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ON THE INITIAL COEFFICIENTS FOR CERTAIN CLASS OF
FUNCTIONS ANALYTIC IN THE UNIT DISC

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI

Let function f be analytic in the unit disk D and be normalized so that f (z)= z+ a2z2
+ a3z3

+ · · · In
this paper we give sharp bounds of the modulus of its second, third and fourth coefficient, if f satisfies∣∣∣∣arg

[(
z

f (z)

)1+α

f ′(z)
]∥∥∥∥< γ 1

2π (z ∈ D)

for 0< α < 1 and 0< γ ≤ 1.

1. Introduction and preliminaries

Let A denote the family of all analytic functions in the unit disk D := {z ∈ C : |z|< 1} and satisfying the
normalization f (0)= 0= f ′(0)− 1.

A function f ∈A is said to be strongly starlike of order β, 0< β ≤ 1 if and only if∣∣∣arg z f ′(z)
f (z)

∣∣∣< β 1
2π (z ∈ D).

We denote this class by S?β . If β = 1, then S?1 ≡ S? is the well-known class of starlike functions.
In [1] the author introduced the class U(α, λ) (0 < α and λ < 1) consisting of functions f ∈ A for

which we have ∣∣∣( z
f (z)

)1+α
f ′(z)− 1

∣∣∣< λ (z ∈ D).

In the same paper it is shown that U(α, λ)⊂ S? if

0< λ≤
1−α√

(1−α)2+α2
.

The most valuable up to date results about this class can be found in [4, Chapter 12].
In the paper [2] the author considered univalence of the class of functions f ∈A satisfying the condition

(1)
∣∣∣arg

[( z
f (z)

)1+α
f ′(z)

]∣∣∣< γ 1
2π (z ∈ D)

for 0< α < 1 and 0< γ ≤ 1, and proved the following theorem.
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Theorem A. Let f ∈A, 0< α < 2
π

and let∣∣∣arg
[( z

f (z)

)1+α
f ′(z)

]∣∣∣< γ?(α)1
2π (z ∈ D),

where

γ?(α)=
2
π

arctan
(√ 2

πα
− 1

)
−α

√
2
πα
− 1.

Then f ∈ S?β , where

β =
2
π

arctan

√
2
πα
− 1.

2. Main result

In this paper we will give the sharp estimates for initial coefficients of functions f ∈A which satisfied
the condition (1). Namely, we have

Theorem 1. Let f (z) = z + a2z2
+ a3z3

+ · · · belong to the class A and satisfy the condition (1) for
0< α < 1 and 0< γ ≤ 1. Then we have the following sharp estimations:

(a) |a2| ≤
2γ

1−α
;

(b) |a3| ≤


2γ

2−α
, 0< γ ≤ (1−α)

2

3−α
,

2(3−α)γ 2

(1−α)2(2−α)
,

(1−α)2

3−α
≤ γ ≤ 1;

(c) |a4| ≤


2γ

3−α
, 0< γ ≤ γν,

2γ
3−α

[
1
3
+

2
3
(α2
−6α+17)γ 2

(1−α)3(2−α)

]
, γν ≤ γ ≤ 1;

where

γν =

√
(1−α)3(2−α)
α2− 6α+ 17

.

Proof. We can write the condition (1) in the form

(2)
( f (z)

z

)−(1+α)
f ′(z)=

(1+ω(z)
1−ω(z)

)γ
(= (1+ 2ω(z)+ 2ω2(z)+ · · · )γ ),

where ω is analytic in D with ω(0) = 0 and |ω(z)| < 1, z ∈ D. If we denote by L and R the left- and
right-hand side of equality (2), then we have

L =
[

1− (1+α)(a2z+ · · · )+
(
−(1+α)

2

)
(a2z+ · · · )2

+

(
−(1+α)

3

)
(a2z+ · · · )3+ · · ·

]
· (1+ 2a2z+ 3a3z2

+ 4a4z3
+ · · · )
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and if we put ω(z)= c1z+ c2z2
+ · · · :

R = 1+ γ [2(c1z+ c2z2
+ · · · )+ 2(c1z+ c2z2

+ · · · )2+ · · · ]

+

(
γ

2

)
[2(c1z+ c2z2

+ · · · )+ 2(c1z+ c2z2
+ · · · )2+ · · · ]2

+

(
γ

3

)
[2(c1z+ c2z2

+ · · · )+ 2(c1z+ c2z2
+ · · · )2+ · · · ]3+ · · ·

If we compare the coefficients on z, z2, z3 in L and R, then, after some calculations, we obtain

(3) a2 =
2γ

1−α
c1, a3 =

2γ
2−α

c2+
2(3−α)γ 2

(1−α)2(2−α)
c2

1, a4 =
2γ

3−α
(c3+µc1c2+ νc3

1),

where

(4) µ= µ(α, γ )=
2(5−α)γ

(1−α)(2−α)
and ν = ν(α, γ )=

1
3
+

2
3
(α2
− 6α+ 17)γ 2

(1−α)3(2−α)
.

Since |c1| ≤ 1, then by using (3) we easily obtain the result (a) from this theorem. Also, by using |c1| ≤ 1
and |c2| ≤ 1− |c1|

2, from (3) we have

|a3| ≤
2γ

2−α
|c2| +

2(3−α)γ 2

(1−α)2(2−α)
|c1|

2

≤
2γ

2−α
(1− |c1|

2)+
2(3−α)γ 2

(1−α)2(2−α)
|c1|

2

=
2γ

2−α
+

2γ
2−α

[
(3−α)γ
(1−α)2

− 1
]
|c1|

2

and the result depends of the sign of the factor in the last bracket.
The main tool of our proof for the coefficient a4 will be the results of [3, Lemma 2]. Namely, in that

paper the authors considered the sharp estimate of the functional

9(ω)= |c3+µc1c2+ νc3
1|

within the class of all holomorphic functions of the form

ω(z)= c1z+ c2z2
+ · · ·

and satisfying the condition |ω(z)| < 1, z ∈ D. In the same paper in Lemma 2, for ω of the previous
type and for any real numbers µ and ν they give the sharp estimates 9(ω)≤8(µ, ν), where 8(µ, ν) is
given in general form in Lemma 2, and here we will use

8(µ, ν)=

{
1, (µ, ν) ∈ D1 ∪ D2 ∪ {(2, 1)},

|ν|, (µ, ν) ∈
⋃7

k=3 Dk,
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where
D1 =

{
(µ, ν) : |µ| ≤ 1

2 , −1≤ ν ≤ 1
}
,

D2 =
{
(µ, ν) : 1

2 ≤ |µ| ≤ 2, 4
27(|µ| + 1)3− (|µ| + 1)≤ ν ≤ 1

}
,

D3 =
{
(µ, ν) : |µ| ≤ 1

2 , ν ≤−1
}
,

D4 =
{
(µ, ν) : |µ| ≥ 1

2 , ν ≤−
2
3(|µ| + 1)

}
,

D5 = {(µ, ν) : |µ| ≤ 2, ν ≥ 1},

D6 =
{
(µ, ν) : 2≤ |µ| ≤ 4, ν ≥ 1

12(µ
2
+ 8)

}
,

D7 =
{
(µ, ν) : |µ| ≥ 4, ν ≥ 2

3(|µ| − 1)
}
.

In that sense, we need the values α and γ such that 0< µ≤ 1
2 , µ≤ 2, µ≤ 4, ν ≤ 1. So, by using (4),

we easily get the equivalence

0< µ≤ 1
2 ⇔ γ ≤

(1−α)(2−α)
4(5−α)

:= γ1/2;

µ≤ 2⇔ γ ≤
(1−α)(2−α)

5−α
:= γ2;

µ≤ 4⇔ γ ≤
2(1−α)(2−α)

5−α
:= γ4;

ν ≤ 1⇔ γ ≤

√
(1−α)3(2−α)
α2− 6α+ 17

:= γν .

It is easily to obtain that all values γ1/2, γ2, γ4, γν are decreasing functions of α, 0< α < 1 and that

0< γ1/2 <
1

10 , 0< γ2 <
2
5 , 0< γ4 <

4
5 , 0< γν <

√
2
17 = 0.342997 . . .

Also, it is clear that
0< γ1/2 < γ2 < γ4

and it is easy to obtain that
γ1/2 ≤ γν for α ∈ (0, αν],

where αν = 0.951226 . . . is the root of the equation 5α3
− 56α2

+ 177α− 122= 0 (of course γν ≤ γ1/2

for α ∈ [αν, 1)).
Further, the next relation is valid:

0< γν < γ2 < γ4.

Case 1 (0< γ ≤ γν). First, it means that ν ≤ 1. If 0< γ ≤ γ1/2, then 0< µ≤ 1
2 and 0< ν ≤ 1, which

by [3, Lemma 2] gives 8(µ, ν)= 1. If γ1/2 ≤ γ ≤ γν , α ∈ (0, αν), then 1
2 ≤ µ < 2, 0< ν ≤ 1 and if we

prove that
4

27(µ+ 1)3− (µ+ 1)≤ ν,

then also by [3, Lemma 2] we have 8(µ, ν)= 1. In that sense, let us denote

L1 =:
4

27(µ+ 1)3− (µ+ 1) and R1 = ν.
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Since L1 is an increasing function of µ for µ≥ 1
2 and since γ ≤ γν , then

µ≤
2(3−α)γν
(1−α)(5−α)

= 2

√
(1−α)(5−α)2

(2−α)(α2− 6α+ 17)
< 2

√
25
34
=

10
√

34

(because the function under the square root is decreasing) and so

L1 <
4
27

( 10
√

34
+ 1

)3
−

( 10
√

34
+ 1

)
= 0.249838 . . . ,

while

R1 = ν =
1
3
+

2
3
(α2
− 6α+ 17)γ 2

(1−α)3(2−α)
>

1
3
= 0.33 . . .

This implies the desired inequality.

Case 2 (γν ≤ γ ≤ 1). In this case we have that ν ≥ 1. If γν ≤ γ ≤ γ2, α ∈ (0, 1), then 0< µ≤ 2, ν ≥ 1,
which by [3, Lemma 2] implies 8(µ, ν) = ν. If γ2 ≤ γ ≤ γ4, α ∈ (0, 1), then 2 ≤ µ ≤ 4. Also, after
some calculations, the inequality ν ≥ 1

12(µ
2
+ 8) is equivalent to

43− 23α+ 5α2
−α3

(1−α)3(2−α)2
γ 2
≥ 1.

Since γ2 ≤ γ , then the previous inequality is satisfied if

43− 23α+ 5α2
−α3

(1−α)3(2−α)2
γ 2

2 ≥ 1.

But, the last inequality is equivalent to the inequality α2
− 2α− 3≤ 0, which is really true for α ∈ (0, 1).

By [3, Lemma 2] we also have 8(µ, ν)= ν. Finally, if γ ≥ γ4, then µ≥ 4 and if ν ≥ 2
3(µ− 1) we have

(by using the same lemma) 8(µ, ν)= ν. Really, the inequality ν ≥ 2
3(µ− 1) is equivalent with

2(α2
− 6α+ 17)γ 2

− 4(1−α)2(5−α)γ + 3(1−α)3(2−α)≥ 0.

Since the discriminant of previous trinomial is

D = 8(1−α)3(α3
− 2α2

+ 17α− 52) < 0

for α ∈ (0, 1), then the previous inequality is valid. By using (3) we have that |a4| ≤ γ /(3−α) (Case 1),
or |a4| ≤ γ /(3−α)ν (Case 2), and from there the statement of the theorem.

All results of Theorem 1 are the best possible as demonstrated by the functions fi , i = 1, 2, 3, defined
with (

z
fi (z)

)1+α

f ′i (z)=
(

1+ zi

1− zi

)γ
,

where 0< α < 1, 0< γ ≤ 1. We have that

ci = 1 and c j = 0 when j 6= i. �

Remark 2. By using Theorem A we can conclude that it is sufficient to be γ ≤ γ?(α) and 0 < α < 2
π

for starlikeness of functions f ∈A which satisfied the condition (1).
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Also, these conditions imply that the modulus of the coefficients a2, a3, a4 is bounded with some
constants. Namely, from the estimates given in Theorem 1 we have, for example,

|a2| ≤
2γ

1−α
≤

2γ?(α)
1−α

, |a3| ≤
2(3−α)γ 2

? (α)

(1−α)2(2−α)
,

etc.
We note that γ?(α) < 1−α for 0< α < 2

π
. Namely, if we put

φ(α)=: γ?(α)− (1−α),

then φ′(α) = 1−
√

2/(πα)− 1. It is easily to see that φ attains its minimum φ(1/π) = − 1
2 and since

φ(0+)= 0, φ
( 2
π
−
)
=

2
π
− 1< 0, we have the desired inequality.

When α→ 0, then γ?(0+)= 1, and from Theorem 1, we have the next estimates for 0< γ ≤ 1:

|a2| ≤ 2γ ≤ 2, |a3| ≤

{
γ, 0< γ ≤ 1

3 ,

3γ 2, 1
3 ≤ γ ≤ 1,

and

|a4| ≤


2γ
3
, 0< γ ≤

√
2/17,

2γ (1+17γ 2)

9≤ 4
,
√

2/17≤ γ ≤ 1.

This is the case when we have strongly starlike functions of order γ .
For γ = 1 in Theorem 1, i.e., if

Re
[( z

f (z)

)1+α
f ′(z)

]
> 0, z ∈ D,

we have
|a2| ≤

2
1−α

, |a3| ≤
2(3−α)

(1−α)2(2−α)
and

|a4| ≤
2

3−α

[
1
3
+

2
3
(α2
− 6α+ 17)

(1−α)3(2−α)

]
.
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