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Summary: The lattice-Boltzmann method (LBM) is a new method in computational fluid 

mechanics. While traditional numerical methods directly discretize and solve the 

macroscopic equations of fluid mechanics, the LBM solves а discrete kinetic equation 

that reproduces the equations of fluid mechanics in the macroscopic sense. This paper 

presents in some detail the concept of the distribution function which is essential for the 

LBM, the Boltzmann equation and the Chapman-Enskog expansion used to reproduce 

the macroscopic equations of fluid mechanics from the Boltzmann equation. The paper 

also presents the procedure used for discretizing the Bolzmann equation in velocity and 

physical space in order to obtain the lattice-Boltzmann equation. 
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1. INTRODUCTION 
 

The transport of mass, momentum and heat are usually modelled using one of the two 

approaches, the continuum approach where differential equations are derived using the 

conservation of mass, momentum and energy for an infinitesimal control volume. Since 

there in no general solution of the fluid flow equations, the approximate solution is 

obtained by finite difference, finite volume, finite element or a similar approach. In order 

to solve the governing equations they are discretized in elements, grid or a volume, 

depending on the selected approach. 

Another approach is to consider that the medium is made of small particles colliding 

with each other. Opposite to the first approach where we had the macroscopic scale, in 
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this case we are dealing with particles on the microscopic scale, hence it is necessary to 

identify the forces acting among the particles and solve the Newton’s second law 

equation. It is required at each time step to define the location and velocity of all 

particles. This is the molecular dynamic simulation. At this level there is no definition of 

pressure, temperature, viscosity and similar properties. 

As a solution for the gap between the micro and macro scale models, the lattice-

Boltzmann method is proposed. The lattice-Boltzmann method was developed from the 

cellular automata and the lattice-gas automata [5]. The idea is that instead of considering 

the behavior of each of the particles alone, one can consider the behavior of a collection 

of particles as a unit, where the property of the collection is presented via a distribution 

function. That is, the distribution function acts as a representative for the collection of 

particles. This is called the meso-scale [1,2]. Since the Boltzmann equation considers the 

motion of fluids in meso-scale, it relies on statistical mechanics to determine how 

particles of the microscopic scale determine the macroscopic properties of fluids.  

This paper presents a short survey of the lattice-Boltzmann method in order to enable a 

more thorough understanding. 

 

 

2. KINETIC THEORY OF GASES 
 

The distribution function  , ,f x c t  indicates the density of particles with position x and 

velocity c  at time t and is used to find the macroscopic properties of the fluid such as 

density, velocity and internal energy. These properties are found as moments of the 

distribution function that is weighted with a function of c and integrated over the 

velocity-space. By integrating over all velocities we obtain the mass density   as 

 

 

   , , ,x t f x c t dc   . (1) 

 

The momentum density is obtained by weighting the distribution function with the 

velocity c  and integrating over the velocity field, 

 

 

   , , ,u x t c f x c t dc   . (2) 

 

In Eq.(2), u  denotes the average particle velocity that corresponds to the fluid velocity. 

In order to allow better understanding of the forthcoming mathematical operation, in 

addition to Eq.(1) and (2)  it is necessary to define the connection of the particle velocity  

c  and the fluid velocity u ,  

 

c u v   (3) 

 

where v  is the peculiar velocity.  
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2.1. THE MAXWELL-BOLTZMANN DISTRIBUTION 
 

The collision of two particles will cause a change of their velocities which will depend 

on the position and velocities before the collision as well as the intermolecular forces 

during the collision. We will assume that the collision causes the particles' velocities to 

be evenly distributed around u . This leads to the conclusion that the distribution 

function depends only on the peculiar velocity v . Therefore, the equilibrium distribution 

function can be denoted as 
   0

f v , and can also be presented through its coordinates 

               0 0 0 0

x x y y z zf v f v f v f v . The two functions, that have this property, are the 

logarithmic function and the exponential function. For a constant velocity 
2

v , the 

function 
   0

f v  is constant, and the following expression applies, 

           0 0 0
ln ln ln .x x y y z zf v f v f v const    The last equation can only be solved by 

presenting the equilibrium distribution function for different  directions as shown in 

Eq.(4), where a and b mark constants that are independent of the peculiar velocity and 

are determined through the moments of the distribution function.   

           
2

0 0 0 3ln x
b vbva a

x x x x xf v a bv f v e e f v e e


      . (4) 

Using the expression for the equilibrium distribution function in Eq.(4), one can find the 

constants a and b. Afres some algebra, this yields the equilibrium distribution function in 

the following form 

 

   
23/2

0 33
exp

4 4

v
f v

e e




  
        

. (5) 

 

The equilibrium distribution given by Eq.(5) is called the Maxwell-Boltzmann 

distribution [3]. 

 

2.2. THE BOLTZMANN EQUATION 
 

The distribution function is a function of x , c  and t, therefore its total differential can 

be given as 

 

i i

i i

dx dcdf f f f

dt x dt c dt t

  
  
  

. (6) 

 

where idx dt  presents the particles' velocity ci, idc dt  is the particles' acceleration that 

is defined as the body force density by the Newton’s second law, i idc dt F  . 

Additionally, if the left side of Eq.(6) is zero, the equation becomes an advection 

equation that describes the propagation of the particle distribution f with velocity 

c without a collision. Generally, df dt  represents a source term that indicates the 
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change of the distribution function due to collisions that are causing particles to change 

their directions. Writing Eq.(6) in vector form, using notation  f  for the collision 

operator, we attain the Boltzmann equation 

 

  c

f F
f c f f

t 


     


. (7) 

 

Examining Eqs.(6) and (7), one can deduce that the collision operator is, by its’ 

definition, equal to the total derivative of the distribution function, i.e. df dt . The 

collision operator itself can take many forms as long as it fulfils the conditions given 

with Eq.(8). It is indeed essential that the collision operator conserves mass, momentum 

and energy when integrated over the whole velocity space. 

 

 

 

 
2

conservation of mass:         0,

conservation of momentum:  0,

conservation of energy:          0.

f dc

c f dc

c f dc

 

 

 







 (8) 

 

The collision operator must also ensure that the distribution function evolves towards the 

equilibrium. The operator that is most often used by authors is the BGK collision 

operator [1,2,5] 

 

    01
f f f


    , (9) 

 

proposed by Bhatnagar, Gross and Krook where   marks the relaxation time. 

 

 

3. MACROSCOPIC CONSERVATION EQUATIONS 
 

Taking the zeroth moment of all terms in the Boltzmann equation (7), the general form 

of the solution is obtained by 

 

 

 i

i

i i

F f
f dc c f dc dc f dc

t x c

  
   

      . (10) 

 

The integrals on the left side of Eq.(10) are: the density moment from Eq.(1), the 

momentum moment Eq.(2), while the third term is zero (the multidimensional 

integration by parts was used for deriving this equation). The right side of Eq.(10) is zero 

from the mass conservation constraint given by Eq.(8). Finally Eq.(10) becomes 
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0i

i

u

t x

 
 

 
. (11) 

 

The momentum equation is derived similarly, by taking the first moment of the 

Boltzmann equation, 

 

 
j

i i j i i

j j

F f
c f dc c c f dc c dc c f dc

t x c

  
   

       (12) 

 

where the first term on the left-hand side can be transformed into momentum density. 

The second term on the left-hand side of Eq.(12) is 

 

   i j i j i j i j i j i j i j iju u u v v u v v f dc u u v v f dc u u           , (13) 

 

where the first term denotes the macroscopic flow of momentum and the second term is 

the diffusion of momentum. The third term on the left-hand side of Eq.(12) translates to 

negative density using multidimensional integration by parts, while the right-hand side 

of Eq.(13) becomes zero using the momentum conservation criteria. Hence, the 

momentum equation is as follows 

 

i j iji

i

j j

u uu
+F .

t x x

   
 

  
 (14) 

 

where ij i jv v f dc    marks the stress tensor. It should be noted that the stress tensor 

defined here does not account for the turbulent stress in the fluid, as it will be shown 

later on. 

 

3.1. THE CHAPMAN-ENSKOG EXPANSION 
 

The distribution function can be expanded around equilibrium with terms in increasing 

order of Knudsen number Kn, 

 
     0 1 22 ,f f f f      (15) 

 

where   indicates that 
     1 0

f f O Kn , 
     2 0 2f f O Kn . The Boltzmann 

equation (7) using the collision operator Eq.(9) can be written as 

 

  01i

i

i i

Ff f f
c f f

t x c 

  
    

  
. (16) 

 

Substituting Eq.(15) in Eq.(16) gives 
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           0 1 2 1 22 21i

i

i i

F
c f f f f f

t x c
   

  

   
         

   
, (17) 

where division with   has the sole purpose of  expressing the order of magnitude of the 

right to left side terms ratio. Introducing the assumption that terms of different order of 

Kn are semi-independent, Eq. (17) can be thought of as hierarchy of equations, one 

equation at  0O Kn , one at  1O Kn  etc. The presented expansion technique is called 

the Chapman-Enskog expansion. 

Since f  and  0
f  have the same moments of density, momentum and energy, it can be 

assumed that the contribution of the higher order terms to these moments are zero. 

Therefore, at the  0O Kn  the expanded Boltzmann equation (17) becomes 

 
 

   
 0 1

0 0

c

f F f
c f f

t  


     


 (18) 

 

By dividing Eq.(18) with  0
f , rearanging it and using Eq.(3) and the using the rule for 

differentiating the normal logarithm the following equation is attained  

 

 

 

  
 

     0 0 0
1

0

ln ln ln
i

i i

i i

f f fFf
u v

t x cf




   
      
   
 

 (19) 

 

The logarithm of the equilibrium distribution function Eq.(5) is 

 

  20 3 3 3 3
ln ln ln ln

2 4 2 4
f e c u

e




   
       

   
. (20) 

 

The derivatives in Eq.(19) are determined throughout the use of the chain rule for the 

time and space derivatives, by keeping in mind that the distribution function is uniquely 

defined by the conserved quantities of density, momentum and energy.  

 

 

 

   

 

1

20

31

2

31 3 3

4 2 2

j j j

i i i i

i i

i i i i

i

v u u
u v u v

t x e t xf

f v e e
u v F v

e e t x e

 






      
         

       
   

                 

 (21) 

 

The time derivatives in Eq.(21) are replaced using the conservation equations that apply 

on level  0O Kn  and after some rearranging, Eq.(22) is derived. 
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   

2

1 0 31 5 3 1 1

4 2 2 2 3

j i k

i i j ij

i i j k

uv u ue
f f v v v

e x e e x x x
 

       
         

           

 (22) 

In order to derive the Navier-Stokes equations, the first order moment perturbation 
 1

  

must be determined. The stress tensor was defined earlier as ij i jv v f dc   . Using 

the previously derived Eq.(22) the first order perturbation of the stress tensor becomes 

 

   1 1 2

3

j i k

ij i j ij

i j k

u u u
v v f dc p

x x x
  

   
     

    
 , (23) 

 

where p denotes the pressure. Finally, by letting Kn Kn  , the approximation 
   0 1

     can be inserted in Eq.(14) to acquire the Navier-Stokes mass 

conservation equation 

 

  ,
i j devi

ij ij i

j j

u uu
p +F

t x x


 

 
   

  
 (24) 

 

where dev

ij  is given with Eq.(23).  
 

 

4. THE LATTICE-BOLTZMANN METHOD 
 

Since it is impossible to find an analytical solution of the Boltzmann equation for 

practical problems, it is solved numerically. Contrary to the case of standard transport 

equations, which are discretized in the physical space and time, the Boltzmann equation  

requires additional discretization in the velocity space. The first step is to transform the 

continuous velocity space into discrete velocities c , consequently followed by the 

standard time and space discretization. 

The first step is to transform Eq.(5) using the pressure and density relation for an 

isothermal ideal gas 
2

0p c  , where 
0c  marks the speed of sound, and using the Taylor 

expansion to the order  2O u  to obtain 

 

   
 

 

 

0

3/2 2
2

0
0

2

3/2 2 4 2 2
2

0 0 0 0
0

2
, , exp

22

1 exp .
2 2 22

i i i i i i

i ji ii i i i

c c c u u u
f x c t

cc

c cc uc u u u

c c c cc









  
   

 

   
      
    

 (25) 
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The next step is to discretize the velocity space that results in a finite number of 

velocities c . Accordingly, the distribution function formerly presented as  , ,f x c t  

becomes  ,f x t
 that represents the density of particles with velocity c  at  ,x t . 

Additionally, the term  
3/2

2

02

0

exp 2
2

i jc c
c

c


 
 
 

 is replaced with weighting coefficients 

w , resulting in the discrete form of the distribution function 

 

 

   
 

2

0

2 4 2

0 0 0

, , 1 .
2 2

i ii i i i
c uc u u u

f x c t w
c c c


 
    
 
 

 (26) 

 

Using the discrete form of the BGK operator given by Eq.(9) the Boltzmann equation is 

transformed into the discrete-velocity Boltzmann equation (DVBE), 

 

 

  01
.i

i

f f
c f f

t x

 
  



 
   

 
 (27) 

 

The discrete velocities defined by c  and w  must satisfy certain constraints in order to 

ensure that the model reproduces the hydrodynamic equations. The DVBE gives the 

same equations as the continuous Boltzmann equation (mass and momentum 

conservation equations) if the zeroth, first, second and third moment of the discrete 

distribution function  0
f  has to be same as the appropriate moment of the  continuous 

distribution function  0
.f  

 

 
     

     

       

       

0

0

0 0

0 0

, , ,

, , ,

, , ,

, , ,

i i

i j ij

i j k ijk

f x t x t

c f x t u x t

c c f x t x t

c c c f x t x t




 


  


   










 

 









 (28) 

 

where 
       0 0

, , ,ij i jx t c c f x t dc    and 
       0 0

, ,ijk i j kx t c c c f x t dc   . Using 

Eqs.(28) we can attain the constraints on the velocity vectors and weighting coefficients 

given with Eqs.(29) that are the symmetry properties of c  and w . 
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 

2

0

4

0

1,

0,

,

0,

,

0.

i

i j ij

i j k

i j k l ij kl ik jl il jk
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 (29) 

 

Keeping higher order terms in Eq.(25) produces additional constraints leading to a larger 

set of velocities.   

The next step is to perform the Chapman-Enskog expansion using the perturbation 

expansion Eq.(15) as well as a multiple-scale expansion of time in orders of Kn so that 
1

1 2t t t     using Eq.(30) to expand the derivatives 
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Although the expansion has no clear physical meaning, it can be  explained through 

taking into account that different phenomena affect the time derivative at different orders 

of Kn number. If 
1t  is a time scale dealing with fast phenomena and 

2t  is a time scale 

dealing with slower phenomena, this allows the separation of the derivatives into 

multiple equations corresponding to the order of  . Using these expansions the DVBE 

is modified and separated into first and second order   to give Eqs.(31) 
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As in the case of the continuous Boltzmann equation, the higher order perturbations have 

no influence on the macroscopic property, so the mass and momentum conservation 

imply that 
   

0,  for 1
n n

f c f n  
 

    , therefore the zeroth, first and second order 

moments of Eqs.(31) are  
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where 
   0 0

ijk i j kc c c f   


   and 
   1 1

ij i jc c f  


  .By recombining the moment 

equations at different orders of   the conservation equation are produced. By 

multiplying the first equation in Eqs.(32) with   and adding it to the fourth equation in 

Eqs.(32) multiplied by 2 , using the expansion given with Eq.(30) results in the standard 

mass conservation equation previously presented with Eq.(11). The momentum equation, 

as presented in Eq.(24) without the force term, is attained by multiplying the second 

equation in Eqs.(32) with   and adding it to the fifth equation in Eqs.(32) multiplied by 
2 , after applying Eq.(30) and using the third equation in Eqs.(32). 

It can be concluded that the discrete-velocity Boltzmann Eq.(27) with conditions 

Eqs.(29) reproduces the mass and momentum equations of fluid mechanics with the 

exception of a  3O u  term that can be neglected for Mach numbers 2 1.Ma    

Although Eq. (27) is discrete in velocity space, it is still continuous in physical space and 

time, therefore further discretization is necessary. Since both the Boltzmann equation 

and DVBE are hyperbolic, they can be discretized by integration along the 

characteristics. Using this approach, the distribution function can be presented as 

    ,f f x a t a   where a marks the position along the characteristic. The total 

derivative of f  along a, assuming no external forces leads to 
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 (33) 

 

where the equality on the right side holds only if the total differential is the  left side of 

DVBE which is true if 1dt da   and i idx da c . By slightly misusing the notation the 

distribution function is       , ,f x a t a f x ca t a    . After integrating from one 

time step to another the following equation is derived 
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The left side of Eq.(34) is accurate while the right side is solved approximately. If the 

integral in Eq.(34) is approximated using the rectangle method, the first order lattice 

Boltzmann equation is developed, 
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Equation (35) is fully explicit sine all f  in the next time step can be determined using 

f  from the current time step.  

 

 

5. CONCLUSION 
 

This paper presents a short introduction to the lattice-Boltzmann method. The essence of 

the lattice-Boltzmann method is the indirect solution of the fluid motion equations. 

Namely, one can generate accurate solutions even though simple arithmetic calculations 

are performed instead of solving the standard fluid flow equation.  

As stated in the Introduction, the Boltzmann equation describes the propagation of a 

distribution function instead of the propagation of each particle in a fluid mass.  Hence, 

the paper starts with a short description of the distribution function and its fundamental 

properties. The authors gave a brief overview of the properties which the collision 

operator must satisfy and selected the BGK collision operator for further derivation of 

the governing equations. After deriving the Boltzmann equation it was discretized using 

the lattice-Boltzmann method in order to obtain the form of the equations that allows 

their solution. 
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LATTICE-BOLTZMANN МЕТОДА У НУМЕРИЧКОЈ 

МЕХАНИЦИ ФЛУИДА 

 
Резиме: Lattice-Boltzmann-ова метода (ЛБМ) је нова метода у нумеричкој 

механици флуида. Док традиционалне нумеричке методе непосредно дискретизују 

и решавају макроскопске једначине механике флуида, ЛБМ решава дискретну 

кинетичку једначину која репродукује једначине механике флуида у макроскопском 

смислу. Овај рад представља концепт функције расподеле која је неопходна у 

ЛБМ, Boltzmann-ову једначину и развијање у низ по Chapman-Enskog-м које се 

користи у циљу репродуковања макроскопских једначина механике флуида 

полазећи од Boltzmann-ове једначине. У раду је такође представљен поступак 

дискретизације Boltzmann-ове једначине у простору брзина и физичком простору 

ради успостављања lattice-Boltzmann-ове једначине. 

 

Кључне речи: lattice-Boltzmann метода, развијање у низ по Chapman-Enskog-у, 

нумеричка механика флуида 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


