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Summary: The lattice-Boltzmann method (LBM) is a new method in computational fluid
mechanics. While traditional numerical methods directly discretize and solve the
macroscopic equations of fluid mechanics, the LBM solves a discrete kinetic equation
that reproduces the equations of fluid mechanics in the macroscopic sense. This paper
presents in some detail the concept of the distribution function which is essential for the
LBM, the Boltzmann equation and the Chapman-Enskog expansion used to reproduce
the macroscopic equations of fluid mechanics from the Boltzmann equation. The paper
also presents the procedure used for discretizing the Bolzmann equation in velocity and
physical space in order to obtain the lattice-Boltzmann equation.
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1. INTRODUCTION

The transport of mass, momentum and heat are usually modelled using one of the two
approaches, the continuum approach where differential equations are derived using the
conservation of mass, momentum and energy for an infinitesimal control volume. Since
there in no general solution of the fluid flow equations, the approximate solution is
obtained by finite difference, finite volume, finite element or a similar approach. In order
to solve the governing equations they are discretized in elements, grid or a volume,
depending on the selected approach.

Another approach is to consider that the medium is made of small particles colliding
with each other. Opposite to the first approach where we had the macroscopic scale, in
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this case we are dealing with particles on the microscopic scale, hence it is necessary to
identify the forces acting among the particles and solve the Newton’s second law
equation. It is required at each time step to define the location and velocity of all
particles. This is the molecular dynamic simulation. At this level there is no definition of
pressure, temperature, viscosity and similar properties.

As a solution for the gap between the micro and macro scale models, the lattice-
Boltzmann method is proposed. The lattice-Boltzmann method was developed from the
cellular automata and the lattice-gas automata [5]. The idea is that instead of considering
the behavior of each of the particles alone, one can consider the behavior of a collection
of particles as a unit, where the property of the collection is presented via a distribution
function. That is, the distribution function acts as a representative for the collection of
particles. This is called the meso-scale [1,2]. Since the Boltzmann equation considers the
motion of fluids in meso-scale, it relies on statistical mechanics to determine how
particles of the microscopic scale determine the macroscopic properties of fluids.

This paper presents a short survey of the lattice-Boltzmann method in order to enable a
more thorough understanding.

2. KINETIC THEORY OF GASES

The distribution function f ()?,é,t) indicates the density of particles with position X and

velocity C at time t and is used to find the macroscopic properties of the fluid such as
density, velocity and internal energy. These properties are found as moments of the
distribution function that is weighted with a function of € and integrated over the
velocity-space. By integrating over all velocities we obtain the mass density p as

p(Xt)=[f(X.ct)de. [N

The momentum density is obtained by weighting the distribution function with the
velocity € and integrating over the velocity field,

pu(x,t)=[c f(%,ct)dc. @)
In Eq.(2), U denotes the average particle velocity that corresponds to the fluid velocity.
In order to allow better understanding of the forthcoming mathematical operation, in
addition to Eq.(1) and (2) it is necessary to define the connection of the particle velocity
€ and the fluid velocity U,

C=U+V 3)

where V is the peculiar velocity.
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2.1. THE MAXWELL-BOLTZMANN DISTRIBUTION

The collision of two particles will cause a change of their velocities which will depend
on the position and velocities before the collision as well as the intermolecular forces
during the collision. We will assume that the collision causes the particles' velocities to

be evenly distributed around G. This leads to the conclusion that the distribution
function depends only on the peculiar velocity v . Therefore, the equilibrium distribution

function can be denoted as f (|\7|) and can also be presented through its coordinates

FOV)) =1 (v,) £, (v,) £7(v,). The two functions, that have this property, are the

logarithmic function and the exponential function. For a constant velocity |\7|2, the

function f@(jv]) is constant, and the following expression applies,

In £ (v, )+1In £ (v, )+In £ (v,) = const. The last equation can only be solved by

presenting the equilibrium distribution function for different directions as shown in
Eqg.(4), where a and b mark constants that are independent of the peculiar velocity and
are determined through the moments of the distribution function.

InfO(v)=a-bv, = fO(v)=ee"™ = fO(v])=e=e. (4)

X

Using the expression for the equilibrium distribution function in Eq.(4), one can find the
constants a and b. Afres some algebra, this yields the equilibrium distribution function in

the following form
3/2 _3|\7|2
FO(jv]) = pf -2 j — .
(1) p(m exp| — (5)

The equilibrium distribution given by Eq.(5) is called the Maxwell-Boltzmann
distribution [3].

2.2. THE BOLTZMANN EQUATION

The distribution function is a function of X, ¢ and t, therefore its total differential can
be given as

df of dx, of dc, of
— =ty — 1y (6)
dt ox, dt oJc dt ot

where dx, /dt presents the particles’ velocity c;, dc,/dt is the particles' acceleration that
is defined as the body force density by the Newton’s second law, dc /dt=F/p.

Additionally, if the left side of Eq.(6) is zero, the equation becomes an advection
equation that describes the propagation of the particle distribution f with velocity
¢ without a collision. Generally, df /dt represents a source term that indicates the
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change of the distribution function due to collisions that are causing particles to change
their directions. Writing Eq.(6) in vector form, using notation Q(f) for the collision

operator, we attain the Boltzmann equation

Q(f)=%+6~Vf+%~ch. )

Examining Eqs.(6) and (7), one can deduce that the collision operator is, by its’
definition, equal to the total derivative of the distribution function, i.e. df /dt. The
collision operator itself can take many forms as long as it fulfils the conditions given
with Eq.(8). It is indeed essential that the collision operator conserves mass, momentum
and energy when integrated over the whole velocity space.

conservation of mass: J'Q 6 =
conservation of momentum: Jc Q(f)dc=0, (8)
conservation of energy: j|6|2 Q(f)dc=

The collision operator must also ensure that the distribution function evolves towards the
equilibrium. The operator that is most often used by authors is the BGK collision
operator [1,2,5]

Q(f):—%(f—f(o)), ©)

proposed by Bhatnagar, Gross and Krook where = marks the relaxation time.

3. MACROSCOPIC CONSERVATION EQUATIONS

Taking the zeroth moment of all terms in the Boltzmann equation (7), the general form
of the solution is obtained by

—J'fdc+ Icfdc+;jidc [a(f) (10)

The integrals on the left side of Eq.(10) are: the density moment from Eq.(1), the
momentum moment Eq.(2), while the third term is zero (the multidimensional
integration by parts was used for deriving this equation). The right side of Eq.(10) is zero
from the mass conservation constraint given by Eq.(8). Finally Eq.(10) becomes
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a_p+%:0.
ot ox

(1)

The momentum equation is derived similarly, by taking the first moment of the
Boltzmann equation,

0 NG . K of . ~
ajci fdc+&jjci c fdc+;’J‘cia—dec='|'ciQ(f)dc (12)

where the first term on the left-hand side can be transformed into momentum density.
The second term on the left-hand side of Eq.(12) is

J(uu; +upvy +vuy +vvp ) fde = puyu, —(—J'vi v, f dé)zpui u;—o;, (13)

where the first term denotes the macroscopic flow of momentum and the second term is

the diffusion of momentum. The third term on the left-hand side of Eq.(12) translates to

negative density using multidimensional integration by parts, while the right-hand side

of Eq.(13) becomes zero using the momentum conservation criteria. Hence, the

momentum equation is as follows

. Opuu; ooy N
a o ox x i (14)

i j

opu,

where oy = —_|'vi v, f dc marks the stress tensor. It should be noted that the stress tensor

defined here does not account for the turbulent stress in the fluid, as it will be shown
later on.

3.1. THE CHAPMAN-ENSKOG EXPANSION

The distribution function can be expanded around equilibrium with terms in increasing
order of Knudsen number Kn,

FofO 4 f0 20 (15)

where ¢ indicates that f@/f®=0(kn), ?/f¥=0(Kn?). The Boltzmann

equation (7) using the collision operator Eq.(9) can be written as

i+Cii kil 1(f—f(°)).
ot o%  p OC T

(16)

Substituting Eq.(15) in Eq.(16) gives

| 3BOPHNK PAOOBA MEBYHAPOOHE KOH®EPEHLIMJE (2016) |



t
4 INTERNATIONAL CONFERENCE

Contemporary achievements in civil engineering 22. April 2016. Subotica, SERBIA

2Jrcii+Ei (f(o)+gf(l)+52f(2)+---):—i(5f(l)+ng(2)+---), 17)
ot o% p oc ET

where division with ¢ has the sole purpose of expressing the order of magnitude of the

right to left side terms ratio. Introducing the assumption that terms of different order of
Kn are semi-independent, Eq. (17) can be thought of as hierarchy of equations, one

equation at O(Kn°), one at O(Knl) etc. The presented expansion technique is called

the Chapman-Enskog expansion.

Since f and f'” have the same moments of density, momentum and energy, it can be
assumed that the contribution of the higher order terms to these moments are zero.
Therefore, at the O(Kn°) the expanded Boltzmann equation (17) becomes

(0) = @
aft cevio Fy go_ 17 (18)

P T

By dividing Eq.(18) with £, rearanging it and using Eq.(3) and the using the rule for
differentiating the normal logarithm the following equation is attained

£ a(|nf<°>) a(|nf<°>) E a(mf("))
—=—7| ——+ (U, +V, +—- 1
f(O) g ot ( i |) aXi D aCi ( 9)
The logarithm of the equilibrium distribution function Eq.(5) is
3 3 3 3 2
|nf<°>=—|n(—j+|n ——Ine—(—jé—ﬁ . 20
2N 2P g ime| 5 JE-Ul (20)

The derivatives in EQ.(19) are determined throughout the use of the chain rule for the
time and space derivatives, by keeping in mind that the distribution function is uniquely
defined by the conserved quantities of density, momentum and energy.

3v. ( Ou. ou.
l[a—’o+(uiJrvi)a—’DJ+L[i+(ui+vi)%j+
X

£ P ox ) 2el ot :

© - ° 12
f 1( 3] 3 e oe) 3
Yol a2 la e )oY
i PE

The time derivatives in Eq.(21) are replaced using the conservation equations that apply
on level O(Kno) and after some rearranging, Eq.(22) is derived.
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3|y’ au, ou,
jo__ppo 123V 51, 8, (LU ) 1. ou 22
eox | de 2 2 " 2( o ox ) 37 ox

]

In order to derive the Navier-Stokes equations, the first order moment perturbation e
must be determined. The stress tensor was defined earlier as o :—_|'vi v, fdc . Using

the previously derived Eq.(22) the first order perturbation of the stress tensor becomes

ou, 2 . ou, J , 23)

ou,
ai(.l):—J'viv.f(l)dC: pr| —+— -5 —
: : ox  ox, 3 ox,

where p denotes the pressure. Finally, by letting £Kn— Kn, the approximation

6~5”+c" can be inserted in Eq.(14) to acquire the Navier-Stokes mass
conservation equation

opu; +apuiuj _i
ot OX, OX.

] ]

(=6, P+ )+F, (24)

ij

where o is given with Eq.(23).

4. THE LATTICE-BOLTZMANN METHOD

Since it is impossible to find an analytical solution of the Boltzmann equation for
practical problems, it is solved numerically. Contrary to the case of standard transport
equations, which are discretized in the physical space and time, the Boltzmann equation
requires additional discretization in the velocity space. The first step is to transform the

continuous velocity space into discrete velocities ¢ , consequently followed by the

standard time and space discretization.
The first step is to transform Eq.(5) using the pressure and density relation for an

isothermal ideal gas p =c; p, where ¢, marks the speed of sound, and using the Taylor

a !

expansion to the order O(u®) to obtain

~

¢,C, —2c,u; +uiuij

(25)
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The next step is to discretize the velocity space that results in a finite number of

velocities €, . Accordingly, the distribution function formerly presented as f()?,é,t)

becomes f,(X,t) that represents the density of particles with velocity ¢, at (X,t).
cc,

Additionally, the term exp( ) j/(z;zc )/2 is replaced with weighting coefficients
CO

w,, resulting in the discrete form of the distribution function

“ ¢ 2 2¢

fO(x,¢,t)= pw {1+ﬁ+(ciui) uu, J -

Using the discrete form of the BGK operator given by Eq.(9) the Boltzmann equation is
transformed into the discrete-velocity Boltzmann equation (DVBE),

of of 1
LA a _ _ = f _f(o) .
ey e =—=(f,~ 1) @)

The discrete velocities defined by €, and w, must satisfy certain constraints in order to

ensure that the model reproduces the hydrodynamic equations. The DVBE gives the
same equations as the continuous Boltzmann equation (mass and momentum
conservation equations) if the zeroth, first, second and third moment of the discrete

distribution function fio) has to be same as the appropriate moment of the continuous

distribution function f©

> f;°><m>:p<m>,
Yo 1 ()= pu, (X).

28
anl aj a ):HEJO)(X’t)' ( )
zcal aj ak D{ Xt) Sji)()z’t)7

where  TI{ (%,t)=[c ¢, f©(x,t)de, and T (x,t)=[c ¢ ¢, f@(x,t)dc. Using

Eqgs.(28) we can attain the constraints on the velocity vectors and weighting coefficients
given with Eqgs.(29) that are the symmetry properties of ¢, and w, .
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dw, =1,
a
D w,c, =0,
a
2
Zwacai Caj = COé‘ij '
a
Zwacai Caj ak — 0’

ZWaCai CoiCok Cut = Cg (é‘ijé‘kl +5ik5jl +5il5jk )v

(29)

aai Yaj Yak Yal Yam

D W,C,i Cy Cope €y Comy =0
a

Keeping higher order terms in Eq.(25) produces additional constraints leading to a larger
set of velocities.

The next step is to perform the Chapman-Enskog expansion using the perturbation
expansion Eq.(15) as well as a multiple-scale expansion of time in orders of Kn so that

t—t +&'t, +... using Eq.(30) to expand the derivatives

——)8i+8 —t, — > E&—. (30)

Although the expansion has no clear physical meaning, it can be explained through
taking into account that different phenomena affect the time derivative at different orders
of Kn number. If t, is a time scale dealing with fast phenomena and t, is a time scale
dealing with slower phenomena, this allows the separation of the derivatives into
multiple equations corresponding to the order of ¢ . Using these expansions the DVBE
is modified and separated into first and second order ¢ to give Egs.(31)

0(e): S FTU . 1)
8t1 al axl a z_ a
o0 (o o 1.0 5D
o(&): « 4| g, — |f0=-=f0,
a, oy “ox ) 1 °

As in the case of the continuous Boltzmann equation, the higher order perturbations have
no influence on the macroscopic property, so the mass and momentum conservation

imply that > " =>"c, " =0, forn>1, therefore the zeroth, first and second order

moments of Eqs.(31) are
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0(e) ap o)
ot OX,;
a(pu;) oIy’
a ook
(0) 3t
oIT; +8H” :_lﬁg?) (32)
ot ox r !
. op
O(gz) %z 1
opy, oIt 0
a,  ox,

where T1{)) = Zcm i Cue £ and 1T = ZCm .; T By recombining the moment

equations at dlfferent orders of & the conservation equation are produced. By
multiplying the first equation in Eqgs.(32) with & and adding it to the fourth equation in

Egs.(32) multiplied by &, using the expansion given with Eq.(30) results in the standard
mass conservation equation previously presented with Eq.(11). The momentum equation,
as presented in Eq.(24) without the force term, is attained by multiplying the second
equation in Egs.(32) with ¢ and adding it to the fifth equation in Eqs.(32) multiplied by
&%, after applying Eq.(30) and using the third equation in Egs.(32).

It can be concluded that the discrete-velocity Boltzmann Eq.(27) with conditions
Egs.(29) reproduces the mass and momentum equations of fluid mechanics with the

exception of a O(us) term that can be neglected for Mach numbers Ma?® <<1.

Although Eq. (27) is discrete in velocity space, it is still continuous in physical space and
time, therefore further discretization is necessary. Since both the Boltzmann equation
and DVBE are hyperbolic, they can be discretized by integration along the
characteristics. Using this approach, the distribution function can be presented as

f,=1f,(X(a),t(a)) where a marks the position along the characteristic. The total
derivative of f_ along a, assuming no external forces leads to

df of, ) dt dx; 1
—a _ —=(f - 10O
da ( Jda ( Jda z'( ©o ) 33)

where the equality on the right side holds only if the total differential is the left side of
DVBE which is true if dt/da=1 and dx,/da=c, . By slightly misusing the notation the

distribution function is f,(X(a),t(a))~ f,(X+ca,t+a). After integrating from one
time step to another the following equation is derived
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f, (X+CAt,t+At)—f =—l _j [ (x+ca,t+a)— (x+6a,t+a)]da. (34)
T a=0

The left side of Eq.(34) is accurate while the right side is solved approximately. If the
integral in Eq.(34) is approximated using the rectangle method, the first order lattice
Boltzmann equation is developed,

£, (X+CALE+AL) - T, (xt)_—§[fa(x,t)_f;°>(>z,t)]. (35)

Equation (35) is fully explicit sine all f_ in the next time step can be determined using
f, from the current time step.

5. CONCLUSION

This paper presents a short introduction to the lattice-Boltzmann method. The essence of
the lattice-Boltzmann method is the indirect solution of the fluid motion equations.
Namely, one can generate accurate solutions even though simple arithmetic calculations
are performed instead of solving the standard fluid flow equation.

As stated in the Introduction, the Boltzmann equation describes the propagation of a
distribution function instead of the propagation of each particle in a fluid mass. Hence,
the paper starts with a short description of the distribution function and its fundamental
properties. The authors gave a brief overview of the properties which the collision
operator must satisfy and selected the BGK collision operator for further derivation of
the governing equations. After deriving the Boltzmann equation it was discretized using
the lattice-Boltzmann method in order to obtain the form of the equations that allows
their solution.
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LATTICE-BOLTZMANN METOJA Y HYMEPUYKOJ
MEXAHUIIA ®JTYUTA

Pesume: Lattice-Boltzmann-osa memoda (JIBM) je noséa memooa y Hymepuukoj
mexanuyu @ayuoa. ok mpaouyuonanue Hymepuuke memooe HenocpeoHo OUCKPemu3yjy
U pewasajy Maxkpockoncke jeoHauume mexanuxe ¢ayuoa, JIBM pewasa ouckpemuy
KUHeMUYKy jeOHauuny Koja penpooykyje jeOnadune mexamuxe ayuoa y MakpockoncKkom
cmucry. Osaj pao npedcmasna Kouyenm QyHKyuje pacnooene Koja je Heonxooua y
JIBM, Boltzmann-oey jeonauuny u paszeujare y nuz no Chapman-Enskog-u xoje ce
KOpUucmu 'y yumsy penpooyKosara MAaKpOCKONCKUX jeOHauuna mexanuxe @ayuoa
nonazehiu 00 Boltzmann-ose jeonauune. ¥V pady je maxohe npedcmasmen nocmynax
Oouckpemuszayuje Boltzmann-ose jeonauune y npocmopy 6psuna u gusuuxom npocmopy
paou ycnocmassmarva lattice-Boltzmann-oge jeonauune.

Kuwyune peuu: lattice-Boltzmann memooa, pazsujarve y nuz no Chapman-Enskog-y,
HyMepuuKa mexanuxa ¢ayuoa
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