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Abstract

Let R be a commutative ring with identity and T (Γ(R)) its total graph.
The subject of this article is the investigation of the properties of the
corresponding line graph L(T (Γ(R))). The classification of all com-
mutative rings whose line graphs are planar or toroidal is given. It
is shown that for every integer g ≥ 0 there are only finitely many
commutative rings such that γ(L(T (Γ(R)))) = g.
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1 Introduction

Let R be a commutative ring with identity, Z(R) be the set of its zero
divisors and Z∗(R) = Z(R)\{0}. One may associate a graph to a given ring
in various ways in order to investigate certain properties of that ring. One
of the most common is the zero-divisor graph. This idea first appears in [3],
where, for a ring R, the set of vertices is taken to be R and two vertices x
and y are adjacent if and only if xy = 0. This paper primarily deals with the
problem of graph coloring. Later, in the paper [2], the authors define the
zero-divisor graph Γ(R), where the set of vertices is taken to be Z∗(R). They
investigate various properties of this graph. This graph turned out to be
quite interesting for many researchers. One of the most interesting problems
is the question of the embedding of this graph into compact surfaces, where
finite commutative rings play a special role. In the paper [15], the list of all
isomorphism classes of finite commutative rings such that the corresponding
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zero-divisor graph may be embedded into a torus is presented. In the paper
[10] the list of all graphs with at most 14 vertices which are of the form Γ(R)
for some ring R is given, as well as the list of all isomorphism classes of the
rings whose zero-divisor graphs are in that list.

In the paper [1], Anderson and Badawi introduce the total graph T (Γ(R))
whose set of vertices is R. Two vertices x and y are adjacent if and only if
x+ y ∈ Z(R). The question of the embedding of this graph is discussed in
[9]. In that paper all isomorphism classes of finite commutative rings whose
total graphs are planar or toroidal are listed.

In graph theory, one associate to a graphG its line graph L(G) so that the
set of vertices of L(G) is exactly the set of edges of G. Two vertices in L(G)
are adjacent if and only if the corresponding edges in G have a common
vertex. This allows one to investigate the properties of a graph G which
depend only on the edges of that graph as the properties of the graph L(G)
which depend only on its vertices. This is very useful for various problems
in graph theory. For example, to a matching in G there corresponds an
independent set in L(G). If G is connected and if its line graph L(G) is
known, one may, according to [14], completely determine G except in the
case L(G) = K3. In the paper [7], the authors investigate embeddings of the
line graph L(Γ(R)) and present all isomorphism classes of finite commutative
rings such that their line graphs are planar or toroidal.

Knowing the structure of the total graph T (Γ(R)), it is natural to inves-
tigate the structure of its line graph and to look into relations between them.
In this paper we determine some properties of this graph. The main results
are related to the embedding problem. We give the list of all isomorphism
classes of finite commutative rings for which the associated line graph of the
total graph is planar or toroidal. It is interesting to note that the list of all
isomorphism classes of rings such that the total graph is planar (see [9]) is
identical to the list of those for which the associated line graph is planar,
while in the toroidal case this is not true. We also prove that for any integer
g ≥ 0 there are only finitely many isomorphism classes of finite rings whose
line graph (of the total graph) has genus g.

In what follows, all rings R are commutative with identity; Z(R) is the
set of zero divisors of R, Z∗(R) = Z(R) \ {0} and Reg(R) = R \ Z(R). By
a graph G, we mean the simple unoriented graph without loops, with the
set of vertices V = V (G) and the set of edges E = E(G). The degree of the
vertex v ∈ V , denoted by deg(v) is the number of vertices adjacent to the
vertex v and δ(G) = min{deg(v) | v ∈ V (G)} is the minimal degree of the
graph G. A graph is regular of the degree r if every vertex has the degree
r. The vertices x and y are adjacent if they are connected by an edge. If,
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for every two vertices x and y there exists a path connecting them, we say
that this graph is connected. A graph G is complete if any two vertices are
adjacent. If the vertices of the graph G may be separated into two disjoint
sets of cardinalities m and n, such that vertices are adjacent if and only if
they do not belong to the same set, then the graph G is a complete bipartite
graph. For complete and complete bipartite graphs, we use the notation Kn

and Km,n. In particular, K1,n is a star graph. A graph G is of genus 0 or
planar if it can be embedded into a plane. If it cannot be embedded into a
plane, but it can be embedded into a torus, it is of genus 1 or toroidal. One
may find all necessary results from commutative ring theory in [8] and from
graph theory in [13].

2 Embeddings of the graph L(TΓ(R))

Let R be a commutative ring with identity and T (Γ(R)) its total graph. For
simplicity of notation we use TΓ(R) for the total graph and L(TΓ(R)) for
its line graph. If for elements x, y ∈ R one has x+ y ∈ Z(R), then we have
a vertex in the graph L(TΓ(R)) and we denote that vertex by [x, y]. From
the definition of the graph TΓ(R) , it follows that the degree of every vertex
of this graph depends on the number of zero divisors, as well as on whether
2 is a zero divisor in R or not. It is easy to show (see [9]) that the following
proposition holds.

Proposition 2.1 Let x be a vertex of the graph TΓ(R) . Then

deg(x) =
{
|Z(R)| − 1, 2 ∈ Z(R) or x ∈ Z(R)
|Z(R)|, otherwise. �

Theorem 2.2 Let R be a finite commutative ring which is not a field. Then
the following equality holds

δ(L(TΓ(R))) = 2|Z(R)| − 4.

Proof. Let [u, v] be a vertex of L(TΓ(R)) . According to 2.1 deg([u, v]) is
either 2|Z(R)| − 2, 2|Z(R)| − 3 or 2|Z(R)| − 4. It is enough to show that at
least one vertex of the graph L(TΓ(R)) has degree 2|Z(R)|−4. For example,
we can take as that vertex, the vertex [0, x], where x ∈ Z∗(R). �

Let n be a non-negative integer and Sn an orientable surface of genus
n. The genus of the graph G, denoted by γ(G) is the smallest n such that
G may be embedded into Sn. Graphs of genus 0 are planar and graphs of
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genus 1 are toroidal. If H is a subgraph of G, then γ(H) ≤ γ(G). By the
well-known theorem of Kuratowski, the graph G is planar if and only if it
does not contain a subdivision of K5 or K3,3. Let us give a brief review
of known results concerning the genus of complete and complete bipartite
graphs.

Proposition 2.3 [11, 12]

γ(Kn) =
⌈

(n− 3)(n− 4)
12

⌉
, n ≥ 3; γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
,m, n ≥ 2,

where dxe is the smallest integer greater than or equal to x.

By the previous proposition, we have that Kn if planar for n ≤ 4 and
toroidal for 5 ≤ n ≤ 7, and that graphs K3,n where 3 ≤ n ≤ 6 as well as
the graph K4,4 are toroidal. These particular graphs often turned out to be
subgraphs of TΓ(R) , i.e., there line graphs are often subgraphs of L(TΓ(R)) ,
so there genus is important for this work. The genus of the graphs γ(L(Kn))
and γ(L(Km,n)) have been investigated in [7]. Although there is no general
formula for the genus of these graphs (such as the formula from Proposition
2.3), one may find some useful estimates and the complete determination of
this genus for some special cases.

Using the well-known Euler formula, one may prove the following useful
proposition (or see the proof in [15]).

Proposition 2.4 Let G be a graph with n vertices, where n ≥ 3. Let γ(G) =
g and δ(G) be the minimal degree of the graph G. Then:

δ(G) ≤ 6 +
12g − 12

n
.

Corollary 2.5

1. For graphs of genus equal to 1 one has δ(G) ≤ 6. The equality is
reached if and only if G is actually the triangulation of the torus which
is 6-regular. A graph of genus 1 therefore must have a vertex x such
that deg(x) ≤ 6.

2. For graphs of genus 0 (planar) one has δ(G) ≤ 5. Therefore, a planar
graph must have a vertex x such that deg(x) ≤ 5.

Lemma 2.6 Let R be a finite commutative ring such that |Z(R)| ≥ 5. Then
L(TΓ(R)) is not planar.
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Proof. According to 2.5 and Theorem 2.2, one has δ(L(TΓ(R))) = 2|Z(R)|−
4 ≥ 6, so the result follows. �

According to Lemma 2.6, in investigation of planarity of L(TΓ(R)) we
may restrict our attention only to rings with a small number of zero divisors.
Let us first examine the non-local case.

Theorem 2.7 Let R be a finite commutative ring with identity which is not
local. Then L(TΓ(R)) is planar if and only if R is isomorphic to one of the
rings Z2 × Z2 or Z2 × Z3.

Proof. We may assume that R ∼= R1 ×R2 × · · · ×Rn, where n ≥ 2.
1. n ≥ 3: Then |Z(R)| ≥ 7, so L(TΓ(R)) cannot be planar by Lemma

2.6.
2. R = R1×R2 and for at least one of them, for example for R2 one has

|R2| ≥ 5. Then L(TΓ(R)) is not planar by Lemma 2.6, since (0, ai) ∈ Z(R),
ai ∈ R2, i = 1, . . . , 5.

3. R = R1 ×R2 and |R1|, |R2| ≤ 4. Let us look at all possibilities.
3.1 R = Z2 × Z2. Then L(TΓ(R)) = C4 is obviously planar.
3.2 R = Z2 × Z3

∼= Z6. Then L(TΓ(R)) is also planar (see figures 1 i 2).
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Figure 1. TΓ(Z2 × Z3) Figure 2. L(TΓ(Z2 × Z3))

3.3 |R1| = 2, |R2| = 4. The possibilities are: Z2 × F4, Z2 × Z4 i Z2 ×
Z2[X]/(X2). The case Z2 × F4 is discussed in Theorem 2.10 where it is
proved that L(TΓ(Z2 × F4)) is not even embeddable into a torus. It is easy
to check that the remaining two rings have 6 zero divisors, so their line
graphs are not planar by Lemma 2.6.

3.4 R = Z3 × Z3. In this case |Z(R)| = 5, so L(TΓ(R)) is not planar by
Lemma 2.6.
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3.5 In the remaining cases |Z(R)| ≥ 7, so L(TΓ(R)) again is not planar
by Lemma 2.6. �

We now turn to the local case. Let R be a finite local ring with maximal
ideal M 6= {0}. Then Z(R) = M , so, since zero divisors form an ideal,
TΓ(R) is disconnected and its structure is described by Theorem 2.2 from
[1]:

1) If 2 ∈ Z(R), then TΓ(R) is a disjoint union of |R/M | copies of the
complete graph K |M |.

2) If 2 /∈ Z(R), then TΓ(R) is a disjoint union of the complete graph
K |M | and |R/M |−1

2 complete bipartite graphs K |M |,|M |.
In addition to these results, we use in the following proof the following

known results. IfR is a finite local ring with maximal idealM , then |R| = pk,
where p is a prime, and |M | | |R|. We use the list of these rings up to the
order p5 ([4, 5]) and the result that |R| ≤ |Z(R)|2 ([6]).

Theorem 2.8 Let R be a finite local commutative ring with identity which
is not a field. Then L(TΓ(R)) is planar if and only if R is isomorphic to one
of the following rings: Z4, Z2[X]/(X2), Z8, Z2[X]/(X3), Z2[X,Y ]/(X,Y )2,
Z4[X]/(2X,X2), Z4[X]/(2X,X2 − 2), F4[X]/(X2) or Z4[X]/(X2 +X + 1).

Proof. Let |R| = pk. Note that it is enough to consider the cases p ∈ {2, 3}.
Namely, if p ≥ 5, since R is not a field and since |M | | pk, one must have
|Z(R)| = |M | ≥ 5. According to Lemma 2.6, L(TΓ(R)) is not planar.

1) k = 2. The possibilities are: Fp[X]/(X2) and Zp2 .
If R is one of the rings F2[X]/(X2) and Z22 , then L(TΓ(R)) is obviously

planar (it has 2 vertices). If R = F3[X]/(X2) or R = Z32 , then 2 /∈ Z(R),
so TΓ(R) = K3 ∪K3,3. It may be shown (see [7]) that γ(L(K3,3)) = 1, so
these are not planar.

2) k = 3. If p = 3, so |R| = p3, then 2 /∈ Z(R), therefore K3,3 ⊆
TΓ(R) . So, L(TΓ(R)) is not planar. Therefore, it is enough to consider the
case p = 2. Since R is not a field, the possibilities are: Z23 , Z2[X]/(X3),
Z2[X,Y ]/(X,Y )2, Z4[X]/(2X,X2) and Z4[X]/(2X,X2 − 2). It is not diffi-
cult to see that they all have isomorphic total graphs — disjoint union of two
complete graphs K4. Since γ(L(K4)) = 0, it follows that the corresponding
line graphs are planar

3) k = 4. Let us now look at local rings of order p4. We only need to
consider the case p = 2 from the same reasons as for k = 3. So, |R| = 16 and
|M | | 16. The case |M | = 1 does not occur since R is not a field. The case
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|M | = 2 leads to the contradiction 16 = |R| ≤ |Z(R)|2 = |M |2 = 4. If |M | =
8, we have too many zero divisors, so according to Lemma 2.6, our graph is
not planar. Therefore, |M | = 4. There are exactly 21 non-isomorphic local
commutative rings with identity of order 16 ([5]). From all of them, only
two satisfy the condition |M | = 4: F4[X]/(X2) and Z4[X]/(X2 + X + 1).
They have isomorphic total graphs — disjoint unions of 4 complete graphs
K4. Since L(K4) is planar, we conclude that for those two rings L(TΓ(R)) is
planar.

4) k ≥ 5. We can only consider the case p = 2, |R| = 2k. The case
|M | = 4 is not possible since |R| ≤ |M |2. In all other cases, the ring
contains too many zero divisors, so according to Lemma 2.6 these graphs
are not planar. �

The list of all finite commutative rings with identity for which the line
graph of the total graph is planar:

Z2 × Z2, Z2 × Z3, Z4, Z2[X]/(X2), Z8, Z2[X]/(X3),
Z2[X,Y ]/(X,Y )2, Z4[X]/(2X,X2), Z4[X]/(2X,X2 − 2), F4[X]/(X2),

Z4[X]/(X2 +X + 1).

Lemma 2.9 Let R be a finite commutative ring with identity. Then:

|Z(R)| > 5 =⇒ γ(L(TΓ(R))) > 1.

Proof. By Theorem 2.2 we have

δ(L(TΓ(R))) = 2|Z(R)| − 4 > 6.

The claim now follows using the Proposition 2.4. �

Theorem 2.10 Let R be a finite commutative ring with identity which is
not local. Then L(TΓ(R)) does not have genus equal to 1.

Proof. By Lemma 2.9 it is enough to discuss the decomposition R =
R1 ×R2. We give the proof by discussing the cardinality of the ring R2.

1) |R2| ≥ 5. Then |Z(R)| ≥ 6, so γ(L(TΓ(R))) > 1 by Lemma 2.9.
2) |R2| = 4. We have two possibilities.
2.1) |Z(R2)| = 2. Then |Z(R)| ≥ 6, so γ(L(TΓ(R))) > 1 by Lemma 2.9.
2.2) |Z(R2)| = 1. Then R2 is isomorphic to the field F4. Let us dis-

cuss the minimal case R = Z2 × F4. We have that δ(TΓ(R)) = 4, so
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δ(L(TΓ(R))) = 6. Using Proposition 2.4, we see that L(TΓ(R)) is of genus 1
if and only if this graph is the regular triangulation of a torus. Let us prove
that this particular graph does not give this triangulation. Let R = Z2×F4,
F4 = Z2[X]/(X2 + X + 1) and let x be the corresponding class. Then
Z(R) = {v1, v2, v3, v4, v5} and Reg(R) = {v6, v7, v8}, where v1 = (0, 0),
v2 = (0, x), v3 = (0, x+1), v4 = (0, 1), v5 = (1, 0), v6 = (1, x), v7 = (1, x+1)
and v8 = (1, 1).

The graph TΓ(R) is a regular graph of degree 4 with 8 vertices and
16 edges so L(TΓ(R)) is a regular graph of degree 6 with 16 vertices and
48 edges (it is obvious that the line graph of the regular graph of degree
r with n vertices is also regular of degree 2r − 2 with nr/2 vertices and
nr(r− 1)/2 edges). To simplify the notation let us denote the vertex [vi, vj ]
of L(TΓ(R)) by wi,j . The graph L(TΓ(Z2 × F4)) has 16 vertices: w1,2, w1,3,
w1,7, w1,8, w2,3, w2,5, w2,7, w3,4, w3,7, w4,5, w4,6, w4,8, w5,6, w5,8, w6,7 and
w6,8. Vertices wi,j and wj,k are adjacent if and only if {i, j} ∩ {j, k} 6= ∅, so
the number of vertices is 48. According to the number of vertices, edges and
faces (Euler’s theorem), L(TΓ(Z2 × F4)) gives a torus triangulation. Every
vertex of the graph must be a center of some hexagon (the degree of every
vertex is 6). We prove that this is not possible, e.g., for the vertex w1,2.
Suppose that w1,2 is the center of some hexagon. This hexagon must have
vertices w1,3, w1,7, w1,8, w2,3, w2,5 and w2,7 as its vertices. Consider vertices
w2,5 and w2,7. The following cases may occur:

a) The vertices w2,5 and w2,7 are adjacent (Figure 3a). This triangulation
may not be extended further since the only vertex from the set of all vertices
which is adjacent to both of them is the vertex w2,3 and this vertex must be
on the hexagon.

b) If they are separated by only one vertex, this can only be the vertex
w2,3 (Figure 3b). Since w1,3 is not adjacent neither to w2,5 nor to w2,7, it
must be antipodal to the vertex w2,3. Then the vertex w1,8 cannot be on
the hexagon.

c) If the vertices w2,5 and w2,7 are antipodal (Figure 3c), then the vertex
w1,3 cannot be on the hexagon.
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2) |R2| = 3. We have 2 possibilities.
2.1) |R1| = 2. Then R = Z2 × Z3, so L(TΓ(R)) is planar by Theorem

2.7.
2.2) |R1| = 3. Then R = Z3 × Z3 and |Z(R)| = 5. It follows that

δ(TΓ(R)) = 4 and δ(L(TΓ(R))) = 6. If there exists an embedding, then, by
Proposition 2.4, all vertices must have degree 6 and that is not true, since,
e.g. deg([(0, 1), (2, 2)]) = 7.

Since L(TΓ(Z2 × Z2)) is planar, the proof is complete. �

So, only the local case remains.

Theorem 2.11 Let R be a commutative local ring which is not a field. Then
L(TΓ(R)) is toroidal if and only if R is isomorphic to one of the rings Z9 or
Z3[X]/(X2).

Proof. Let M = Z(R) be the maximal ideal of R. By Lemma 2.9 it is
enough to consider the case |M | ≤ 5. First we prove that the case |M | = 5
may also be excluded.

Let |M | = |Z(R)| = 5 and x ∈ Reg(R) be an arbitrary element. Then
deg(x) = 5 by Lemma 2.1. There exists y ∈ Reg(R) such that x is adjacent
to y in TΓ(R) , meaning that x+y ∈ Z(R). Otherwise, x would be adjacent
to 0 and that is not true. The edge x—y in TΓ(R) connects two vertices
of degree 5 in TΓ(R) , so the vertex [x, y] in L(TΓ(R)) has degree 8. Since
δ(TΓ(R)) = 4, one has δ(L(TΓ(R))) = 6, so by Proposition 2.4 in the case
of toroidality all vertices of the graph L(TΓ(R)) must have degree 6 and that
is not the case, since deg([x, y]) = 8.

Let |R| = pk. We only consider the cases p = 2 and p = 3.
1) |R| = p2. The possibilities are Fp2 , Zp[X]/(X2) and Zp2 . Since R

is not a field and since the line graphs for Z2[X]/(X2) and Z22 are planar,
we are left with rings Z3[X]/(X2) and Z32 . Both of these rings have total
graphs isomorphic to K3tK3,3. Since γ(L(K3,3)) = 1, this graph is toroidal
as the union of a toroidal and a planar graph.

2) |R| = p3. According to [4] the possibilities are Fp3 , Fp[X]/(X3),
Zp2 [X]/(pX,X2), Fp[X,Y ]/(X,Y )2, Zp3 and Zp2 [X]/(pX,X2 − εp), where
ε is not a square in F∗p. Since Fp3 is a field and since, by Theorem 2.8
the line graphs for Z2[X]/(X3), Z4[X]/(2X,X2), F2[X,Y ]/(X,Y )2, Z23 and
Z4[X]/(2X,X2−2) are planar, we only have to discuss the rings F3[X]/(X3),
Z9[X]/(3X,X2), F3[X,Y ]/(X,Y )2, Z27 and Z9[X]/(3X,X2 − 3). It is easy
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to see that for those rings one has |M | = |Z(R)| = 9, so according to Lemma
2.9 here we do not have line graphs of genus 1.

3) |R| = p4.
3.1) p = 3 and |R| = 81, so |M | ∈ {1, 3, 9, 27}. The case |M | = 1 does

not occur since R is not a field, while in the case |M | = 3 one has |R| ≤ 9.
In the remaining cases there are too many zero divisors.

3.2) p = 2 and |R| = 16, so |M | ∈ {1, 2, 4, 8}. By similar analysis
only the case |M | = 4 remains, more precisely the rings F4[X]/(X2) and
Z4[X]/(X2 +X + 1). Their line graphs are planar by Theorem 2.8.

4) |R| = pk, k ≥ 5. It is clear that there are no toroidal line graphs in
this case since in the minimal possible case |M | = |Z(R)| = 8. �

The list of finite commutative rings with identity such that the line graph of
the total graph has genus 1:

Z9, Z3[X]/(X2).

Theorem 2.12 Let g ≥ 0 be an integer. There are only finitely many
commutative rings R such that γ(L(TΓ(R)) ) = g.

Proof. We have proved that for g = 0 there are only 11 such rings, while
for g = 1 there are only 2. Suppose now that g ≥ 2. The inequality from
Proposition 2.4 for the graph L(TΓ(R)) , by Theorem 2.2 reduces to

2|Z(R)| − 4 ≤ 6 +
12g − 12

n
.

Since for the number of vertices n of the graph L(TΓ(R)) one has n ≥
|R|(|Z(R)| − 1)/2, substituting in the previous inequality one gets

|R|(|Z(R)| − 1)(|Z(R)| − 5) ≤ 12g − 12.

So, for |Z(R)| ≥ 6 one has
|R| ≤ 3g − 3.

It is interesting to note here that it follows that for |Z(R)| ≥ 6 there are no
rings whose line graphs have genus 2 or 3.

According to previous results, for |Z(R)| = 2 there are 2 non-isomorphic
ring whose total graphs are trivially planar. For |Z(R)| = 3, there are three
non-isomorphic rings: for two of them the line graphs are of genus 1, and
for the third one the line graph is of genus 0. For |Z(R)| = 4 all 8 non-
isomorphic rings have planar line graphs. Finally, for |Z(R)| = 5, there are
4 non-isomorphic rings whose total graphs have genus greater than 1. �
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