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Abstract. This paper deals with closed-form solution for static analysis of simply 
supported composite plate, based on generalized laminate plate theory (GLPT). The 
mathematical model assumes piece-wise linear variation of in-plane displacement 
components and a constant transverse displacement through the thickness. It also 
include discrete transverse shear effect into the assumed displacement field, thus 
providing accurate prediction of transverse shear stresses. Namely, transverse stresses 
satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. 
With assumed displacement field, linear strain-displacement relation, and constitutive 
equations of the lamina, equilibrium equations are derived using principle of virtual 
displacements. Navier-type closed form solution of GLPT, is derived for simply 
supported plate, made of orthotropic laminae, loaded by harmonic and uniform 
distribution of transverse pressure. Results are compared with 3D elasticity solutions 
and excellent agreement is found. 

1. INTRODUCTION 

In the last decades, scientists have made considerable progress in understanding 
behavior of composite laminates. It is noticed that anisotropic multilayered structures 
posses transverse discontinuous mechanical properties and higher transverse shear and 
transverse normal stress deformability. In order to model such material behavior, two 
different approaches have arise, that is equivalent single-layer theories (ESL) and 
layerwise theories (LWT).  

In single-layer theories one single expression is used through entire thickness to 
explain the displacement field of the plate. By this, deformation of multilayer plate is 
described by equivalent single layer, thus reducing 3D problem to 2D problem. In order 
to include transverse shear deformation, classical (CLPT) and shear deformation theories  
have been developed. Namely, CLPT based on Kirchhoff's hypothesis, ignores the effect 
of transverse shear deformation. On the other hand, FSDT based on Raissner and 
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Mindlin, assume constant transverse shear stresses in the thickness direction, giving a 
need for shear correction factors to adjust for unrealistic variation of the shear 
strain/stress. In order to overcome the limitations of CLPT and FSDT, Higher-order 
Shear Deformation Theories (HSDT) which involve higher-order terms in Taylor's 
expansion of the displacements in the thickness coordinate were developed.  
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Fig. 1. Displacement and shear stress distribution across the plate thickness  

for isotropic and anisotropic plates 

In wish of obtaining the accurate prediction of stress distribution and precisely model 
kinematics of laminated composites, three-dimensional state of stresses have to be ana-
lyzed. Despite conventional 3D elasticity theory, new family of layerwise theories (LWT) 
have been developed. Naimely, in LWT displacement field is defined for each layer, thus 
including discrete material and discrete shear effects into the assumed displacement field. 
Also, it is noticed that LWT models have some analyze advantages over the conventional 
3D models. First, as LWT model allows independent in-plane and through the thickness 
interpolation, the element stiffness matrix can be computed much faster. Second, even the 
volume of input data is reduced, LWT are capable of achieving the same level of solution 
accuracy as a conventional 3D models.  

This paper deals with displacement based on layerwise theory of Reddy (1987), so 
called Generalized Laminated Plate Theory (GLPT). The theory is based on piece-wise 
linear variation of in-plane displacement components and constant transverse displace-
ment through the thickness. The Navier-type closed form solution is presented for simply 
supported plate loaded by harmonic and uniform distribution of transverse pressure. The 
main objective is to compare results of the mentioned theory to 2D and 3D theories, and 
to develop mathematical model that will be more efficient than conventional 3D model.  
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2. GENERALIZED LAYERWISE PLATE THEORY 

2.1 Assumptions 

The following assumptions are used in the analysis of plate model: 
1. Material follows Hooke's Law and each layer is made of orthotropic material. 
2. Strain-displacement relation is linear, i.e. geometrical linearity. 
3. Displacement and stress distributions over the z thickness plate direction is 

determined by Lagrangian linear interpolation functions. 
4. The inextensibility of normal is imposed. 

2.2 Displacement field 
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Fig. 2. Multilayer composite plate 

Consider a laminated plate (Fig. 2) composed of n orthotropic laminae. The integer k, 
denotes the layer number that starts from the plate bottom. Plate middle surface 
coordinates are (x, y, z), while layer coordinates are (xk, yk, zk). Plate and layer thickness 
are denoted as h and hk, respectively.  

The displacements components (u1, u2, u3) at a point (x,y,z) can be written as: 
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where (u, v, w) are the displacements of a point (x, y, 0) on the reference plane of the 
laminate, and U,V are functions which vanish on the reference plane: 

 0)0,,()0,,( == yxVyxU  (2) 

Let now reduce 3-D model to 2D format, by the following approximations: 
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where U 

I and V 

I are undetermined coefficients, and Φ 

I (z) are layerwise continuous func-
tions of the thickness coordinate. In the view of finite element approximation, the func-
tions Φ 

I (z) are the one-dimensional (linear, quadratic or cubic) Lagrange interpolation 
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functions of the thickness coordinates (Fig. 3), and (U 

I, V 

I) are the values of (u1, u2) at the 
I-th plane.  
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Fig. 3. Local and global linear and quadratic Lagrangian interpolation functions 

If we assume linear interpolation of in-plane displacement components through the 
thickness, linear Lagrangian interpolation functions will have the form: 
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Since the displacement field of GLPT is represented as linear combination of product 
of functions of in-plane coordinates and functions of thickness coordinates, independent 
in-plane and through the thickness discretization of the plate may be achieved. Also, as 
the thickness variation of displacement components is defined in terms of piecewise La-
grangian interpolation functions, the in-plane displacement components will be continu-
ous through the laminate thickness. 
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Fig. 4. Displacement field through the laminate thickness 
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2.3 Strain-displacement relations of the laminae 

The linear strain-displacement relations are given as: 
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From the assumed displacement and deformation field we conclude that in-plane defor-
mation components (εxx, εyy, γxy) will be continuous through the plate thickness. while the 
transverse strains (γxz, γyz) need not to be continuous. 

2.4 Constitutive equations of laminae 

Laminated plate is made of laminae having a 
fibers oriented at an angle θ, measured from the 
material x  to global x axis (Fig. 5). The stress strain 
relations of the laminae is therefore defined in 
material coordinate system as: 
 

 

)(

23

13

12

2

1
)(

55

44

33

2212

1211
)(

23

13

12

2

1

0000
0000
0000
000
000 kkk

C
C

C
CC
CC

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

γ
γ
γ
ε
ε

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

τ
τ
τ
σ
σ

 (6) 

where: 
Tkk )(

23131221
)( }{ τττσσ=σ  stress components of k-th laminae  

in material coordinates 
Tkk )(

23131221
)( }{ γγγεε=ε   strain components of k-th laminae  

in material coordinates 
)(k

ijC  matrix of material elastic coefficients for k-th laminae, given as: 
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where: 
321 ,, EEE  Young's moduli in 1, 2 and 3 directions, respectively  

ijν  Poisson's ratio-defined as ratio of transverse strain in j-direction to axial 
strain in i-direction (i,j=1,2,3) 

132312 ,, GGG  shear moduli in the 1-2, 2-3 and 1-3 planes, respectively 

Along with following relations: 
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Since all quantities should be referred to a single coordinate system, we need to establish 
transformation relations among stresses and strains in global system to the corresponding 
quantities in material (local) coordinate system. The constitutive matrix in global 
coordinate system will than be of the form: 
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The Hooke's law for the k-th laminae in the global coordinate system is now: 
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where: 
Tk

yzxzxyyyxx
k )()( }{ τττσσ=σ stress components of k-th laminae in global coordinates 

Tk
yzxzxyyyxx

k )()( }{ γγγεε=ε  strain components of k-th laminae in global coordinates 
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Fig. 6. Assumed deformation and stress field in laminated composite plate 

From equation (9) and already mentioned distribution of strain field through the plate 
thickness, we conclude (Fig. 6) that in-plane stresses will be discontinuous at dissimilar 
material layers, leaving the possibility for transverse stresses to be continuous through the 
plate thickness. This transverse stresses are the one that satisfy constitutive relations, 3D 
equilibrium equations and traction free boundary conditions. 

2.5 Equilibrium equations  
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Fig. 7. Geometry and load of a plate with curved boundary 

The equilibrium equations are derived using the principle of virtual displacements: 

 VU δ+δ=0  (11) 

where δU is virtual strain energy, δV is virtual work done by applied forces, which are 
given as: 
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In the following text, we assume that distributed load acts in the middle surface and the 
stress resultants are given as: 
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2.6 Constitutive equations of laminate 

The constitutive equations of laminate are given as: 
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Constitutive matrixes of the laminate are given as: 
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3. NAVIER-TYPE CLOSED FORM SOLUTION 
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Fig. 8. Geometry and boundary conditions of multilayer plate 

 
For a rectangular (axb) simply supported cross-ply laminated plate (Fig. 8), composed 

of n-layers, the following constitutive coefficients become zero: 
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The reduced governing equations (14) become: 
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The closed form solution that satisfy the boundary conditions  
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and differential equations (18) can be found by assuming the following harmonic form for 
the unknown variables:  
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If we substitute (20)1, (20)2 into the system of 2N + 3equations (18) for each of the 
Fourier modes (m,n), we will get the following algebraic equations in matrix form: 
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for unknowns ),,,,( mn
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Once the coefficients ),,,,( mn
j

mn
j

mnmnmn SRWYX are obtained, the in-plane stresses are 
computed from the constitutive equations (6) as: 
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Fig. 9. Shear stresses satisfying 3D equilibrium equations 

Shear stresses can be computed by assuming quadratic variation of shear stresses within 
each layer (Fig. 8). This require 3n equations for each of shear stresses ),( )()( k

yz
k

xz ττ , where n 
is the number of layers. These equations can be obtained from the following conditions:  

(1) satisfying traction free boundary conditions at the bottom and top surface of the plate 
(2 equations): 
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n

n hzz =τ==τ  (23)1 

(2) providing the continuity of stresses along interfaces (n−1 equations): 
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(3) assuming the average shear stresses from the constitutive equations (n equations) : 
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(4) and computing the jump in )( )(
,

)(
,,

k
zyz

k
zxz ττ  at each interface utilizing the first two 

equations of equilibrium in terms of stresses (n−1 equations): 
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4. NUMERICAL EXAMPLES 

We considered cross-ply laminated plate, in which each lamina is made of material:  
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The results are presented in the following normalized form: 
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where h is plate thickness, a,b are plate dimensions in x,y directions, respectively. 
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The transverse deflection and stresses are computed at the following locations: 
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Results are obtained using program CS_GLPT coded in MATLAB. 

4.1 Example I: Cross-ply plate loaded by bi-harmonic distribution of transverse pressure 
A cross-ply plate is loaded by bi-harmonic distribution of transverse pressure: 

y
b

x
a

qyxq ππ
= sinsin),( 0  

shown on Fig. 10. 

 

 
Fig. 10. Example I: bi-harmonic distribution of transverse pressure 

Square, symmetrically laminated plate made of nine layers 00/900/00/900/00/900/00/900/00 
is analyzed. Results are shown in Table 1. and Fig. 11. 

Table 1. Example I: Comparison between 3D and GLPT 

a/h Solution w  xxσ  yyσ  xyτ  xzτ  yzτ  

3Д[1] ─ 0.684 0.628 0.0337 0.2134 0.223 
4 

GLPT[2] 1.797
1 

0.671
8 

0.618
7 

0.0346
6 0.223 0.232

5 
3Д[1] ─ 0.551 0.477 0.0235 0.247 0.226 

10 
GLPT[2] 0.657

6 
0.552

1 
0.471

7 
0.0237

5 
0.2118

1 
0.261
1 

3Д[1] ─ 0.539 0.431 0.0213 0.219 0.259 10
0 GLPT[2] 0.433

5 
0.538

8 
0.419

6 
0.0213

1 0.2015 0.275
9 
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Fig. 11.  Normalized stresses for square plate (a/h = 10) made of nine layers , loaded with 

bi-harmonic transverse pressure 

4.2 Example II: Cross-ply plate loaded by transverse distribution of constant pressure 
A cross-ply plate is loaded transverse distribution of constant pressure: 

 0),( qyxq =  

shown on Fig. 12.  
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Fig. 12. Example II: transverse distribution of constant pressure 

Square, symmetrically laminated plate made of three layers 00/900/00 is analyzed. 
Results are shown in Table 2.  

Table 2. Example II: Comparison between GLPT and 3D, 2D 

a/h Solution
s w  xxσ  yyσ  xyτ  xzτ  yzτ  

GLPT[2] 3.079
0 

1.115
7 

0.780
4 0.1094 0.4552 0.5214 

CC[3] 3.044
4 

1.117
3 ─ 0.0973

4 0.4435 0.4956 

FSDT 2.334
4 

0.667
6 ─ 0.0692

3 
0.6466

9 
0.5312

5 

4 

CLPT 0.658
8 

0.804
0 ─ 0.0418

9 
0.7211

6 
0.3842

6 

GLPT[2] 1.156
4 

0.872
1 

0.359
7 

0.0611
7 0.6305 0.4087 

CC[3] 1.154
1 

0.870
8 ─ 0.0597

4 0.6279 0.4017 

FSDT 0.954
6 

0.773
3 ─ 0.0494

3 
0.7060

0 
0.4150
7 

10 

CLPT 0.658
8 

0.804
0 ─ 0.0418

9 
0.7211

6 
0.3842
6 

GLPT[2] 0.671
3 

0.808
3 

0.193
5 

0.0428
5 0.7201 0.3854 

CC[3] 0.671
3 

0.808
3 ─ 0.0428

5 0.7201 0.3852 

FSDT 0.661
8 

0.803
7 ─ 0.0420

2 
0.7209

6 
0.3845

7 

10
0 

CLPT 0.658
8 

0.804
0 ─ 0.0418

9 
0.7211

6 
0.3842

6 
[1] Pagano N.J. 
[2] CS_GLPT - MATLAB program 
[3] E. Carrera, A. Ciuffreda 
CLPT - Classical Laminate Plate Theory 
FSDT - First-order Shear Deformation Theory 
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5. CONCLUSION 

The proposed mathematical model can be used for analysis of thick, as well as thin 
plates. It is shown that differences among 2D and 3D theories are greater for transverse shear 
stresses, than for in-plane stresses. Also, differences among theories vanish by increasing 
a/h. Finally, as GLPT model is capable to achieve the same solution accuracy as 
conventional 3D elasticity model, it can be used as test model of approximation models. 
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ANALITIČKO REŠENJE VIŠESLOJNIH PLOČA 
ZASNOVANO NA OPŠTOJ LAMINATNOJ TEORIJI PLOČA 

Đorđe Vuksanović, Marina Ćetković 

U ovom radu prikazano je anlitičko rešenje statičke anlize slobodno oslonjene kompzitne 
ploče, zasnovano na opštoj laminatnij teoriji ploča (GLPT). Matematički model pretpostavlja deo 
po deo linearnu raspodelu komponenata pomeranja u1,u2 i konstantnu promenu komponente 
pomeranja u3 po debljini ploče. Pomenuti model u obzir uzima i uticaj smičuće deforamcije unutar 
svakog sloja, čime se dobija realna procena smicanja po debljini ploče. Naime, smičući naponi 
zadovoljavaju Hook-ov zakon, 3D uslove ravnoteže i granične uslove po naponima. Koristeći 
pretpostavljeno polje pomeranja, linearne veze deformacija i pomeranja i konstitutivne jednačine 
lamine, primenom principa virtualnih pomeranja izvedeni su uslovi ravnoteže. Navier-ovo rešenje 
GLPT prikazano je za slobodno oslonjenu ploču, sačinjenu od ortotropnih lamina, opterećenu bi-
harmonijskom i konstantnom raspodelom poprečnog opterećenja. Dobijeno je izvrsno slaganje sa 
3D rešenjem elastične teorije.  


