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Thermoelasticity of damaged elastomers - symmetry

issues

M V Micunovic1, L T Kudrjavceva2 and D Sumarac3

1,2 Faculty of Mechanical Engineering, University of Kragujevac, Sestre Janjica 6, 34000
Kragujevac, Serbia
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E-mail: mmicun@kg.ac.yu

Abstract. The paper deals with an elastomer body having a random 3D-distribution of two
phase inclusions: spheroidal mutually parallel voids as well differently oriented reinforcing
parallel elastomeric stiff spheroidal short fibers. By the effective field approach the effective
stiffness 4-tensor as well as the effective thermal expansion 2-tensor are formulated and found
numerically. Simultaneous and sequential embeddings of inclusions are compared. Special
attention is paid to the problem of effective elastic and thermal symmetry. The results of the
theory are applied to two families of inclusions (having either prolate fibres or oblate voids).
Keywords: Elastic and thermal effective anisotropy, self consistent effective field method,
Eshelbian implants.

1. Introduction
Classical texts devoted to the continuum theory of dislocations as the principal source of residual
stresses consider incompatibility of either plastic strains or quasi-plastic strains (thermal and
some others). An elementary visualization of eigenstrains caused by such an incompatibility is
given in figure 1(a). The key point is that if volume elements in the natural state space (of
Kondo [13]) deform freely then they cannot be connected without residual stresses. While such
an approach (promoted originally by Kröner [15]) looked very promising in plasticity based on
continuum dislocations, recent papers mainly use implantations as proposed by Eshelby [6]. A
simplified picture of such an approach is depicted in figure 1(b). The Eshelbian approach is
especially suitable for description of composites with particulate phases such as either stiff or
soft inclusions.

It should be noted that in papers dealing with particulate composites using the Eshelbian
self consistent approach one of the following intrinsic geometries is commonly accepted:

• inclusions are spherical;

• inclusions are ellipsoidal with random orientations leading to isotropy and

• inclusions are ellipsoidal with parallel semiaxes.

All these topologies are artificial and not realistic. Their advantage is that they allow for
easy and explicit account of simple material symmetry. In fact under multiaxial and, often,
nonproportional stress states voids either open or close and inclusions rotate. Such intrinsic
reorganizations cause complicated dynamical material symmetries.
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(a) Incompatibility of strains in natural state space of Kondo.

(b) Eshelby’s implanting eigenstrain by the same material of inclusion and
matrix.

Figure 1. Two types of imperfections causing residual stresses.

Our aim in this paper is to analyze elastomeric composites possessing voids and reinforced
by short cylindrical fibres. Such materials have become indispensable as vibration absorbing
supports of railway tracks. They will be modeled here by many groups of ellipsoidal inclusions.
In each group all the inclusions are presumably identical - made of the same material with
parallel semiaxes.

To realize this aim we first briefly review some existing self consistent theories of elastic
composites with multiphase structure ( [9, 10, 12, 11, 22, 31]). Then effective thermal expansion
tensor for three phase composites is derived based on papers [19, 20] and the monograph [11]
where two phase composites were considered. In the last section we determine numerically
effective elastic stiffness as well as effective thermal expansion for some composites with specially
disoriented inclusions.

In this paper, like in [12], we assume that the considered composite is composed of three
isotropic phases: elastomeric matrix, spheroidal voids and spheroidal stiff polymer inclusions.
Each class of inclusions contains parallel but randomly distributed spheroids.

Before addressing the issues listed above we recall briefly how Eshelby defined his tensor in
the case of isotropic materials.

1.1. Eshelbian approach to eigenstrains
According to Mura [30] constrained implanting strains induced by free strains are termed as
“eigen-strains”. Constrained and free strains are connected by the known Eshelby formula [6]:

εconstr = Sεfree . (1)

In the above formula the unconstrained strain εfree (strain in the middle of figure 1(b)) is related
to implanting “eigen-strain” (strain on RHS of figure 1(b)) by the fourth rank tensor S. In the
special case of the same isotropic materials of matrix and inclusion Eshelby’s 4-tensor reads
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(capital and small indices take the same values but there is no summation over repeated capital
and small indices):

8π(1 − ν)

3
Smnkl =

(
IMKa2

K − IM ς

)
δmnδkl +

(
a2

M + a2
N

2
IMN +

IM + IN

2
ς

)
(δmkδnl + δnkδml),

with notations ς ≡ (1 − 2ν)/3,

IM = lim
ξ �→0

∫ ∞

ξ

dξ

(a2
M + ξ)∆

, IMN = lim
ξ �→0

∫ ∞

ξ

dξ

3 (a2
M + ξ)(a2

N + ξ) ∆

and ∆2 ≡ (a2
1 + ξ)(a2

2 + ξ)(a2
3 + ξ)(2πa1a2a3)

−2. The components of S are presented in Figs.
2(a) and 2(b) for an isotropic material. On the other hand, in the case of a general anisotropic
material a numerical estimation is the only way to calculate S. Whenever the considered matrix
is anisotropic the formula of Kunin & Sosnina [18] must be applied in the way explained by
Yaguchi & Busso [35]. For some anisotropic materials these figures have a form depending on
the stiffness tensor and orientation of the considered ellipsoidal inclusion (according to equation
(6) given below).

2. Effective properties tensors
Let stiffness and its inverse be denoted by DΛ, MΛ ≡ D−1

Λ , (Λ ∈ {0, c, f}) for matrix, voids and
fibers respectively. Then by means of the notation δD(x) ≡ D(x)−D0, δM(x) ≡ M(x)−M0,
and by the characteristic function

V (x) =
N∑

k=1

Vk(x) =
{ 1, x ∈ V,

0, x /∈ V,

for N inclusions we have
ε(x) = ε0 −Kε

0 ∗ (δD εV ), (2)

σ(x) = σ0 + Kσ
0 ∗ (δMσ V ) (3)

where (K ∗ A)(x) ≡
∫
K(x − y)A(y) dy.

The above two kernels are introduced by means of a Green’s function of the matrix G0 using
Kunin’s notation [17] Kε

0 ≡ −def G0 def and Kσ
0 = D0K

ε
0D0 − D0δ(x) where the total (linear)

strain expressed by the displacement reads ε = def u and δ(x) is the Dirac delta function.

2.1. Effective stiffness
An effective stiffness tensor is defined by spatial averaging as follows. The micro formulation of
Hooke’s law in the case of a thermoelastic deformation leads to the definition of the effective
stiffness:

〈σ〉 = Deff 〈εe〉

where εke = εk−αkθ for a point x ∈ Vk and 〈F〉 := 1/V
∫
V F(x)dx due to the ergodic hypothesis.

Introducing the notation

ε∗(xk) := ε0 −
∑

m�= k

Kε
0 ∗ (δD εVm) (4)
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(a) Pair off-diagonal components

(b) Diagonal and pair-screw components.

Figure 2. Components of the Eshelby tensor for logarithms of diverse principal axes ratios for
isotropic materials.

we may write for a k-th inclusion a nonlocal formula which has the same form as the
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corresponding formula for a continuum with a single inclusion i.e.:

ε(xk) +

∫
Vk

Kε
0(x − x′)δD(x′)ε(x′)dx′ = ε∗(xk). (5)

The two principal hypotheses of the effective field method are [11, 22]:

Hypothesis 1 ε∗(x) = const for small |x − xk| and

Hypothesis 2 ε∗(xk) is statistically independent of the elastic
properties of the medium and shape of the inclusion
Vk.

Moreover, the quasi-crystallinity assumption of Lax [22] states that ε∗(x) = const for all
points inside the considered representative volume element (RVE)1. Then, due to linearity of
the governing equations it is possible to write:

ε(x) = Lk(x)ε∗, for x ∈ Vk,

where, for the k-th inclusion Lk = (I + Ak δDk)
−1 with

Ak =

∫
vk

Kε
0(x) dx ≡ S(ak)D

−1
0 (6)

where S(ak) is the Eshelby 4-tensor for the considered inclusion. Introduce a correlation function
by means of [11]

AΦ =

∫
Kε

0(x)Φ(x)dx, (7)

where c is concentration of inclusions and the scalar function

Φ(x − x′) := 1 −
1

c
〈

∑
m�=k

Vm(x′)|x〉, x ∈ Vk

obtained by averaging is defined by the shape of the correlation hole. This leads to the effective
stiffness for a single family of inclusions (built by the same material):

Deff = D0 + c(〈δD L〉−1 − c AΦ)−1. (8)

If all the inclusions are the same (shape, orientation and elastic properties) with Ak ≡ A(a)
then (8) simplifies into:

Deff = D0 + c(δD−1 + A(a) − cAΦ)−1, (9)

which in the most special case when A(a) = AΦ (correlation gap and the inclusion have same
aspect ratios) leads to the Mori-Tanaka formula [12].

In an extension of results of Kanaun and Levin, [11], to the case of finite number N of
ellipsoidal inclusions Markov [22] has derived the following set of formulae

(I + Ak δDk) ε(k) −
N∑

s=1

c(s)Aks δDs ε(s) = ε0, k ∈ {1, . . . , N} (10)

〈ε〉 = (1 −
N∑

s=1

c(s))ε0 +
N∑

s=1

c(s)ε(s), (11)

1 Size of RVE is discussed in [27].
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〈σ〉 = Deff 〈ε〉 = D0 〈ε〉 +
N∑

s=1

c(s)δDs ε(s). (12)

The linearity of (10) leads to the solution ε(k) = Fk ε0, k ∈ {1, . . . , N} which inserted into

(12) leads to the effective stiffness tensor Deff . The principal problem, however, is to determine
mutual (pair) correlation tensors Aks. Such tensors were calculated in [31] under the hypothesis
of ellipsoidal symmetry for the distribution of the inclusions and the integration ellipsoids
exclude overlapping of ellipsoidal inclusions. Explicit results were given for spheroidal inclusions
immersed into an isotropic matrix.

In a recent paper Kanaun and Jeulin [12] considered pure elasticity of a composite with an
isotropic matrix possessing two families of mutually parallel inclusions (spheroids and cylinders).
We will adapt their results to our subject of interest: prolate spheroidal voids and oblate
spheroidal fibres (denoted by indices c and f respectively). Their analysis prefers a Boolean
distribution of inclusions and they considered two typical cases of generation priority:

• Simultaneous generation of both families when one family has priority. In our case it is
logical for the fibres to have priority since voids could not introduce restriction on fibre
appearance. Their stiffness tensor reads:

Deff = D0 + c∗c Tc Tc + c∗f Tf Tf , (13)

with concentrations c∗c = cc(1 − cf ), c∗f = cf , q = 1 − cc/(1 − cf ) and

T −1
Λ = δD−1

Λ + AΛ,

LΛ = I + c∗Λ (AΦ
ΛΛ −AΦ

cf ) TΛ,


 Λ ∈ {c, f},

TΛ = (I − c∗Λ AΦ
ΛΛ TΛ − c∗Π AΦ

cf TΠ L−1
Π LΛ)−1, (Λ, Π) ∈ {(c, f), (f, c)}.

Here in the correlation 4-tensors

AΦ
ΛΠ =

∫
Kε

0(x) ΦΛΠ(x) dx, (Λ, Π) ∈ {(c, c), (f, f), (c, f)},

Φkm(x − x′) := 1 − 1
ck
〈
∑

m�=k Vm(x′)|x ∈ Vk〉, Vk ∈ VΛ, Vm ∈ VΠ,
(14)

for spheroidal shapes of both types of inclusions, the Boolean scalar functions are:

Φff (r) = 1 −
1

c2
f

[1 − (1 − cf )1−Hf (r)]2 (1 − cf )Hf (r), (15)

Φcc(r) = 1 −
1

c2
c

[1 − q1−Hc(r)]2 qHf (r) (1 − cf )2−Hf (r), (16)

Φcf (r) = Φfc(r) = 1 −
1

cf

[1 − (1 − cf )1−Hf (r)], (17)

with HΛ = 1 − N/(N − 1)r/2 + 1/(N − 1)(r/2)N , r < 2, (N = 3). For some values (say
cf = 0.4, cc = 0.2) these functions are shown on the next figure Their meaning is very close
to the correlation functions used in [31].

• Sequential generation when the second family of voids is delayed after the Boolean
generation of fibres. As the authors in [12] pointed out, such an order is recommended
when fibre concentration cf is considerably larger than void concentration cc. In this case
the determination of effective stiffness is given by a two-step procedure:

Deff
c ≡ D0 + c∗c (D−1

c −D−1
0 + A(ac) − c∗c A

Φ
cc)

−1, (18)

Deff = Deff
c + c∗f (D−1

f − (Deff
c )−1 + A(af ) − c∗f A

Φ
ff )−1. (19)

Some applications of both approaches to a composite with short fibres and voids will be given
in the last section of this paper.
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(a) RVE for a composite with fibres and voids.
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(b) K-J correlation functions for parallel
ellipsoidal inclusions.

Figure 3. Notion of the representative volume element and Kanaun-Jeulin interactions.

2.2. Tensor of effective thermal expansion coefficients
While in the previous subsection elasticity without thermal effects is analyzed, the subject of
this subsection is the thermoelasticity of composites with two families of ellipsoidal inclusions.
The procedure mainly follows [11] and [10] where spherical inclusions are treated. First, let us
introduce the notion of stress on an inclusion exerted by all the others:

σ∗(xk) := σ0 −
∑

m�= k

Kσ
0 ∗ (δMσ Vm + δα θ Vm) (20)

Then stress in a k-th inclusion has the same form as the corresponding formula for a continuum
with a single inclusion (x ∈ Vk) i.e.:

σ(x) +

∫
Vk

Kσ
0 (x − x′)(δM(x′)σ(x′) + δα(x′) θ(x′)) dx′ = σ∗. (21)

If we look at a composite with a single inclusion, then the following tensors are important:

Qk ≡ D0 −D0 Ak D0,

Lσ
Λ = (δM−1

Λ + QΛ)−1, with Lσ
Λ ≡ 〈Lσ

Λ〉|Λ,

lθΛ = (I − Lσ
Λ QΛ) δαΛ, with lθΛ ≡ 〈lθΛ〉|Λ,

(22)

where 〈•〉|Λ := 1/VΛ
∫
VΛ

•(x)dx and Ak = S(ak)D
−1
0 as in (6).

Let us turn now our attention to the case of a composite with fibres and voids. In the sequel
we follow exactly the procedure explained in [11] extending their analysis to the case of two
classes of inclusions. First, instead of (20) we calculate stresses at a point (x ∈ Vk) exerted by
only one class of inclusions i.e.:

σ∗f = (B−1
fc Bff − B−1

cc Bcf )−1 (B−1
cc βc − B

−1
fc βf )θ ≡ Lθ

f θ,

σ∗c = (B−1
cf Bcc − B

−1
ff Bfc)

−1 (B−1
ff βf − B

−1
cf βc)θ ≡ Lθ

c θ,
(23)
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where:
β∗f = cf lθf B

Φ
ff + cc lθc B

Φ
fc,

β∗c = cf lθf B
Φ
cf + cc lθc B

Φ
cc

(24)

and
Bff = I + cf B

Φ
ff L

σ
f , Bfc = cc B

Φ
fc L

σ
c ,

Bcf = cc B
Φ
cf L

σ
f , Bcc = I + cc B

Φ
cc L

σ
c ,

(25)

Herein instead of (14) we use the stress correlation functions :

BΦ
ΛΠ =

∫
Kσ

0 (x) ΦΛΠ(x) dx, (Λ, Π) ∈ {(c, c), (f, f), (c, f)}. (26)

based on the stress kernel Kσ
0 . Now, inserting both stresses σ∗f and σ∗c into (21) and performing

corresponding integrations we arrive at:

αeff = α0 + lθf + lθc + Lσ
f Lθ

f + Lσ
c Lθ

c . (27)

For the undamaged composite without voids inserting cc = 0, δMc = 0 and δαc = 0 the above
formula simplifies into the form

αeff = α0 + lθf + Lσ
f Lθ

f (28)

derived in the book [11].

3. Anisotropy caused by presence of ellipsoidal inclusions
Material symmetry group ℵ of an elastic anisotropic material with Hooke’s tensor D is defined by
all orthogonal 2-tensors satisfying the relationship: D = H♦D, (H ∈ ℵ), where the Rayleigh
product explicitly reads: (H♦D)klmn ≡ (H)ka(H)lb(H)mc(H)nd(D)abcd. A similar relationship
holds true for the thermal expansion tensor. We state now the problem of overall symmetry for
a representative volume element.

Overall symmetry definition
Given elastic and thermal symmetries of the matrix and N ellipsoidal
inclusions (whose semiaxes are defined by the rotation tensors RΛ) as
follows: DΛ = He

Λ ♦DΛ, He
Λ ∈ ℵe

Λ, as well as αΛ = Ht
Λ ♦αΛ, Ht

Λ ∈
ℵt

Λ, (Λ ∈ {0, 1, . . . N}) find 2-tensors He
eff ∈ ℵe

eff and He
eff ∈ ℵe

eff such
that

Deff = He
eff ♦Deff , He

eff ∈ ℵe
eff (29)

as well as
αeff = Ht

eff ♦αeff , Ht
eff ∈ ℵt

eff (30)

hold. Groups ℵe
eff and ℵt

eff are then called effective elastic symmetry
group and effective thermal symmetry group respectively.

Obviously, the real task is to find ℵe
eff and ℵt

eff when ℵe
Λ and ℵt

Λ, (Λ ∈ {0, 1, . . . N}), are
given. To solve this problem, an appealing and simple approach would be to use the orientation
distribution function ω (ODF) as follows (following [29]):

〈F 〉 =

∫
SO(3)

F (R)ω(R) dℵ, F ≡ 〈F 〉 + δF, F ∈ {D, σ, ε}. (31)

Then using the definition of the effective stiffness tensor, the above decompositions to mean
values and fluctuations lead to the expression for the effective stiffness:

Deff = 〈D〉 + 〈δD δε〉 〈ε〉−1. (32)
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Explicit structure of (32) depends on topology and materials of matrix and inclusions. However,
in all the cases (cf. (8, 13) ) we have the dependence

Deff (D0, ω(R), a1, . . . , aN ,R1, . . . ,RN )

as it should be expected. For calculation of the above indicated mean values of strain and
stiffness the usual procedure is to develop the ODF function into a series over generalized
spherical functions as follows [32]:

ω(R) =
∞∑

k=0

m=k∑
m=−k

n=k∑
n=−k

ckmn Pkmn(cos θ) exp(−imϕ) exp(−inψ), (33)

where P -functions are calculated by means of:

Pkmn(x) =
(−1)k−m in−m

2k (k − m)!

√
(k − m)!(k + n)!

(k + m)!(k − n)!
(1 − x)−

n−m
2 (1 + x)−

n+m
2 ×

dk−n

dxk−n

[
(1 − x)k−m(1 + x)k+m

]
. (34)

In the special case when ODF depends only on one angle, say θ, averaging over the other two
Euler angles leads to the representation

ω(R) =
∞∑

k=0

c2k P2k(cos θ), (35)

where Pk, k ∈ {0, 2, 4, . . .} with values P0(x) = 1, P2(x) = (3x2 − 1)/2, P4(x) = (35x4 − 30x2 +
3)/8, P6(x) = (231x6 − 315x4 + 105x2 − 5)/16, . . . are Legendre functions of even order.

Before proceeding with general symmetry issues, let us consider now some characteristic
distributions of inclusions immersed into a elastomer matrix. While orientations and shapes
of inclusions of constituting diverse subgroups are fixed, their translational distributions inside
each subgroup are random. Concerning orientations, figure 4(a) shows the first octant part
of an ellipsoidal inclusion with semiaxis lengths a1, a2, a3. When all the inclusions are neither
parallel nor fully random correlation 4-tensors (14) require specification of the corresponding
functions (15-17). A simple approach to this problem is illustrated by figure 4(b) where one
ellipsoidal inclusion is circumvented by non-overlapping inclusions of the other group. When
range of interaction is generated by the form of the minimal non-overlapping central surface and
the decrease of ΦΛΠ inside the shadowed region is assumed to be linear we obtain the correlation
tensors AΛΠ by numerical integration.

For the sake of a simple estimation of anisotropy degree induced by inclusions let us introduce
the anisotropy factor ζ defined by:

ζ :=
‖Deff

an ‖

‖Deff
iso‖

, (36)

where by means of the identity 2-tensor I and 4-tensor I (satisfying IA = A and IA = A) we
have the decomposition of the effective stiffness into its isotropic and anisotropic part (cf. [5]):

Deff = Keff I ⊗ I + 2µeff I + Deff
an ≡ Deff

iso + Deff
an . (37)

Herein Keff is the effective bulk modulus and µeff is the effective shear modulus.2

2 A more detailed judgement of type of the anisotropy requires either Schouten’s harmonic decomposition of
the 4-tensor of effective stiffness or analysis of eigenvectors and eigenvalues of the corresponding 6 × 6 effective
stiffness matrix.
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(a) Eighth part of an ellipsoidal inclusion (b) Correlation hole for inclined inclusions.

Figure 4. Correlation hole for inclined inclusions parallel inside each family.

Example 1.
First, suppose that an elastomeric matrix is weakened by some identical parallel spheroidal

voids with symmetry axis aligned with a Cartesian axis z3 = x3. Suppose now that two thirds
of the voids are rotated by some angle θ1 around axis z1 whereas the remaining one third is
rotated by θ2 = −θ1 = π/6 around the same axis. The angles ψ1 = ψ2 = 0 on the figure 4(a) and
concentrations of voids cc1 = 2 cc2. The aspect ratios are the same: γc1 = γc2 = a1/a3 = a2/a3.
In this way we obtain a composite with planar symmetry with mirror axis x1 = z1 and one family
of voids with two subfamilies of parallel identical voids. Otherwise voids inside each subgroup
are randomly distributed.

Clearly, we are considering two families of inclusions and a simultaneous approach is not
necessary because the inclusions in both subgroups inclusions are identical but differently
oriented. Applying the formulae (10-12) for N = 2 with tensors Ak(z) = Rk♦Ak(x), k ∈ {c1, c2}
3 we obtain results for the stiffness tensor best represented by a monoclinic group. When the
axis of reflexive symmetry is z1 = x1 with invariance under the transformation x 
→ x∗ and
x∗

1 = −x1, x
∗
2 = x2, x

∗
3 = x3, the corresponding stiffness tensor (represented by 6 × 6 symmetric

matrix formed by {11, 22, 33, 23, 31, 12} 
→ {1, 2, 3, 4, 5, 6}) should have the following non-zero
terms

Dapp =




x x x x 0 0
x x x 0 0

x x 0 0
x 0 0

sym x x
x




.

characteristic of a monoclinic group. In order to show the elastic material symmetry we
calculated the effective Young modulus as a function of direction by means of Eeff (n) = n�Deff .
Thus, on figure 5 the ratio of the effective Young modulus and Young modulus of the matrix
i.e. Eeff (n)/E0 is shown. The figure was obtained calculating correlation tensors AΛΠ under
the assumption that mutual interactions have the correlation hole shown in figure 4(b) without

3 Here, for brevity of notation (R � A)αβγδ ≡ (R)αa(R)βb(R)γc(R)δd(A)abcd is introduced.
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overlapping.4 The anisotropy factor was estimated to be ζ = 0.1669.
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(a) Young modulus for 2-voids with symmetry
plane indicated.
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Figure 5. Spatial distribution of Young modulus Eeff (n)/E0 for originally parallel pores
(cc1 = 0.2 and cc2 = 0.1) mutually rotated by π/3.

Example 2.
As another characteristic example, let us again apply the same procedure to an elastomeric

matrix composite with short needlelike spheroidal fibres and oblate very thin spheroidal voids
modeling cracks. Fibres are characterized by a Young modulus five times larger than the Young
modulus of the matrix i.e. Ef = 5E0 and cf = 0.2 whereas fibres concentration of voids amounts
to cc = 0.15. Again the fibres are rotated by some angle θ1 around axis z1 whereas the voids are
rotated by θ2 = −θ1 around the same axis. The angles ψ1 = ψ2 = 0 and aspect ratios of both
types of inclusions are: γc = 1/γf = ac1/ac3 = ac2/ac3. The composite obtained in such a way
again has planar material symmetry along the axis x1 = z1. Fibres as well as voids in each group
are parallel but randomly distributed. By making use of the Boolean random distribution and
fibre priority, the application of simultaneous approach (cf. (13-17) in Kanaun-Jeulin approach)
leads to explicit values for the effective stiffness tensor. It is informative to graphically represent
the effective Young modulus as a function of direction. The ratio Eeff (n)/E0 presented in
figure 6 and the value ζ = 0.1382 reveals that anisotropy in this case is less pronounced than in
the case of two families of oblate voids.

Example 3.
The last case is concerned with reinforcement by means of two families of needlelike fibres

with concentrations cf1 = 0.2 and cf1 = 0.1 rotated again by θ2 = −θ1 = π/6 from their original
configuration. Correlations are again calculated by the interaction scheme explained in figure 7.
In this case anisotropy is the weakest such that ζ = 0.0663.

Example 4.
It is to be expected that thermal and elastic anisotropy caused by the presence of ellipsoidal

inclusions are not the same. To show this we will again calculate the effective thermal expansion
tensor for the case explained by the previous example when two families of short fibres are
rotated mutually by θ1 = −θ2 ∈ [0, π/6]. For this sake we take that αk = αk 1, k ∈ {0, f} with
values of α0 = 5 × 10−6 and αf = 1 × 10−6 for matrix and fibres, respectively.

4 Accepted overlapping would correspond to branching and extension of thin voids modeling cracks. This means
inelasticity whereas in this paper we are concerned with elasticity only.
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Figure 6. Spatial distribution of Young modulus (Eeff (n)/E0) for parallel fibres (cf = 0.2) and
pores (cc = 0.1) mutually rotated by π/3.
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Figure 7. Spatial distribution of Young modulus (Eeff (n)/E0) for two families of parallel fibres
(cf1 = 0.2) and (cf2 = 0.1) mutually rotated by π/3.

Applying the relationships derived in the subsection 2.2 we found an effective thermal
expansion tensor for such a composite. The results of such a calculation are depicted in figure 8(a)
by means of the ratio αmin/αmax of minimal and maximal principal values of the tensor αeff . The
continuous line in this figure corresponds to interaction 4-tensors BΦ

ΛΠ, (Λ, Π) ∈ {(f, c), (c, f)},
calculated by means of (26) and correlation holes with size β := |x|max/|x|max = 1.5. The same
procedure for β = 150 yields a slightly weaker thermal anisotropy given by the dotted line.

Since the procedure derived in the subsection 2.2 for the effective thermal expansion requires
considerable computing time it would be handy to have a shortcut by means of some approximate
procedure. Thus, in figure 8(b) the dotted line obtained by means of the approximation BΦ

ΛΠ =
0.001BΛ for Λ = Π and BΦ

ΛΠ = 0.001 cos(θ1 + θ2)BΛ for Λ 
= Π where (Λ, Π) ∈ {(f, c), (c, f)}
is compared with the continuous line which is the same as continuous line in figure 8(a). Such
an approximation is again rather satisfactory. When multiplication is made by factors larger
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than 0.001 the deflection is larger. This shows that a self consistent approximation by isolated
inclusion might be usable for a composite with two families of short rotated rigid fibres.
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(a) Influence of correlation hole size β .
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Figure 8. Ratio αmin/αmax as a measure of thermal anisotropy.

After all these examples let us make a final comment about the effective elastic and thermal
symmetry. For the simultaneous embedding of two families of inclusions the effective stiffness is
found from the formula (13) in which tensors TΛ and TΛ depend on RΛ and aΛ for Λ-inclusions
by means of AΛ = SΛ(RΛ, aΛ)D−1

0 (cf. (6)) as well as correlation 4-tensors AΛΠ determined
either by Kanaun-Jeulin relations (15-17) or by means of the correlation holes presented in
figure 4(b). Suppose now that instead of a large disorder angle θ2 = −θ1 a slight disorder of
two families of inclusions takes place. Then AΛ and AΛΠ may be developed into a power series
in RΛ keeping only linear terms (like in [26] for micromorphic polycrystals). Instead of very
low monoclinic symmetry obtained here, such an approach would lead to approximate effective
transverse isotropy or some other higher degree of symmetry. A similar comment holds true for
the effective thermal symmetry. Such an analysis is planned for a subsequent paper.

Concluding remarks
The results of this paper may be shortly summarized as follows:

• By making use of Kanaun-Jeulin stochastic analysis of the self consistent method (the
effective field approach) the effective stiffness 4-tensor as well as the effective thermal
expansion 2-tensor are formulated and found numerically. The thermal expansion tensor
for two families of ellipsoidal inclusions is derived on the basis of Levin’s approach.

• Markov’s results for N diverse inclusions with PonteCasteneda-Willis joint correlation
tensors are applied with sequential embeddings of inclusions to a composite with two families
of voids.

• Dependance of the effective symmetry of the representative volume element on topology
and thermoelastic material properties of inclusions is defined and analyzed by means of
the effective orientation distribution function. Simultaneous embedding and Kanaun-Jeulin
theory are employed with a modification concerning non-random disordered inclusions. The
slight disorder case is also discussed.

• Development of damage induces elastic as well as thermal asymmetry and deserves attention
when attempting to develop a multiphase self consistent theory.

The main conclusion is that estimation of the effective elastic or thermal symmetry depends
on the proposed procedure. For instance an application of the sequential approach with
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ordered families of inclusions depends on the chosen order of embedding. This task is easier
when concentration of one family is dominant. Such a conclusion calls for an improvement of
determination of effective stiffness for composites with more than one class of inclusions as well
as a careful extensive additional study of shapes and sizes of correlation holes and corresponding
correlation functions.
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