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Abstract

In this paper Generalized Layer Wise Plate Theory of Reddy (GLPT) is used to formulate an
isoparametric finite element model for free vibrations of isotropic, orthotropic and laminated
composite plates. With the assumed displacement field, linear strain displacement relations and
linear elastic orthotropic material properties for each lamina, governing differential equations of
motion are derived using Hamilton’s principle. Virtual work statement is then utilized to
formulate isoparametric finite element model. The original MATLAB computer program is
coded for finite element solution. The parametric effects of plate aspect ratio b/a, side-to-
thickness ratio a/h, degree of orthotropy E,/E, and boundary conditions on free vibration

response of isotropic, orthotropic and anisotropic plates are analyzed. The accuracy of the
present formulation is demonstrated through a number of examples and by comparison with
results available from the literature.
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1. Introduction

Structural members made of fiber reinforced laminated composite plates, like those in
automobile, bridge, submarine and aircraft industry are often subjected to dynamic loads. In
structural applications two types of dynamical behavior are of primary importance: free
vibrations and forced response. Free vibrations are motions resulting from specified initial
conditions in the absence of applied loads, while forced vibrations are motions resulting from
specified inputs to the system from external sources [Cook et. al. 2002]. Since forced vibrations
response strongly depend on the values of free vibration parameters, like natural frequencies
and mode shapes of vibration, and for given amplitude of loading, dynamic response may
sometimes be greater than static response, in this paper only free vibrations are considered.

As already stated, free vibrations, as the motions resulting from specified initial conditions,
strongly depends on type of boundary conditions. Unlike in isotropic materials, where the
boundary conditions depend only on type of mechanical loading (bending, buckling, vibrations
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etc.), which may require natural or geometric, homogeneous or no homogeneous boundary
conditions, nature of boundary conditions in composite laminates depend also on level of
analysis (linear, nonlinear), as well as on lamination scheme.

In order to mathematically describe complex anisotropic nature of composite laminates and
find most computationally efficient solution, different approaches are reported in literature.
Most of them are restricted to simply supported boundary conditions, specific lamination
schemes and linear mechanical problem, which enable use of analytical methods in finding
appropriate solution. However, when solution of mathematical model for different lamination
schemes and different boundary conditions is needed, approximate methods should be used.
Indeed, literature lacks relevant studies for three dimensional analyses involving boundary
conditions which are different from simply supported ones along with multilayered architecture.
More ever it is worth mentioning that a simply supported boundary condition is far from an
easy realization in laboratory. The real model often needs an identification of true boundary
conditions which are usually in the middle of the other classical boundary conditions, such as
simply supported, clamped, free or their combination [Messina A. 2011].

Free vibration response of composite plates is closely related to the assumed shear
deformation pattern. It has been shown that Equivalent Single Layer (ESL) theories yield good
predictions when material properties of adjacent layers do not differ significantly. However,
since they use continuously differentiable function of thickness coordinate, they are unable to
account for severe discontinuities in transverse shear strains that occur at the interfaces between
the layers with drastically different stiffness properties. In these cases, the local deformations
and stresses, and sometimes even the overall laminate response, such as fundamental
frequencies are not well predicted. In wish to overcome the shortcomings of ESL theories, and
reduce the computational cost of 3D elasticity theory, discrete layer or layer wise (LW) theories
have been proposed. These theories are based on unique displacement field for each layer and
with the use of post processing procedure may enforce the interlaminar continuity of transverse
shear stresses.

The aim of this paper is to present the influence of different parameters like: plate aspect
ratio b/a, side-to-thickness ratioa/h, degree of orthotropy E,/E, and boundary conditions

on free vibrations response of isotropic, orthotropic and laminated composite plates using layer
wise theory of Reddy (Generalized Layerwise Plate Theory GLPT). The theory assumes layer
wise variation of in-plane displacements and constant transverse displacement. The resulting
strain field is kinematically correct in that the in-plane strains are continuous through the
thickness, while the transverse shear strains are discontinuous through the thickness, allowing
for the possibility of continuous transverse shear stresses [Reddy et. al. 1989]. Transverse shear
stresses satisfy Hook’s low, 3D equilibrium equations, interlaminar continuity and traction free
boundary conditions and have quadratic variation within each layer of the laminate. Using
assumed displacement field, linear strain displacement relations and 3D constitutive equations
of lamina, governing differential equations of motion are derived using Hamilton’s principle.
Virtual work statement is then utilized to formulate isoparametric finite element model (FEM).
An original MATLAB computer program is coded for FEM solutions based on GLPT. The
accuracy of computer program will be verified by comparison with available results from the
literature.
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2 Theoretical formulation

2.1 Displacement field

A laminated plate composed of n orthotropic lamina is shown on Fig 1. The integer k denotes
the layer number that starts from the plate bottom. Plate middle surface coordinates are (x,y,z),

while layer coordinates are (xk, yk,zk). Plate and layer thickness are denoted as h and h,,

respectively. It is assumed that 1) layers are perfectly bonded together, 2) material of each layer
is linearly elastic and has three planes of materials symmetry (i.e., orthotropic), 3) strains are
small, 4) each layer is of uniform thickness and 5) inextensibility of normal is valid.

The displacements components (ul,uz,u3) ata point (x,y,z) can be written as:

N+1

u (%, y,2) =u(x,y)+ Y U'(x,y) @' (2)

1=1
N+1

U,(x,Y,2) =v(x,y)+ D V'(x,y)-@'(2)
Uy (X, y,2) = w(x,y). - )

where (u,v,w) are the displacements of a point (x, y,O) on the reference plane of the laminate,

U' and V' are undetermined coefficients, and ®'(z) are layerwise continuous functions of

the thickness coordinate. In this paper linear Lagrange interpolation of in-plane displacement
components through the thickness is assumed.

2.2 Strain-displacement relations

The Green Lagrange strain tensor associated with the displacement field Eq.(1) can be
computed using linear strain-displacement relation as follows:
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2.3 Constitutive equations

For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the
following form:
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where o) =5 S, Ty Tu ryz}(k) and £ =, €y Ty Y yyz}") are stress
and strain components respectively, and Qi(}‘) are transformed elastic coefficients, of k-th
lamina in global coordinates.

2.4 Equilibrium equations

Equations of motions are obtained using Hamilton’s principle, by neglecting the body forces as:

t
J‘J. Nxxas;uﬁ'Nyy@-"ny @_’_@ +QX68_W+Qy88_W+
o0 OX oy oy  ox OX oy
N | I | |
+Z[N>I<x @®U_ +N v +Nx'y[88U LY J+QX'U' +Q;VI]—|O(U8U+\78V+W5W)—
=1 OxX oy oy OX
N . .. N N .. ..
o VAR TR TR VR VAR B S S VAR VR +V'8VJ)}dQ =0 (4
1=1 =1 J=1

h/2 h/2 h/2
where |, = _[p dz,1' = J.p ®'dz, 1V = Ip ®'®d’dz and p is mass density, while internal

-h/2 -h/2 -h/2

force vectors are:
{i:i}: [[:']] 2[[50]] {{{j}}} ©)

Constitutive matrices A, B, B', D”' are given in [Cetkovic 2005].
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3 Finite element model

Fig. 1. Plate finite element with n layers and m nodes

The GLPT finite element consists of middle surface plane and | =1, N +1 planes through the

plate thickness Fig. 1. The element requires only the C° continuity of major unknowns, thus in
each node only displacement components are adopted, that are (u,v,w) in the middle surface

element nodes and (U',V') in the I-th plane element nodes. The generalized displacements
over element Q° can be expressed as:

e
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where {dj}e ={uj? Ve WT}T{d'J}e :{Uj' v/ }T are displacement vectors, in the middle
R . . . . e |5 e
plane and I-th plane, respectively, ‘Pje are interpolation functions, while [‘I’J] ,[‘I’j] are

interpolation function matrix for the j-th node of the element(2¢, given in [Cetkovic et al.
2009].

Substituting assumed displacement field (6) into equation (4) the finite element model is
obtained:

[M]*{A }* +[K]* {a }* =0, @)

where element mass matrix [M]° and element stiffness matrix [K]° are given in [Cetkovic et
al. 2009]. Solution of equations (7) gives eigen values or vibration frequencies o, ®, ..o, .
The smallest of vibration frequencies not equal to zero is the critical frequency «_, and the
corresponding eigen functions are mode shapes.
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4. Numerical results and discussion

Using previous derived finite element solutions, the MATLAB computer program was coded,
for free vibration of isotropic, orthotropic and laminated composite plates. Element stiffness and
mass matrix were evaluated using 2x2 and 3x3 Gauss-Legendre integration scheme for 2D
linear and quadratic in-plane interpolation, respectively. Consistent element mass matrix was
implemented, in order to preserve the total mass of the element [Vuksanovi¢ 2000]. The
parametric effects of plate aspect ratio b/a, side-to-thickness ratioa/h, degree of orthotropy
E,/E, and boundary conditions on free vibration are analyzed. The accuracy of the present

formulation is demonstrated through a number of examples and by comparison with results
available from the literature.

The following boundary conditions at the plate edges are analyzed:

Simply supported (S)

x=0,a: Vo=W,=V'=N_=N] =0
- Y Rt 1=1...N+1
{ y=0,b: U =W, =U'=N_ =N =0
S: : €))
Free (F)
x=0,a: N _=N!=0
' xx X I=1,...N+1
{ y=0.b Nyy:N:/y_O
F: , 9
Clamped (C)
x=0,a: Uy=V,=w,=U"'=V'=0 _
C: { y=0,b: uO:VO:WO:U':V'ZO I=1..N+1 (10)

In the following examples boundary conditions will have the following general form XYxy,
where first and third letter denotes edges y =0, y =b, while second and fourth letter denotes

edges x=0, x=a, respectively, each of those corresponding to one of the classical edge

boundary conditions S (mixed), F (natural) and C (geometrical), defined in Egs. (8), (9) and
(10), Fig. 2.

Simply supported (S) Free (F) Clamped (C)

Fig. 2. Middle plane fundamental mode shapes for simply supported, free and clamped
boundary conditions
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Example 4.1. Isotropic plate under various boundary conditions

The free vibration response of isotropic square plate with a=250mm and Poisson’s ratio
v =0.3is analyzed for different thickness-to-side ratio h/a =0.1,0.2,0.3, 0.4, 0.5 and different

boundary conditions: SSSS, CFCF, SCSC, CCCC. Results are presented in Table 1 in terms of
nondimensional frequency:

o=0-hp/E (11)

In Table 1 present GLPT results are compared with higher order shear deformation theory
(MLPG) and brick finite element (FEM) of Quian et al. 2003. It may be observed that
increasing plate stiffness either by applying constrains on plate edges or by increasing plate
thickness with h/a ratio, present GLPT model gives more flexible response, compared to
HSDT model. This response for isotropic plates is however still in very close agreement with
results from other researches.

B.C. hia B.C. hla

uian et al. uian et al. uian et al. uian et al.

Present 703 03 Present 303 03

SSSS 0.1 0.0580 0.0578 0.0578 SCSC 0.1 0.0818 0.0816 0.0812
0.2 0.2142 0.2122 - 0.2 0.2792 0.2747 0.1740

0.3 0.4345 0.4273 - 0.3 0.5273 0.5134 0.5129

0.4 0.6908 0.6753 - 0.4 0.7953 0.7697 0.7696

0.5 0.9429 0.9401 0.9401 0.5 0.9433 0.9741 0.9742

CFCF 0.1 0.0633 0.0633 0.0629 CCccC 0.1 0.0993 0.0999 0.0992
0.2 02191 0.2158 0.2152 0.2 0.3313 0.3272 0.3260

0.3 0.4159 0.4047 0.4038 0.3 0.6153 0.5975 0.5965

0.4 0.6254 0.6029 0.6024 0.4 0.8435 0.8780 0.8775

0.5 08371 0.8025 0.8024 0.5 0.9434 1.1592 1.1595

Table 1. Natural frequencies o=on-h v p/ E of thin and thick isotropic square plates
with v = 0.3 for different boundary conditions

Example 4.2. Orthotropic plate under various boundary conditions

The free vibration response of orthotropic square plate made of E-glass/epoxy material (
E, =60.7 GPa, E, =24.8GPa, G,, =12.0GPa, G, =12.0GPa, v, =0.23, v;; =0.23) with
a/h=100is analyzed for different aspect ratio b/a=0.5,1.0,2.0 and different boundary

conditions: SSSS, CSCS, SCSC, CCCC. Results are presented in Table 2 in terms of
nondimensional frequency:

o=wn-a-J1/h-4f12.p/E, (12)
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B.C. bla

B.C. bla

Huang et Bert et al. Huang et al. Ashour et al.
Present a1, 2005 1996 Present 2005 2001
SSSS 0.5 7.267 7.255 7.257 SCSC 0.5 10.003 9.885 9.897
1.0 4.910 4.902 4.902 1.0 5.740 5.682 5.682
2.0 4.200 4.190 4.191 20 4335 4.312 4.312
CsCs 05 8.002 7.943 7.948 cccc 05 10321 10.194 10.206
1.0 6.439 6.361 6.366 1.0 6.852 6.780 6.785
2.0 6.120 6.036 6.041 20 6.111 6.080 6.085

Table 2. Natural frequencies o=n-a-4J1/h -4/12-p/ E, of thin orthotropic square plates
with a/h =100 for different boundary conditions

In Table 2 present GLPT results are compared with first order shear deformation theory (FSDT)
using Green function for discretization of Huang et al. 2005 and semi-analytical approach of
Bert et al. 1996. It may be observed that present results are in very close agreement with results
from other two researches.

Example 4.3. Cross ply 0/90 plate under various boundary conditions-Material |

The free vibration response of cross ply 0/90 square plate, with layers made of following
orthotropic  material (E, =25E,,G,=G,;=05E,,G,=0.2E,,v,,=v,;,=025E,) is
analyzed for different side-to-thickness ratio a/h=5,10,20,50 and different boundary

conditions: SFSF, SSSS, SCSC. Results are presented in Table 3 in terms of nondimensional
frequency:

o=w-a2/h-Jp/E, (13)

In Table 3 present GLPT results are compared with Levy-type analytical solution using second
and third order shear deformation theory of Kheider et al. 1999 and Librescu et al. 1989,
respectively. Present results are in very close agreement with results from other two researches
for both thin and thick plates.

B.C  SFSF SSSS SCsC
Huangetal. Bertetal. Huang etal. Bertetal. Huang et al. Bert et al.
alh Present 5005 1996 "resent 2005 1996 "resent 2005 1996
5 5.039 5.046 - 7.609 7.609 - 9.1430 9.377 -
10 5.828 5.818 5.796 9.015 8.997 8.944 12.4863 12.959 12.673
20 6.122 6.080 - 7.609 9.504 - 14.793 15.015 -
50 6.272 6.216 - 9.807 9.665 - 16.7829 15.835 -

Table 3. Natural frequencies o=w-a’/h- Jp/E, of thin and thick cross ply 0/90 square plate
for different boundary conditions

Example 4.4. Cross ply 0/90 plate under various boundary conditions-Material 11

The free vibration response of cross ply 0/90 square plate, with layers made of following
orthotropic material (E, =40E,,G,,=G,;=06E,,G,,=05E,,v,, =v,;, =025E,) s

analyzed for different plate aspect ratio b/a=2,3, different side-to-thickness ratio
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b/h =5,10 and different boundary conditions: SFSF, SSSS, SCSC. Results are presented in
Table 4 and Table 5 in terms of nondimensional frequency:

o=wn-b?/h-Jp/E, (14)
B.C SFSF  SSSS SCSC SFSF  SSSS SCSC
Solution type b/a=2 b/a=3
Present 6.833 24732 36.300 6.832 42.666  59.501
FSDT (Reddy et al. 1989) 6.881 25.608 36.723 6.881 46.360  59.293
CPT (Reddy et al. 1989) 7.267 30.468 64.832 7.267 63.325 137.71

Table 4. Natural frequencies o=0-b?/h- p/E, of thick cross ply 0/90 square plate for
different boundary conditions

In Table 4 present GLPT results are compared with first order shear deformation theory (FSDT)
and classical plate theory (CPT) of Reddy et al. 1989, for different aspect ratio b/a =2, 3 and

different boundary conditions. It may be observed that increasing the plate stiffness either by
applying constrains on plate edges or increasing plate aspect ratiob/a, CPT over predicts
natural frequencies. Namely, thin plate assumption in CPT increases the stiffness of the plate,
thus yielding to lower deflections and greater fundamental frequencies [Cetkovic M. 2011].
Present GLPT results are in very close agreement with FSDT results of Reddy.

B.C SFSF SSSS SCsC SFSF SSSS SCsC
Solution type b/h=5 b/h=10
Present 5.794 8.694 10.788 6.833 10.435 15.105
FSDT (Reddy et al. 1989) 5.952 8.833 10.897 6.881 10.473 15.152
CPT(Reddy et al. 1989) 7.124 10.721 17.741 7.267 11.154 18.543
LW (Setoodeh et.al. 2003) 5.820 8.740 10.820 - - -

Table 5. Natural frequencies o=0-b?/h- p/E, of thick cross ply 0/90 square plate for
different boundary conditions

In Table 5 present GLPT results are compared with first order shear deformation theory (FSDT)
and classical plate theory (CPT) of Reddy et al. 1989 for different side to thickness ratio
b/h=2,3 and different boundary conditions. The same conclusions from previous paragraph

remain valid for results presented in Table 5.

Example 4.5. Cross ply 0/90 plate under various boundary conditions-Material 11

The free vibration response of cross ply 0/90 square plate, with layers made of following
orthotropic material (E,/E, =open ,G,, =G, =06E,,G,;, =05E,,v,, =v,; =025E,) is
analyzed for different level of orthotropy E,/E, =25,5,10,15,20,30,40 and different

boundary conditions: SFSF, SSSS, SCSC. Results are presented on Figs. 2, 3, 4 in terms of
nondimensional frequency:

o=w-a’/h-Jp/E, (15)
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From Figs. 3, 4, 5 it is observed that fundamental frequency increase with increase of degree of
orthotropy for all types of boundary conditions. As reported from other researchers these
increases are greater for plates with more constrained edges such as SCSC compared to SSSS or
al. 2003]. Also, with the increase of orthotropy ratio, the differences
between natural frequencies for thick and thin plates become more pronounced for plates with

SFSF [Aydogdu et.

more constrained edges such as SCSC than for SSSS or SFSF.

~J

Fig. 3. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SFSF

SFSF [0/90]

------------------------------------------------------------------------------

20 40

Elez

for various a/h ratio
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—0— a/h=5
—»— a/h=10
U —O— ah=20
—¥— a/h=50
| —6&— a/h=100

10

SSSS [0/90]

0 5 10 15 20 25 30 35 40

Fig. 4. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SSSS
for various a/h ratio
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27
s

SCSC [0/90]

gl O S

5 i i i i i i i
0 5 10 15 20 25 30 35 40

Fig. 5. The effect of orthotropy on fundamental frequency of 0/90 cross-ply plates with SCSC
for various a/h ratio

5. Conclusion

In this paper finite element solution for free vibration analysis of isotropic, orthotropic and
laminated composite plates is developed using layer wise theory of Reddy (GLPT). The
generality of present model has shown capability to analyze both thick and thin isotropic and
anisotropic plates with arbitrary boundary conditions. Definition of boundary conditions in
present layer wise model obviate need for rotational degrees of freedom [Setoodeh et. Al.
2003], unlike in ESL models (CPT, FSDT or HSDT). Compared to 3D elasticity solution,
present approach does not exhibit shear locking phenomenon, when analyzing thin plate
behavior. Thin plate behavior is well predicted with both ESL and layer wise theories, while
CPT becomes inadequate for free vibration analysis of thick plates, particularly those with more
constrained edges. Namely, thin plate assumption increases the stiffness of the plate and
therefore yields to lower deflections and higher fundamental frequencies. Finally, present
layerwise finite element model has shown the importance of different parameters on natural
frequencies of both thin and thick isotropic, orthotropic and laminated composite plates, which
may be used as the guideline for their optimal design in the laboratory.
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Pe3ume

Y oBoM pany npumenom Orminre tamMuHatHe TeopHje wioua ([enepanusen Jlayepwuce [lnare
Txeopy-I'JIIIT), kojy je nmoctaBuo Pemay, dopmynucan je u3omapaMeTapcKyd MOJET KOHAYHOT
eJleMeHTa 3a NpodieM cio00AHMX BHUOpalMja W30TPOIHHUX, OPTOTPONHHMX W JIAMHHATHUX
KOMITO3UTHHX TU1oYa. OcHOBHE Au(epeHIrjaHe jeIHAYNHE KPEeTama M3BEICHE CY MPHUMEHOM
XaMHITOH-OBOT' TMPHHIKIA, KOPUCTENH MNPETIOCTaBJbEHO MOJbE MMOMEparha, JIMHEeapHEe Be3e
nedopmanija u momMepama U JIMHEApHO eJlacTUYaH OPTOTPOIIAH MaTepHjall 3a CBaKy O] JaMUHA.
[IpuHIMO BUPTYENHOr pajga MOTOM je HUckopuinhieH 3a ¢opMyiucame H30MapaMeTapcKkor
MoJiefla KOHA4HOT eneMeHTa. OpUrHHAIHE PavyyHApCKH MPOrpaM HAMKCAH je 33 PElIehe M0
Metomu koHayHHX eneMeHata, kopuctehm MATJIAB mporpaMcku je3wk. AHamm3upaH je
napaMeTapcku yTHIldj OJHOCa CTpaHa IUIo4e , CTpaHe Ipema JeOJ/bMHU IUIo4e , CTENeHa
OpPTOTpONHje ¥ TPaHUYHHX YCJIOBAa Ha cJI000IHE BHOpanuje M30TPOIHUX, OPTOTPOIHHUX H
AHM30TPOMHMX IUI04a. Ta4HOCT MpeCTaB/beHe (PopMyItallije MOTBpljeHa je Kpo3 HU3 IpumMepa
Y BUXOBHM ropelemeM ca peliemniMa 13 JUTeparype.

Kibyune peun: cinoboHe BuOpaiuje, c10jeBUTH KOHAYHHU €JIEMEHT, TPAaHUYHHU YCIOBU
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