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Abstract

To gain a better understanding of clean rings and their relatives, the
clean graph of a commutative ring with identity is introduced and its
various properties established. Further investigation of clean graphs leads
to additional results concerning other classes of rings.
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1 Introduction

In this paper, R always denotes a commutative ring with identity, U(R) its set of
units, Id(R) its set of idempotents, Z(R) its set of zero divisors. For simplicity,
we introduce the notation UI(R) = U(R)∪ Id(R). For any integer n ≥ 1, Un(R)
denotes the set of elements of the ring R which can be represented as a sum of
k ≤ n units, while U′(R) denotes the elements in R which can be represented as
a finite sum of units, i.e., U′(R) = ∪∞n=1Un(R). The rings which are generated
by their invertible elements are the subject of a lot of research. A ring R is good,
or, according to Raphael [17], an S-ring, if R = U′(R). A ring is, according to
Vámos [18], n-good, or according to Henriksen [10], (S, n)-ring, if R = Un(R).
The element a ∈ R is said to be clean if there exists an idempotent e ∈ R
such that a − e is invertible. If every element of R is clean then, according to
Nicholson [14], R is said to be a clean ring. Xiao and Tong in [23] generalize
these types of rings by introducing the notion of n-clean and Σ-clean rings in
which, respectively, every element is the sum of an idempotent and n units, or
the sum of an idempotent and finitely many units. The class of n-clean rings
contains clean and n-good rings, while the class of Σ-clean rings contains all
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the previously described classes. Among other things, Xiao and Tong show that
the group ring Z(p)G, where G is a cyclic group of order 3, is 2-clean for every
prime p 6= 2. Since Han and Nicholson have shown earlier in [9] that the group
ring Z(7)G is not clean, we have a ring which is 2-clean, but not clean. On the
other hand, Camillo and Yu have shown in [5] that every clean ring in which 2
is a unit must be 2-good, therefore 2-clean. Let us also mention the result of
Henriksen [10] that Mn(R) is 3-good for an arbitrary ring R and every n ≥ 2.

The main idea of this paper is to associate a graph to a ring with identity in
a way which will enable us to better grasp the properties of the above mentioned
classes of rings. This approach has lead to interesting results both in algebra
and graph theory (one may check some recent papers, for example [3], [4], [16],
[21], [22]). We restrict ourselves to commutative rings in this paper although
the same definition may be given for the non-commutative case as well.

The clean graph CΓ(R) of a commutative ring R is defined as follows:

V (CΓ(R)) = R, E(CΓ(R)) = {{r1, r2} : r1 + r2 ∈ UI(R)},

where V (Γ) (E(Γ)) denotes the set of vertices (edges) of the graph Γ.
The relation with clean rings should be evident. Suppose that R is a clean

ring. Then the clean graph CΓ(R) is connected and diam(CΓ(R)) ≤ 4. Namely,
if x, y ∈ R, then x = u1 +e1, y = u2 +e2 for some u1, u2 ∈ U(R), e1, e2 ∈ Id(R).
Then

x = u1 + e1 — (−u1) — 0 — (−u2) — u2 + e2 = y

is a path from x to y in CΓ(R), from which the claim follows. Actually, a more
precise result holds; we are going to prove that diam(CΓ(R)) ≤ 2 for every clean
ring R (see Theorem 2.5).

Let us briefly mention some other notation and notions from graph theory
which we will use. For us, a graph Γ is always a simple non-directed graph
without loops. The degree of a vertex x, denoted by deg(x), is the number of
vertices adjacent to the vertex x. Vertices x and y of a graph Γ are connected
if there is a path in Γ which connects them. If every two vertices in Γ are
connected, we say that the graph Γ is connected. For vertices x, y ∈ Γ, one
defines the distance d(x, y) as the length of a shortest path between x and y,
if the vertices x and y are connected, and d(x, y) = ∞ if they are not. The
diameter of a graph Γ is diam(Γ) = sup{d(x, y)|x, y ∈ Γ}. A connected graph
of diameter 1 with n vertices is complete. If the set of vertices of Γ is the
disjoint union of two sets A and B, such that |A| = m and |B| = n and two
vertices are adjacent if and only if they are not in the same set, then Γ is a
complete bipartite graph. For complete and complete bipartite graphs, we use
the standard notation Kn and Km,n, where we allow that m or n need not be
finite. A graph is of genus 0 or planar if it can be embedded into the plane
in such a way that different edges do not intersect each other. If one cannot
accomplish this in the plane, but on the torus, we say that the graph is of genus
1 or toroidal.

Some of our main results are in section 2, where we discuss the structure and
connectivity of the clean graph. We determine conditions under which CΓ(R)
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is complete and prove that CΓ(R) is connected iff R is additively generated by
its idempotents and units. We find and prove a condition for finiteness of the
diameter of CΓ(R), and in addition to that, determine when this diameter is
≤ 2. Among other things, we prove that all commutative Artinian and clean
rings have connected clean graph of diameter ≤ 2. In section 3, we discuss the
genus of CΓ(R) when R is a finite ring. We prove that CΓ(R) is planar iff R is
isomorphic to one of the following rings: F2, F3, F4, Z4, F2×F2, or F2[X]/(X2),
and that it is toroidal iff R is isomorphic to one of the following rings: F5, F7, Z8,
F2[X]/(X3), F2[X, Y ]/(X, Y )2, Z4[X]/(2X, X2), Z4[X]/(2X, X2 − 2), F2 × F3,
F2 × Z4, F2 × F4, or F2 × F2[X]/(X2).

2 On the structure, connectivity and the diam-
eter of CΓ(R)

The main difficulty in determining the structure of CΓ(R) stems from the ir-
regular nature of the sum of units or idempotents. However, in some special
cases, for example when the ring R is quasi-local, the structure of CΓ(R) may
be described. Let us first determine when our graph is complete.

Theorem 2.1 CΓ(R) is complete if and only if R is a field or a Boolean ring.

Proof. Suppose that CΓ(R) is complete and that R is neither a field nor a
Boolean ring. Therefore, R = U(R)∪Id(R) (CΓ(R) is complete, so every element
is adjacent to 0), Id(R) 6= R (R is not Boolean) and R \ {0} 6= U(R) (R is not
a field). We conclude that there exist x ∈ U(R) \ Id(R) and y ∈ Id(R) \
(U(R) ∪ {0}). If xy ∈ U(R), then y ∈ U(R), a contradiction. We conclude
that xy ∈ Id(R). So, (xy)2 = xy, and, since x ∈ U(R) and y ∈ Id(R), xy = y.
Therefore y(1− x) = 0, and since y 6= 0, 1− x /∈ U(R); so 1− x ∈ Id(R). Then
x = 1− (1− x) ∈ Id(R), and this contradicts our choice of x.

The reverse implication is trivial. �

The question that we are mostly concerned with in this section is the con-
nectivity of CΓ(R) and the computation of its diameter. Albeit somewhat unex-
pected, it turns out that the graph CΓ(R) of a finite ring R is always connected
of diameter at most 2. In the case of non-finite rings, there are some other
possibilities. Let us look at the simplest example, the ring of rational integers.
The ring Z is Σ-clean, and it is not n-clean for any n; it is a good ring which
is not n-good. We have UI(Z) = {−1, 0, 1}. Therefore, the only vertices which
are adjacent to the vertex m are −m, 1−m and −1−m. The distance between
two vertices d(m,n) is consequently ||m| − |n|| or ||m| − |n|| + 1. Thus CΓ(Z)
(Fig. 1) is connected and does not have finite diameter.
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Figure 1. CΓ(Z)

Let us now prove a theorem on the connectivity of CΓ(R) for an arbitrary
commutative ring R. In order to do that, we introduce the notion of (k,m)-clean
elements.
Definition. Let k and m be non-negative integers. An element x ∈ R is (k,m)-
clean if x = e1 + · · ·+ ek + u1 + · · ·+ um, where ei ∈ Id(R), and uj ∈ U(R).

Thus, the clean elements are those which are (1, 1)-clean, the n-clean ele-
ments are (1, n)-clean, while n-good elements are those which are (0, n)-clean.
When it does not lead to any confusion, we write a (k, m)-clean element x in
the form x =

∑n
i=1 xi, where xi ∈ UI(R) and n = k + m. Let

En(R) =

{
k∑

i=1

xi : xi ∈ UI(R), k ≤ n

}
, E(R) = ∪∞n=1En(R).

A ring R is an En-ring for some n if R = En(R), and R is an E-ring if R =
E(R). So, E-rings are exactly those rings which are additively generated by
their idempotents and units. The ring of rational integers Z is an example of
an E-ring which is not an En-ring for any n; therefore the class of En-rings
is a proper subclass of the class of E-rings. These notions are closely related
to the question of connectedness and the question of finite diameter of CΓ(R).
Namely, it turns out that CΓ(R) is connected if and only if R is an E-ring, while
its diameter is finite if and only if R is an En ring for some n.

Before we prove this, let us first establish a few useful lemmas. In these
proofs, we use the fact that units and idempotents are clean. This is clear for
units, while if e ∈ Id(R), we have e = (2e − 1) + (1 − e), where 2e − 1 ∈ U(R)
((2e − 1)−1 = 2e − 1). This representation of idempotents is unique, i.e., if
e = u + f , for some u ∈ U(R), f ∈ Id(R), then u = 2e− 1 and f = 1− u. The
proof may be found in [1, Lemma 6].

Lemma 2.1 Let x =
∑m

i=1 ei, where ei ∈ Id(R). Then there exists a path from
x to 0 in CΓ(R).
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Proof. We get a path from x to 0 by using the well-known property of idempo-
tents: e ∈ R is an idempotent iff 1− e is an idempotent. Here is one path:

m∑
i=1

ei —

(
−

m∑
i=2

ei

)
—

(
1 +

m∑
i=3

ei

)
—

(
−

m∑
i=3

ei

)
—

(
1 +

m∑
i=4

ei

)
— · · ·

· · · — (1 + em) — (−em) —1 —0.

Note that d (
∑m

i=1 ei, 0) ≤ 2m− 1. �

Lemma 2.2 Let x, y ∈ R. If d(x + y, 0) = r, then d(x, y) ≤ r + 1.

Proof. Suppose that

(x + y) — s1 — s2 — · · · — sr−1 — 0

is a path of length r in CΓ(R). In this case,

x — (y + s1) — (−y + s2) — · · · — ((−1)r−1y + sr−1) — (−1)ry — (−1)r+1y

is also a path in CΓ(R). We conclude that d(x, y) ≤ r if r is an even integer,
and d(x, y) ≤ r + 1 if r is an odd integer. �

Lemma 2.3 Let x ∈ R be such that d(x, 0) = n in CΓ(R). Then there exists k
and m such that x is (k,m)-clean. Moreover, we have

x =
k+m∑
i=1

xi, where xi ∈ UI(R) and k + m ≤
⌊

3n

2

⌋
.

Proof. Let 0 — s1 — s2 — · · · — sn−1 — x be a path of length n in CΓ(R).
So, the elements s1, s1 + s2, . . . , sn−1 + x belong to UI(R). The element x may
be represented in the form

x = (x + sn−1)− (sn−1 + sn−2) + · · ·+ (−1)n−1s1.

This, however, may not be the representation we need, since if si−1 + si is an
idempotent, the element −(si−1+si) need not be. The number of such elements
is at most

⌊
n
2

⌋
, and every one of them may be replaced by two elements which

are in UI(R): −(si−1 + si) = (1− (si−1 + si)) + (−1). �

Theorem 2.2 Let R be a commutative ring. Then CΓ(R) is connected if and
only if R is an E-ring.

Proof. Suppose first that R is an E-ring, i.e., that every element in R may be
represented as a sum of elements from UI(R), and let x, y ∈ R. According to
Lemma 2.2, it is enough to show that there is a path from x + y to 0. Suppose
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that x + y is (m,n)-clean, i.e., x + y =
∑n

i=1 ui +
∑m

j=1 ej , where ui ∈ U(R),
ej ∈ Id(R). We have the following path in CΓ(R):

x + y =
n∑

i=1

ui +
m∑

i=1

ei —

(
−

n∑
i=2

ui −
m∑

i=1

ei

)
—

(
n∑

i=3

ui +
m∑

i=1

ei

)
— · · ·

· · · — (−1)n−1

(
un +

m∑
i=1

ei

)
— (−1)n

m∑
i=1

ei.

If n is even, according to Lemma 2.1, we may extend this path to 0. If n is odd,
then since −

∑m
i=1 ei is adjacent to

∑m
i=1 ei, we can also extend this path to 0.

To prove the reverse implication, let us assume that CΓ(R) is connected,
and let x 6= 0 be an element in R. Since our graph is connected, there exists a
path from x to 0 in CΓ(R), and let the length of that path be n. By Lemma
2.3, there exists k and m such that x is (k, m)-clean. Therefore, an arbitrary
element of the ring R is a sum of finitely many units and idempotents; so R is
an E-ring. �

Theorem 2.3 Let R be a commutative ring. Then diam(CΓ(R)) is finite if and
only if R is an En-ring for some n.

Proof. Let diam(CΓ(R)) = d, and 0 6= x ∈ R. We have that d(x, 0) ≤ d; so
according to Lemma 2.3, x =

∑n
i=1 xi, where xi ∈ UI(R) and n ≤

⌊
3d
2

⌋
.

Suppose now that R is an En-ring for some n. Naturally, R is then an E-
ring; so the graph CΓ(R) is connected. Let x, y ∈ R. Since R is an En-ring, the
element x+ y is (k, m)-clean for some k and m such that k +m ≤ n. According
to Lemma 2.1 and the proof of the previous theorem, the length of the path
from x + y =

∑k
i=1 ei +

∑m
i=1 ui to 0 is at most 2k + m. According to Lemma

2.2, d(x, y) ≤ 2k + m + 1 ≤ 2n + 1; so diam(CΓ(R)) is finite. �

Theorem 2.4 Let R be a quasi-local ring and x, y ∈ R. Then there exists z ∈ R
such that x + z ∈ {0, 1} and z + y ∈ U(R).

Proof. Let m be the maximal ideal in the quasi-local ring R and x, y ∈ R. We
check all cases:

(1) x, y ∈ m: z = 1− x.
(2) x ∈ m, y 6∈ m (or x 6∈ m, y ∈ m): z = −x.
(3) x 6∈ m, y 6∈ m. We have two cases.

(3.1) y − x 6∈ m: z = −x;
(3.2) y − x ∈ m: z = 1− x. �

Corollary 2.1 Let R = R1 × · · · × Rn be a product of quasi-local rings. Then
CΓ(R) is connected with diam(CΓ(R)) ≤ 2.

Proof. This follows directly from the previous theorem. �

Lemma 2.4 Suppose that R satisfies:

(γ) (∀x ∈ R)(∃y ∈ UI(R)) x + y ∈ UI(R).

Then CΓ(R) is connected with diam(CΓ(R)) ≤ 2.
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Proof. Let x, z ∈ R and x 6= z. We prove that d(x, z) ≤ 2. The condition (γ)
holds for x− z as well; so there exists y ∈ UI(R) such that (x− z) — y — 0 is
a path in CΓ(R). The path we are looking for is the path: x — (y− z) — z. �

Remark 2.1 It is clear that if diam(CΓ(R)) ≤ 2, then the condition (γ) must
hold. Namely, if x ∈ R, since d(x, 0) ≤ 2 there must exist y ∈ UI(R) such that
x + y ∈ UI(R).

Theorem 2.5 Let R be a commutative ring. Then diam(CΓ(R)) ≤ 2 if R is
clean or 2-good.

Proof. We only need to check that the condition (γ) is satisfied.
If R is clean and x ∈ R, then x = e + u, where e ∈ Id(R) and u ∈ U(R).

The element y = −u shows that condition (γ) is satisfied.
Similarly, if R is 2-good and x ∈ R, we have that x = u + v, where u, v ∈

U(R). We take y = −u. �
It is known that the class of commutative clean rings contains rings of di-

mension 0, quasi-local rings, as well as commutative von Neumann regular rings
[1, Corollary 11, Proposition 2, Theorem 10.]. We also know that homomorphic
images and direct product of clean rings are also clean, and that the ring of
formal power series R[[X]] is clean if and only if R is clean [1, Proposition 12]).
We see that the large class of rings has connected clean graph with diameter
diam(CΓ(R)) ≤ 2. There remains a question: Does there exist a commutative
En-ring R whose clean graph is connected and such that diam(CΓ(R)) > 2?

3 The genus of the clean graph

The notation we use in this section is standard: γ(G) is the genus of the graph
G, i.e., it is the smallest n such that G may be embedded in Sn, where Sn is
an orientable surface of genus n. If H is a subgraph of G, then γ(H) ≤ γ(G).
By deg(v) we denote the number of edges incident to v. Graphs of genus 0 are
planar, and graphs of genus 1 are toroidal graphs.

First we show that for a finite commutative ring R, the graph CΓ(R) is
planar if and only if |R| ≤ 4. By a well-known theorem of Kuratowski [12], a
graph G is planar if and only if it does not contain a subdivision of K5 or K3,3.

In what follows, we often use the fact that any finite commutative ring with
identity is isomorphic to a finite direct product of local rings. In order to simplify
notation, we will frequently write that R = R1 × · · · ×Rn.

Theorem 3.1 Let R be a finite commutative ring with identity and |R| ≥ 5.
Then CΓ(R) is not planar.

Proof. As noted above, R = R1 × · · · ×Rn, where each Ri is a finite local ring.

1. n ≥ 3 : In CΓ(R), let A = {a1, a2, a3}, where a1 = (1, 1, 0, 0, . . . , 0),
a2 = (0, 1, 1, 0, . . . , 0) and a3 = (1, 1, 1, 0, . . . , 0). We choose the set of
vertices B = {b1, b2, b3}: b1 = (0, 0, 0, 0, . . . , 0), b2 = (−1, 0, 0, 0, . . . , 0)
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and b3 = (0,−1, 0, 0, . . . , 0). So, every vertex in A is adjacent to every
vertex in B. Therefore, K3,3 is a subgraph of CΓ(R) and we conclude that
the graph CΓ(R) is not planar.

2. n = 2:

(a) R = R1 × R2, where char(Ri) 6= 2. Then the subsets of vertices
A = {(0, 0), (−1, 0), (0,−1)} and B = {(0, 1), (1, 0), (1, 1)} show that
K3,3 is a subgraph of CΓ(R).

(b) R = R1 × R2, where one of the rings, say R1, has characteristic 2
and the other does not. In this case vertices (0, 0), (0, 1), (1, 0) and
(1, 1) form a clique. Let us look at the vertex (1,−1). This vertex
is adjacent to vertices (0, 1), (0, 1) and (1, 1) while there is a path
(1,−1) —(1, 2) —(0,−1) —(1, 0) from (1,−1) to (1, 0). Therefore a
subdivision of K5 is contained in CΓ(R); so this graph is not planar.
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Figure 2.

(c) R = R1 ×R2, where both rings have characteristic 2. Since |R| ≥ 5,
at least one of them, say R2 has more than 2 elements. Let m be the
maximal ideal in R2. If m = {0} then R2 is a field of characteristic 2.
If a ∈ R2\{0, 1}, then the subsets of vertices A = {(0, 0), (0, 1), (0, a)}
and B = {(1, 1), (1, a), (1, 0)} show that K3,3 is a subgraph of CΓ(R).
If m 6= 0 let us choose x ∈ m, x 6= 0. The element 1 + x is invertible
in R2, therefore (1, 1+x) is invertible in R. We prove that CΓ(R) has
as a subgraph a subdivision of K5 (see Fig. 2). It is clear that (0, 0),
(0, 1), (1, 0), (1, 1) form a clique. The vertex (1, 1 + x) is adjacent to
(0, 0) and we have paths: (1, 1+x)—(1, x)—(0, 1), (1, 1+x)—(0, 1+
x)—(1, 0), (1, 1 + x)—(0, x)—(1, 1).
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3. n = 1: In this case, R is a finite local ring with maximal ideal m. It is
known that a finite commutative ring with n non-zero zero-divisors has at
most (n + 1)2 elements (see [8]), i.e., |R| ≤ |Z(R)|2. Therefore, m must
contain at least 2 non-zero zero-divisors m1, m2 (otherwise |R| ≤ 4). The
subsets A = {1, 1 − m1, 1 − m2} and B = {0,m1,m2} show that CΓ(R)
contains K3,3 as its subgraph, therefore it is not planar.

�

Theorem 3.2 Let R be a finite commutative ring with identity. Then CΓ(R) is
planar iff R is isomorphic to one of the following rings: F2, F3, F4, Z4, F2×F2,
or F2[X]/(X2).

Proof. From the previous theorem, it directly follows that the finite commuta-
tive rings with planar clean graph are actually all finite commutative rings of
cardinality ≤ 4. �

In order to go beyond the questions of planarity of our graph, we need a few
additional results.

Theorem 3.3 Let G be a graph with n vertices and γ(G) = g. Then

δ(G) ≤ 6 +
12g − 12

n
,

where δ(G) = min{deg(v) : v ∈ V (G)}. In particular, if γ(g) = 1, we have
δ(G) ≤ 6, where the equality is attained if and only if G is a 1-skeleton of the
6-regular triangulation of a torus.

This is a known theorem [21, Proposition 2.1].

Theorem 3.4

γ(Kn) =
⌈

(n− 3)(n− 4)
12

⌉
, γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
,

where dxe is the smallest integer greater or equal to x.

One can find the proofs in [20, p. 58, p. 152]. Therefore, the complete toroidal
graphs are K5, K6, and K7, while the complete bipartite toroidal graphs are
K3,3, K4,3, K5,3, K6,3, and K4,4. We emphasize that the graphs K8, K3,7 and
K5,4 have genus 2.

Lemma 3.1 Let R1 and R2 be commutative rings. If Km,n ⊆ CΓ(R1), then
Km,n ⊆ CΓ(R1 ×R2).

Proof. Let Km,n inside CΓ(R1) be determined by the subsets of vertices V1 =
{a1, . . . , am} and V2 = {b1, . . . , bn}. The graph Km,n inside CΓ(R1 × R2) is
then determined by subsets of vertices W1 = {(a1, 1) . . . , (am, 1)} and W2 =
{(b1, 0) . . . , (bn, 0)}. �
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Lemma 3.2 Let R be a quasi-local commutative ring with identity with maximal
ideal m. Inside CΓ(R), every element in R \ m is adjacent to every element in
m. The elements m1, m2 from m are adjacent if and only if m1 + m2 = 0.

Proof. This is obvious since the only idempotents in a quasi-local ring are 0 and
1. �

Lemma 3.3 Let R be a finite commutative local ring with maximal ideal m. If
|m| ≥ 5, then γ(CΓ(R)) ≥ 2. This also holds in the case |m| ≥ 3 and |U(R)| ≥ 7.

Proof. We can find at least 5 different invertible elements since for every a ∈ m,
one has 1 − a ∈ U(R). According to the previous lemma every one of them is
adjacent to every vertex in m. Therefore K5,5 ⊆ CΓ(R); so the graph is not of
genus 1. In the second case, K3,7 ⊆ CΓ(R); therefore γ(CΓ(R)) ≥ 2. �

Lemma 3.4 Let R be a commutative ring. If |UI(R)| ≥ 8, then γ(CΓ(R)) ≥ 2.

Proof. Let u1, . . . , u8 be distinct vertices from UI(R). Every vertex x is then
adjacent to vertices ui − x, i = 1, . . . , 8. In the worst case, we have x = ui − x
for some i; say x = u1 − x hence 2x = u1. Then 2x 6= uj and hence x 6= uj − x
for all j = 2, . . . , 8. We certainly have deg(x) ≥ 7. The result then follows from
Theorem 3.3. �

In what follows, we assume that R = R1 × · · · ×Rn is a finite commutative
ring with identity, where each Ri is a finite local ring.

Theorem 3.5 Let R be a commutative ring. If n ≥ 3, then γ(CΓ(R)) ≥ 2.

Proof. It is enough to concentrate on the case n = 3. The result is then a direct
consequence of Lemma 3.4, since the ring R = R1 × R2 × R3 has at least 8
idempotents. �

Therefore, we only need to check the cases n = 1 and n = 2. Let us first
assume that n = 1, i.e., R is a finite local ring with maximal ideal m. It is
known that in this case |R| = pk for some prime p and positive integer k and
that |m| divides |R|.

Theorem 3.6 Let R be a finite local commutative ring with identity. In this
case, γ(CΓ(R)) = 1 if and only if R is isomorphic to one of the following rings:
F5, F7, Z8, F2[X]/(X3), F2[X, Y ]/(X, Y )2, Z4[X]/(2X, X2), or Z4[X]/(2X, X2−
2).

Proof. Suppose first that k = 1 (in the notation mentioned above), i.e., |R| = p.
Then R ∼= Fp. For p > 7, γ(CΓ(R)) ≥ 2, according to Lemma 3.4, while CΓ(F2)
and CΓ(F3) are obviously planar. Since CΓ(F5) = K5 and CΓ(F7) = K7, these
are the only clean graphs of genus 1 in this case.

Let us look at the case k = 2; so |R| = p2. According to [6], the only
possibilities for R are Fp2 , Fp[X]/(X2) and Zp2 . Let us prove that they are
not toroidal. If R = Fp2 and p > 2, then CΓ(R), according to Lemma 3.4,
is not of genus 1. On the other hand, if R = F22 , then CΓ(R) is planar. If
R = Fp[X]/(X2), then |m| = p; so for p ≥ 5, from Lemma 3.3, it follows that
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CΓ(R) is not of genus 1. Since CΓ(F2[X]/(X2)) is planar we are left with the
case R = F3[X]/(X2). It is simple to check that here δ(CΓ(R)) = 6, as well as
that deg(X) = 7. According to Theorem 3.3, CΓ(R) is not of genus 1. The case
R = Zp2 is similar to the previous one; namely, here we also have |m| = p and
CΓ(Z22) is planar. So only the case R = Z32 remains. In this case, δ(CΓ(R)) = 6,
and deg(3) = 7. So among the local rings of cardinality p2, none is such that
its clean graph is of genus 1.

We now deal with the case k = 3, |R| = p3. Since CΓ(F23) = K8, it is of
genus 2. Clean graphs of other finite fields Fp3 , for p ≥ 3, are obviously not of
genus 1 according to Lemma 3.4. Furthermore, if R is not a field, then m has at
least p elements. If p ≥ 3 then, since it is clear that there are enough invertible
elements, γ(CΓ(R)) ≥ 2 according to Lemma 3.3. Therefore, we are left with
the case |R| = 23, where R is not a field. According to [6, p. 687], the following
possibilities may occur: Z23 , F2[X]/(X3), F2[X, Y ]/(X, Y )2, Z4[X]/(2X, X2),
or Z4[X]/(2X, X2−2). We directly check that the clean graphs of the first three
rings are isomorphic to K4,4, therefore they are toroidal, as well as that the clean
graphs of the remaining two rings are isomorphic and may be embedded into
a torus (see Fig. 4a). Therefore they all are of genus 1. In the case |R| = pk,
k ≥ 4, it is easy to see there are no toroidal graphs. �

We now move on to the case n = 2, a product of two local rings.

Theorem 3.7 Let R = R1 × R2 be a product of two finite local commutative
rings with identity such that at least one of them has more than 4 elements. In
this case, γ(CΓ(R1 ×R2)) ≥ 2.

Proof. Suppose that |R2| ≥ 5.
First of all, if R2 is a field and 1, a, b, c its different units, then CΓ(R)

contains K4,5 as a subgraph, so γ(CΓ(R)) ≥ 2. This can be seen if we look at
V1 = {(1, 1), (1, a), (1, b), (1, c)} and V2 = {(0, 0), (0, 1), (0, a), (0, b), (0, c)}.

If R2 is not a field, we have |R2| = pk and |m| ≥ p. Suppose firstly that
|p| ≥ 5, and let 0, a, b, c, d be different elements from m. The choice of subsets
V1 = {0, a, b, c} and V2 = {1, 1 − a, 1 − b, 1 − c, 1 − d} shows that K4,5 is a
subgraph of CΓ(R2). According to Lemma 3.1, we have K4,5 ⊆ CΓ(R1 × R2).
Therefore γ(CΓ(R)) ≥ 2. So, we only have to deal with the cases p = 2 and
p = 3.

Let p = 3, |R2| = 3k, and |m| ≥ 3. It is enough to consider the minimal
case when m = {0, a,−a}. Let V1 = {(0, 0), (0, a), (0,−a)} and V2 = {(1, 1 +
a), (1, 1 − a), (1,−1 − a), (1, a − 1), (1, 1), (1,−1), (1, 0)}. Every vertex in V2 is
adjacent to the vertices in V1 except for the vertex (1, 0) which is not adjacent
to (0, a) and (0,−a). The vertex (1, 0) is connected to (0, a) via the vertex
(0, 1 − a), and to the vertex (0,−a) via (0, 1 + a). In this way, we get that a
subdivision of K3,7 is contained in CΓ(R). So in this case, the graph cannot be
of genus 1.

We now have the case |R2| = 2k. Obviously, γ(CΓ(R1 ×R2)) ≥ 2 for k ≥ 4.
For k = 3, possibilities for R2 are, according to Theorem 3.6, Z23 , F2[X]/(X3),
F2[X, Y ]/(X, Y )2, Z4[X]/(2X, X2), or Z4[X]/(2X, X2−2). In all of these cases,
|m| = 4. Let m = {0, a, b, a + b}.
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If char(R1) 6= 2, the choice of subsets V1 = {(0, a), (0, b), (0, a + b)} and
V2 = {(−1, 1 − a), (−1, 1 − b), (1, 1 − a), (1, 1 − b), (1, 1), (−1, 1), (1, 1 − a − b)}
gives us that K3,7 ⊆ CΓ(R1×R2). Let char(R1) = 2 and V1 = {(1, 1−a), (1, 1−
b), (1, 1− a− b), (1, 1)}, V2 = {(0, 0), (0, a), (0, b), (0, a + b), (0, 1)} (Fig. 3). All
vertices of the set V2 are adjacent to the vertices from V1 except for the vertex
(0, 1). However, the vertex (0, 1) is connected to the other vertices from V1 in
the following way: to the vertex (1, 1 − a) via (1, a); to (1, 1 − b) via (1, b); to
(1, 1− a− b) via (1, a + b); to (1, 1) via (1, 0). In this way, we get a subdivision
of K4,5 inside CΓ(R); so we also have γ(CΓ(R1 ×R2)) ≥ 2. �
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Figure 3.

Theorem 3.8 Let R = R1×R2, where R1 and R2 are finite local commutative
rings with identity. Then γ(CΓ(R)) = 1 if and only if R is isomorphic to one
of the following rings: F2 × F3, F2 × Z4, F2 × F4, or F2 × F2[X]/(X2).

Proof. According to Theorem 3.7 it is enough to check the graphs of the following
rings: F2×F2, F2×F3, F2×Z4, F2×F4, F2×F2[X]/(X2), F3×F3, F3×F4, F3×Z4,
F3×F2[X]/(X2), F4×Z4, F4×F4, F4×F2[X]/(X2), Z4×Z4, Z4×F2[X]/(X2),
or F2[X]/(X2)× F2[X]/(X2).

If R is one of the rings F3 × F4, F4 × Z4, F4 × F4 or F4 × F2[X]/(X2), then
γ(CΓ(R)) ≥ 2 according to Lemma 3.4, since one can directly check that for
every such ring |UI(R)| = 9.

IF R is one of the rings F3 × F3, F3 × Z4, F3 × F2[X]/(X2), Z4 × Z4, or
Z4 × F2[X]/(X2), then γ(CΓ(R)) ≥ 2 according to Theorem 3.3, because in all
those rings we have δ(CΓ(R)) = 6 and there is always a vertex of degree 7. In
F3 × F3 and F3 × Z4 for example, deg(0, 1) = 7; in F3 × F2[X]/(X2), one has
deg(1, x) = 7; in Z4 × Z4, one has deg(0, 3) = 7; while in Z4 × F2[X]/(X2),
deg(1, 0) = 7.

For the ring R = F2[X]/(X2) × F2[X]/(X2), one also has δ(C(Γ(R))) = 6,
but in this case every vertex has degree 6. According to Theorem 3.3, the graph
is toroidal if and only if CΓ(R) is a 1-skeleton of the 6-regular triangulation of
a torus. In this case, we do not have the requested triangulation. For example,
the vertices (0, x) and (1, 1) are adjacent, but the edge which connects them is
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not an edge of any triangle since there are no vertices adjacent to (0, x) and
(1, 1).

Because of the cardinality of the set of vertices, the clean graph of the ring
F2×F2 is planar, while the one for F2×F3 is toroidal. Finally, the clean graphs
of rings F2 × F2[X]/(X2), F2 × F4, and F2 × Z4 are embeddable into a torus
(figures 4b, 4c, 4d). �
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