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Abstract 

In this paper Generalized Layer Wise Plate Theory of Reddy (GLPT) is used to formulate an 

isoparametric finite element model for free vibrations of isotropic, orthotropic and laminated 

composite plates. With the assumed displacement field, linear strain displacement relations and 

linear elastic orthotropic material properties for each lamina, governing differential equations of 

motion are derived using Hamilton‘s principle. Virtual work statement is then utilized to 

formulate isoparametric finite element model. The original MATLAB computer program is 

coded for finite element solution. The parametric effects of plate aspect ratio ab / , side-to-

thickness ratio ha / , degree of orthotropy 
21

/ EE  and boundary conditions on free vibration 

response of isotropic, orthotropic and anisotropic plates are analyzed. The accuracy of the 

present formulation is demonstrated through a number of examples and by comparison with 

results available from the literature.  

Keywords: free vibration analysis, layerwise finite element, boundary conditions 

1. Introduction 

Structural members made of fiber reinforced laminated composite plates, like those in 

automobile, bridge, submarine and aircraft industry are often subjected to dynamic loads. In 

structural applications two types of dynamical behavior are of primary importance: free 

vibrations and forced response. Free vibrations are  motions resulting from specified initial 

conditions in the absence of applied loads, while forced vibrations are  motions resulting from 

specified inputs to the system from external sources [Cook et. al. 2002].  Since forced vibrations 

response strongly depend on the values of free vibration parameters, like natural frequencies 

and mode shapes of vibration, and for given amplitude of loading, dynamic response may 

sometimes be greater than static response, in this paper only free vibrations are considered.  

As already stated, free vibrations, as the motions resulting from specified initial conditions, 

strongly depends on type of boundary conditions. Unlike in isotropic materials, where the 

boundary conditions depend only on type of mechanical loading (bending, buckling, vibrations 
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etc.), which may require natural or geometric, homogeneous or no homogeneous boundary 

conditions, nature of boundary conditions in composite laminates depend also on level of 

analysis (linear, nonlinear), as well as on lamination scheme.  

In order to mathematically describe complex anisotropic nature of composite laminates and 

find most computationally efficient solution, different approaches are reported in literature. 

Most of them are restricted to simply supported boundary conditions, specific lamination 

schemes and linear mechanical problem, which enable use of analytical methods in finding 

appropriate solution. However, when solution of mathematical model for different lamination 

schemes and different boundary conditions is needed, approximate methods should be used. 

Indeed, literature lacks relevant studies for three dimensional analyses involving boundary 

conditions which are different from simply supported ones along with multilayered architecture. 

More ever it is worth mentioning that a simply supported boundary condition is far from an 

easy realization in laboratory. The real model often needs an identification of true boundary 

conditions which are usually in the middle of the other classical boundary conditions, such as 

simply supported, clamped, free or their combination [Messina A. 2011]. 

Free vibration response of composite plates is closely related to the assumed shear 

deformation pattern. It has been shown that Equivalent Single Layer (ESL) theories yield good 

predictions when material properties of adjacent layers do not differ significantly. However, 

since they use continuously differentiable function of thickness coordinate, they are unable to 

account for severe discontinuities in transverse shear strains that occur at the interfaces between 

the layers with drastically different stiffness properties. In these cases, the local deformations 

and stresses, and sometimes even the overall laminate response, such as fundamental 

frequencies are not well predicted. In wish to overcome the shortcomings of ESL theories, and 

reduce the computational cost of 3D elasticity theory, discrete layer or layer wise (LW) theories 

have been proposed. These theories are based on unique displacement field for each layer and 

with the use of post processing procedure may enforce the interlaminar continuity of transverse 

shear stresses.  

The aim of this paper is to present the influence of different parameters like: plate aspect 

ratio ab / , side-to-thickness ratio ha / , degree of orthotropy 
21

/ EE  and boundary conditions 

on free vibrations response of isotropic, orthotropic and laminated composite plates using layer 

wise theory of Reddy (Generalized Layerwise Plate Theory GLPT). The theory assumes layer 

wise variation of in-plane displacements and constant transverse displacement. The resulting 

strain field is kinematically correct in that the in-plane strains are continuous through the 

thickness, while the transverse shear strains are discontinuous through the thickness, allowing 

for the possibility of continuous transverse shear stresses [Reddy et. al. 1989]. Transverse shear 

stresses satisfy Hook‘s low, 3D equilibrium equations, interlaminar continuity and traction free 

boundary conditions and have quadratic variation within each layer of the laminate. Using 

assumed displacement field, linear strain displacement relations and 3D constitutive equations 

of lamina, governing differential equations of motion are derived using Hamilton‘s principle. 

Virtual work statement is then utilized to formulate isoparametric finite element model (FEM). 

An original MATLAB computer program is coded for FEM solutions based on GLPT. The 

accuracy of computer program will be verified by comparison with available results from the 

literature.  
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2 Theoretical formulation 

2.1 Displacement field 

A laminated plate composed of n  orthotropic lamina is shown on Fig 1. The integer k denotes 

the layer number that starts from the plate bottom. Plate middle surface coordinates are  zyx ,, , 

while layer coordinates are  
kkk

zyx ,, . Plate and layer thickness are denoted as h  and kh , 

respectively. It is assumed that 1) layers are perfectly bonded together, 2) material of each layer 

is linearly elastic and has three planes of materials symmetry  (i.e., orthotropic), 3) strains are 

small, 4) each layer is of uniform thickness and 5) inextensibility of normal is valid. 

The displacements components  
321

,, uuu  at a point  zyx ,,  can be written as: 
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where  wvu ,,  are the displacements of a point  0,, yx  on the reference plane of the laminate, 

IU  and IV  are undetermined coefficients, and  zI  are layerwise continuous functions of 

the thickness coordinate. In this paper linear Lagrange interpolation of in-plane displacement 

components through the thickness is assumed. 

2.2 Strain-displacement relations 

The Green Lagrange strain tensor associated with the displacement field Eq.(1) can be 

computed using linear strain-displacement relation as follows: 
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2.3 Constitutive equations 

For Hook‘s elastic material, the stress-strain relations for k-th orthotropic lamina have the 

following form: 
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where     Tk

yzxzxyyyxx

k σ and     Tk

yzxzxyyyxx

k ε  are stress 

and strain components respectively, and  k

ij
Q  are transformed elastic coefficients, of k-th 

lamina in global coordinates.  

2.4 Equilibrium equations 

Equations of motions are obtained using Hamilton‘s principle, by neglecting the body forces as: 










































 


y

w
Q

x

w
Q

x

v

y

u
N

y

v
N

x

u
N

yx

t

xyyyxx

0

   






























wwvvuuIVQUQ
x

V

y

U
N

y

V
N

x

U
N II

y

II

x

II
I

xy

I
I

yy

IN

I

I

xx


0

1

 

 

 

    0
1 11






 
 

dtdVVUUIVvvVUuuUI
N

I

N

J

JIJIIJ
N

I

IIIII   (4) 

where 




2/

2/

2/

2/

2/

2/

0
,,

h

h

JIIJ

h

h

I

h

h

I dzIdzIdzI  and   is mass density, while internal 

force vectors are: 

 
 

 

   

   
 

 















































I

0

I

0

ε

ε

DB

BA

N

N
N

1J

JII

I

  (5) 

Constitutive matrices A, B, B
I
, D

JI
 are given in [Cetkovic 2005]. 
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3 Finite element model 

 

Fig. 1. Plate finite element with n layers and m nodes 

The GLPT finite element consists of middle surface plane and 1,1  NI  planes through the 

plate thickness Fig. 1. The element requires only the 0C  continuity of major unknowns, thus in 

each node only displacement components are adopted, that are  wvu ,,  in the middle surface 

element nodes and  II VU ,  in the I-th plane element nodes. The generalized displacements 

over element e  can be expressed as: 
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VUwvu  dd , are displacement vectors, in the middle 

plane and I-th plane, respectively, e

j
  are interpolation functions, while  e

j
Ψ ,  e

j
Ψ are 

interpolation function matrix for the   j-th node of the element e , given in [Cetkovic et al. 

2009].  

Substituting assumed displacement field (6) into equation (4) the finite element model is 

obtained: 

         0
eeee

ΔKΔM  . (7) 

where element mass matrix   e
M   and element stiffness matrix   e

K  are given in [Cetkovic et 

al. 2009]. Solution of equations (7) gives eigen values or vibration frequencies
N

 
,21

, . 

The smallest of vibration frequencies not equal to zero is the critical frequency  
cr

  and the 

corresponding eigen functions are mode shapes.  
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4. Numerical results and discussion 

Using previous derived finite element solutions, the MATLAB computer program was coded, 

for free vibration of isotropic, orthotropic and laminated composite plates. Element stiffness and 

mass matrix were evaluated using 2x2 and 3x3 Gauss-Legendre integration scheme for 2D 

linear and quadratic in-plane interpolation, respectively. Consistent element mass matrix was 

implemented, in order to preserve the total mass of the element [Vuksanoviš 2000]. The 

parametric effects of plate aspect ratio ab / , side-to-thickness ratio ha / , degree of orthotropy 

21
/ EE  and boundary conditions on free vibration are analyzed. The accuracy of the present 

formulation is demonstrated through a number of examples and by comparison with results 

available from the literature.  

The following boundary conditions at the plate edges are analyzed: 

Simply supported (S) 

S: 

1
00
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Clamped (C) 

C: 
1
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In the following examples boundary conditions will have the following general form XYxy, 

where first and third letter denotes edges byy  ,0 , while second and fourth letter denotes 

edges axx  ,0 , respectively, each of those corresponding to one of the classical edge 

boundary conditions S (mixed), F (natural) and C (geometrical), defined in Eqs. (8), (9) and 

(10),     Fig. 2. 

Fig. 2. Middle plane fundamental mode shapes for simply supported, free and clamped 

boundary conditions 

        Simply supported (S)                            Free (F)                                        Clamped (C) 
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Example 4.1. Isotropic plate under various boundary conditions  

The free vibration response of isotropic square plate with mma 250  and Poisson‘s ratio 

3.0 is analyzed for different thickness-to-side ratio 5.0,4.0,3.0,2.0,1.0/ ah  and different 

boundary conditions: SSSS, CFCF, SCSC, CCCC. Results are presented in Table 1 in terms of 

nondimensional frequency: 

 Eh /   (11) 

In Table 1 present GLPT results are compared with higher order shear deformation theory 

(MLPG) and brick finite element (FEM) of Quian et al. 2003. It may be observed that 

increasing plate stiffness either by applying constrains on plate edges or by increasing plate 

thickness with ah /  ratio, present GLPT model gives more flexible response, compared to 

HSDT model. This response for isotropic plates is however still in very close agreement with 

results from other researches. 

 

Table 1. Natural frequencies Eh / of thin and thick isotropic square plates           

with 3.0  for different boundary conditions 

Example 4.2.  Orthotropic plate under various boundary conditions  

The free vibration response of orthotropic square plate made of E-glass/epoxy material (

23.0,23.0,0.12,0.12,8.24,7.60
1312131221
 GPaGGPaGGPaEGPaE ) with 

100/ ha is analyzed for different aspect ratio  0.2,0.1,5.0/ ab  and different boundary 

conditions: SSSS, CSCS, SCSC, CCCC. Results are presented in Table 2 in terms of 

nondimensional frequency: 

 4
2

/12/1 Eha   (12) 

 

  

B.C. h/a 
Present 

Quian et al. 

2003 

Quian et al. 

2003 

B.C. h/a 
Present 

Quian et al. 

2003 

Quian et al. 

2003 

          

SSSS 0.1 

0.1 

 

0.0580 

0.05800

.2142 

 

0.0578 

0.05780.21

22 

 

0.0578 

0.0578 

 

SCSC 0.1 

0.1 

 

0.0818 0.0816 0.0812 

 0.2 

0.2 

 

0.2142 

0.2142 

 

0.2122 

0.2122 

 

  0.2 

0.2 

 

0.2792 0.2747 0.1740 

 0.3 0.4345 0.4273   0.3 0.5273 0.5134 0.5129 

 0.4 0.6908 0.6753   0.4 0.7953 0.7697 0.7696 

 

 
0.5 0.9429 0.9401 0.9401  

 
0.5 0.9433 0.9741 0.9742 

          

CFCF 0.1 

0.1 

 

0.0633 0.0633 0.0629 CCCC 0.1 

0.1 

 

0.0993 0.0999 

0.0578 

 

0.0992 

 0.2 

0.2 

 

0.2191 0.2158 0.2152  0.2 0.3313 0.3272 

0.2122 

 

0.3260 

 0.3 0.4159 0.4047 0.4038  0.3 0.6153 0.5975 0.5965 

 0.4 0.6254    

0.6254 
0.6029 0.6024  0.4 0.8435 0.8780 0.8775 

 0.5 0.8371 0.8025 0.8024  0.5 0.9434 1.1592 1.1595 
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Table 2. Natural frequencies 4
2

/12/1 Eha  of thin orthotropic square plates    

with 100/ ha  for different boundary conditions 

In Table 2 present GLPT results are compared with first order shear deformation theory (FSDT) 

using Green function for discretization of Huang et al. 2005 and semi-analytical approach of 

Bert et al. 1996. It may be observed that present results are in very close agreement with results 

from other two researches. 

Example 4.3. Cross ply 0/90 plate under various boundary conditions-Material I  

The free vibration response of cross ply 0/90 square plate, with layers made of following 

orthotropic material (
213122232131221

25.0,2.0,5.0,25 EEGEGGEE  ) is 

analyzed for different side-to-thickness ratio 50,20,10,5/ ha  and different boundary 

conditions: SFSF, SSSS, SCSC. Results are presented in Table 3 in terms of nondimensional 

frequency: 

 
2

2 // Eha   (13) 

In Table 3 present GLPT results are compared with Levy-type analytical solution using second 

and third order shear deformation theory of Kheider et al. 1999 and Librescu et al. 1989, 

respectively. Present results are in very close agreement with results from other two researches 

for both thin and thick plates. 

 

Table 3. Natural frequencies 
2

2 // Eha  of thin and thick cross ply 0/90 square plate   

for different boundary conditions 

Example 4.4.  Cross ply 0/90 plate under various boundary conditions-Material II  

The free vibration response of cross ply 0/90 square plate, with layers made of following 

orthotropic material (
213122232131221

25.0,5.0,6.0,40 EEGEGGEE  ) is 

analyzed for different plate aspect ratio 3,2/ ab , different side-to-thickness ratio 

 

                                    

B.C. b/a 
Present 

Huang et 

al. 2005 

Bert et al. 

1996 

B.C. b/a 
Present 

Huang et al. 

2005 

Ashour et al. 

2001 

          

SSSS 0.5 

0.1 

 

7.267 7.255 7.257 SCSC 0.5 

0.1 

 

10.003 9.885 9.897 

 1.0 4.910 4.902 4.902  1.0 5.740 5.682 5.682 

 2.0 4.200 4.190 4.191  2.0 4.335 4.312 4.312 

          

CSCS 0.5 

0.1 

 

8.002 7.943 7.948 CCCC 0.5 

0.1 

 

10.321

9 
10.194 10.206 

 1.0 6.439 6.361 6.366  1.0 6.852 6.780 6.785 

 2.0 6.120 6.036 6.041  2.0 6.111 6.080 6.085 

 

B.C SFSF 
 

SSSS  SCSC 
 

a/h Present 
Huang et al. 

2005 

Bert et al. 

1996 
Present 

Huang et al. 

2005 

Bert et al. 

1996 
Present 

Huang et al. 

2005 

Bert et al. 

1996 

          

5 5.039 5.046  7.609 7.609  9.1430 9.377  

10 5.828 5.818 5.796 9.015 8.997 8.944 12.4863 12.959 12.673 

20 6.122 6.080  7.609 9.504  14.793 15.015  

50 6.272 6.216  9.807 9.665  16.7829 15.835  
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10,5/ hb  and different boundary conditions: SFSF, SSSS, SCSC. Results are presented in 

Table 4 and Table 5 in terms of nondimensional frequency: 

 
2

2 // Ehb   (14) 

 

Table 4. Natural frequencies 
2

2 // Ehb  of thick cross ply 0/90 square plate for 

different boundary conditions 

In Table 4 present GLPT results are compared with first order shear deformation theory (FSDT) 

and classical plate theory (CPT) of Reddy et al. 1989, for different aspect ratio 3,2/ ab  and 

different boundary conditions. It may be observed that increasing the plate stiffness either by 

applying constrains on plate edges or increasing plate aspect ratio ab / , CPT over predicts 

natural frequencies. Namely, thin plate assumption in CPT increases the stiffness of the plate, 

thus yielding to lower deflections and greater fundamental frequencies [Cetkovic M. 2011]. 

Present GLPT results are in very close agreement with FSDT results of Reddy. 

 

Table 5. Natural frequencies 
2

2 // Ehb  of thick cross ply 0/90 square plate for 

different boundary conditions 

In Table 5 present GLPT results are compared with first order shear deformation theory (FSDT) 

and classical plate theory (CPT) of Reddy et al. 1989 for different side to thickness ratio 

3,2/ hb  and different boundary conditions. The same conclusions from previous paragraph 

remain valid for results presented in Table 5.  

Example 4.5. Cross ply 0/90 plate under various boundary conditions-Material II  

The free vibration response of cross ply 0/90 square plate, with layers made of following 

orthotropic material (
213122232131221

25.0,5.0,6.0,/ EEGEGGopenEE  ) is 

analyzed for different level of orthotropy 40,30,20,15,10,5,5.2/
21
EE  and different 

boundary conditions: SFSF, SSSS, SCSC. Results are presented on Figs. 2, 3, 4 in terms of 

nondimensional frequency: 

 
2

2 // Eha   (15) 

 

B.C SFSF SSSS SCSC SFSF SSSS SCSC 

Solution type b/a=2   b/a=3   

       

Present 6.833 24.732 36.300 6.832 42.666 59.501 

FSDT (Reddy et al. 1989) 6.881 25.608 36.723 6.881 46.360 59.293 

CPT (Reddy et al. 1989) 7.267 30.468 64.832 7.267 63.325 137.71 

 

B.C SFSF SSSS SCSC SFSF SSSS SCSC 

Solution type   b/h=5    b/h=10  

       

Present 5.794 8.694 10.788 6.833 

0.435 

10.435 

SSFF 
a/h 

E1/E2 5 10 20 50 100 

      

15.105 

FSDT (Reddy et al. 1989) 5.952 8.833 10.897 6.881 10.473 15.152 

CPT(Reddy et al. 1989) 7.124 10.721 17.741 7.267 11.154 18.543 

LW (Setoodeh et.al. 2003) 5.820 8.740 10.820                
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From Figs. 3, 4, 5 it is observed that fundamental frequency increase with increase of degree of 

orthotropy for all types of boundary conditions. As reported from other researchers these 

increases are greater for plates with more constrained edges such as SCSC compared to SSSS or 

SFSF [Aydogdu et. al. 2003]. Also, with the increase of orthotropy ratio, the differences 

between natural frequencies for thick and thin plates become more pronounced for plates with 

more constrained edges such as SCSC than for SSSS or SFSF. 

 

Fig. 3. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SFSF 

for various ha /  ratio 
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Fig. 4. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SSSS 

for various ha /  ratio 
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Fig. 5. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SCSC         

for various ha /  ratio 

5. Conclusion 

In this paper finite element solution for free vibration analysis of isotropic, orthotropic and 

laminated composite plates is developed using layer wise theory of Reddy (GLPT). The 

generality of present model has shown capability to analyze both thick and thin isotropic and 

anisotropic plates with arbitrary boundary conditions. Definition of boundary conditions in 

present layer wise model obviate need for rotational degrees of freedom [Setoodeh et. Al. 

2003], unlike in ESL models (CPT, FSDT or HSDT). Compared to 3D elasticity solution, 

present approach does not exhibit shear locking phenomenon, when analyzing thin plate 

behavior. Thin plate behavior is well predicted with both ESL and layer wise theories, while 

CPT becomes inadequate for free vibration analysis of thick plates, particularly those with more 

constrained edges. Namely, thin plate assumption increases the stiffness of the plate and 

therefore yields to lower deflections and higher fundamental frequencies. Finally, present 

layerwise finite element model has shown the importance of different parameters on  natural 

frequencies of  both thin and thick isotropic, orthotropic and laminated composite plates, which 

may be used as the guideline for their optimal design in the laboratory. 
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Извод 

Вибрације изотропних, ортотропних и ламинатних композитних 

плоча са различитим граничним условима ослањања  
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Резиме 

У овом раду применом Опште ламинатне теорије плоча (Генерализед Лаyерwисе Плате 

Тхеорy-ГЛПТ), коју је поставио Реддy, формулисан је изопараметарски модел коначног 

елемента за проблем слободних вибрација изотропних, ортотропних и ламинатних 

композитних плоча. Основне диференцијалне једначине кретања изведене су применом 

Хамилтон-овог принципа, користећи претпостављено поље померања, линеарне везе 

деформација и померања и линеарно еластичан ортотропан материјал за сваку од ламина. 

Принцип виртуелног рада потом је искоришћен за формулисање изопараметарског 

модела коначног елемента. Оригинални рачунарски програм написан је за решење по 

Методи коначних елемената, користећи МАТЛАБ програмски језик. Анализиран је 

параметарски утицај односа страна плоче , стране према дебљини плоче , степена 

ортотропије  и граничних услова на слободне вибрације изотропних, ортотропних и 

анизотропних плоча. Тачност представљене формулације потврђена је кроз низ примера 

и њиховим поређењем са решењима из литературе. 

Кључне речи: слободне вибрације, слојевити коначни елемент, гранични услови 
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