
sin(4α)
sinα

= 4 cosα(2cos2α − 1),

and by comparing the coefficients in (8), we can get
a2 = 2ac1,
a3 = 2ac2 + (4a − 1)ac2

1,
a4 = 2a(c3 + (4a − 1)c1c2 + 2a(2a − 1)c3

1).
(9)

(i) From (9) we have |a2| = 2a|c1| ≤ 2a, since |c1| ≤ 1. The function fa given in (3) shows that the result is
the best possible.

(ii) Since for the function ω we have that |c2| ≤ 1 − |c1|
2, then from (9) we obtain

|a3| ≤ 2a|c2| + |4a − 1|a|c1|
2

≤ 2a(1 − |c1|
2) + |4a − 1|a|c1|

2

= 2a + a(|4a − 1| − 2)|c1|
2

and the result depends of the sign of |4a − 1| − 2. Namely, if |4a − 1| − 2 ≤ 0, or equivalently, 0 < a ≤ 3
4 , then

|a3| ≤ 2a. If 3
4 ≤ a ≤ 1, then |4a − 1| − 2 ≥ 0 , and |a3| ≤ (4a − 1)a, since |c1| ≤ 1.

For the function
f2(z) =

z
1 − 2az2 + az4

( see the example 3 with ω(z) = z2 ) we have

f2(z) = z + 2az3 + ...,

which means that our result is the best possible for the first case. For the second case see the function fa
given by (3).

(iii) From (9) we have

|a4| = 2a|c3 + (4a − 1)c1c2 + 2a(2a − 1)c3
1| := 2aΨ(ω), (10)

where
Ψ(ω) = |c3 + µc1c2 + νc3

1|, µ = 4a − 1, ν = 2a(2a − 1).

Now, let Φ1(a) = Φ(µ, ν) with µ = 4a − 1, ν = 2a(2a − 1).
If 0 ≤ a < 1

8 , then (µ, ν) ∈ D2. If 1
8 ≤ a < 3

8 , then (µ, ν) ∈ D1. If 3
8 ≤ a ≤ a1 := 27+

√
4185

128 , then (µ, ν) ∈ D2. By
Lemma 2.6,

Φ1(a) = Φ(µ, ν) = 1

for 0 ≤ a ≤ a1 = 27+
√

4185
128 .

If a1 ≤ a ≤ 3
4 , then (µ, ν) ∈ D8. If 3

4 ≤ a ≤ a2, where a2 is the biggest root of the equation

32a3
− 16a2

− 10a + 1 = 0,

then (µ, ν) ∈ D9. So, by Lemma 2.6,

Φ1(a) = Φ(u, v) =
2
3

(|µ| + 1)

√
|µ| + 1

3(|µ| + 1 + ν)
=

8a
3

√
2

3(2a + 1)
.

for a1 ≤ a ≤ a2.
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If a2 ≤ a ≤ 2+
√

22
8 , then (µ, ν) ∈ D10, and by Lemma 2.6,

Φ1(a) = Φ(u, v) =
1
3
ν

(
µ2
− 4

µ2 − 4ν

) √
µ2 − 4

3(ν − 1)

=
1
3

(64a4
− 64a3 + 4a2 + 6a)

√
16a2 − 8a − 3

3(4a2 − 2a − 1)
.

If 2+
√

22
8 ≤ a ≤ 1, then (µ, ν) ∈ D6. By Lemma 2.6,

Φ1(a) = Φ(u, v) = ν = 2a(2a − 1).

For the function
f3(z) =

z
1 − 2az3 + az6

( see the example 3 with ω(z) = z3 ) we obtain

f3(z) = z + 2az4 + ...,

which means that our result is the best possible for the first case. For the last case see the function fa given
by (3).

Definition 2.8. Suppose f (z) is analytic inD and f (z)
z , 0. The logarithmic coefficients γn of f are defined by

log
f (z)
z

= 2
∞∑

n=1

γnzn, |z| < 1.

Theorem 2.9. If f ∈ Ua, 0 < a ≤ 1, and γn(n = 1, 2, 3, · · · ) are its logarithmic coefficients, then

∞∑
n=1

|γn|
2
≤

∞∑
n=1

1
n2 an cos2(nα)

= −Re
∫ a

0

ln(1 − t) + ln
(
1 − (2a − 1 + 2

√
a(1 − a)i)t

)
2t

dt,

where α = arccos
√

a ∈ [0, π2 ]. In particular, if a = 1, then

∞∑
n=1

|γn|
2
≤

∞∑
n=1

1
n2 = −

∫ 1

0

ln(1 − t)
t

dt =
π2

6
.

Proof. Since f ∈ Ua, 0 < a ≤ 1, it follows from (1) that

f (z)
z

≺
1

1 − 2az + az2

=
1(

1 −
√

azeiα
) (

1 −
√

aze−iα
) ,

where α = arccos
√

a. Thus

ln
f (z)
z

≺ − ln(1 −
√

azeiα) − ln(1 −
√

aze−iα)

= 2
(√

a cosαz +
1
2

(
√

a)2 cos(2α)z2 +
1
3

(
√

a)3 cos(3α)z3 + · · ·
)
.
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By Rogosinski’s Theorem([9], p.192) we have
∞∑

n=1

|γn|
2
≤

∞∑
n=1

1
n2 an cos2(nα)

=
1
2

∞∑
n=1

an

n2 +
1
2

∞∑
n=1

1
n2 an cos(2nα)

=
1
2

∞∑
n=1

an

n2 +
1
2

Re
∞∑

n=1

1
n2 (aei2α)n

= −
1
2

( ∫ a

0

ln(1 − t)
t

dt + Re
∫ aei2α

0

ln(1 − t)
t

dt
)

= −Re
∫ a

0

ln(1 − t) + ln
(
1 − (2a − 1 + 2

√
a(1 − a)i)t

)
2t

dt.

Theorem 2.10. If f ∈ U1, and γn(n = 1, 2, 3, · · · ) are its logarithmic coefficients, then |γn| ≤ 1. And the inequality
is sharp for all n.

Proof. Since f ∈ U1, it follows from (1) that

1
2

ln
f (z)
z

≺ − ln(1 − z).

Noting that − ln(1 − z) ∈ K, by Rogosinski’s Theorem([9], p.195), we have |γn| ≤ 1. For any given n, the
equality holds for the function

f (z) =
z

(1 − zn)2 ,

which is in the classU1.

Remark 2.11. By using the same methods as in Th.2.7, it is possible to prove that the logarithmic coefficients of
f ∈ Ua satisfy |γ1| ≤ a, |γ2| ≤ a, |γ3| ≤ a. All these results are the best possible as the functions fk ∈ Ua defined by

f1(z) =
z

1 − 2az + az2 , f2(z) =
z

1 − 2az2 + az4 , f3(z) =
z

1 − 2az3 + az6

show.

Theorem 2.12. If f ∈ Ua, 0 < a ≤ 1, then Re f (z)
z > 0 in the disc

|z| <

 1, 0 < a ≤ 2
3√

1
a −

1
2 ,

2
3 ≤ a ≤ 1.

Proof. By using the definition (1) of the classUa it is enough to find z ∈ D such that

Re(1 − 2az + az2) > 0. (11)

If we put z = reiθ, 0 < r < 1, then we have

Re(1 − 2az + az2) = 2ar2 cos2 θ − 2ar cosθ + 1 − ar2 := 1(t),
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where
1(t) = 2ar2t2

− 2art + 1 − ar2, −1 ≤ t ≤ 1

(we put cosθ = t).
The function 1 has its minimum for t0 = 1

2r . If t0 ∈ (0, 1), then r > 1
2 and

1(t) ≥ 1(t0) = −
a
2

+ 1 − ar2 > 0

if r <
√

1
a −

1
2 . We note that 1

a −
1
2 ≤ 1 if 2

3 ≤ a ≤ 1. For 0 < r ≤ 1
2 we have that t0 ≥ 1 and since

1(−1) > 0, 1(1) > 0, we also have that the condition (11) is satisfied.
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