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MODELLING TRANSPORT OF MICROPOLLUTANTS IN BIOFILTRATION 

SYSTEMS FOR STORMWATER TREATMENT 

Abstract 

Biofiltration systems, also known as bioretentions or rain-gardens, are widely used for 

stormwater treatment. In order to successfully design biofilters, it is important to 

improve models that can predict their performance. This thesis presents a rare model 

that can simulate removal of a wide range of micro-pollutants from stormwater by 

biofilters. The model is based on (1) a bucket approach for water flow simulation, and 

(2) advection/dispersion transport equations for pollutant transport and fate. The latter 

includes chemical non-equilibrium two-site model of sorption, first-order decay, and 

volatilization, thus is a compromise between the limited availability of data (on 

stormwater micro-pollutants) and the required complexity to accurately describe the 

nature of the phenomenon.  

The model was calibrated and independently validated on two field data series collected 

for different organic micro-pollutants at two biofilters of different design. This included 

data on triazines (atrazine, prometryn, and simazine), glyphosate, and chloroform. The 

data included variable and challenging biofilter operational conditions; e.g. variable 

inflow volumes, dry and wet period dynamics, and inflow pollutant concentrations. The 

model was able to simulate water flow well, with slight discrepancies being observed 

only during long dry periods when, presumably, soil cracking occurred. In general, the 

agreement between simulated and measured pollutographs was good. As with flows, the 

long dry periods posed a problem for water quality simulation (e.g. simazine and 

prometryn were difficult to model in low inflow events that followed prolonged dry 

periods). However, it was encouraging that pollutant transport and fate parameters 

estimated by the model calibration were in agreement with available literature data. This 

suggests that the model could probably be adopted for assessment of biofilter 

performance of other stormwater micro-pollutants (PAHs, phenols, phthalates, etc.). 

The model, therefore, could be applied in practice for sizing of biofilter systems and 

their validation monitoring, when used for stormwater harvesting.  



 

 
 

The model was run with laboratory data from batch studies (fluorescein as referent 

pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A 

procedure was developed for the estimation of parameters from batch studies, and a 

regular calibration method was used for parameter estimation from column tests. 

Parameters for both sorption and degradation were found to be underestimated from 

batch studies. This is hypothesized to be due to differences in the water to soil ratio in 

batch studies, when compared to the field. The sorption parameters estimated from 

columns were also somewhat underestimated, and when used with the model produced 

higher outflow pollutant concentrations. This is especially the case with glyphosate, and 

only slightly with the triazines. Column studies also indicate less-kinetic-sorption 

behaviour when compared with the field data. It is hypothesized that kinetic sorption 

behaviour on the field may be apparent, and a consequence of the assumption that the 

flow is one dimensional, when in reality it is not, leading to conclusion that the kinetic 

behaviour is due to structural heterogeneity of the biofiltration material, rather than 

chemical. 

Uncertainty analysis was conducted using GLUE methodology that pointed the most 

sensitive parameters: soil-water partitioning coefficient and fraction of sites prone to 

instantaneous sorption. Additionally, the predictive uncertainty was assessed by making 

95% confidence intervals for model predictions, and it suggested that the model is 

sound. 
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Stormwater biofilter, micropollutant modelling, atrazine, simazine, prometryn, 

glyphosate, chloroform, uncertainty analysis 
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МОДЕЛИРАЊЕ ТРАНСПОРТА МИКРОПОЛУТАНАТА У БИОФИЛТЕРСКИМ 

СИСТЕМИМА ЗА ТРЕТМАН КИШНИХ ВОДА 

Резиме 

Биофилтерски системи, познати и као биоретензије или кишне баште, се често 

користе за третман кишних вода. Да би биофилтери били успешно пројектовани, 

неопходно је побољшање модела који могу да предвиде њихово понашање. Ова 

дисертација садржи модел који може да симулира отклањање шире групе 

микрополутаната из кишних вода помоћу биофилтера. Модел је базиран на (1) 

методи линеарних резервоара којима се описује ток воде и (2) адвективно-

дисперзивне транспортне једначине за транспорт микрополутаната. Транспортна 

једначина садржи и модел за хемијски неуравнотежену двостепену сорпцију, 

биоразградњу по реакцији првог реда, и волатилизацију, и тако представља 

компромис између ограничених података (о микрополутантима у кишном 

отицају) и неопходне сложености да се опише природа феномена. 

Модел је калибрисан и независно верификован на две серије теренских података 

прикупљене за различите органске микрополутанте на два биофилтера. Подаци су 

о триазинима (атразин, прометрин, симазин), глифосату, и хлороформу. Подаци 

обухватају оперативне услове који су варијабилни и изазовни: варијабилне 

запремине воде на улазу у биофилтер, различиту динамику сушних и кишних 

периода и варијабилне концентрације загађивача у кишној води. Модел је 

успешно симулирао ток воде, са разликама у мереним и симулираним 

вредностима протока уочљивим у периодима после дугих суша, када је земљиште 

испуцало. Слагање између симулираних и мерених полутограма је било углавном 

добро. Као и са протоцима, дуги сушни периоди су представљали проблем и за 

симулације квалитета воде (нпр. симазин и прометрин нису најбоље моделирани у 

периоду маловодних кишних епизода које су уследиле после дугог сушног 

периода). Међутим, било је охрабрујуће да су параметри модел за транспорт 

полутаната оцењени путем калибрације били у сагласности са вредностима у 

литератури. Ово даје назнаке да би модел могао да се користи и за симулирање 

понашања других микрополутанта (полицикличних угљоводоница, фенола, 



 

 
 

фталата, итд.) у биофилтерима. Модел би, дакле, могао да се примени и у пракси 

за димензионисање биофилтерских система и валидациони мониторинг. 

Модел је испробан и са лабораторијским подацима са batch тестова (флуоресцеин 

као референтни микрополутант) и са колона (хербициди: атразин, прометрин, 

симазин и глифосат). Развијена је процедура за процену параматера модела 

коришћењем података са batch тестова, а подаци са колона су коришћени за 

калибрацију модела. Параметри модела који описују сорпцију и биоразградњу 

одређени помоћу batch тестова су били мало потцењени. Сматра се да је узрок 

томе различит однос земљиште-вода који је примењен у тестовима у односу на 

онај који се налазио на терену. Сорпциони параметри одређени са колона су 

такође били мало потцењени, и давали су веће излазне концентрације 

микрополутаната. Ово је посебно случај са глифосатом, и мало мање са 

триазинима. Подаци са колона су показали да се у њима одвија процес сорпције 

који има далеко мање карактеристику кинетике, него оно што су показали подаци 

са терена. Сматра се да је кинетика сорпције на терену вероватно привидна, и да 

је последица претпоставке да је ток воде кроз биофилтер једнодимензионалан. 

Такође се сматра да је један од разлога за привидно кинетичке карактеристике 

сорпције на терену структурална хетерогеност биофилтерског материјала, а не 

хемијска (што је претпоставка модела). 

Анализа неодређености је спроведена коришћењем GLUE методологије која је 

указала на најосетљивије параметре модела: коефицијент партиције и проценат 

сорпционих места која су склона инстант сорпцији. Додатно, направљен је 95% 

интервал поверења, који је показао да је већина мерења добро обухваћена 

моделом. 
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1 INTRODUCTION 
Micropollutants found in stormwater are becoming a noticeable issue, and an increasing 

number of studies illustrate their toxicological effects. Although micropollutant 

concentration levels are usually lower than what is the maximum allowed level (by 

regulations), and pharmaceutical products’ levels are usually lower than therapeutic 

doses, adverse effects still exist while their cumulative effects are unknown. In some 

cases, harmful effects are caused by micropollutant byproducts. The presence of certain 

micropollutants or their byproducts at even low levels are sufficient to change the 

metabolism of living cells, which results in deterioration of cell self-protection, making 

them susceptible to illnesses and malignant degenerations. The effects are increased in 

high population density areas, as well as in industrial and commercial city zones. 

Micropollutants and their byproducts have been found in both surface and ground 

waters in such areas. These micropollutants are involved in sorption and degradation 

processes that eventually lead to their attenuation. Urban stormwater, a possible major 

carrier of micropollutants, can contain disinfection products, herbicides, hydrocarbons 

and other miscellaneous organic compounds. This is of particular problem for 

stormwater harvesting practices that aim to treat captured urban runoff for both non-

potable and (in rare cases) potable uses.  

Biofilters, wetlands and other Water Sensitive Design technologies are effective 

stormwater treatment technologies. They have been shown to efficiently reduce loads of 

nutrients, sediments and metals, but there is no understanding on whether these systems 

can remove common stormwater micropollutants. More importantly there are no 

reliable models that can predict micropollutant behavior in Water Sensitive Urban 

Design navesti puno ime skracenice pre prvog koriscenja u tekstu (WSUD) stormwater 

treatment systems. Even models for assessing micropollutant discharges from urban 

catchments are very rare. However, without such models, it is difficult to assess impacts 

of micropollutants on receiving waters and even more difficult to design and assess 

performance of the stormwater treatment and harvesting systems.  

Water legislation regulates micropollutant concentrations in waterways either directly, 

by controlling their discharge (e.g. National Pollutant Discharge Elimination System, 
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US EPA) or indirectly, by setting requirements for achieving a good water status (e.g. 

EU Water Framework Directive). Lists of priority pollutants (a.k.a. emerging 

pollutants), such as the EU WFD 2008/105/EC, include a large number of organic 

micropollutants, some of which are often found in stormwater. To achieve legislative 

requirements that call for limiting pollutant discharge concentrations, and especially to 

achieve a good water status, it is necessary to collect a substantial amount of 

measurement data. The main issue with measurements related to micropollutants in 

various environments (water, soil, air) is that due to their very low concentrations (order 

of magnitude is μg/L) data uncertainty is quite high: representative samples are difficult 

to produce and sample analysis methods include operations that can induce large errors 

e.g. concentrating samples to get detectable amounts of micropollutants. This is why 

measurements of micropollutant concentrations require high technical and financial 

resources. The difficulties in conducting measurements give an additional value to the 

development of a micropollutant-biofilter model, as it can be used as a tool to optimize 

the monitoring procedure (that is necessary to demonstrate that treatment processes are 

capable of achieving the required water quality objectives) by selecting only the most 

valuable data points to be collected, thereby minimizing the total expenses (number of 

measurements). 

1.1 Biofiltration water quality modelling 

As previously stated, for biofilters to be used as an effective stormwater management 

measure, it is important to accurately model their performance: continuous simulations 

of biofilter hydraulic and treatment efficiencies allow for predictions of long-term 

impact on reduction of stormwater pollution levels and loads. Reliable modelling of 

biofilter performance is crucial for adequate sizing of biofiltration systems when used 

for both pollution control and stormwater harvesting.  

There are not that many stormwater quality models that can be easily applied to 

stormwater biofilters without oversimplifying the processes. Some of the widely used 

stormwater software tools, such as MOUSE (DHI, 2009a-c), SWMM (Rossman, 2010) 

and STORM (US Army Corps of Engineers, 1977) use reservoir equations for 

modelling of biofiltration (i.e. bioretention) hydraulics, while they offer simple user 

defined regressions for the assessment of their treatment performance. These regression 
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equations need an abundandance of data, which in the case of micropollutants is quite 

difficult to obtain (technically and financially). Additionally, they lack the 

transferability between different variants of systems and do not perform well under 

different operational conditions. Even software specifically developed for stormwater 

biofilters, such as MUSIC software (eWater CRC, 2009), although includes a more 

complex biofiltration hydraulic model that continuously assesses outflows and moisture 

content within the systems, still relies heavily on regression equations for the transport 

and fate of pollutants (it uses first-order decay (USTM by Wong et al., 2006), but also 

experimentally derived regression curves (eWATER CRC, 2009)). It should be noted 

that, to the best of author’s knowledge, none of the above models have been tested with 

micropollutants.  

There are, however, models more physically based developed for biofilters (e.g. 

STUMP (Vezzaro et al., 2010)) or vertical flow constructed wetlands (e.g. CW2D 

(Langergraber and Šimůnek, 2005)), but they are either dependent on data shown to 

have low correlation with micropollutant concentrations (such as TSS, as shown by 

Zhang et al, 2015b), or are too complex (excessive data needed).  

A more suitable model that is able to simulate the main treatment processes within the 

stormwater biofilter with parameters that are easily estimated is needed.  

1.2 Overall aim  

The aim of this study was to develop a general treatment model that allows for long-

term simulations of stormwater biofilters and their performance for a wide range of 

micro-pollutants. The model needed to be reliable even when little data is available, 

which is almost always the case. Therefore, the model was required to simulate the main 

treatment processes within stormwater biofilters (at least volatilisation, sorption, and 

bio-chemical degradation) where the model parameters can be easily determined.  

The aim was achieved through following specific objectives: 

1. To develop a stormwater micropollutants model that includes the transport and 

fate of pollutants in biofiltration systems (the aim for the model was to be mechanistic, 

so that it can be easily transferred to other WSUD systems such as filters, infiltration 

trenches, swales, wetlands, etc.);  
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2. To conduct controlled lab and field tests to refine model components that 

simulate micropollutant treatment in biofilters; 

3. To calibrate, validate, and assess uncertainties in the model using field data from 

two stormwater systems (two types of biofiltration design). 

The developed model is anticipated to be used as a tool to ease the management of 

stormwater biofiltration systems when they are used for water harvesting or for control 

of the polluted urban runoff to water receiving bodies. The model can also facilitate the 

validation monitoring of biofilter systems (Zhang et al., 2015).  

1.3 Scope of the thesis 

The model developed in this study focuses on predicting micropollutants levels in urban 

stormwater treated by biofiltration systems of varying design. Model outputs include 

both micropollutant concentrations and loads. Although the model can be useful in 

water quality assessments, it does not include a specific part that can assist with that 

type of analysis (assessment criterias are not incorporated).  

The development of the model and its testing was conducted on datasets that were 

collected throughout this research, as well with some data previously collected at the 

same sites. Data was collected from two different biofiltration cells, located at Monash 

campus in Melbourne and from several biofilter column testing tubes. Long term and 

high resolution flows, water levels, and soil moisture were measured. Composite and 

discrete inflow and outflow samples were analyzed to obtain data on TSS, TP, TN, total 

petroleum hydrocarbons, PAHs, glyphosate, triazines (atrazine, simazine, prometryn), 

phthalates (dibutyl phthalate, di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and 

phenols (phenol, pentachlorophenol).  

The sensitivity analysis was performed using the less formal likelihood method GLUE 

(Generalized Likelihood Uncertainty Estimation, Beven and Binley, 1992), as it has no 

drawback when compared to the strictly Bayesian methods as shown by Dotto et al. 

(2010). The main focus of the uncertainty analysis was the module for the transport and 

fate of micropollutants. 
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1.4 Outline of the thesis 

Chapter 2 provides a literature review as well as the identification of the key knowledge 

gaps, and presents the research aims and the main hypotheses. The review has four 

distinct parts: (1) stormwater quality and identification of key micropollutants, (2) 

biofiltration system operation characteristics, (3) review on existing models and 

modelling techniques, and (4) sources of uncertainty and uncertainty assessment in 

stormwater quality models. 

Chapter 3 presents experimental data collected at the field and laboratory scale. It 

includes the field tracer tests, field electroresistive tomography, field spiking tests and 

laboratory column and batch studies. The column and batch studies were mostly 

performed by Kefeng Zhang (PhD thesis, 2015) and are only summarized here.  

Chapter 4 presents the development of the MPiRe model, which includes both the 

adaptation of the water flow module, as well as the total development of the water 

quality part. This chapter includes governing equations and their solving techniques. 

Chapter 5 includes model testing against field data i.e. calibration and verification. In 

addition to the input data and the boundary conditions, the calibration procedure is 

explained and model performance indicators are presented. This chapter also includes 

the methodology for estimating model parameters from column and batch tests. The 

initial testing includes analysis of the model performance against field data, and the 

meaning of parameter values. 

Chapter 6 explores the model further via an uncertainty analysis. The calibration 

uncertainty is assessed by choosing different parts of dataset for calibration. The 

uncertainty of input data is visualized with impact of different scenarios (introduction of 

systematic errors to measurement data) on the probability distributions of model 

parameters. The results are used for the evaluation of sensitivity and predictive 

uncertainty of the stormwater quality model. 

Chapter 7 provides a summary of the key findings, as well as a critical overview of the 

thesis’ main strengths and weaknesses. A summary of necessary further investigations 

is given.  
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a literature overview of the broader research topic. The first topic 

is the stormwater quality in general with a focus on micropollutants, where different 

studies reported in literature are explored in search for the key micropollutants (their 

importance is estimated by their presence in the stormwater, as well as the hazard they 

present to humans and aquatic biota). This is followed by an overview of the major 

characteristics of stormwater biofiltration systems that includes their design and mode 

of operation. The major focus is the review of existing models and modelling 

techniques, which is the base for the development of the model in this thesis 

(Chapter 4). The final topic is the review of the uncertainty assessment methods 

applicable to stormwater quality modelling that present a theoretical background for 

Chapter 6. The literature review is concluded by identifying the key knowledge gaps 

and subsequently presenting the specific research aims and main hypotheses. 

2.2 Stormwater quality 

2.2.1 Micropollutants, priority or emerging pollutants 

Micropollutants, priority substances, priority and emerging pollutants are terms that are 

sometimes used interchangeably; although the terms overlap to some extent, they have 

different origins. The term “micropollutant” is a scientific classification, while the terms 

“priority substance”, “priority pollutant” or “emerging pollutant” can be considered 

regulatory classifications. 

Micropollutants are defined as compounds present in traces in the environment (with 

concentrations in the μg/L to ng/L range) that can affect the health of living organisms 

(Schwarzenbach et al., 2006). This broad definition does not limit the scope of 

substances that can be classified as micropollutants, so literature identifies 

micropollutants as various inorganic substances (metals, minerals) as well as different 

organic compounds (pesticides, polycyclic aromatic hydrocarbons, phenols, volatile 

organic substances, pharmaceuticals and personal care products, etc.).  
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Priority pollutants are defined in the US water quality regulatory programs under the 

Clean Water Act (CWA of 1977) as “toxic pollutants, with an available chemical 

standard test, that are found in water with a frequency of occurrence of at least 2.5% and 

are produced in significant quantities.” The list contains a total of 129 pollutants, most 

of which are organic substances. The majority of priority pollutants, but not all, are also 

considered micropollutants, as they are detected in very low concentrations in the 

environment.  

Priority substances are defined under the Annex II of Directive 2008/105/EC (EU Water 

Framework Directive, 2008). The list contains a total of 33 organic and inorganic 

substances, which are all considered to be micropollutants. 

Emerging pollutants are a never-ending list of synthetic or natural substances that are 

“not commonly monitored but have a potential to enter the environment and cause 

adverse ecological and human health effects” (Geissen et al., 2015). These compounds 

are a new frontier in science; some do not have a long history of release into the 

environment and are only now becoming detectable due to advances in monitoring 

methods, while others are newly synthesized materials or are created by changes in use 

or disposal of existing chemicals (Geissen et al., 2015). The Norman-network 

(www.norman-network.net) lists more than 700 emerging pollutants. Most of these 

substances are considered to be micropollutants.  

2.2.2 Notable stormwater quality studies 

Stormwater as a major non-point pollution source can have a significant impact on 

receiving water bodies and as such has been a subject of many studies to date. Probably 

the most comprehensive and thorough study is the 1995 Makepeace et al. review of 

multiple physical, chemical and microbiological contaminants and indicators covering 

around 140 literature sources over a span of 25 years (1967 – 1992). The compilation’s 

significant contribution is that it identified and quantified specific parameters (such as 

metals, organic compounds, microorganisms, temperatures, alkalinity etc.) rather than 

the traditionally used overall quality parameters. The reported levels of these parameters 

were compared to their regulated values and additionally to reported possible adverse 

effect levels. In addition to defining the most critical stormwater contaminants that 

http://www.norman-network.net/
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affect humans (through drinking water) and aquatic life, the study also helped in 

identifying the knowledge gaps in the toxicity of the combinations of certain organic 

and/or inorganic parameters. Duncan (1999) presented a statistical overview of reported 

urban runoff water quality and included interactions between stormwater quality with 

land use, population density, traffic density, and other catchment characteristics. The 

work by Duncan (1999) was based on data that covered a span of 47 years (1950 – 

1997) and 21 specific water quality parameters: suspended solids, nutrients, COD, 

BOD, oils, TOC, pH, turbidity, heavy metal concentrations, and faecal coliforms. Göbel 

et al. (2007) went even further by developing a matrix for urban stormwater runoff 

concentrations for different types of surfaces (roofs, roads, etc.) that is usable in 

stormwater quality modelling. This includes event mean concentration range, as well as 

the representative average concentrations for 22 pollutants in 12 types of surface runoff 

(physico-chemical parameters, sum parameters, nutrients, heavy metals, main ions, and 

organic substances).  

One of the first extensive priority pollutant specific studies was a monitoring 

programme conducted by Cole et al. (1984) across various cities throughout the United 

States, which included a total of 129 pollutants (pesticides, inorganic compounds, 

PCBs, halogenated aliphatics, phenols, etc.) and their potential risk to human health. A 

more recent and comprehensive two-part study was performed in the urban areas of 

Paris, France by Zgheib et al. (2012) and Gasperi et al. (2012). The named authors 

analysed a total of 88 priority pollutants in separate (“pure” stormwater) and combined 

storm sewers, such as metals, PAHs, PCBs, pesticides, volatile organic compounds, 

phthalates, etc., and presented their occurrence in particulate and dissolved phases. 

2.2.3 Organic micropollutants detected in stormwater 

Based on the results of Programme 5: Risks and Health of the Cooperative Research 

Center for Water Sensitive Cities (CRCWSC, Australian Government), a list was 

compiled that includes organic micropollutants detected in stormwater. The 

methodology for the formation of the list was to find whether regulated priority 

pollutants are detected in stormwater. The search lists included EPA and EU regulated 

priority substances from three major lists: 
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• The US EPA Priority Pollutants list (126 chemicals) (US EPA, 2009); 

• The US EPA Unregulated Contaminants Monitoring Rule 2: Assessment 

monitoring list 1 and Screening survey list 2 (25 chemicals) (US EPA, 2010); 

• The European Commission Priority Substances list (33 chemicals) (ECE, 2008). 

Table 2-1 shows a list of 91 organic substances from regulated lists of priority 

pollutants that are reported to be detectable in stormwater, as well as their detection 

range.  

Table 2-1 Organic micropollutants detected in stormwater (list adapted from P5: Risks 
and Health (CRCWSC, Australian Government) and Zhang (2015)) 

No. Category Compound CAS No. Detection Range Reference 

1 Halogenated 
Aliphatics 

Tribromomethane 
(Bromoform) 75-25-2 1µg/L [1] 

2 
 

Trichloromethane 
(Chloroform) 67-66-3 0.2-12µg/L [1] 

3 
 

Chlorodibromomethane 124-48-1 2µg/L [1] 

4 
 

Dichlorobromomethane 74-82-8 2µg/L [1] 

5 
 

Dichloromethane 75-09-2 1.5-14.5µg/L [1], [2], [14], 
[15] 

6 
 

Tetrachloromethane 
(carbon tetrachloride) 56-23-5 1-2µg/L [1], [2] 

7 
 

Trichlorofluoromethane 75-69-4 0.6-27µg/L [1] 

8 
 

1,1-dichloroethane 75-34-3 1.5-3µg/L [1] 

9 
 

1,2-dichloroethane 107-06-2 <4µg/L  [1], [2] 

10 
 

1,1,1-trichloroethane 71-55-6 1.6-10µg/L [1], [2] 

11 
 

Trichloroethylene 79-01-6 0.3-10µg/L [1], [2] 

12 
 

1,1,2-trichloroethane 79-00-5 2-3µg/L [1] 

13 
 

Tetrachloroethylene 127-18-4 4.5-43µg/L [1], [2] 

14 
 

1,1,2,2-tetrachloroethane 79-34-5 2-3µg/L [1] 

15 
 

1,1-dichloroethene 75-35-4 1.5-4µg/L [1] 

16 
 

1,2-dichloroethene 156-59-2 1-3µg/L [1], [2] 

17 
 

Trichloroethene  79-01-6 0.3-10µg/L [1] 

18 
 

Tetrachloroethene 127-18-4 4.5-43µg/L [1] 

19   1,2-dichloropropane 78-87-5 <3µg/L [1], [2] 

20 PAHs Total PAHs Unspecified 0.24-33.7µg/L [1], [2], [4], 
[8], [16] 
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No. Category Compound CAS No. Detection Range Reference 

21 
 

Anthracene 120-12-7 0.005-10µg/L  [1], [2], [7] 

22 
 

Acenaphthene 83-32-9 0.013-0.044 [14], [15] 

23 
 

Acenaphthylene 208-96-8 0.027-0.126 [14], [15] 

24 
 

Benzo(k)fluoranthene 207-08-9 0.0012-103µg/L [1], [2], [3] 

25 
 

Benzo(b)fluoranthene 205-99-2 0.0034-260µg/L [1], [2], [3] 

26 
 

Benzo(k)fluoranthene 207-08-9 0.0012-103µg/L [1], [2], [3] 

27 
 

Benzo(e)pyrene 192-97-2 4-6.1µg/L  [2] 

28 
 

Benzo(g,h,i)perylene 191-24-2 0.0024-1.5µg/L [1], [2] 

29 
 

Chrysene 218-01-9 0.0038-10µg/L [1], [2] 

30 
 

Fluoranthene 206-44-0 0.3-110µg/L [1], [2], [3] 

31 
 

Fluorene 86-73-7 0.006-1µg/L [1], [2] 

32 
 

Benzo(a)pyrene 50-32-8 0.0025-300µg/L [1], [2], [3], 
[6] 

33 
 

Naphthalene 91-20-3 0.018-100µg/L  [1], [2], [3], 
[6], [7] 

34 
 

Phenanthrene 85-01-8 0.026-10µg/L [1], [2], [7] 

35 
 

Pyrene 129-00-0 0.045-120µg/L  [1], [2], [3] 

36 
 

2-methylantracene 613-12-7 0.01-1.6µg/L  [2] 

37 
 

9,10-diphenylanthracene 781-43-1 1-1.4µg/L  [2] 

38   Indeno[1,2,3-cd]pyrene  193-39-5 0.031-0.05 [2], [14], [15] 

39 Pesticides Aldrin 309-00-2 0.1µg/L [1] 

40 
 

Atrazine 1912-24-9 0.0003-0.0016 [13] 

41 
 

Aminotriazole 61-82-5 0.14-0.53 [14], [15] 

42 
 

AMPA 74341-63-2 0.48-0.73 [14], [15] 

43 
 

α-BHC 319-84-6 0.0027-0.01µg/L [1], [2] 

44 
 

β-BHC 319-85-7 0.1µg/L [1], [2] 

45 
 

γ-BHC (lindane) 58-89-9 0.052-0.01µg/L [1], [2] 

46 
 

δ-BHC  319-86-8 <0.1µg/L [1], [2] 

47 
 

Chlordane 12789-03-6/ 
57-74-9 0.01-10µg/L [1], [2], [3], 

[16] 

48 
 

DDD (di-chloro-dipheny-
ldichloroethane) 72-54-8 <0.008µg/L [1], [2] 

49 
 

DDE (di-chloro-diphenyl-
dichloroethylene) 72-55-9 <0.015µg/L [1], [2] 

50 
 

DDT (di-chloro-diphenyl-
trichloroethane) 50-29-3 <0.1µg/L [1], [2] 
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No. Category Compound CAS No. Detection Range Reference 

51 
 

Dieldrin 60-57-1 0.005-0.1µg/L [1], [2] 

52 
 

Diuron 330-54-14 0.02-0.65µg/L [13], [14], 
[15] 

53 
 

α-endosulfan 959-98-8 0.1-0.2µg/L [1], [2] 

54 
 

Endrin 72-20-8 <0.005µg/L [2] 

55 
 

Glyphosate 1071-83-6 <1.92 [14], [15] 

56 
 

Heptachlor 76-44-8 0.1µg/L [1] 

57 
 

Heptachlor epoxide 1024-57-3 0.1µg/L [1] 

58 
 

Isophorone 78-59-1 <10µg/L [1], [2] 

59 
 

1,3-dichloropropene  (DCP) 115-07-1 1-2µg/L [1], [2] 

60 
 

Methoxychlor 72-43-5 <0.02 µg/L [2] 

61 
 

Metaldehyde 108-62-3 <0.062 µg/L [14], [15] 

62 
 

Pentachlorophenol (PCP) 87-86-5 1-115µg/L [1], [2] 

63   Simazine 122-34-9 0.06-0.17 [13] 

64 PCBs Total PCBs Unspecified 0.03-1.12 µg/L [2] 

65 
 

PCB 118  31508-00-6 <0.01-0.104 µg/L [15] 

66 
 

PCB-1260 (Arochlor 1260) 11096-82-5 0.03µg/L [1] 

67 Phthalates Diethyl Phthalate (DEP) 84-66-2 2-10µg/L [1], [2] 

68 
 

Dibutyl Phthalate (DBP) 84-74-2 0.5-11µg/L [1], [2] 

69 
 

Dioctyl phthalate (DOP) 117-84-0 0.4-1µg/L [1], [2] 

70 
 

Diethylhexyl phthalate 
(DEHP) 117-81-7 0.45-60.9 µg/L  

[1], [2], [9], 
[11], [14], 

[15] 

71   Butyl benzyl phthalate 85-68-7 3.3-130µg/L [1], [2], [3] 

72 

Pharmaceuticals 
and personal 
care products 

(PPCPs) 

Ibuprofen 15687-27-1 <0.0026-0.674µg/L [5] 

73 
 

Naproxen 22204-53-1 <0.0004-0.145µg/L [5] 

74 
 

Triclosan 3380-34-5 0-0.029 µg/L [5] 

75 Phenols Phenol 108-95-2 3-10µg/L [1] 

76 
 

2-chlorophenol  95-57-8 2µg/L [1] 

77 
 

2,4-dimethylphenol 105-67-9 <10µg/L [1], [2] 

78 
 

Nonylphenol 104-40-5 0.01-9.17 µg/L [6], [9], [12], 
[14], [15] 

79 
 

4-n-octylphenol 1806-26-4 0.018-0.24 [12] 

80 
 

4-nitrophenol 100-02-7 1-19µg/L [1] 
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No. Category Compound CAS No. Detection Range Reference 

81   Bisphenol A 80-05-7 0.0015-0.113µg/L [5] 

82 Ethers Bis(2-chloroethyl) ether 111-44-4 2.0-87µg/L [3] 

83   Bis(2-chloroisopropyl) ether 39638-32-93/ 
108-60-1 3.0-400µg/L [3] 

84 

Other  
miscellaneous 

organic 
chemicals  

Benzene 71-43-2 3.5-13µg/L [1], [2] 

85 
 

Chlorobenzene 108-90-7 1-10µg/L [1], [2] 

86 
 

Ethylbenzene 100-41-4 1-2µg/L [1], [2] 

87 
 

Toluene 108-88-3 9-12µg/L [1], [2] 

88 
 

Perfluorooctane sulfonic acid 
(PFOS)  1763-23-1 0.051µg/L [10] 

89 
 

Perfluorooctanoic acid 
(PFOA) 335-67-1 0.09µg/L [10] 

90 
 

Perylene 198-55-0 0.05-0.5µg/L [2] 

91   m-cresol, p-chloro- 108-39-4 <1.5µg/L [1], [2] 

[1] Cole et al., 1984; [2] Makepeace et al., 1995; [3] Pitt et al., 1995; [4] Ngabe et al., 2000; [5] 

Boyd et al., 2004; [6] Eriksson et al., 2005; [7] Hwang and Foster, 2006; [8] Göbel et al., 2007; 

[9] Björklund et al, 2009; [10] Murakami et al., 2009; [11] Clara et al., 2010; [12] Bressy et al., 

2011; [13] Page et al., 2011; [14] Zgheib et al., 2012; [15] Gasperi et al., 2012; [16] Gillbreath 

and McKee, 2015 

The organic compounds identified in Table 2-1 were further classified according to 

whether they were detected in levels that are considered to have no detrimental effects 

to humans. The detection ranges of organic pollutants listed in Table 2-1 were compared 

to Australian Drinking Water Guidelines (ADWG, 2011), and Australian Guidelines for 

Water Recycling: Augmentation of Drinking Water Supplies (AGWR, 2008). Organic 

pollutants detected above AGWR-ADW guideline values are presented in Table 2-2. 

The exclusion of other detected organic micropollutants does not imply that their 

environmental presense and concentration levels are safe and that they can be neglected, 

as the AGWR and ADW guidelines mainly focus on hazards likely to be present in 

wastewater and potable water and may overlook a broader range of hazards that may be 

present in stormwater (especially for aquatic biota). The chemicals not identified by 

AGWR-ADWG as hazards should be further analysed for potential risk to humans and 

aquatic biota (Zhang, 2015). 
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Table 2-2 Micropollutants detected in stormwater above Australian drinking water 
guideline values 

Category Compound Detection range Guideline value 

Halogenated 
Aliphatics Dichloromethane 1.5-14.5 µg/L 4 µg/L a 

PAHs Benzo(a)pyrene 0.0025-300µg/L 0.01µg/L a 

  Naphthalene 0.018-100µg/L 70µg/L b 

Pesticides Chlordane 0.01-10µg/L 2µg/L a 

  Pentachlorophenol (PCP) 1-115µg/L 10µg/L a 

PCBs Total PCBs 0.03-1.12 µg/L 0.14µg/L b 

  PCB 118 <0.01-0.104 µg/L 0.016 ng/L b 

Phthalates Diethylhexyl phthalate (DEHP) 0.45-60.9 µg/L 10µg/L a 

Other MOCs Benzene 3.5-13µg/L 1µg/L a 

a Australian Drinking Water Guidelines (NHMRC-NRMMC, 2011) 
b Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies 

(NRMMC et al., 2008) 

2.2.3.1 Halogenated aliphatics 

Halogenated aliphatics are non-aromatic hydrocarbons. A total of 19 halogenated 

aliphatics is reported to be detected in stormwater with only one compound, 

Dichloromethane, detected in the concentration range above the AGWR-ADW 

guidelines (Table 2-2). However, having in mind that the AGWR-ADW guidelines do 

not consider all potential hazards to human health and aquatic biota, Chloroform 

(Trichloromethane) was also included as a compound of particular significance. This is 

due to the high toxicity of chloroform (e.g. stillbirths, Dodds et al., 2004), which is of 

particular interest if stormwater is to be harvested for potable use. Sources of 

dichloromethane and chloroform in stormwater include solvents, aerosols, fire-retardant 

chemicals, and products of reactions of chlorine with organic chemicals (Makepeace et 

al., 1995).  

2.2.3.2 Polycyclic aromatic hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) have two or more aromatic rings. Some 

PAHs are volatile (e.g. naphthalene), while most PAHs are hydrophobic (non soluble in 

water). Depending on the number of rings, PAHs can be classified as light (3-rings and 
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less: naphthalene, acenaphthene, acenaphylene, fluorene, etc.) or heavy (more than 3-

rings: fluoranthene, pyrene, benzo(a)pyrene, etc.). All PAHs are considered to be 

cancerogenous. A total of 18 PAHs are identified in stormwater, with only two 

surpassing the concentration levels prescribed by the AGWR-ADW guidelines: 

benzo(a)pyrene and naphthalene (Table 2-2). In addition, pyrene (a PAH with five 

benzene rings) is also considered to be a significant organic micropollutant as it 

contributes substantially to the total PAHs load, and is detected in concentrations 

(120 µg/L) close to the AGWR-ADW guideline values (150 µg/L). PAHs are 

ubiquitously present in the environment as they are produced by an incomplete 

combustion and many fuel processing operations.  

2.2.3.3 Pesticides 

Pesticides include: (1) herbicides that are chemicals used for prevention of growth or 

killing of certain types of vegetation, like weeds, and (2) biocides that are chemicals 

used for prevention of reproduction or killing of pest animals (insects, fungi, rodents 

etc.). Biocides are also referred to as fungicides, insecticides and pesticides. Pesticides, 

therefore, include various chemical compounds such as triazines, organophosphorus, 

organochlorines, amino-phosphonates, etc. Chlordane and pentachlorophenol (PCP) are 

the only two pesticide compounds detected in stormwater at concentrations above the 

AGWR-ADW guidelines (Table 2-2). Glyphosate, an active ingredient in many popular 

herbicides, including Monsanto’s Roundup® brand herbicide, is probably the most used 

and most studied worldwide pesticide. Due to its classification as “probably 

carcinogenic to humans” by the International Agency for Research on Cancer (IARC, 

2015) and its widespread use, it was selected as one of the key micropollutants. 

Triazines (especially atrazine and simazine) are also popular choices as pesticides due to 

their high efficiency in eliminating weeds. Although banned in many countries (e.g. 

Serbia, since 2008; EU, since 2003), triazines can still be found and are widely used in 

the US and Australia (SoE, 2011). Major sources of pesticides in stormwater are runoff 

from gardens, agriculture areas, and pesticide production and storage points. 

2.2.3.4 Polychlorinated biphenyls (PCBs) 

Polychlorinated biphenyls (PCBs) are very toxic substances that are persistent and 

readily transported from sites of contamination to remote areas (Beyer and Biziuk, 
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2009). Total PCBs and PCB 118 are found to surpass the set guidelines (Table 2-2). It 

should be noted that PCBs are found to be 100% particle-bound in stormwater (Zgheib 

et al., 2012). Main sources of PCBs in stormwater include leaching of lubricants, 

hydraulic fluids, landfills, and old transformer fluids.  

Table 2-3 The key organic micropollutants that exist in stormwater runoff with their 
physicochemical properties (Mackay et al, 2006) 

Category Compound Solubility 
(mg/L) Log Kow Log Koc  

KHenry  
(Pa m3/mol) 

Half-life  
(days) 

Halogenated 
Aliphatics Dichloromethane 16940 1.31 1.68 110-450 

1.3-191 (sandy l) 
54.8 (sand) 

12.7 (sandy clay) 

 Chloroform* 8452 1.95 1.65-1.90 200-700 100 (soil) 
56-180 (grondw.) 

PAHs Benzo(a)pyrene 0.002 6.13 6.6-6.8 8-74E-03 229-309 (sandy l.) 

  Naphthalene 32.2 3.33 2.30-3.17 35-125 80 (soil); 220 (gw) 

 Pyrene* 0.1 5.13 3.11-6.50 0.5-0.2 199-260 (sandy l.) 

Pesticides Chlordane 0.1 2.78 4.19-4.39 0.2-10 476-2272 

  Pentachlorophen
ol (PCP) 18.9 4.83 3.48-3.60 0.003-0.28 23-178 

 Glyphosate* 12000 3.5 3.42-4.38 1.4E-05 4-210 

 Atrazine* 29.8 2.65 2.09 2.7-6.2E-04 36-116 

 Simazine* 5.7 2.18 2.13 0.3-3.4E-04 11-70 

PCBs Total PCBs insoluble >4.0 >3.7 20-100 3-100 

  PCB 118 0.1-0.2 5.4 4.5-5.3 20-101.5 1-120 

Phthalates Diethylhexyl 
phthalate (DEHP) 0.029 7.48 4.0-5.0 0.004-4 2-69.3 

Other MOCs Benzene 1748 2.17 1.99 270-650 5-16 (soil) 
10-720 (gw.) 

* Micropollutant detection range in stormwater was not above selected guidelines, but is selected 

according to different criteria 

2.2.3.5 Phthalates 

Phthalates are esters of the phthalic acid and are mainly used as additives in the 

production of plastic compounds such as polyvinyl chlorids (PVC). Phthalates can be 

easily released from plastics, as they do not form a covalent bond, but rather only stay 

entangled (Wilkes et al., 2005). This is why many monitoring campaigns of human 

urine, food, and environment report the presence of phthalates (e.g. Griffiths et al., 
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1985). As can be seen in Table 2-2, bis(2-ethylhexyl) phthalate (DEHP) is the only 

phthalate detected in concentration above the set guidelines. Sources of phthalates are 

plastic pipings, varnishes, safety glass and plastic food wraps.  

2.2.3.6 Pharmaceuticals and personal care products (PPCPs) 

Pharmaceuticals and personal care products (PPCPs) include various compounds and 

are usually found in the sewer (from showers, toilets, etc.). There is some evidence of 

PPCPs presence in stormwater (Boyd et al., 2004), but the detected levels are far below 

selected guidelines. 

2.2.3.7 Phenols 

Phenols are compounds that are derivatives of the phenol – carbolic acid. Due to their 

inexpensive production, phenols are used across different industries: production of 

plastics, polycarbonates, epoxide resins, precursor to different pharmaceutical products, 

cosmetics, herbicides, etc. The wide use of phenols results in their abundant presence in 

the environment. Although there are 7 different priority phenols detected in stormwater, 

only four of them have guideline values: 4-nitrophenol (30 µg/L), 2-chlorophenol (300 

µg/L), nonylphenol (500 µg/L) and Bisphenol A (200 µg/L). None of the listed phenols 

are detected in stormwater concentrations that surpass the selected AGWR-ADW 

guidelines. 

2.2.3.8 Other Miscellaneous organic chemicals 

Of the many non-classified organic chemicals, only benzene is detected in stormwater 

in concentrations far above the guidelines (Table 2-2). Sources of benzene in 

stormwater include spills and combustion of fuels (especially from motor vehicles), and 

petrochemical and chemical manufacturing emissions.  

2.2.3.9 Inorganic chemicals 

Although not a research aim in this thesis, some inorganic chemicals are also considered 

to be micropollutants. The most studied of them are the heavy metals (elements starting 

with Sc, sometimes Na). The presence of heavy metals in stormwater is interesting as 

they are quite toxic and persistent (are not degraded chemically or biochemically). The 

main sources of heavy metals in stormwater are depositions throughout catchments 

(Djukić et al., 2016) or emissions in the atmosphere due to either anthropogenic 
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activities or natural causes. Anthropogenic sources include vehicle brake emissions, 

weathering of roof materials, petrol additives, paints, batteries, pesticides, etc. Natural 

sources are activities of volcanoes, forest fires, erosion of rock materials, minerals etc. 

Lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg), 

platinum (Pt), and nickel (Ni) are identified as priority pollutants, while Zhang (2015) 

reports six more metals to be detected in stormwater at concentrations above the 

AGWR-ADW guidelines: antimony (Sb), aluminium (Al), arsenic (As), iron (Fe), 

manganese (Mn) and selenium (Se).  

2.2.3.10 Summary 

Table 2-3 presents selected key micropollutants present in the stormwater along with 

their physicochemical properties (solubility (S), octanol-water partitioning coefficient 

(log Kow), soil-water partitioning coefficient normalized to organic carbon content (log 

Koc), Henry constant (KHenry), and biodegradation half-life (T1/2). Possible transport and 

fate mechanism for the key pollutants are explored in Chapter 2.4.  

2.3 Biofiltration systems characteristics 

Stormwater biofilters, also known as bioretentions and rain-gardens, are soil-based 

filtration systems that contain a rich plant community that enhances their physical, 

chemical and biological treatment processes. Stormwater biofilters are widely used in 

the protection of waterways from polluted urban runoffs, and more recently for 

stormwater harvesting (Wong et al, 2012). Due to their attractive designs and good 

performance in removing sediments (e.g. Li and Davis, 2008a), nutrients (e.g. Hunt et 

al., 2006; Davis, 2007, Hatt et al, 2009), heavy metals (e.g. Li and Davis, 2008b; Feng 

et al, 2012), and faecal microorganisms (Li et al., 2012; Chandrasena et al., 2012), 

stormwater biofilters are popular Water Sensitive Urban Design (WSUD) measures 

(also known as Low Impact Development - LID technology or Sustainable Urban 

Drainage System, SUDS). Stormwater biofilters have also been tested for organic 

stormwater micropollutants at field scale; DiBlasi et al. (2009) showed good 

bioretention performance against 16 polycyclic aromatic hydrocarbons (PAHs). The 

importance of organic micropollutants comes from their harmful effect on both (1) 

aquatic systems (e.g. toxicity of pesticides to fish (Chopra et al., 2011)) and (2) humans 

(e.g. Australian drinking water guidelines regulate maximum allowed concentrations).  
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2.3.1 Biofilter design 

Soils used as filter media in biofiltration systems need to be structurally stable, with 

moderate infiltration capacity, to promote stormwater treatment. The actual 

recommendations on compacted hydraulic conductivity rate differ slightly among 

regions and continents:  

• In Australia and Asia infiltration capacities range between 100 and 300 mm/h, in 

temperate climates, and up to 600 mm/h in tropical climates (e.g. FAWB, 2009; 

ABC Waters – Design Features, 2014);  

• In North America the recommended infiltration rates are between 50 and 100 

mm/h for natural soils and up to 300 mm/h for engineered soils (soil mixtures) 

(e.g. Hinman, 2009; Maryland Stormwater Design Manual Volumes I and II, 

2009),  

• In Europe, the most comprehensive design manual for biofiltration systems is 

CIRIA’s SuDS Manual (2015) form the UK, that adopted recommendations 

from FAWB (2009) and suggests infiltration rates of around 100 – 300 mm/h. 

The infiltration rates allowed in tropical climates are usually higher, as rain episodes 

have larger volumes and are more frequent, and therefore pollutant concentrations are 

lower (diluted).  

A loamy sand, either natural or engineered, is recommended by most design manuals, 

provided it is free of toxicants and weed seeds. The granulometry of the soil should be 

such that there is less than 5% clay and silt fractions (< 0.063 mm, w/w) and that the 

distribution curve is continuous (FAWB, 2009). The total porosity of the material 

should be more than 30% (e.g. The SuDS Manual, 2015). There are limits to organic 

matter content (up to 5%), pH (5.5-8.5), and contents of major plant nutrients (total 

nitrogen, total phosphorus, extractable potassium etc.).  

The area of the biofilter depends on its filter media hydraulic rate, but as a rule of 

thumb, it corresponds to around 2% of the catchment area (Hatt et al, 2007). The 

recommended depths for different layers of the system are: extended detention 200-

500 mm, filter media 400-700 mm (300-600 mm, in case a submerged zone exists), 
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transitional sand layers of 100-150 mm, and gravel (with perforated pipe) of around 

150 mm (e.g. FAWB, 2009; The SuDS Manual, 2015). The perforated pipe should have 

a slope of at least 0.5% (5% the most) if it is freely draining, or no slope when a 

submerged zone is present.  

  
Figure 2-1 Some of the commonly used plants in biofiltration systems: Cephalanthus 
occidentalis (upper left), Salix nigra (upper right), Scirpus microcarpus (lower left), 

Eupatorium purpureum (lower right). Source: Wikipedia.org 

The choice of plants used in biofiltration systems depends on local climatic conditions, 

but all plants share a possession of a well-structured root system and a tendency to 

sustain wet/dry regimes. The plants have two major roles: (1) to help in the removal of 

nutrients and (2) to keep the biofiltration system from clogging (Read et al, 2008). The 

plants promote the microorganism and fungi growth in the filter media and the root 
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system that help with removal of various pollutants. The plants additionally help in 

water retention during dry periods and influence the pH level (e.g. Schnoor et al., 1995). 

FAWB, for example, recommends Carex appressa, Melaleuca ericifolia, Juncus 

amabilis and Juncus flavidis for effective nutrient removal. The Maryland Stormwater 

Design Manual (2009) lists multiple trees (Acer rubrum, Betula nigra, Quercus spp., 

Salix nigra etc.), shrubs (Cephalanthus occidentalis, Hamemelis virginiana, Ilex spp., 

etc.) and herbaceous plants (Eupatorium purpureum, Scirpus spp., Dichanthelium 

scopariu, etc.) as commonly used species. 

The additional features for biofiltration systems include the construction of a submerged 

zone, addition of organic matter to this zone (mulch, peat, etc.) and inclusion of specific 

materials in the engineered soil composition (e.g. Cu2+ - exchange zeolite, Li et al., 

2014). These additional features enhance biofilter performance in terms of the removal 

of nutrients (e.g. Hatt et al, 2009, Bratieres et al., 2008), heavy metals (e.g. Blecken et 

al, 2009; Bratieres et al., 2008) and pathogens (e.g. Chandrasena et al., 2014; Li et al., 

2014). The submerged zone additionally helps in maintaining the vegetation and 

microorganism community during prolonged dry periods. 

2.3.2 Mode of operation 

Stormwater biofilters function as intermittent treatment systems, consisting of:  

• The active phase, when stormwater ponds and filtrates through the media during 

rain events, and 

• The passive phase, when during dry weather pollutants retained in the soil and 

captured water are further treated by plants and microbes.  

Good practices for biofilter design suggest a retention time in the range of 1 to 3 hours 

(FAWB, 2009) during the active phase, while the length of the passive phase depends 

on local climatic conditions which are highly variable. The removal of most pollutants 

occurs through three main processes (Hong et al., 2006; LeFevre et al, 2012; Zhang et 

al., 2014): volatilisation within the biofilters pond and sorption to the filter media and 

plant root system – predominate during the active phase, and bio-chemical 

transformation and degradation - predominate during the passive stage.  
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The hydraulic performance of biofilters decreases with time, as shown by an extensive 

study by Le Costumer et al (2009). Most of the change in hydraulic conductivity 

happens due to the formation of a so called surface cake i.e. surface clogging, caused by 

sediment deposition. 

2.4 Review of stormwater and related treatment models 

2.4.1 Overall view 

A scientific model is an aproximation of the observed reality created to better 

understand its nature, underlying processes, and to allow for future predictions. Once 

the relevant processes for a particular system are observed, a set of mathematical 

equations is selected that transforms the input to output data. These equations represent 

only a part of a model’s structure. The remaining structural components include a 

solving technique for equations (an algorithm or a numerical model), a procedural 

model (a code), and parameter values (estimated from measured data or calibrated). The 

model is then tested: (1) against an independent dataset (not used for its calibration) and 

(2) for robustness using uncertainty analysis (see Chapter 2.5). Depending on the 

knowledge on the system’s processes and observed data, models can be: 

• Empirical – completely data-driven models with parameters that do not have any 

physical meaning, and, therefore, need to be determined via calibration: 

regression equations (e.g. Biofilter treatment equations in MUSIC, eWater CRC, 

2009), neural networks (Loke et al., 1997), etc. 

• Conceptual – models with processes that have some physical meaning, but are 

represented by a highly simplified “concept”; parameters are estimated 

indirectly by calibration and directly from measured data (e.g. CITY DRAIN © 

by Achleitner et al, 2007; USTM by Wong et al., 2006), and  

• Mechanistic – physically based process models with parameters reasonably 

determined from measured data (e.g. CW2D by Langergraber and Šimůnek 

(2005), FITOVERT by Giraldi et al. (2010)) 

Model equations may be deterministic, where a set of input data always has a unique 

output set, or may be stochastic, where the processes are described with random 

components, so different model runs on same input data give different model outputs. 
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The stochasticity in models serves to account for a process uncertainty that cannot be 

reduced by gathering new knowledge; this is known as aleatoric uncertainty (Beven, 

2009). Although this quality gives stochastic models a certain advantage, it limits their 

calibration, validation and sensitivity analysis, as they do not give consistent results. 

Deterministic models are considered a standard approach in many fields, as well as in 

urban drainage (Butler and Davis, 2011). 

2.4.2 Stormwater biofilter models and water quality modelling 

Some of the widely used stormwater software tools, such as MOUSE (DHI, 2009a-c), 

SWMM (Rossman, 2010) and STORM (US Army Corps of Engineers, 1977) use 

reservoir equations for modelling of biofiltration (i.e. bioretention) hydraulics, while 

they offer simple user defined regressions for the assessment of biofilter treatment 

performance. The MUSIC software (eWater CRC, 2009) is widely used in Australia and 

New Zealand and includes a more complex biofiltration hydraulic model that 

continuously assesses outflows and moisture content within the systems. MUSIC can 

predict treatment of only sediments and nutrients by biofilters; it is based on a 

combination of the first order decay treatment equation (USTM by Wong et al., 2006) 

and experimentally derived regression curves (eWATER CRC, 2009), and is therefore a 

conceptual-empirical model. The problem of this approach is in the amount of data 

needed for their calibration, and its poor transferability between systems used under 

different operational conditions. These models are also seldom, if ever, used for the 

assessment of micropollutant removal.  

Process based models, that simulate the key treatment mechanisms, although far more 

reliable and transferable (Loucks et al, 2005), are very rarely used in stormwater 

practice. One of the rare examples is STUMP (Vezzaro et al., 2010), characterized by a 

simplified water mass balance model, with pollutant fate governed by the removal of 

Total Suspended Solids (TSS). The model has not yet been tested for organic 

micropollutant removal by stormwater biofilters, but showed good results when tested 

for the removal of heavy metals by a biofilter (Vezzaro et al., 2010) and organic 

micropollutants (iodopropynyl butylcarbamate - IPBC, benzene, glyphosate and pyrene) 

at a stormwater pond (Vezzaro et al., 2011).  
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Another example of a mechanistic model is a model by He and Davis (2009), which has 

been set up for bioretention water quality in COMSOL Multiphysics to simulate the fate 

of naphthalene and pyrene in single events. The flow model is based on Richard’s 

Equation with Van Genuchten soil-water parameters, while the water quality model 

includes only linear sorption. This model showed good results, but is missing the ability 

to simulate pollutant degradation, and therefore has not been tested for continuous 

simulations. 

2.4.3 Water quality models potentially applicable to stormwater organic 
micropollutant modelling 

While stormwater treatment literature is very limited on this subject, a literature review 

has been done on micropollutant removal processes and their modelling in soil-based 

media (especially in the field of bioremediation) and wastewater treatment systems. 

Among the many diverse types of micropollutants found in soil media literature, 

pesticides and PAHs have been studied most frequently, with a substantial number of 

process-based models being set up to include leaching, sorption, aerobic and anaerobic 

degradation, uptake by plants, and volatilization at different scales – column, field, and 

catchment (e.g. Mulder et al., 2001, Tao et al., 2003, Köhne et al., 2009). Most of the 

models follow the interaction between water and soil (sorption-desorption), and present 

processes as different sink terms in the pollutant mass conservation partial differential 

equation (PDE). Depending on how the water flow is solved (Richards’s equation, 

Philips infiltration, etc.) the PDE is accordingly discretised.  

Particularly interesting are the models for Vertical Flow Constructed Wetlands; though 

used for wastewater treatment, they share several operating principles with stormwater 

biofilters, such as inlet spraying to the surface of the filter media, presence of 

macrophytes, vertical flow to the drainage zone, etc. It should be noted that there is a 

major difference between wetlands and biofilters: wetlands are permanently wet 

systems, while biofilters’ dry weather treatment processes are crucial for their 

performance (e.g. Hatt et al., 2009). This makes the loading rates (eWater, 2009) and 

selection of plants (Read et al, 2008) for the two types of systems very different.  

The models used for Vertical Flow Constructed Wetlands range from simple first-order 

decay lumped models (Kadlec and Knight, 1996), to more complex process-based 
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multicomponent reactive transport models (e.g. CW2D (Langergraber and Šimůnek, 

2005), FITOVERT (Giraldi et al., 2010)). The former have been assessed as inadequate 

by Kadlec himself (e.g. Kadlec, 2000), while the latter have been adapted from 

Activated Sludge Models (Henze et al., 2000) and therefore include complex and 

intertwined cycles of substances such as oxidation of carbon sources, organic matter 

hydrolysis, nutrient transformation, etc.  

CW2D (Langergraber and Šimůnek, 2005) was developed for HYDRUS-2D software to 

model the biochemical transformation and degradation processes. The HYDRUS-2D 

software numerically solves the Richard's equation for saturated/unsaturated water flow 

and the advection–dispersion equation for heat and solute transport using finite-

elements. The water flow equation incorporates a sink term to account for water uptake 

by plant roots. The transport equations include advective–dispersive transport in the 

liquid phase, diffusion in the gaseous phase, as well as non-linear non-equilibrium 

reactions between the solid and liquid phases – sorption (Šimůnek et al., 1999). To 

demonstrate the complexity of the CW2D module, its 12 components and 9 processes 

are listed: 

• Components: dissolved oxygen, organic matter (inert, slowly and readily 

degradable), ammonium, nitrite, nitrate, and nitrogen gas, inorganic phosphorus, 

and heterotrophic and two species of autotrophic micro-organisms; 

• Processes: hydrolysis, mineralization of organic matter, nitrification (modelled 

as a two-step process), denitrification, and a lysis process (as the sum of all 

decay and loss processes) for the microorganisms. 

Organic nitrogen and organic phosphorus are modelled as nutrient contents of the 

organic matter (they are calculated as a percentage of COD). The biochemical 

elimination and transformation processes are based on Monod-type expressions used to 

describe the process rates. This adds up to a total of 46 model parameters.  

As CW2D has been set up for nutrient analysis, most studies have been successfully 

carried out with that particular purpose (e.g. Toscano et al., 2009; Langergraber et al., 

2009). To the best of author’s knowledge, no modelling studies have been performed 

with heavy metals or organic micropollutants. This is not surprising having in mind the 
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number of parameters, and the available data on these pollutants: it should be noted that 

only very recent studies present the behaviour of heavy metals and organic pollutants in 

constructed wetlands (e.g. Schmitt et al., 2015; Gao et al., 2015).  

FITOVERT (Giraldi et al., 2010) was developed as a more practical tool for the design 

and operation optimization of vertical flow constructed wetlands. The complexity of the 

model is lower than that of the CW2D module. The flow is considered to be dominantly 

vertical and is described by the Richard’s equation. Biochemical transformation 

processes are similar to the CW2D module, as they both come from the standard 

Activated Sludge Models (Henze et al., 2000). FITOVERT is able to handle the 

porosity reduction due to bacteria growth and accumulation of particulate components. 

This means that the clogging process is also simulated: hydraulic conductivity decreases 

with the pore size reduction. Although current settings of FITOVERT are not applicable 

to heavy metal or organic micropollutant modelling, it is anticipated that its philosophy 

will be useful for the biofilter model set up.  

Another important constructed wetland model type is the RSF_Sim model (Meyer et al., 

2008; Meyer and Dittmer, 2015). The RSF_Sim model is a simple phenomenological 

model that describes purification processes in retention soil filters (RSFs). It was 

designed to be combined with sewer quality models (e.g. SWMM, Mike Urban, 

InfoWorks) in long term simulations. The RSF_Sim model works with three complete 

stirred tanks in vertical series:  

• Ponding: the retention layer provides the water storage on top of the process 

layer,  

• Filter layer: the process layer describes the sand/gravel layer (saturated during 

feeding, drained afterwards) in which the treatment occurs, 

• Drainage layer: improves the volume balances. 

Descriptions of treatment performances are kept very simple. The total COD is 

separated into two fractions: particulate COD is reduced by filtration (down to a 

background concentration), and dissolved COD is reduced by a treatment efficiency 

factor (varies with temperature, outflow limitation rates and the duration of antecedent 
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dry periods). The retention of NH4-N is calculated with a steady-state two-stage linear 

sorption isotherm, and nitrification with 1st order kinetics.  

The simplicity of the RSF_Sim model allows for very successful calibrations and 

validations, and usage in general. However, it should be noted that detailed predictions 

of treatment failures are not possible.  

2.4.4 Process modelling 

Since treatment systems include pollutant flow, it is first necessary to define the 

transport processes. The movement of pollutants in the fluid or porous media is driven 

by three distinct processes: advection, dispersion and diffusion (Pinder and Celia, 

2006). Advection is a transport mechanism of mass (or a conserved property like 

temperature) achieved by fluid’s bulk motion: it is a movement by the average fluid 

stream velocity. Dispersion is pollutant movement by means of small-scale velocity 

variations e.g. due to porous media chaotic structure and/or non-uniform velocity 

profile. Diffusion is transport due to the existence of the concentration gradient. As 

diffusion and dispersion are similar in that they cause spreading of the pollutant, they 

are usually combined in models, and their bulk parameter is the hydrodynamic 

dispersivity (Pinder and Celia, 2006). The most commonly used transport process 

modelling concepts are (1) the advective-dispersive equation and (2) the tank-in-series 

approach. The former is considered a scientific notation of the substance conservation 

principle (Hirsch, 2007). The latter, although it represents a conservation principle, is 

not considered a “true” transport model: it is a chemical reactor model designed to 

contain chemical reactions. However, the tank-in-series or the continuous-stirred-tank-

reactors (CSTRs) are capable of mimicking the advective-dispersive transport for one-

dimensional problems i.e. the input pollutograph can be transformed using CSTRs so as 

to have a time-lag (consequence of advection) and a decrease in the amplitude or 

spreading (consequence of dispersion). This is achieved by the proper selection of tank 

layouts, and is commonly used for modelling ponds and constructed wetlands (Kadlec 

and Knight, 1996). 

Biofilter ecosystems can be divided into five phases: air, water, sediments (particulates 

settled in the ponding zone), filter media and plants. Table 2-4 shows the anticipated 
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physical, physico-chemical or bio-chemical processes affecting the mass balance of 

pollutants in the five phases. Some processes are only phase exchanges (e.g. 

sedimentation, resuspension, straining, sorption/desorption, volatilization) while others 

represent pollutant mass sinks (e.g. hydrolysis, photodegradation, biodegradation, plant 

uptake). Biodegradation and plant uptake are considered mass sinks, because they 

usually include transformation processes where the “original” pollutant species is lost, 

while its metabolites are formed. 

Table 2-4 Processes anticipated in stormwater biofilters and their impact on pollutant 
mass balance in each of the phases 

Process Phase air water  sediments filter media plants 

physical 

sedimentation 

 

- + 

 

 

resuspension 

 

+ - 

 

 

straining  -  +  

volatilization + - 

 

-  

physico-chemical 

adsorption 

 

- + + + 

desorption 

 

+ - - - 

hydrolysis 

 

- 

  

 

photodegradation - - 

 

-  

bio-chemical 

aerobic biodegradation 

 

- 

 

-  

anaerobic biodegradation 

  

- -  

plant uptake   -   - + 

Some of the key treatment processes (e.g. sorption, degradation) have been extensively 

studied in biofilters and soil-water environments, and there is a number of fairly 

detailed and robust models (e.g. Šimůnek and Van Genuchten, 2008, Sniegowski et al., 

2009). Other processes, e.g. volatilization from stormwater biofilter treatment ponds, 

have not been studied, and knowledge transfers need to be done from other types of 

treatment systems containing a free water surface such as conventional wastewater 

systems (Lee et al., 1998) or free surface constructed wetlands (Kefee et al., 2004; De 

Biase et al., 2011). Some of the relevant processes for the identified key stormwater 
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micropollutants are shown in Table 2-5. Table 2-7 shows some of the common equation 

types used for process modelling. 

Table 2-5 Some of the key stormwater micropollutants’ properties relevant for fate 
processes  

Category Compound Volatile(1) Sorbable(2) Mobile(3) Persistent(4) 

Halogenated 
Aliphatics Dichloromethane ++ -- +++ No 

  Chloroform ++ -- ++ Slightly 

PAHs Benzo(a)pyrene - ++ --- Yes 

 
Naphthalene + +- + Slightly 

  Pyrene - ++ --- Yes 

Pesticides Chlordane - +- -- Very 

 
Pentachlorophenol (PCP) - ++ -- Slightly 

 
Glyphosate -- +- --- Varies 

 
Atrazine -- +- ++ Slightly 

  Simazine -- +- ++ Slightly 

PCBs Total PCBs + ++ --- Slightly 

  PCB 118 + ++ --- Slightly 

Phthalates Diethylhexyl phthalate (DEHP) - ++ --- No 

Other MOCs Benzene ++ -- ++ Varies 

1)Volatility is based on the Henry’s constant, H [Pa m3 mol-1] (Sebastian, 2013): “++” highly 

volatile: > 100; “ +-” volatile 1 - 100; “-” non vol. 0.003 - 1; “--” non vol. < 0.003 

2)Sorbability is based on the octanol-water partitioning coefficient logKow (Sebastian., 2013): 

“++” high > 4; “ +-” moderate 2.5 - 4; “--” low < 2.5 

3)Mobility is based on soil-water partitioning coefficient normalized to organic carbon content 

Koc (Rogers, 1996): “+++” very high 0-50; “++” 50-150; “+” 150-500; “-” 500-2000; “--” 2000-

5000; “---” very low >5000 

4)Persistence is based on degradation half-life T1/2 [day]: No < 100, Yes > 100, Slightly ~ 100 

Sedimentation and resuspension are movements of suspended solids from water to the 

bottom of the biofilter’s pond and vice versa. Since a major drive of these processes is a 

combination of gravity vs. fluid viscosity vs. particle shape, most of the models contain 

a settling velocity (e.g. Stokes’ law) and water depth. A very versatile model is 
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proposed in a ScorePP deliverable on Unit Process Models for Fate of Priority 

Pollutants (Vezzaro et al., 2009) which proposes sedimentation to be modelled as a 

1st order kinetic process affecting the particulate phase of micropollutants (i.e. mass 

sorbed to the Total Suspended Solids), assuming there is a fraction of a non-settleable 

concentration.  

Straining or filtering, in the domain of this work, is a mechanical process of separating 

solid matter from liquids by the attenuation of small particles by large one in the porous 

media. In a broader sense, filtration involves three different types of processes as per 

Table 2-6, where straining is equivalent to mechanical filtration. According to some 

researchers, large particles follow the fluid streamlines but are stopped in the 

passageways too narrow for passage (crevices and constrictions). The resulting particle 

deposits continuously reduce the size of the free passage and eventually can cause 

blockage (Herzig et al., 1970).  

Table 2-6 Deep filtration types with possible capture mechanisms and decolmatage 
characteristics (after Herzig et al., 1970) 

Filtration 

type 

Particle 

size 

Retention 

sites 

Retention 

forces 

Capture 

mechanism 

Spontaneous 

decolmatage 

Provoked 

decolm. 

Mechanical ≥ 30 μm Constrictions, 

crevices, 

caverns 

Friction, fluid 

pressure 

Sedimenta-

tion, direct 

inter-

ception 

Improbable Flow 

direction 

reversal 

Physico-

chemical 

~ 1 μm Surface sites Van der 

Waals forces, 

electrokinetic 

forces 

Direct inter-

ception 

Possible Increase in 

flowrate 

Colloidal < 0.1μm Surface sites Van der 

Waals forces, 

electrokinetic 

forces, 

chemical 

bonding 

Direct inter-

ception 

Possible Increase in 

flowrate 
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Yao et al. (1971) identifies three different transport processes of particles: (1) 

gravitational pull of small particles by larger ones, which is referred to as interception, 

(2) net effect of buoyant weight vs. fluid drag force, or sedimentation, and Brownian 

movement of small particles influenced by surrounding molecules in the fluid, which 

can be described as diffusion. In the domain of mechanical filtration, capture processes 

are sedimentation and direct interception due to (1) the fluid pressure holding a particle 

immobilized against the opening at a constriction site, and/or (2) the friction force 

keeping a particle moving from being wedged in a crevice (Herzig et al., 1970). 

Filtration is, therefore, influenced by the ratio of suspended solids particle size to filter 

bed pore size, but also water depth, flow rate, filter and suspended solids material, filter 

bed specific surface, temperature, pore structure, etc.  

Model types used for straining range from simple empirical (regression) models like 

Siriwardene et al. (2007), across moderately complex kinetical process models like 

models by Yao et al. (1971) and Altoé et al. (2006), to complex kinetical models that 

include both particle and liquid flow coupled with an increased pressure drop due to 

particle retention, like presented by Herzig et al. (1970). Complex models are based on 

the probability theory, where retention is described using a collision efficiency factor, as 

in the Yao model, or a retention probability, as in the work of Herzig et al. (1970). 

These probability coefficients are proportional to the rate of suspended solids removal, 

and are used in kinetic first-order rate equations.  

Table 2-7 Some of the common equation forms/models in environmental modelling 

Equation forms  Process type 

1. Equilibrium processes   

1 2
n

ec K c c= ⋅ +  ci  - concentration in “i” phase 
K – “driving” coefficient (e.g. 
partitioning coeff.) 
n - exponent 
ce – non reacting fraction 

non-limited process 
e.g. sorption isotherm; ce= 0, 
Freundlich isotherm 

max
1 2

max1
K cc c

K c
⋅

=
+ ⋅

 
ci  - concentration in “i” phase 
K – “driving” coefficient (e.g. 
partitioning coeff.) 
cmax – limiting factor (e.g. max. 
adsorption conc.) 

limited process 
e.g. Langmuir isotherm 
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Equation forms  Process type 

2. Kinetic processes   

0

1

2
2

dc K
dt
dc K c
dt
dc K c
dt

∝

∝ ⋅

∝ ⋅

 

c – concentration 
Kx – kinetic rate coefficient  
(x = 0, 1, 2 – zero, first, second order) 

 

kinetic – rate process 
e.g. first order rate: 
sedimentation, straining, 
volatilization, sorption, 
hydrolysis, photodegradation, 
biodegradation 
e.g. second order rate: 
sorption 

0

1

2

2 2

csteady flux D
x

dc cD
dt x
dc cD
dt x

∂
∝

∂
∂

∝
∂
∂

∝
∂

 

c – concentration 
Dx – diffusive rate coefficient  
(x = 0, 1, 2 – steady, advection, 
dispersion) 

 

Fick’s law – processes 

e.g. plant uptake, 

volatilization, D1 – advection, 

D2 – dispersion and diffusive 

fluxes 

s

dc ck X
dt K c

∝ ⋅ ⋅
+

 
c – pollutant concentration 
X – catalyst amount 
k – specific process rate – “driving” 
Ks – half saturation coeff. – “limiting” 

 

catalyst limited  process 

e.g. biodegradation: Michaelis-

Menten, volatilization (Lee et 

al., 1998), photodegradation - 
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c – pollutant concentration 
X – catalyst amount 
μmax – maximum rate 
Y – catalyst yield 
μmax/Y – spec. process rate – “driving” 
Ks – half saturation coeff. – “limiting” 

catalyst limited – catalyst 

evolving process 

e.g. biodegradation: Monod 

growth model  

Volatilization is a physical process in which a volatile substance dissolved in water is 

released and transferred to the atmosphere. In the simplest way, the contact between the 

water surface and the atmosphere can be described by four layers: (1) well-mixed, 

turbulent, bulk air, (2) thin stagnant layer of air, (3) thin stagnant layer of water and (4) 

well-mixed, turbulent, bulk water below the interface region. The transfer is believed to 

occur between the two stagnant thin layers of water (3) and air (2) by molecular 

diffusion. It is also assumed that resistances in the air and the water film are additive, 

although they are of different magnitudes. These two concepts are the basis of the two-
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film theory published by Lewis and Whitman (1924), usually used for the description of 

the process of volatilization.  

The model consists of pollutant mass transfer through the two layers with a combined 

water-air diffusion mass flux (mass-transfer). The equilibrium condition for this theory 

is expressed in terms of the Henry’s law. The mass balance is a dynamic steady-state 

that does not allow for pollutant mass accumulation in any of the two layers. 

Volatilization is influenced by pollutant properties, such as the Henry’s constant and 

solubility, and by water and air properties such as temperature, viscosity, partial 

pressure, etc. Two-film models have successfully been used for modelling of volatile 

organic compounds in primary and secondary settling tanks (e.g. Lee et al., 1998) and 

constructed wetlands (e.g. Keefe et al., 2004). It should be mentioned that for more 

turbulent environments, models have been developed that do not have a stagnant 

boundary between air and water. These include (1) the surface renewal model (Higbie, 

1935) – in which new surfaces are formed by breaking waves, air bubbles entrapped in 

the water, and water droplets ejected into the air, and (2) the boundary layer model 

(Deacon, 1977) – an upgrade to the two-film model that includes a continuous 

diffusivity profile and transport of turbulence (kinematic viscosity).  

Sorption is a complex physico-chemical process by which one substance (e.g. dissolved 

in fluid) becomes attached to another (e.g. mineral surface). This is achieved by 

absorption (when substance is incorporated into the volume of another), adsorption 

(surface adhesion) and/or ion-exchange. Sorption of pollutants is influenced by 

pollutant’s intrinsic properties (hydrophobicity, polarity, aromaticity etc.) and soil 

physico-chemical characteristics (e.g. pH, cation exchange capacity, ionic strength, 

surface area, soil organic matter, water temperature, etc.) (Langmuir, 1997).  

Sorption is usually described using a plot of the sorbate versus concentration in solution 

measured at a constant temperature when equilibrium is reached (a.k.a. a sorption 

isotherm). The two most commonly used isotherm models for fluid solutions are 

(Langmuir, 1997): 

• Freundlich – which assumes an infinite supply of unreacted sorption sites, and  

• Langmuir – which assumes a finite supply of sorption sites. 
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Sorption isotherms are not always adequate to describe sorption processes, even in 

simple cases such as batch-experiments, as they lack information on process kinetics. 

This is where e.g. adsorption kinetic models come in place. Qiu et al. (2009) made an 

extensive critical review of adsorption kinetic models, grouping them into:  

• Adsorption reaction (e.g. pseudo-first-order rate eq., pseudo-second-order rate 

eq., Elovich’s eq.) and 

• Adsorption diffusion models (e.g. liquid film, intraparticle, double-exponential). 

Although both types can fit the kinetic data in batch tests, Qiu et al. (2009) give slight 

preference to adsorption diffusion models. This is due to their capability of representing 

the real adsorption course “more reasonably”, while the diffusion parameter determined 

from these models can be useful for system design (e.g. flow-through treatment 

systems). Similar conceptual kinetic models exist for both absorption and ion-exchange. 

Stepping up from batch tests to pollutant flow through the porous media, it is necessary 

to formulate conceptual models of mass transport which include both transport and 

sorption processes. In these cases, isotherms are modified (simplified) and/or combined 

with kinetic models, allowing for non-equilibrium models.  

The simplest model is the equilibrium Kd – model (a linear Freundlich isotherm) with 

parameter estimates compiled in most textbooks (e.g. Langmuir, 1997; Schwarzenbach 

et al., 2003; Mackay, 2006). The Kd parameter is not pollutant specific, but a lumped 

parameter that depends on the porous media composition and conditions at which it is 

determined, which is why most compilations include this metadata as well. There are 

attempts to “break” the Kd  parameter into pollutant-specific and media-specific parts 

e.g. Kd for organic pollutants is described as a product of the soil-water partitioning 

coefficient normalized to organic content, which is pollutant-specific, and soil organic 

carbon content (Karickhoff et al., 1979; Karickhoff, 1984). The equilibrium Kd – model 

is usually used with the advective-dispersive transport equation, while Kd as a parameter 

is present in many non-equilibrium models. 

Probably the most extensive review on non-equilibrium sorption-transport in the 

variably saturated porous media is given by Šimůnek and van Genuchten (2009). The 

models are grouped in: 
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• Conceptual physical non-equilibrium for water flow and solute transport and  

• Conceptual chemical non-equilibrium models for reactive solute transport.  

Both types of models try to compensate for simplifications made with the porous media, 

which is assumed to be structurally and chemically homogeneous. Physical non-

equilibrium models compensate for assumed structural homogeneity (Figure 2-2). They 

are derived from a so-called uniform flow model (the original version of the transport 

equation, with bulk parameters such as hydraulic conductivity and porosity), by 

assuming that the soil particles have their own microporosities. These micropores allow 

(1) dissolved pollutants to move in-and-out by diffusion (Mobile-Immobile Water 

model) or (2) both water and dissolved pollutants to move in-and-out (Dual-Porosity 

model). More complex models include the Dual-Permeability models that assume 

existence of two types of pores: (1) large a.k.a. interporosity domain with fast fluid and 

solute movement and (2) small a.k.a. intraporosity domain with slow fluid and solute 

movement, and can be combined with “stationary” pores (such as in Mobile-Immobile 

water). Physical non-equilibrium models may be considered to account for pollutant 

absorption to soil, although that is not their primary intent. The motivation for their 

development comes from laboratory column experiments with uniform flow and 

conservative tracers which show extensive tailing in the pollutograph, indicating 

structural heterogeneity. 

 

Figure 2-2 Conceptual physical non-equilibrium models for water and solute transport 
(after Šimůnek and van Genuchten, 2009) 

Chemical non-equilibrium models compensate for assumed chemical homogeneity. 

These are: (1) One Kinetic Site – assuming kinetic nature of sorption and modelled 

using any of the kinetic models (usually the first order rate) (2) Two-Site – assuming 

instantaneous sorption to one fraction of sorbing sites and kinetic to the rest, modelled 
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using a combination of sorption isotherms and kinetic models, and (3) Two Kinetic 

Sites models – assuming two natures of sorption sites, each modelled by a kinetic model 

(Figure 2-3). When dealing with pollutants in real systems, it is natural to expect both 

physical and chemical non-equilibrium. Combination models, such as the Dual-Porosity 

with One Kinetic Site or the Dual-Permeability with Two-Site sorption, should be used 

when the two processes are of equal intensity (Šimůnek and van Genuchten, 2009). 

The desorption process is implicitly accounted for in equilibrium sorption modelling, 

since sorption isotherm parameters depict net-sorption (sorption-desorption). In non-

equilibrium sorption models, desorption is a kinetic process with identical or different 

kinetical model than sorption. Desorption kinetical models are usually first order rate 

models (e.g. STUMP byVezzaro et al., 2009). 

 

Figure 2-3 Conceptual chemical non-equilibrium models for reactive solute transport  
(θ – soil water content, c – pollutant concentration in water, se – pollutant concentration 

sorbed on soil at equilibrium, sk – pollutant concentration sorbed on soil kinetically 
(after Šimůnek and van Genuchten, 2009) 

Hydrolysis is a chemical process in which water molecules break existing bonds in 

substances and form new molecules: e.g. hydrolysis of organic molecules, RX, includes 

reaction with water where anion group X- is substituted by OH-, changing the water 

acidity. However, hydrolysis is sometimes used as a prototype reaction for any of the 

chemical decomposition or displacement reactions in which a nucleophile (electron-rich 

species) attacks an electrophilic atom (an electron-deficient reaction centre) 

(Schwarzenbach et al., 2003). Hydrolytic reactions are catalysed by acids, bases and, to 

some extent, water. Hydrolytic type reactions are usually modelled using kinetic: 
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• Pseudo-first order rate equations, when nucleophile is water or its concentration 

is constant or unknown, or  

• Second order rate equations, when nucleophile concentration is changing and 

known (Schwarzenbach et al., 2003). 

In most cases, the nucleophile is assumed to be water, and first-order rate is determined 

based on experimental data using reaction rate constants. Environmental compilations, 

such as Mackay et al. (2006), include hydrolysis “half-life” parameters in various 

environmental compartments, which are easily transformed to hydrolysis rates.  

Photodegradation is a process of pollutant transformation following light absorption. 

This is also referred to as the direct photolysis (Schwarzenbach et al., 2003). Indirect 

photolysis, on the other hand, includes light excitation of photosensitive chemicals that 

easily react with organic species e.g. hydroxyl radicals, singlet oxygen, or ozone are 

formed in the presence of light. Although, indirect photolysis is induced by light 

absorption, it is usually neglected in the presence of other degradation mechanisms, due 

to its minor impact on the overall degradation rate. Photodegradation is a kinetic 

process that depends on (1) solar radiation intensity and wavelength, (2) suspended 

matter, colour and other factors influencing the penetration of light through water, (3) 

pollutant sensitivity to different wavelengths, and (4) the quantum yield – fraction of 

adsorbed photons that result in a chemical reaction (Schwarzenbach et al., 2003).  

The kinetics of photodegradation of organic compounds is usually best described using 

a Langmuir-Hinshelwood scheme (Gaya and Abdullah, 2008). This is because a plateau 

type kinetic profile is observed where the initial rate (increased with longer irradiation 

time) changes to zero over time. According to the Langmuir-Hinshelwood model, the 

photocatalytic reaction rate is proportional to the reaction rate constant, organic 

compound concentration and the Langmuir adsorption constant. However, this scheme 

simplifies to a first order rate when applied to micropollutants (at low concentrations). 

Reaction rate constant is determined from experimental data, or can be calculated using 

pollutant specific data such as the quantum yield, and site-specific data such as water-

depth, irradiation intensity, and water media light attenuation property (ScorePP, 

Vezzaro et al., 2009). Mackay et al. (2006) report experimentally determined 

photodegradation “half-life” parameters in various water bodies. 
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Biodegradation is a chemical process of substance dissolution catalysed by 

microorganisms: bacteria, viruses, fungi, protozoa or parasites. In this reaction, 

microorganisms profit as they receive carbon, nitrogen and energy necessary for their 

metabolism. Biodegradation may occur with or without oxygen, depending on the 

catalyst microorganism, and can be classified as aerobic or anaerobic. Biodegradation 

depends on the availability of microorganisms and substance (e.g. sorbed substance may 

be unavailable to microorganisms), but also on redox conditions, pH, temperature, or 

any other environmental parameter that limits the metabolism of microorganisms (e.g. 

oxygen) (Corapcioglu and Hossain, 1990). Biodegradation can be modelled using some 

of the simpler models, such as the zero order rate (constant) or first order rate kinetics 

model, or growth – models that include information on microorganisms, which are 

usually based on Monod (Monod, 1949) or Michaelis-Menten type kinetics (Johnson 

and Goody, 2011). Growth models include relationships between microorganism 

growth and substrate (i.e. substance being degraded). Monod type kinetics assume that 

the substance being degraded is a limiting factor in microorganism growth, while 

Michaelis-Menten type kinetics assumes that microorganism growth is either constant, 

or not influenced by the substrate itself: it is an equation developed for enzyme kinetics. 

This is why Monod may be more applicable to nutrient degradation modelling, while 

Michaelis-Menten may be more suitable for micropollutants. However, there are 

multiple cases where Monod kinetics have been used for pollutants that are not apparent 

nutrients, such as pesticides (Cheyns et al., 2010; Sniegowski et al., 2009), but the 

purpose was to model pesticide-degrading bacteria. Mackay et al. (2006) report 

experimentally determined half-life estimates (assuming first-order rate kinetics) for 

different environmental compartments such as different soils, surface water, 

groundwater etc.  

Plant uptake (and storage) of organic compounds is one of the important steps in the 

global cycling of persistent pollutants (Collins et al., 2006). There is a substantial 

amount of evidence of plant contamination with a diversity of toxic organic pollutants, 

like accumulation of volatile substances in mosses, lichens, and higher plants due to air-

plant interactions (e.g. Thomas et al., 1984) or phenanthrene and pyrene by soil-plant 

interactions (e.g. Gao and Zhu, 2004). Major plant uptake pathways are identified as 

follows: (1) passive and active uptake from soil into plant roots, (2) particulate 
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depositions followed by desorption into leafs and (3) gaseous interchanges at leaf levels 

(additionally influenced by transport of pollutants within the xylem) (Figure 2-4). The 

processes depend on the pollutant, plant and soil specific properties like sorption 

mechanisms (include octanol-water and octanol-air partitioning coefficients), solubility, 

plant lipid content, plant metabolism, temperature, etc. Simple process modelling, 

which is usually used for non-nutrient type pollutants, is based on partitioning models at 

root or leaf levels (Chiou et al., 2001; Collins et al., 2006), to calculate the plant uptake 

factor (PUF) as a driving force for either first-order kinetic rate (driven by 

concentration) or diffusive fluxes (driven by the concentration gradient). The Nye-

Tinker-Barber model, used for nutrient type substances, uses a heuristic Michaelis-

Menten kinetics to model nutrient uptake at root level (Roose, 2000). In addition to the 

root uptake, nutrient models include transport through the xylem, and transpiration 

fluxes.  

 

Figure 2-4 Major uptake processes of organic substances by plants (after Collins et al., 
2006) 

2.5 Uncertainty analysis 

2.5.1 Introduction 

Uncertainty is present in every modelling process, with sources ranging from decisions 

on model conceptualisation, to data collection, calibration and verification. By mapping 
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and analysing sources of the uncertainty, especially by quantifying their impact on 

modelling (e.g. estimating confidence intervals), model predictions can become more 

reliable i.e. less uncertain. Additionally, by knowing the impact of a particular error 

source on the overall simulation uncertainty, it is possible to decide on investing 

resources in improving the quality of that particular source e.g. if it is the input data that 

has the highest impact on the total simulation uncertainty, then the right decision would 

be to work on the data collection system, rather than to increase model complexity or 

improve calibration techniques (Vrugt, 2008). This section presents some of the 

methods for uncertainty assessment and uncertainty sources identified in the literature. 

2.5.2 Uncertainty assessment 

A fair number of studies investigated the uncertainty in groundwater, hydrological or 

environmental modelling in the past few decades (e.g. Beck, 1987; Beven and Binley, 

1992; Kuczera and Mroczkowski, 1998; Kuczera and Parent, 1998; Muleta and 

Nicklow, 2005; Refsgaard et al, 2007). In the beginning, the research was directed 

primarily toward parameter uncertainty (Kuczera and Mroczkowski, 1998), then toward 

calibration induced uncertainty (McCarthy, 2008), only to find its way to the model 

structure (Gupta et al., 2012). Urban drainage modelling studies, on the other hand, do 

not have such a long history of uncertainty assessment (e.g. Kleidorfer et al., 2009; 

Lindblom et al., 2011; Vezzaro et al, 2012; Dotto et al., 2012), but have mostly acquired 

frameworks developed for hydrological models. Many of the uncertainty assessment 

concepts have been developed into commercial software models, where methods range 

from formal Bayesian like the Markov-Chain Monte-Carlo approaches (e.g. MICA by 

Doherty (2003), DREAM by Vrugt (2008)), to less formal likelihood methods as the 

Generalized Likelihood Uncertainty Estimation (GLUE by Beven and Binley, 1992). 

Either concept is used for (1) simple sensitivity analysis (usually qualitative study on 

parameters), (2) structural study of uncertainties by examining prior and posterior 

parameter distribution while propagating errors through the modelling process, and (3) 

evaluating predictive uncertainty using confidence intervals. 

2.5.2.1 Methods for Uncertainty Assessments 

Many methods for uncertainty assessment are developed for automatic model 

calibration. These methods solve an inverse problem and are based on a Bayesian 
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approach: (1) prior probability distribution function (PDF) of model parameters is 

estimated based on the best-available-knowledge (usually a uniform distribution), which 

is then (2) readjusted by sampling data and a likelihood function to obtain a posterior 

parameter PDF. The shape of the posterior PDF indicates uncertainty, with extremes 

being:  

• Total certainty – defined as a Dirac δ function at the parameter value, and 

• Total uncertainty – represented by a uniform PDF over (-∞, +∞) (Kottegoda and 

Rosso, 2008).  

Deletic et al. (2012) identify the most commonly used methods for uncertainty 

assessment in urban drainage modelling to be the Generalized Likelihood Uncertainty 

Estimation – GLUE (Beven and Binley, 1992), Shuffled Complex Evolution Metropolis 

Algorithm – SCEM-UA (Vrugt et al., 2003), Multi-objective calibration algorithm – 

AMALGAM (Vrugt and Robinson, 2007), and MICA (Doherty, 2003).  

GLUE is considered a non-formal Bayesian method, due to its lack of a formal 

likelihood function, and its brute-force algorithm for parameter space exploration. 

GLUE is based on Monte-Carlo simulations, where model parameters sets are sampled 

randomly from their prior PDFs. A user defined likelihood function is used to compare 

model results with observations. Model parameter sets with “low” likelihood values are 

discarded, while the ones retained are used for formation of a posterior PDF. A “low” 

likelihood function is a user defined threshold. The major advantage of this method is 

its lack of assumptions on the error distribution function. However, the method may be 

computationally costly, and suffers from modeller’s subjectivity on the choice of a 

threshold value for the likelihood function. 

MICA belongs to the group of Markov-Chain Monte-Carlo methods (MCMC). Markov-

Chain methods sample from a random walk which adapts to the true posterior 

distribution and in such way decreases the number of Monte-Carlo runs: 

• Initial parameter sets are randomly sampled from the prior PDF; 

• Model runs from these sets are evaluated by using the likelihood function; 
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• Subsequent parameter sets (a.k.a. proposed) are sampled from an updated 

parameter PDF function which depends on the values of the previously 

generated parameter sets; 

• Proposed parameter sets can be accepted or rejected based on the comparison 

between their likelihood function with that of the previous set. 

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is one such 

MCMC, where proposed parameter sets can be accepted even when they have a lower 

likelihood function than their parent sets, allowing for a broader parameter space search 

(avoiding local optima). MICA uses Bayes’ theorem for calculation of posterior 

distributions, and assumes normal distribution of errors. The acceptance of parameter 

sets is not based on subjective threshold criteria for the likelihood function, but on the 

Metropolis-Hastings algorithm and assumed likelihood function.  

SCEM-UA is a hybrid between GLUE and MICA: it explores the parameter space using 

the Metropolis-Hastings algorithm, but finalizes the posterior parameter PDFs by 

selecting those parameter sets with likelihood values above user defined threshold. 

AMALGAM is a complex 4-step algorithm that includes a genetic algorithm, 

Metropolis search, and GLUE-like cut-off. Both have a major advantage over the brute-

force method (like GLUE) in that they can explore larger parameter spaces, with small 

computer costs, by focusing only on areas with high likelihood values. However, both 

have issues with subjective criteria for the likelihood functions. 

Dotto et al. (2012) explored these four uncertainty techniques on simple water quantity 

and quality models, and concluded that all of them generated similar posterior PDFs and 

predictive uncertainties (confidence intervals on model results). The compromise is 

between the need for a strict theoretical description of uncertainty (e.g. MICA), which 

requires extensive modeller’s knowledge, simplicity (e.g. GLUE) and computer time 

(SCEM-UA and AMALGAM are very time efficient algorithms). 

2.5.3 Sources of uncertainty in stormwater quality models 

Deletic et al. (2012) presents development of a conceptual framework for uncertainties 

assessment in urban drainage modelling: a Global Assessment of Modelling 

Uncertainties (GAMU). In this framework, three key groups of uncertainty sources are 



 
Chapter 2: Literature review 

| Page 44 
 

identified: (i) Model input uncertainties, (ii) Calibration uncertainties, and (iii) Model 

structure uncertainties. 

 

Figure 2-5 Key sources of uncertainties in urban drainage models and links between 
them (after Deletic et al., 2012) 

Model input uncertainties are mostly associated with measured data uncertainties, and 

are caused by systematic and/or random errors. This type of uncertainty is usually 

defined as a dispersion of measured values. A probabilistic approach for expressing 

uncertainty is a probability density function associated with input data (and this does not 

necessarily have to be a normal distribution). Sometimes, it is not possible to find input 

data probability distribution functions due to an insufficient amount of available 

measured data. In this case, estimates can be made based on the-best-available-

knowledge (e.g. information on the accuracy in the equipment used and assuming 

normal error distribution) or the Monte Carlo method to propagate probability 

distribution of the least restrictive type (e.g. uniform). In either case, uncertainties are 

propagated by running the model multiple times to obtain confidence intervals on model 

results. If these intervals are narrow, then it is safe to assume that input uncertainties do 

not play an important part in the overall uncertainty. Uncertainties in input data have 

been addressed by some urban drainage modelling studies in two ways: (1) “simply” – 

by propagating errors through the model by keeping the model parameters fixed (e.g. 

Rauch et al., 1998) or (2) “in-depth” – by assessing the impact of input data 
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uncertainties on model parameters and model results (e.g. Kleidorfer et al., 2009; Dotto 

et al., 2014).  

Calibration uncertainties arise due to any of the selections made in the calibration 

process: (1) calibration dataset selection, (2) calibration algorithm or (3) the objective 

function. In addition to having similar uncertainties as the input data (due to 

measurements), calibration dataset should be selected to fit the purpose of the model’s 

application. McCarthy (2008) showed that the microorganism model gave better 

predictions when it was calibrated using instantaneous concentrations instead of 

microorganism fluxes. In addition, many studies dealt with the selection of data for 

calibration and model verification (e.g. Vaze and Chiew, 2003). Todorovic (2015) 

studied the impact of the calibration period on parameter estimates in conceptual 

hydrological models. She found that with an increase in the length of the calibration 

period, variability of the parameters slightly decreases. Multiple studies have addressed 

the impacts of calibration and uncertainty analysis methods, along with a choice of 

different objective functions, on model predictions (e.g. Dotto et al., 2012; Kleidorfer et 

al., 2012). It was shown that different calibration methods can lead to different 

parameter sets, while still having a similarly good fit between measured and modelled 

data. This can happen due to difficulties in finding the global optimum, particularly 

pronounced in complex systems with a multi-modal objective function surface. It can 

also be the case that the model is “ill-posed” (Dotto et al., 2009), and that some of the 

model parameters are not “true”, but rather compensate for the neglected or ill-

conceptualized processes. The concept that a unique optimal parameter set exists is 

something that many researchers do not hold for granted, but rather accept the concept 

of “equifinality”, introduced by Beven (2009), in which more than one parameter set 

may be able to provide an equally good fit between the model predictions and 

measurements. 

Model structure uncertainties can be associated with (1) conceptualization (conceptual 

model), or determination of relevant processes to be modelled, (2) equation selection 

(mathematical model) or (3) solving technique (computational model) (Deletic et al, 

2012; Gupta et al., 2012). Inspired by the idea that “we must be able to establish 

whether a model structure is adequate to the task of simulating system behaviours under 
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past, current, and potential future conditions for both similar and relatively different 

locations and/or modelling conditions”, Gupta et al. (2012) performs an in-depth 

analysis on model structural adequacy and synthesizes current knowledge from several 

different modelling communities: groundwater (GW), unsaturated zone (UZ), terrestrial 

hydro-meteorology (THM), and surface waters (SW), suggesting a five-step framework 

for model evaluation (Figure 2-6). Although, model structure uncertainties are 

recognized to be relevant, there are not that many studies which actually address their 

impact on modelling results. A rare example is a study by Blumensaat et al. (2014) 

performed on river water quality models. In addition to presenting the assessment 

framework, it shows that model structure and parameter uncertainties are of the same 

order of magnitude.  

 

 

Figure 2-6 Subjective assessment of the emphasis (indicated by the length of bars) given 
by different modelling communities to various sources of model inadequacy (after 

Gupta et al., 2012) 
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2.6 Conclusion: Identification of key knowledge gaps 

There is a fair number of stormwater quality studies that provide good insight into 

possible stormwater compositions. However, the mechanisms of pollutant transport and 

fate across the catchment, and particularly treatment systems, are not fully known. Even 

though a large number of studies have been performed specifically studying the 

behaviour of various pollutants in stormwater biofiltration systems, they have rarely 

included the most common stormwater micropollutants. This opens certain research 

questions: 

• Are biofilters capable of treating micropollutant rich stormwater? If so, under 

which conditions? 

• What are the key transport and fate mechanisms for micropollutants in 

biofilters? 

Since the data on micropollutant behaviour in stormwater biofilters is scarce, it is only 

natural that models capable of reproducing their behaviour are also rare or non-existent. 

A literature review indicates that there are only a few models that can be adjusted to be 

used for micropollutants in biofiltration systems. These models either have very simple 

water dynamics, or lack some of, what is believed to be, key mechanisms. As such, the 

literature review indicates that: 

• A new model is required that can adequately predict micropollutant behaviour 

in stormwater biofiltration systems.  

This model can benefit from the reviewed models’ algorithms e.g. a hydrodynamic 

module based on MUSIC (eWater, 2012) may be useful, or a treatment module adapted 

from RSF_Sim (Meyer et al., 2008; Meyer and Dittmer, 2015) or from the Hydrus 

family (Šimůnek et al., 1999).  

There is a wide range of uncertainties that can impact the modelling results. It is, 

however, not standard practice to acknowledge and evaluate these uncertainties. This is 

particularly the case with urban drainage water quality models, which is why this 

research will attempt to perform such analysis on the developed model. 
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2.7 Research aims and objectives 

The literature review found that significant knowledge and data gaps exist and in order 

to develop a new biofilter micropollutant model, a number of these gaps need to be 

filled. The overall aim presented above will be accomplished by completing a number 

of smaller, more specific, aims/objectives and hypotheses as follows: 

1. To develop a transport and fate model for organic micropollutants in stormwater 

biofilters:  

• It is hypothesized that micropollutants can be grouped according to their 

chemical structure and nature into a few groups, and that a good “representative” 

can be selected from each group, whose transport and fate models can be 

“transferred” to each member of the group.  

• It is hypothesized that the complex hydrodynamic behaviour of urban 

stormwater in WSUD systems can be conceptualized by a multiple reservoir 

approach (one-dimensional model with dominant vertical flows). 

• It is hypothesized that transport of micropollutants in the biofilter can be 

predicted by a linear advective dispersive transport equation (vertical), while 

conceptual 1st and 2nd order decay models could be used to assess the removal 

processes that may be physical/chemical/biological in nature (settling, straining, 

volatilization, photodegradation, hydrolysis, aerobic/anaerobic biodegradation, 

adsorption, and desorption).  

2. To conduct controlled lab and field tests to refine the model component that simulates 

the micropollutant treatment in biofilters: 

• It is hypothesized that a large amount of data should be collected to ensure 

accurate testing and verification of the newly developed model. 

3. To calibrate, validate, and assess uncertainties in the model using field data from two 

stormwater systems (biofilters with different designs): 

• It is hypothesized that uncertainty analysis (using two different field data sets) 

will point to sensitive parameters and provide insightful information about the 

processes. 
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2.8 Methodology used to complete the research aims 

There is a total of seven chapters in this thesis, with each one contributing to the above 

listed aims. Chapter 2 is a literature review which should result in a better understanding 

of micropollutants present in stormwater, their transport and fate processes through the 

biofiltration systems and assess available micropollutant and similar models potentially 

useful in the development of the future model. Chapter 3 presents experimental 

methodology and collection of data for model development and testing. Chapter 2 and 3 

provide necessary knowledge and data for the development of the model in Chapter 4. 

Chapter 5 presents calibration and verification of the model developed in Chapter 4 

using data presented in Chapter 3. The data used for model testing includes field data, 

laboratory column and batch test data. Chapter 6 includes uncertainty analysis of the 

developed model, and its result should point to sensitive parameters. Chapter 7 gives a 

summary of conclusions, evaluation of research aims, and further research ideas. 

Major parts of the overall thesis include field and laboratory studies as well as model 

development and testing. The information from data analysis and literature review will 

assist in the development of the micropollutant model. The models’ code will be written 

using Python language, which was selected on the basis of its widespread use as a 

scripting language in commercial and open source programs. Model calibration, 

verification and uncertainty analysis will be conducted using an array of available 

softwares. 
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3 EXPERIMENTAL DATA 

3.1 Introduction 

This chapter presents the data collection methodology used in this study. Data collected 

through laboratory and field experiments is used for the development and testing of a 

micropollutant transport and fate model in biofiltration units.  

The chapter begins with a description of the field experimental site, where both tracer 

and micropollutant spiking tests were performed. This is followed by an explanation of 

the measuring system for flow and meteorological data, as well as sample collection and 

analysis methods. The tracer test is complemented with an Electrical Resistivity 

Tomography to visualise the vertical flow field, and the field measurements are 

accompanied by laboratory batch and column studies. The collected data is presented 

with its statistical measures, and a brief estimate of possible data uncertainty is 

provided.  

3.2 Field experimental site 

Field data was collected from the Monash Car Park Biofilter built inside Monash 

University (Australia) campus, which harvests stormwater from a nearby multi-level 

parking lot for irrigation of a sports oval (Figure 3-1). This biofiltration system consists 

of three separate cells (all lined), with different configuration of the filtration layers and 

plant covers. Although the biofilter has been in operation for 9 years, it is not in its 

original state. The biofiltration system were reconfigured in 2009, when barriers were 

placed between cells (to avoid fluid mixture among cells) and middle cell has been 

filled with media following the Guidelines for Soil in Filter Media in Biofiltration 

Systems (FAWB, 2009). This study was performed on only two of the cells, as the third 

cell experienced a high degree of clogging.  

Cell 1 is a biofilter which is made with loamy sand and planted with Carex appressa 

(Table 3-1). The loamy sand that is used has a nutrient content well above the best 

design practice (FAWB, 2009), with on average 1600 mg/kg total nitrogen (TN) and 

320 mg/kg total phosphorus (TP). There is an abundance of soil organic matter (SOM), 

4.6% on average, and the soil’s pH value of below 7.5 is considered to be normal 
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according to the same guidelines. Loamy sand is placed at a depth of 50 cm, and below 

it was a drainage layer consisting of small gravel and sand. There is no transitional 

layer. The drainage layer also has a central sloping (1%) PVC perforated pipe. The pipe 

is placed at the bottom of the cell, made out of an impermeable concrete, which extends 

all the way to the sides of the cell, isolating the cell from the surrounding soil media. 

The outlet of the PVC pipe is at the same level as the cell bottom, so the filter media can 

drain completely. This pipe is the outlet of the biofilter. There is an extended detention 

zone, provided by the placement of a security weir at a height of approximately 40 cm 

above the ground level (Figure 3-2).  

 
Figure 3-1 The Monash Car Park Biofiltration system – a scheme 

Cell 2 is a biofilter which is made with sand and planted with Melaleuca ericifolia 

(Table 3-1). The sand used has a nutrient content in accordance with the best design 

practice (FAWB, 2009), having on average 850 mg/kg TN and 255 mg/kg TP. The 

SOM, 2.2 % on average, and soil’s pH value of below 7.5 are also considered to be 

normal (FAWB, 2009). Sand is placed at a depth of 70 cm, with the material between 

50 and 70 cm being at the same time a drainage layer and a submerged zone with extra 

organic content provided by the presence of woodchips and dry peat. Similarly to Cell 

1, the drainage layer also has a central sloping (1%) PVC perforated pipe, placed at the 

bottom of the cell, but the outlet of the pipe is 20 cm above the cell bottom, allowing for 

submerged zone to be formed. This cell is also completely isolated from the 

surrounding soil by an impermeable concrete. There is an extended detention zone, 
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provided by the placement of a security weir at a height of approximately 40 cm above 

the ground level (Figure 3-3).  

Table 3-1 Soil Characteristics and configurations of the two field biofilters, Nov 2013 

 

Cell 1 

(loamy sand, no 

submerged zone) 

Cell 2 

(sand, with submerged 

zone) 

Soil Characteristics     

Sampling point (sample ID) depth(1) 10 cm 30 cm 10 cm 30 cm 

Soil texture 

sand (0.063 – 2.0 mm) 91.4% 92.8% 95.3% 99.4% 

silt (0.002 – 0.063 mm) 6.10% 4.10% 3.70% 0.30% 

clay (≤ 0.002 mm) 2.50% 3.10% 0.10% 0.30% 

pH 7.10 7.40 7.10 7.20 

Bulk Density (g/cm3) 1.58 1.61 1.56 1.59 

Soil Organic Matter, SOM (%) 5.30 3.90 4.20 0.350 

Total Phosphorus, TP (mg/kg) 470 260 420 30.0 

Total Nitrogen, TN (mg/kg) 2,000 1,200 1,400 300 

Average Soil Porosity 0.35 0.40 

Geometry     

Length (m) 9.65 9.65 

Width (m) 1.35 1.35 

Ponding depth (m) 0.41 0.41 

Filter depth (m) – design value 0.50 0.50 

Drainage layer (m) – design value 0.20 
0.20 (coincides with 

submerged zone) 

 

sand and small gravel 

perforated PVC pipe 

Ø100 

filter material mixed 

with woodchips and dry 

peat 

perforated PVC pipe 

Ø100 

Submerged zone depth (m) No 0.20 

Plant species Carex appressa Melaleuca ericifolia 

(1) Depth measured from the soil surface during dry period 
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Figure 3-2 Cell 1 at the Monash car park biofiltration system – a scheme 

 

Figure 3-3 Cell 2 at the Monash car park biofiltration system – a scheme 

3.2.1 Measuring and sample collection system 

Water quantity data. The biofiltration system is equipped with flow measuring 

devices for inflow - I, outflow - D (drainage pipe), and overflow – O (flow over the 

security weir) (Figure 3-4). 

 

Figure 3-4 The flow measuring system scheme 
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The measuring system for flow is composed of V-notch weirs for inflow and outflows, 

trapezoidal (Cipolletti) weir for overflows, equipped with an open channel flow meter - 

Siemens Milltronics OCM III. Data was logged using the dataTaker ® 500 which 

connects to a PC via the DeLogger software.  

The OCM III emits ultrasonic pulses that echo off the water surface and get captured by 

its transducer (supplied with velocity, auxiliary head and temperature sensors). The 

measured time for the echo is temperature compensated and converted into a 

measurement of head for a given zero reading (Instruction Manual PL-505, 2001). The 

range of the measurements is 0.3 m min to 1.2 m max, and the resolution is 0.2 mm.  

Although the Siemens Milltronics flow meter can provide flow measurements using its 

velocity sensor, in this biofilter setup it was used as an ultrasonic depth measuring 

device, and the measured water depth was converted to flow using a calibration 

equation. The equation is Kindsvater and Shen’s formula (USBR, 1997) of the 

following form: 

( )5/28 2 tan
15 2eQ C g H kθ = ⋅ ⋅ ⋅ ⋅ + 

 
 (3.1) 

where Q is the flow in the function of water head – H [L], and V-notch angle θ [deg]. Ce 

is the flow coefficient, and k [L] is the head correction, both functions of θ (Ce is 

additionally a function of the flow regime over the weir e.g. fully contracted flow). All 

V-notch weirs on site have a θ equal to 30°.  

 

Figure 3-5 The Theta Probe – soil moisture sensor type ML2x 
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Since, it was found out that the ultrasonic depth sensors were not functioning properly 

at the inflow weir – I, the flow was additionally measured manually (discrete 

measurements) by a volumetric method. 

Measurements of the water depth near the overflow Cipolletti weirs were at the same 

time measurements of water depth in the ponding zone of the biofilter – marked as H in 

Figure 3-4. The ultra-sonic depth measurements were averaged on a 30-sec interval for 

all measuring points (the sampling rate was 10 Hz). 

Soil moisture measurements were taken with the Theta Probe sensors (Figure 3-5) 

placed horizontally at multiple sections and different depths of the biofilter as can be 

seen in Figure 3-6. The probe sends an output voltage proportional to the difference in 

amplitude of the standing wave in two point of the transmission line. The standing wave 

is produced by the emission and the reflection of the 100 MHz sinusoidal signal sent via 

a transmission line ending with an array of four rods in the soil. The change in the 

impedance of the rod array is influenced by the dielectric constant of the continuum 

between the rods, and since the dielectric of water is much higher than both soil and air 

(40 – 80 times), therefore, it can be completely attributed to the water content (Theta-

Probe USER Manual, 1999). The probe output, which is in mV, is converted to 

volumetric water content via the following equation: 

3

3
1

 [ ]1.1 4.44
1000  

o
output mV a

m
a m

θ

 + −    =  
 

 (3.2) 

where ao and a1 are calibration coefficients specific to soil, and for these biofilter cells 

are: ao = 1.3727, a1 = 9.6992. The full measurement range is 0.0 to 1.0 m3m-3, but the 

accuracy of ±0.01 m3m-3 applies to the range 0.05 – 0.6 m3m-3 (0 - 40°C) (Theta-Probe 

USER Manual, 1999). 

The placement of the probes was optimized to capture variations of soil moisture profile 

with distance from the inlet and with depth. Data from the soil probes was stored using 

the dataTaker ® 600 in 15-min intervals (this was selected due to the not so dynamic 

change in soil moisture, as seen with previous experiments, and to save memory to 

allow for long term observations).  
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Figure 3-6 Soil moisture probes scheme 

Water quality data. To assess the water quality in field experiments, two types of 

discrete samples were taken at both inflow, I, and outflow points, D: high frequency 

small volume and low frequency large volume samples. The small volume samples 

were taken to measure temperature and electrical conductivity (EC) with a multi – 

parameter probe PCSTestr 35 (temperature range 0 – 50°C, accuracy ±0.5°C; EC range 

200 – 2000μS/cm, accuracy ±1%), while large volume samples were collected in 

standardized bottles (plastic, dark glass etc.), kept on ice during the experiment, and 

taken to the laboratory for further analysis (pH, EC, nutrients, organic matter, 

micropollutants etc.). Inflow samples were grab samples, taken by sterile containers and 

transferred to smaller bottles (standards and replicates for laboratory analysis), while 

samples at the outflow were collected using a peristaltic pump, with the hose set in the 

lower ¼ of the outflow pipe and directly poured in bottles. The samples were taken at a 

faster rate in the rising part of the breakthrough curve (e.g. every 200 to 500 L of 

cumulative outflow volume) and less frequently toward the end of an event (1000 to 

1500 L), as can be seen in Figure 3-7 (this is important for calculations of EMCs – 

event mean concentrations). 
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Depending on the experiment type, the samples brought to the lab were analysed for 

pH, turbidity, fluorescein concentration, and EC. The pH and EC were checked with the 

HACH sensION+ MM374 multi-parameter benchtop meter. The measurement range for 

EC with this meter is 0.2 mS/cm to 200 mS/cm with an accuracy of ≤0.5%, and for the 

pH is 0 to 14 pH with an accuracy of 0.002 pH. Turbidity measurements were done with 

a HF Scientific Micro TPI portable turbidimeter. 

 

Figure 3-7 The sampling points showing the custom sampling procedure 

AQUAFluor® was used for measurements of fluorescein concentration in water 

samples with a linear detection range between 0.4 to 400 ppb (equivalent to μg/L). 

Linear detection range provides that the reading of the AQUAFluor is directly 

proportional to the content of fluorophore. The device can be used for sample 

temperatures between 5 and 40°C, but since the readings are very sensitive to 

temperature, it is important to assure that the readings done on samples are temperature 

compensated to the temperature of the calibration standard. Fluorescence readings are 

also pH dependant, so each data point needed to be accompanied by a measurement of 

the pH value.  

Once collected, the water samples were stored on ice, after which they were delivered to 

a NATA accredited laboratory (NATA – National Association of Testing Authorities, 

Australia) for analysis. All the samples were analysed for THMs, phenols, phthalates, 

PAHs and triazines using GCMS, for glyphosate using HPLC and for TPHs using GC 

FID (USEPA SW 846 Rev 2007) (see Table 3-2).  The limit of report (LOR) for THMs, 

phenols, PAHs and phthalates was 1 µg/L. The LORs for glyphosate, triazines and 
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TPHs were 30 µg/L, 2 µg/L, and 100 µg/L, respectively. Electric conductivity (EC) was 

measured for all samples using a HACH sensION 378. The total dissolved solid (TDS) 

were then calculated based on a correlation between the EC and TDS determined by 

laboratory experiments. 

Table 3-2 Summary of the µPs’ physico-chemical properties, 95th percentile stormwater 
concentrations, measured inflow concentrations, Australian drinking water guideline 

(ADWG) values, and analytical methods used to quantify the pollutants in the collected 
water samples and their associated Limits of Reporting (LOR). 

Pollutants 

Physico-chemical 
properties1) 

95th 
percentile 

concentratio
n2)  [µg/L] 

Measured 
mean inflow 
value ± STD 

(n=9-12) [µg/L] 

ADWG
[µg/L] 

Analysis 
method 

LOR 

[µg/L] 
S [mg/L] KOC 

TPHs 
Sum of TPH 

>C10-C40 
- - 147 Diesel in 

5KL 5800±392 -3) GC FID 100 

PAHs 

Pyrene 0.1 4.81 100 9.7±3.6 150 

GCMS 1 Naphthale
ne 32.2 2.74 250 16.2±6.9 70 

Herbicides 

Glyphosate 12000 3.90 2000 1600±205 1000 HPLC 30 

Atrazine 29.8 2.09 60 49.5±9.4 20 

GCMS 2 Simazine 5.7 2.13 60 43.3±6.2 30 

Prometryn 48.0 2.38 60 47.2±4.9 20 

Phthalates 
DBP 9.9 2.20 60 41.3±4.4 35 

GCMS 5 
DEHP 0.029 4.50 60 17.0±8.6 10 

THMs Chloroform 8452 1.75 250 55.1±11.3 200 GCMS 1 

Phenols 
PCP 18.9 3.50 60 27.1±6.1 10 

GCMS 1 
Phenol 83119 1.34 200 203.3±40.8 - 3) 

1) mean values compiled from Mackay et al (2006)  

2) Equates to target or challenge concentration 

3) no Australian Drinking Water Guideline (ADWG) value 

In addition to the micropollutant concentrations, all water samples were analysed for 

potential surrogates’ concentrations (total suspended solids (TSS), total phosphorus 

(TP), total nitrogen (TN), ammonia, mono nitrogen oxides (NOx), dissolved organic 

carbon (DOC), and UV absorption at 254 nm (UVA). 
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Soil samples were taken at both cells during the 2nd test series from both the surface 

(5cm) and deep (15cm) soil layers. A sample for one cell and one depth was made in a 

250 ml glass jar as a composite from three points: upstream, at 1.5 m, middle, at 4.8 m, 

and downstream, at 8.15 m (all distances measured from the wall at inflow end). The 

LOR for the pollutants was as follows: TPHs 20 mg/kg, phthalates, phenols and 

chloroform 5 mg/kg, triazines and PAHs 1 mg/kg. Glyphosate was not analysed. 

3.3 Field tracer testing 

A series of in-situ tests were conducted, named “challenge tests”, involving pumping 

multiple pore volumes (PVs) of water from an adjacent stormwater pond spiked with 

120 µg/L of fluorescein (1st and 2nd spiking tests) or without fluorescein (1st and 2nd 

flushing tests) into each biofilter. The inflow concentration of 120 µg/L was selected as 

it was best suited to the detection range of the measurement device – the AquaFluor® 

Handheld Fluorometer (Turner) (0.4 - 200 µg/L), and it allowed for visualisation of 

fluorescein in the water.  

 

Figure 3-8 Pollutographs of fluorescein during tracer tests at Cell 1 and Cell 2 

The 1st spiking test was conducted with 2.5 PVs inflow dosed into each biofilter, while 

the 2nd spiking test was conducted with 2.0 PVs. Before and after the 2nd spiking test, 

each biofilter was flushed by 2 PVs of un-spiked stormwater (1st flushing test and 2nd 

flushing test), which were aimed to flush the fluorescein in biofilters. Zhang et al. 

(2014) previously determined 2 - 3 PVs of inflow as being suitable for a challenge test 

for these biofilters. During the tests, about 10 discrete inflow samples and over 20 

discrete outflow samples were collected for each test. Samples were analysed for 
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fluorescein concentration using a fluorometer, which was tested and validated for 

fluorescein detection in laboratory using standard fluorescein concentrations (10 µg/L 

and 100 µg/L) (Figure 3-8). 

In spite of identical fluorescein infow concentrations, a substantial difference in 

fluorescein outflow concentrations was measured at Cell 1 and Cell 2 (Figure 3-8). 

Fluorescein outflow concentrations at Cell 1 were mostly lower than measured at Cell 2, 

which is hypothesized to be due to higher organic content of filter media in Cell 1, and 

presumable higher sorption of fluorescein in this cell.  

 

Figure 3-9 Pollutograph of KCl during the tracer test at Cell 1 and Cell 2 

The conservative tracer testing was performed by pumping 2 PVs stormwater with a 

chlorine ion (Cl-) concentration of 400 mg/L, followed by 2 PVs of stormwater (no 

tracer spiked) (Figure 3-9). Cl- was analysed using a FIA Automated Ion Analyser 

(QuickChem 8500).  

The difference in measured outflow concentration of Cl- in Cell 1 and Cell 2 was 

attributed to a substantial decrease in hydraulic conductivity observed at Cell 1. This 

change in hydraulic conductivity was attributed to soil swelling (Dif and Bluemel, 

1991) that happened due to the introduction of salt ions in an organic rich soil. Soil 

swelling is a phenomenon known to occur in the area, and it additionaly changes the 

porous structure of the filter media. 

3.4 Field Electro Resistive Tomography (ERT) 

3.4.1 Introduction 

The main aim of the Electro Resistive Tomography (ERT) field experiments was to 

explore the dimensionality of the water flow i.e. whether one-dimensional flow was a 
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too high level of problem abstraction. Additionally, the collected data complemented 

the field tracer test data to uncover possible routes of short circuiting i.e. preferential 

flow paths. 

3.4.2 About the method 

Electro-Resistive Tomography for subsurface imaging is one of the non-invasive 

geophysical imaging methods that measures electrical resistivity distribution in soils. 

Because it is rarely the case that the subsurface is a homogeneous and steady 

continuum, but rather contains different soil materials with variable porosity, moisture 

and ionic content, measurement of resistivity allows for differentiation between them. 

This method can be used in both static characterizations of the subsurface, as well as to 

obtain a dynamic representation – series of images showing changes in resistivity 

caused by e.g. change in water saturation of pores. Since the resistivity of water is more 

than 8 times smaller than resistivity of air (at 20°C: water 2x102 Ωm, air 2x1016 Ωm), a 

local increase in soil resistivity can be attributed to increase in air content in pores i.e. 

drying out.  

    

Figure 3-10 Sample electrode array placement and measurement points for ERT (after 
Keller and Frischknecht, 1996) 

Measurements for the ERT are done so that a direct current I (Figure 3-10) is supplied 

via one pair of electrodes (electrodes A and B, placed in the subsurface zone) and a 

potential difference V (voltage drop) is measured at another pair of electrodes 

(electrodes M and N, also placed in the subsurface zone). Usually a large even number 
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of electrodes is placed, and electrodes are interchangeably used for supplying the 

current (only one pair at a time) and measurement of voltage drop (between pairs of 

remaining electrodes). For this purpose, a cable is placed from a High-Speed Data 

Acquisition System to all the electrodes, and so is formed an electrode array. Depending 

on the spacing of the electrodes, the measurement scale can go from a few centimetres 

to a few kilometres and can produce 2D or 3D images of the subsurface resistivity 

distribution. Also, depending on which pair of electrodes measures the voltage drop, the 

measurement point can be closer or further from the soil surface. 

The raw measurements present an apparent resistivity (due to the heterogeneity of the 

subsurface) and need to be converted applying local boundary conditions to Poisson 

type equation (Garré et al., 2011) to get the calculated resistivity:  

( ) 0b sEC jϕ∇⋅ ∇ −∇⋅ =  (3.3) 

Where ECb is the bulk soil electrical conductivity (Ω-1m-1), φ is the electric potential 

(V), and js is the source current density (Am-2). Solving of the equation can be done 

using some of the state-of-the-art inversion algorithms e.g. error-weighted, smoothness 

constraint Occam type algorithm as per Garré et al. (2011).  

3.4.3 Field setup 

The two biofilter cells at Monash Carpark were equipped each with 30 metal rods, 

stabbed verticaly 5 cm in the subsurface at an equidistance of 30 cm. The electrodes 

were placed in the middle longitudinal cross section of the cell, as seen in Figure 3-11, 

and connected to the ABEM Terrameter LS device – a high speed data acquisition 

system for resistivity measurements (ABEM, 2012). ABEM Terrameter LS is supplied 

with a high power true current transmitter (output power 250 W; maximum output 

current 2.5 A; maximum output voltage ± 600 V), and a sensitive receiver that allows 

for high resolution data recording with 4, 8 or 12 galvanically separated channels (input 

impedance 200 MΩ, precision 0.1%), and is set to use a dipole – dipole electrode array 

(ABEM, 2012). ERT measurements were conducted in an experiment setting very 

similar to the first two events of the 2012 Challenge Test (see 0): with identical inflow 

dynamics of treated stormwater, from a nearby pond, with added fluorescein tracer. The 

rationale behind that was to obtain soil resistivity/moisture distribution throughout the 
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spiking test, but avoiding simultaneous experiments as ERT might induce electrolysis of 

micro-pollutants. Soil moisture probes were removed prior to the experiment, to avoid 

possible electrical damage. The tracer was used to serve as a reference between the two 

experiments (the same tracer was used for spiking tests as well).  

 

Figure 3-11 Electrode placement at the biofilter site - Monash Carpark 

Prior to the actual experiment, the biofilter system was conditioned in a similar way as 

before the second challenge test: the system was saturated with 2.5 pore volumes of 

“clean” stormwater and left to freely drain for a period of two days. In that way, the 

starting saturation for the actual testing days was around 75% for Cell 1 and 55% for 

Cell 2. On the first testing day a total of 3 pore volumes was introduced in both cells 

with a constant average concentration of 112 μg/L of fluorescein (background 

concentration was 1.2 μg/L; concentration in deionized water was 0.3 μg/L). Ten hours 

following the end of the ponding phase of the first testing day, a second test was 

conducted: a total of 1.8 pore volumes were introduced in Cell 1 and 3 pore volumes in 

Cell 2 with an average fluorescein concentration of 119 μg/L. The water was dosed so 

that all the water was treated (nothing flowed over the security weir), which is the 

reason why Cell 1 only received 60% of the planned inflow water quantity.  

Measurements included flow measurements at inflow and outflow pipes, depth of water 

at the ponding site, EC (Hach probe) and fluorescein concentration (AquaFluor 

Fluorometer) (see section 3.2.1. for details). 

3.4.4 Results and Discussion 

The inverted ERT data i.e. resistivity in Ohms, is shown in Figure 3-12 as a time lapse 

in a 10 minute increment for Cell 1 on 9/11/2012 and in Figure 3-13 for Cell 2 on 

8/11/2012.  

The resistivity fields in Figure 3-12 and Figure 3-13 show that it took Cell 1 around 20 

minutes and Cell 2 around 50 minutes to become steady i.e. spatial heterogeneity of the 
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resistivity field, closely linked to the water saturation level, becomes “uniformly 

layered” at these times. This means that the change in resistivity (and, by assumption, 

the soil water content) becomes gradual in the vertical direction i.e. becomes one-

dimensional.  

It should be noted that the biofilters were not fully saturated prior to the test start and 

that inflow pattern was such that flows were very low (0.1 – 0.2 L/s). Even in these 

conditions 20 or 50 minutes is seen as a short period when compared to the total 

duration of the spiking tests (3 – 5 h). It is, therefore, safe to assume that the one-

dimensional flow model can be used for spiking tests. 
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Figure 3-12 Time lapse of ERT inverted data for Cell 1 on 9/11/2012 (10 min inverval) 
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Figure 3-13 Time lapse of ERT inverted data for Cell 2 on 8/11/2012 (10 min inverval) 

 

3.5 Field “spiking” testing 

The field “spiking” tests (a.k.a. challenge tests) were carried out at the Monash Carpark 

biofiltration system described in detail in Chapter 3.2. The main aim of the tests was to 

provide sufficient data for model development, while at the same time allowing for the 

development of the validation framework (see Zhang, 2015). The tests were performed 

under challenging conditions: these included high target concentrations of 

micropollutants in the inflows, as well as extreme (the systems were run at their full 

infiltration capacity, but without any overflow) and highly variable operational 

conditions that biofilters could be exposed to (e.g. different drying/wetting regimes). 
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3.5.1 Experimental setup 

A total of seven groups of micropollutants were selected to be checked in challenging 

conditions at Monash Carpark biofilter, as various studies report them to be present in 

stormwater (e.g. Cole et al., 1984; Makepeace et al., 1995; Duncan, 1999; Göbel et al., 

2007; Zgheib et al., 2012) (For more details see Chapter 2.2.3). These include total 

petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), 

glyphosate, triazines (simazine, atrazine and prometryn), phthalates (dibutyl phthalate, 

di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and phenols (phenol, 

pentachlorophenol). Table 3-3 shows details regarding these micropollutants, with their 

classification according to groups, physico-chemical properties (solubility in water, Koc 

– soil water partitioning coefficient normalized to organic carbon content, Henry’s 

constant, pKa – acid dissociation constant as logarithmic value, and half-life in soil), 

expected removal process in biofilters, and target concentration during tests. The target 

concentration was selected based on reported concentrations found in the literature. 

Event mean concentration (EMC) from each publication was considered where possible 

(measured values of single samples were not considered). In this way at least 15 EMC 

values were gathered for each micropollutant and the 95th percentile concentrations 

were calculated. The 95th percentile was adopted as the challenge concentration for 

consistency with the validation of pathogen removal in wastewater recycling schemes 

(DHV, 2013). Since some reports included very low micropollutant concentrations (that 

were far below the Australian Drinking Water Guideline (ADWG)), a value of twice the 

ADWG value was set as the target concentration (e.g. for naphthalene, glyphosate, 

DBP, chloroform). The idea behind the choice of target concentration values was to 

simulate operational conditions that may cause hazard to humans or other biota, and 

with full acknowledgment that stormwater data regarding micropollutants is scarce and 

usually does not include extreme conditions.  

Regarding the operational conditions, literature review indicates the following are 

important (Zhang, 2015): 

1) The total volume of water to be treated per event – e.g. Li et al. (2012) conclude 

that the residual water in the submerged zone and in soil voids affects the 

treatment performance; 



 
Chapter 3: Experimental Data  

| Page 69 
 

2) Extreme wet conditions – e.g. Zhang et al. (2014) show that the occurrence of 

two or more large consecutive events within a short period can lead to breaking 

of the system function during the later events in which the system cannot 

provide reliable treatment; 

3) Infiltration rate (velocity of water filtrating through soil media) – e.g. 

Chandrasena et al. (2012) show it is of little importance in the removal of 

nutrients, while Li et al. (2012) show high importance for pathogen removal; 

Table 3-3 Summary of the micropollutants’ physico-chemical properties, expected 
removal processes in biofiltration system, and target concentrations during tests 

Pollutants 

Physico-chemical properties1) Expected 
removal 

processes in 
biofilter 

target 
conc.2)  
[µg/L] 

Solubility 
[mg/L] logKOC 

KHenry 
[Pa 

m3/mol] 
pKa 

Half-
lives in 
soil [d] 

TPHs -3) - - - - Volatilisation 
Adsorption 

29.4 ml/L 
Diesel 

PAHs 

Pyrene 0.1 4.8 1.3 - 346 Adsorption, 100 

Naphthalene 28 3.2 54.9 - 36 Adsorption 
Biodegradation 140 

Herb. 

Glyphosate 12425 3.1 1.4×10-5 0.8 47 

Adsorption 
Biodegradation 

2000 

Atrazine 38 2.1 3.9×10-4 1.7 75 60 

Simazine 6 2.3 1.8×10-4 1.7 77 60 

Prometryn 41 2.7 9.5×10-4 4.1 60 60 

Phthal. 
DBP 10 2.9 0.2 - 16 Adsorption 

Biodegradation 

70 

DEHP 15 5.1 0.8 - 65 50 

THMs Chloroform 8452 1.8 330.2 - 51 
Adsorption 

Biodegradation 
Volatilisation 

400 

Phenols 
PCP 19 3.2 0.1 4.9 48 Adsorption 

Biodegradation 

60 

Phenol 83119 1.7 0.9 10.0 4.9 200 

1)median values compiled from Mackay et al;  
2)Equates to 95th percentile concentration (DEHP, PCP and phenol) or doubled ADWG values; 

 3)physico-chemical properties vary dramatically with different petroleum chemicals therefore 
not presented; 

4) Duration of dry periods between successive storm events – longer dry periods 

decrease nitrogen removal (e.g. Hatt et al., 2008), while pathogen removal is 

decreased with very short dry periods (e.g. Chandrasena et al., 2012); 
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5) Temperature – an important variable that influences the rate of some of the 

processes in the biofilters (e.g. biodegradation, Blecken et al., 2010).  

Operational conditions listed under (1), (2) and (4) were determined using data included 

in the MUSIC 5.1 software for modelling of urban stormwater systems using water 

sensitive urban design (eWater, 2012). The model was set up to simulate long term 

performance of the Monash Carpark biofilter – it included a highly urbanized (100% 

impervious) catchment with a surface area equal to the one of the Monash Car parking 

lot (4000m2) that drains into the biofilter (characteristics of Cell 2, see Table 3-1). The 

model was run continuously for data between 1980 and 2010 (31 years of data, with 

1980 being a model “warm-up” sequence). This included 6 minute rainfall data and 

measured monthly evaporation data for Melbourne. To determine the duration of the dry 

periods, a probability distribution function (log-normal) was applied to estimate the 95th 

percentile of the biofilter inflows. The inflow dataset was previously pre-processed and 

low inflow volumes were removed (i.e. everything below 1% of the maximum outflow-

rate was discarded, as these events do not have the potential to saturate the biofilter, and 

to produce enough outflow to be measured). The challenging dry period length for 

Melbourne climate was found to be 21 days.  

As for the wet weather events, two challenge scenarios were proposed: (1) the challenge 

volume of a single wet weather event and (2) the challenge volumes of two consecutive 

events, within 12 hours of each other. The two consecutive rainfall events with only 12 

hours of dry period were seen as an extreme condition, since the system was not able to 

recover completely i.e. the system is saturated and barely drains before the second storm 

commences. The statistics were formulated on outflows, rather than on inflows, 

because: (i) many events were either too small (having no outflow) or too large (leading 

to overflow), and are seen as outliers in terms of this analysis; and (ii) treated water is 

more important in terms of stormwater harvesting, therefore to be on the safe side, the 

use of outflows for estimations was favoured. Again, 1% of the maximum outflow-rate 

of the system was used as a cut-off to determine when outflow begins or ends. This cut-

off value was determined with reference to experience from previous biofilter field tests 

(maximum measurable flow). For the first case, the 95th percentile cumulative volume 

for a single event was 4 pore volumes (PV where a PV roughly equals to 3.5 m3 for 
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each biofilter). For the second scenario, the 95th percentile of two consecutive events 

that occur less than 12 hours apart was 3 PVs for each event (3 PVs, followed by 12 

hours of dry period, and another 3 PVs). These events correspond to 2nd test series in 

Table 3-4.  

Another sequence of events was also tried as part of the challenge with more natural and 

higher probability events. These are 85th percentile single event outflow water volumes, 

and 40th, 90th, and 80th percentile dry period durations. This second series of events were 

selected arbitrary and corresponds to the 1st test series in Table 3-4.  

The infiltration rate (4) is a biofilter intrinsic property that can change with age (Hatt et 

al., 2007), and is not a plausible parameter to change during a challenge test. Because of 

that, the challenge test was done on two biofiltration units that have different infiltration 

rates (different filter media and plant content).  

Although the analysis was done to determine (5) the challenging temperature, it was not 

possible to control this feature during the actual field testing. Using 30 years of 

minimum and maximum daily temperature data from Bureau of Meteorology (BOM) 

(station No. 86232 in Melbourne) cumulative distribution curves were created and 

extreme values (5th percentiles of the minimum daily data as well the 95th percentiles 

of the maximum daily data) were determined to be 5°C / 33°C. The 5th / 95th percentile 

is selected since it is usually acquired as the cut off in other validation procedures 

(DHV, 2013).  

3.5.2 Challenge tests characteristics 

Two series of in-situ experiments were conducted, each consisting of three separate 

challenge tests (i.e. six challenge tests in total). These challenge tests covered different 

operational conditions, ranging from the above selected challenge scenario conditions to 

more typical operational conditions (Table 3-4).  

The 1st series of challenge tests (TESTS 1-3) was conducted during the winter of 2011, 

whereas the 2nd series (TESTS 4-6) was performed during the summer 2012. Between 

TEST 1 and TEST 2 and after TEST 6, the biofilters received two natural stormwater 

events (Table 3-4). 
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Table 3-4 Detailed information of challenge tests 

  Date Inflow volume [m3]  

/percentile1) 

Preceding dry 
periods [h] 
/percentile1) 

Daily Air 

Temperature 

1st  

series 

TEST 1 16-08-2011 8.4 (2.4PVs) /85th  84/40th  10.9-19.2 

TEST 2 31-08-2011 8.4 (2.4PVs) /85th 352/90th  8.2-15.2 

Natural events -2) 17.3 (5 PVs) - - 

TEST 3 22-09-2011 8.4 (2.4PVs) /85th 240/80th  11.5-22.9 

2nd 

series 

TEST 4 19-11-2012 10.5  (3PVs) /95th  66/30th  6.8-23.6 

TEST 5 20-11-2012 Cell 1: 6.3 (1.8 PVs)/80th  

Cell 2: 10.5 (3PVs) /95th  

10/<1st 3) 8.6-27.4 

TEST 6 11-12-2012 14 (4PVs) /95th 496/95th  9.0-27.3 

Natural Event 14) 15-12-2012 2.1 (0.60PV) 89  18.6-23.1 

Natural Event 24) 19-12-2012 2.2 (0.63PV) 84  16.2-30.8 

1) Corresponding percentile value of 30-year rainfall statistic using MUSIC. 
2) 3 rainfall events observed on 09-09-2011 (10.6mm), 10-09-2011 (3.11mm) and 11-09-2011 
(4.2mm) but no samples were taken during this period.  
3) <1st percentile of dry periods, extreme wet condition; 4) 3.2mm rainfall observed on 15-12-
2012 and 4.8mm on 19-12-2012. 

Semi-synthetic stormwater (water quality is shown in Table 3-5) was prepared in the 

distribution tank (net volume of 4.2 m3) using water from an adjacent stormwater pond. 

The stormwater sediment (from a local wetland inlet basin), raw sewage (from a local 

wastewater treatment plant – Pakenham), commercial diesel fuel (from a local fuel 

station; according to the Australian Fuel Standard (Automotive diesel) determination 

2001 contains a maximum of 11% m/m PAHs) and selected micropollutants (from 

Sigma-Aldrich) were added and then well mixed manually to attain the target 

concentrations (Table 3-3). As most of the micropollutants were in solid state (powder), 

special preparation was done before the actual experiment: concentrated solutions of 

micropollutants were prepared using deionized water in special glass vials that were 

added directly into the distribution tank. This was done to assure the homogeneity of the 

mixture.  

During each test, in order to simulate challenge infiltration rates and make the biofilters 

work under full capacity, attempts were made to control the ponding depth of each 

biofilter to a stable level of 470±10mm from the surface of the biofilter (which was 
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close to the overflow weirs). In the outlet, outflow rates were recorded by using v-notch 

weirs equipped with ultrasonic depth sensors (Siemens Milltronics), which were 

calibrated using manual flow measurements before and during the tests. 

Table 3-5 Water quality of the semi-synthetic stormwater in the challenge tests 

Parameters T (℃) pH EC (µs/cm) TSS (mg/L) TP (mg/L) 

Mean value± STD 

(n=3-9)  

1st series 19.2±1.2 7.4±0.1 419.9±6.1 52.7±11.0 0.88±0.02 

2nd series 10.2±1.6 7.3±0.2 NA1) 70.0±11.9 1.1±0.1 

Parameters TN (mg/L) NH3 (mg/L) NOX (mg/L) DOC (mg/L) UVA 

Mean value ± STD  

(n=3-9) 

1st series 2.7±0.1 0.29±0.09 0.12±0.03 19.7±1.1 0.551±0.09 

2nd series 3.1±0.5 NA NA NA NA 

1) NA: Not analysed 

3.5.3 Sampling and analysis 

In the 1st series of challenge tests, a flow-weighted composite sample of the inflow 

water was collected, while during the 2nd series, three composite inflow samples (each 

consisting of three discrete samples) were collected during the course of each event. In 

addition, 10 discrete outflow samples were taken over the course of the test from each 

cell in both series. During the natural events of the 2nd Series (after Test 6), natural 

stormwater grab samples were taken from the distribution tank; outflow samples were 

collected using autosamplers (Sigma 900). The autosamplers were triggered by flow 

measurements (cumulative volumes), so samples were taken as flow-weighted discrete 

samples. This sampling was completed after two rainfall events, after which time the 

micropollutant concentrations returned to below reporting limits in both the inflow and 

outflow samples.  

To obtain an estimate of the ‘overall’ effluent quality for an entire event, the pollutant 

concentrations from 10 discrete samples were used alongside flow measurements to 

calculate the Event Mean outflow Concentration (EMC).  

The samples were distributed in multiple plastic, transparent and colored flasks to 

prevent any type of degradation. The samples were stored on ice until they were 

delivered to a NATA accredited laboratory for analysis (see Chapter 3.2.1). It should be 

noted that in cases where the concentrations were lower than the detectable limits, half 



 
Chapter 3: Experimental Data  

| Page 74 
 

of the lowest detectable limit was taken as the concentration for determination of EMC 

and mass balances.  

Soil samples were taken during the 2nd test series only. Table 3-6 shows the soil 

sampling date and time, and the soil sample type: surface (5 cm) or deep (15 cm). 

Table 3-6 The soil sampling sequence and sample type 

sample type Surface Deep Surface Deep Surface Deep 

date Nov. 19th Nov. 20th Nov. 22th 

time 11:00 AM 7:00 AM 3:30 PM 

sample type Surface Deep Surface 
   

date Nov. 26th Dec. 3rd 
   

time 10:50 AM 3:30 PM 
   

sample type Surface Surface Deep 
   

date Dec. 11th Dec. 11th 
   

time 6:00 AM 4:30 PM 
   

sample type Surface Deep Surface 
   

date Dec. 13th Dec. 17th 
   

time 2:20 PM 11:00 AM 
   

3.5.4 Challenge test: Results and Discussion  

3.5.4.1 Hydraulic Performance 

A water balance (including measured inflow and outflow volumes, estimated storage 

change and evaporation and vegetation-uptake) was produced for each biofilter over 

each series of challenge tests (see Table 3-7). The estimated errors of the water balance 

were between 2.3-5.9% of the total inflows, with higher errors estimated for cell 1 

(loamy sand).  

Figure 3-14 presents the inflow and outflow rates measured during the 1st and the 2nd 

test series of the spiking tests. Cell 1 shows a significant decrease in the infiltration rate 

during Test 5, and it was not able to treat the entire targeted volume (it treated only 

6.3 m3 instead of 10.5 m3) in the selected timeframe without overspills. The reduction in 

the hydraulic rate is linked to a prolonged wetting period (there were only 10 hours 

between Tests 4 and 5) which might have caused soil swelling due to high clay content 
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(Dif and Bluemel, 1991). The 1st test series does not hold similar behaviour of Cell 1, as 

the wetting conditions were not as challenging (e.g. the minimum dry period was 84h, 

meaning that the system had time to recover before the subsequent wet weather period). 

On the other hand, Cell 2, designed according to the FAWB guidelines, had a consistent 

hydraulic rate during all of the tests (under varying conditions).  

 

Figure 3-14 Inflow and outflow rates measured during the 1st (top) and the 2nd (bottom) 
test series 

3.5.4.2 Treatment Performance 

Table 3-8 presents the results of the measured inflow concentrations and outflow Event 

Mean Concentrations (EMCs), while Table 3-9 shows calculated mass balances of the 

tested micropollutants for the two series of challenge tests. The attempt is made to 

estimate uncertainties in the mass balance as follows: 

• 1st Test series – by assuming that the pollutant mass balance error equals the 

water balance error:  
uncertainty  

in the mass balance 
= 

pollutant mass 

reduction 
x 

water balance 

error 
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• 2nd Test series – by using TDS as a measure of mass balance uncertainty, 

assuming it is a conservative quantity: 
uncertainty  

in the mass balance 
= 

pollutant mass 

reduction 
x TDS balance error 

Table 3-7 The water balance of the two test series of challenge tests: Unit m3 

 
Cell Test Inflow Outflow 

change 
in 

storage 
1) 

Evaporation 
& plants 
uptake 

during dry 
periods 2) 

Total 
error3) 

Water balance 
error  

(% of total 
inflow) 

1st
 S

er
ie

s 

1 

Test 1 8.4 7.5 

0.315 1.43 
  

Test 2 8.4 8.1 

Natural Events 11.6 10.5 

Test 3 8.4 8.1 

Subtotal 36.8 34.2 0.315 1.43 1.49 4.0% 

2 

Test 1 8.4 7.5 

0.14 1.6 

  
Test 2 8.4 8.1 

  
Natural Events 11.6 10.8 

  
Test 3 8.4 8.1 

  
Subtotal 36.8 34.5 0.14 1.6 0.84 2.3% 

2nd
 se

rie
s 

1 

Test 4 10.5 9.5 

0.26 1.29 

  
Test 5 6.3 5.4 

  
Test 6 14 13.1 

  
Natural Event 2.1 1.9 

  
Natural Event 1.9 1.8 

  
Subtotal 34.8 31.7 0.26 1.29 2.07 5.9% 

2 

Test 4 10.5 9.6 

0.115 2.2 

  
Test 5 10.5 9.8 

  
Test 6 14 13.1 

  
Natural Event 2.1 1.8 

  
Natural Event 1.9 1.7 

  
Subtotal 39.0 36.0 0.115 2.2 0.92 2.3% 

1) Estimated by calculating the change of soil moisture before and after that series of tests; 
2) Estimated by calculating the change of soil moisture during dry days; 
3) Inflow – outflow + change in storage - evaporation & plants uptake: if there is no error, 
should be equal to zero 
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The micropollutants were generally classified according to the removal efficiencies:  

• excellent removal (removal>80%)  e.g. TPHs, glyphosate, DBP, DEHP, pyrene 

and naphthalene;  

• good removal (50% < removal < 80%) e.g. phenol and PCP in Cell 2); 

• intermediate removal (20% <removal<50%) e.g. Chloroform  

• and poor removal (removal<20%) e.g. atrazine and simazine in Cell 2.  

Generally, the removal performance of biofilters in the 1st series tests was better than 

that in the 2nd series, especially for triazines (that can be grouped into intermediate 

category in the 1st series), a fact mainly due to the more challenging conditions 

conducted in the 2nd series. Also, it can be noted that the removal performance is higher 

or equal in Cell 1 than the removal in Cell 2. This is hypothesized to be due to the 

higher soil organic matter content of Cell 1: 4.6% compared to 0.4%. 

The removal of pollutants is significantly influenced by adsorption. Soil organic matter 

(SOM) content is particularly important for adsorption of organic compounds, such as 

micropollutants used in this study, since most of them are dominated by apolar groups: 

aliphatic and/or aromatic. This fact is used to calculate the theoretical maximum of 

micropollutant mass that can adsorb prior to the breakthrough: 

oc oc inflow soiltheoretical maximum adsorbed mass = K f c M⋅ ⋅ ⋅  (3.4) 

Where SOM value is the organic carbon content, foc; Koc is the soil-water partitioning 

coefficient (Table 3-3); cin is the micropollutant inflow concentration; and Msoil is the 

total mass of soil in a biofilter cell.  

TPHs, pyrene and phthalates (DEHP and DBP) were bellow detection limits for all 

outflow samples (see TPHs are a mixture of petroleum-based chemicals, some of which 

volatilize quickly (e.g. benzene KHenry= 500 Pa·m3/mol) while several others attach to 

the soil easily (e.g. benzo(a)pyrene logKoc=6.1). Pyrene and DEHP have a high Koc 

value (log Koc > 4), meaning they also have a strong tendency to adsorb. The mass 

reduction of pyrene, DEHP and DBP was lower than the maximum adsorption mass, 

indicating that the biofilters still have a capacity to absorb more of these micro-

pollutants. For the adsorbed micropollutants, other removal processes (e.g. 
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biodegradation) may also be occurring during dry periods, allowing the regeneration of 

adsorption sites. Zhao et al. (2004) reported that adsorption and biodegradation 

influenced the removal of DBP in a vertical flow constructed wetland. Naphthalene was 

also well removed: it has a moderate adsorption tendency (logKoc=2.74) and is prone to 

biodegradation in soils (T1/2=36d).  

Glyphosate showed good removal (>80% in all tests) by biofilters. Glyphosate attaches 

to soil readily (logKoc=3.1) and the mass reduction was lower than predicted by Koc 

values. Glyphosate is also possibly degraded by soil microorganisms with a half-live 

averaging on 47d.  

Biofilter cells were not so successful in removing triazines (especially Cell 2). This was 

attributed to their moderate tendency to adsorb (logKoc=2.1-2.7), and low 

biodegradation rate ie. quite slow and variable, with half-lives in different soils varying 

from weeks to a year (Mackay et al., 2006). Although biodegradation is highly unlikely 

to occur during the biofilter’s residence time (around 3h), there is a possibility for it to 

happen during dry periods (EMCs lower after prolonged dry periods).  

Chloroform was removed between 26.9 and 61.5%: it has a low biodegradation rate 

(T1/2>50d) and is weakly adsorbed to soil (log Koc=1.8), however it is quite volatile 

(KHenry =330.2 Pa·m3/mol), which may have contributed to its removal. 

PCP has good removal in both biofiltration cells: it sorbs well (log Koc=3.2), but has a 

low biodegradation rate (T1/2=49d). EMC values of PCP in Cell 2 during Test 5 and 

Test 6 were much higher than that in Test 4. It is hypothesized that this could be 

because the adsorption sites were limited in this sandy media and these were mostly 

occupied during Test 4, leaving fewer sites for adsorption to occur during Test 5 and 

Test 6.  

Cell 1 showed better removal (>80%) of phenols as compared with Cell 2 (50-80%). 

Phenol is very mobile in soil systems (log Koc =1.7) and biodegrades quickly 

(T1/2=4.9d). However, phenol outflow concentrations peaked during Test 6. It is 

hypothesized that the peak is caused by short-circuiting through cracks formed in the 

filter media after prolonged dry period (and pollutants high mobility). 
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Table 3-8 Measured inflow concentrations and outflow event mean concentrations 
(EMCs) for micropollutants during the two challenge tests 

  Measured concentrations 

  
Inflow±STD Outflow EMC (µg/L) 

(µg/L) Cell 1 Cell 2 

1st series tests T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 

TPHs 12700±707 <100 <100 <100 <100 <100 <100 

Glyphosate 1950±353 NA 54 100 NA 41 105 

Atrazine 55±13 14 34 17 32 65 23 

Simazine 47±6 3 11 6 7 25 7 

Prometryn 53±4 4 9 2 13 26 5 

DBP 33±5 <1 <1 <1 <1 <1 <1 

DEHP 24±10 <1 <1 <1 <1 <1 <1 

Chloroform 43±15 9 24 19 15 49 28 

2nd series tests T1.4 T1.5 T1.6 T2.4 T2.5 T2.6 

TDS [ppm] 214 210 210 212 210 210 214 

TPHs 4300±220 <100 <100 <100 <100 <100 <100 

Pyrene 10±2.6 <1 <1 <1 <1 <1 <1 

Naphthalene 17±6.6 2 2 2 3 1 3 

Glyphosate 1600±100 99 116 187 29 106 70 

Atrazine 48±6 25 28 27 35 42 49 

Simazine 42±3 22 32 24 33 49 43 

Prometryn 50±4 11 14 15 20 29 32 

DBP 42±4 <1 <1 <1 <1 <1 <1 

DEHP 17±8 <1 <1 <1 <1 <1 <1 

Chloroform 59±7 32 38 40 40 47 49 

PCP 27±6 1 6 4 2 19 11 

Phenol 203±15 2 1 18 1 3 106 

Legend for Table 3-9: 

1) Uncertainties in mass reduction = pollutant mass reduction x water balance error (1st test 

series) and = pollutant mass reduction x TDS balance error (2nd test series), percentage removal 

in parentheses;  

2) Max adsorption: theoretical maximum mass of micropollutants that can be adsorbed onto the 

organic carbon of biofilter soils before breakthrough (equals to KOC*fOC*Cinflow*Mass of soil);  
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Table 3-9 Calculated mass balances for micropollutants during the two challenge tests 

  Calculated mass balances 
  

Cell 1 Cell 2 
  

1st series tests In Out Reduction1) Max 
Ad. 2) In Out Reduction1) Max 

Ad. 2) 

TPHs 324.7 1.2 323.5±12.9 
(99.6%) - 324.7 1.2 323.5±19.1 

(99.6%) - 

Glyphosate 32.8 1.3 31.5±1.3 
(96.0%) 1168.7 32.8 1.2 31.5±1.9 

(96.0%) 144.1 

Atrazine 1.76 0.52 1.24±0.05 
(70.5%) 3.3 1.76 0.95 1.24±0.05 

(70.5%) 0.4 

Simazine 0.94 0.16 0.78±0.03 
(80.3%) 4.5 0.94 0.31 0.78±0.04 

(83.0%) 0.6 

Prometryn 1.02 0.12 0.90±0.04 
(88.2%) 12.6 1.02 0.35 0.90±0.04 

(88.2%) 1.6 

DBP 0.45 0.01 0.44±0.02 
(97.8%) 12.5 0.45 0.01 0.44±0.03 

(97.2%) 1.5 

DEHP 0.6 0.01 0.59±0.02 
(98.3) 1438.4 0.6 0.01 0.59±0.03 

(98.3%) 177.3 

Chloroform 1.09 0.42 0.67±0.03 
(61.5%) 1.3 1.09 0.74 0.67±0.02 

(61.5%) 0.2 

2nd series tests In Out Reduction1) Max 
Ad. 2) In Out Reduction1) Max 

Ad. 2) 

TDS [ppm] 7441.9 6744.4 697.5 (9.4%) - 8336 7630.3 705.7 (8.5%) - 

TPHs 148.3 1.6 146.7±13.8 
(98.9%) - 160.9 1.8 159.1±13.5 

(98.9%) - 

Pyrene 0.3 0.02 0.28±0.03 
(93.3%) 300.4 0.33 0.02 0.31±0.03 

(93.9%) 37 

Naphthalene 0.56 0.06 0.50±0.05 
(89.3%) 12.8 0.62 0.08 0.54±0.05 

(87.1%) 1.6 

Glyphosate 47.5 4 43.5±4.1 
(91.6%) 958.9 54.2 2.2 52.0±4.4 

(95.9%) 118.2 

Atrazine 1.45 0.77 0.68±0.06 
(46.9%) 2.9 1.67 1.44 0.23±0.02 

(13.8%) 0.4 

Simazine 1.3 0.72 0.58±0.05 
(44.6%) 4 1.49 1.4 0.09±0.01 

(6.0%) 0.5 

Prometryn 1.39 0.4 0.99±0.09 
(71.2%) 11.9 1.6 0.94 0.66±0.06 

(41.3%) 1.5 

DBP 1.28 0.02 1.26±0.12 
(98.4%) 15.9 1.45 0.02 1.43±0.12 

(98.6%) 2 

DEHP 0.58 0.02 0.56±0.05 
(96.6%) 1018.8 0.63 0.02 0.61±0.05 

(96.8%) 125.6 

Chloroform 1.85 1.1 0.75±0.07 
(40.5%) 1.8 2.08 1.52 0.56±0.05 

(26.9%) 0.2 

PCP 0.8 0.1 0.70±0.07 
(87.5%) 20.4 0.94 0.36 0.58±0.05 

(61.7%) 2.5 

Phenol 6.1 0.65 5.45±0.51 
(89.3%) 4.8 7.02 1.53 5.86±0.50 

(78.2%) 0.6 
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3.5.4.3 Intra-event variability 

Figure 3-16 – Figure 3-18 show how the concentrations of selected micropollutants vary 

over the duration of the challenge tests. Micropollutants were well removed at the very 

beginning of the series. The outflow concentrations increased over the duration of each 

test, and then dropped towards the end. This drop is probably due to low infiltration 

rates through the biofilter (after inflows stopped, the hydraulic head decreases), 

resulting in longer residence times (2-4 hours longer) and therefore better removal (due 

to adsorption).  

 

 

Figure 3-15 Pollutographs of glyphosate during 1st test series (top) and 2nd test series 
(bottom) for Cell 1 and Cell 2 

The starting outflow concentrations of Tests 2 and 3 were lower than ending 

concentrations of Test 1 for all pollutants. This indicates that micropollutant 

biodegradation occurred between these events. The starting outflow concentrations of 
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Test 5 were within the range of the finishing concentrations of Test 4 for the majority of 

micropollutants. This suggests that micropollutants were retained in the biofilters during 

Test 4 and no significant degradation occurred during the short dry period of 10h before 

the start of Test 5. As a result, Cell 2 showed a net production of simazine (i.e. outflow 

concentrations > inflow concentrations) recorded during Test 5 and Test 6 (the so called 

“production” can be seen with chloroform in Tests 2 and 3, atrazine and prometryn in 

Tests 5 and 6).  

Figure 3-19 and Figure 3-20 show pollutographs for naphthalene, PCP and phenol 

(detected in the outflow only during the 2nd test series). 

 

 

Figure 3-16 Pollutographs of chloroform during 1st test series (top) and 2nd test series 
(bottom) for Cell 1 and Cell 2 
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Figure 3-17 Pollutographs of atrazine during 1st test series (top) and 2nd test series 
(middle) and of simazine during 1st test series (bottom) for Cell 1 and Cell 2 
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Figure 3-18 Pollutographs of simazine during 2nd test series (top) and of prometryn 
during 1st test series (middle) and 2nd test series (bottom) for Cell 1 and Cell 2 
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Figure 3-19 Pollutographs of naphthalene during 2nd test series for Cell 1 and Cell 2 

 

 

Figure 3-20 Pollutographs of PCP and phenol during 2nd test series for Cell 1 and Cell 2 
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3.5.4.4 Soil sample analysis results 

TPHs, pyrene and DEHP are the only pollutants that were detected in the surface soil 

samples (although, they were not detected in deep); concentrations of all the other 

micropollutants were below the limit of report. 

 
Figure 3-21 TPHs, pyrene and DEHP concentration detected in soil samples taken from 

surface soil at Cell 1 and Cell 2 during the 2nd test series 
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However, it should be noted that soil samples have a higher limit of report than water 

samples (mg/kg compared to μg/L, see Chapter 3.2.1). Figure 3-21 shows TPHs, pyrene 

and DEHP concentrations found in soil samples taken from surface soil at Cell 1 and 

Cell 2 during the 2nd test series. The results are not surprising for these three chemicals, 

as they were removed well in both cells (high above 90%). The fact that they were 

detected in surface samples only agrees with other studies reported in literature that 

most of the removal is happening in the upper most layer of the biofilter media (the 

hummus zone). 

Interestingly, Cell 2 soil samples showed a higher micropollutant content than Cell 1’s 

samples. It is hypothesized that this is due to plant litter formed in the upper zone (more 

profound with Melaleuca ericifolia, than with Carex appressa). 

3.5.4.5 Summary 

The following is a summary of the challenge test results: 

• Extreme wet conditions could be of high importance for hydraulic performance, 

but only in systems in excess of certain clay content, whereas it seems that it 

should not be a problem for well-designed biofilters;  

• Cell 1 is better or equal than Cell 2 in removing micropollutants; 

• Good removal was achieved for TPHs, glyphosate, DBP, DEHP, pyrene and 

naphthalene; 

• Moderate removal was achieved for PCP and chloroform; 

• Poor removal was achieved for triazines; 

• TPHs, pyrene and DEHP were the only pollutants detected in surface soil 

samples; 

• Formation of cracks during long dry periods caused short-circuiting and 

enlarged EMCs. 

3.6 Laboratory batch and column testing 

This chapter presents the methodology of conducted batch and column tests. Obtained 

results and data analysis are presented in Chapter 5.3.2. It should be noted that most of 

the testing was performed by Kefeng Zhang.  
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3.6.1 Batch studies 

The batch technique is a very popular procedure for estimating the capacity of soils to 

remove chemicals from a water solution. The procedure includes mixing a water 

solution of known composition (and concentration) with a known quantity of soil 

(adsorbent) for a given period of time. The solution is then separated from the adsorbent 

(e.g. by centrifuging) and analysed for solute concentration. The difference between this 

and the initial concentration is assumed to have been sorbed on the soil. The method is 

highly influenced by contact time, method of mixing, soil to solution ration, solution 

pH, hydrolysis, biodegradation, photodegradation etc. (US EPA, 1992). 

Batch tests conducted as part of this research were done with fluorescein only (as a 

model micropollutant) and included two types of experiments: (1) adsorption and (2) 

biodegradation. The adsorption experiments included sterilization of the soil samples. 

The biodegradation experiments were done on non-sterilized soil, and showed 

influences of both adsorption and biodegradation. Methodology on how to extract data 

on biodegradation only is presented in Chapter 5.3.2. 

Detailed experiment methodology 

The laboratory tests were done on surface (top 5 cm) and deep soil samples collected 

from the two biofilters (Cell 1 and Cell 2 at Monash Car park site, see Chapter 3.2). 

Before the test, soil samples were air dried and then sieved (< 5.6 mm). 

Adsorption experiments were performed using 200 mL amber glass bottles containing 

10 g of sterilised soil (autoclaved at 120°C for 30 min, three times), mixed with 45 mL 

synthetic stormwater (according to the procedure described previously by Blecken et al. 

(2009)) spiked with 120 µg/L fluorescein. The bottles were shaken on a rotatory shaker 

at 100 rpm for 32 hours at 15 ± 0.5°C in the dark. Samples were taken at 0, 0.5, 3, 6, 9, 

24 and 32 hours and centrifuged at 4000 rpm for 10 min. The centrifuging speed and 

time were tested to be enough to settle the sediment from the mixture. The supernatants 

were then analysed for fluorescein concentrations. All the experiments were performed 

in triplicate. Positive and negative controls were prepared at the same time. 

Biodegradation experiments were conducted in 500 mL amber glass bottles containing 

10 g non-sterile soil and 45 mL synthetic stormwater spiked with 120 µg/L fluorescein. 
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The bottles were incubated at 15 ± 0.5°C in the dark without shaking for 21 days to 

mimic the biodegradation of fluorescein during dry periods. The temperature (15 ± 

0.5°C) was derived from the average soil temperature according to a year of online 

monitoring of the two field biofilters in 2011 (Monash Carpark Meteo Station: internal 

data). Samples were taken at 0, 0.25, 1, 2, 3, 7, 14 and 21 days. The bottles were shaken 

for 1 min at each sampling point. Collected samples were centrifuged and the 

supernatants were analysed for fluorescein as described above.  

3.6.2 Column studies 

Three replicate stainless steel columns were packed with filter media collected from the 

two biofilters used in the field challenge test. The soil profile of the columns (diameter 

99mm; total depth 706±2mm; submerged zone depth 200mm), the porosity (0.39), and 

bulk density (1.59 g/cm3) were very similar to the field biofilter a total depth 700mm, 

submerged zone depth 200mm, porosity 0.39 and bulk density 1.59 g/cm3. The filter 

media were air dried and then sterilized by gamma irradiation at 25 kGy before column 

packing. Once packed, the columns were flushed using 12 x 2L pulses of deionised 

water to remove finer particles that results from column packing and to allow the media 

to settle. Up-flow flushing (5L) was performed to remove air bubbles and to ensure the 

columns were fully saturated at the beginning of the experiment. The columns were then 

equilibrated with synthetic stormwater without herbicides until the outflow electrical 

conductivity (EC) and pH values were stable (EC ~400 µS/cm and pH ~7.1). 

Sorption column experiments were performed using a flow rate of ~21 ± 0.6 mL/min 

(hydraulic conductivity of 164 ± 5 mm/hr which was similar to the field condition 

which had an average of 155 mm/hr). Two series of experiments were conducted: 

• the first involved dosing 4 PVs of synthetic stormwater with atrazine, simazine 

and prometryn, and  

• the second series involved passing 10 PVs of the same synthetic stormwater 

with 1,900 ± 20 µg/L glyphosate.  

Previous work showed that the sorption rate of glyphosate to stormwater biofilter media 

is much higher than the triazines and is reflected in the Koc values (Zhang et al., 2014), 

e.g. after up to 3 PVs inflow, the outflow concentrations of triazines showed 
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breakthrough while that of glyphosate was just ~25% of inflow. A further limitation was 

the relatively small column used, which was not able to produce enough sample for co-

analysis of glyphosate and triazines in the same test. Three composite inflow samples 

were collected during the dosing periods while 8-10 discrete outflow samples were 

collected over the entire experiment. All the samples were analysed for the selected 

herbicides. 

3.7 Conclusions 

This chapter presented experimental methodology and some experimental results for 

tests conducted at Monash Car Park field site, and laboratory batch and column tests. 

Field data included conservative and reactive tracer tests, electro-resistive tomography, 

and micropollutant challenge tests.  

Tracer test and ERT data showed that Cell 1 of Monash Car Park biofiltration system 

has a lower hydraulic conductivity than Cell 2, and is prone to soil swelling. 

Additionally, ERT data demonstrated that the flow in both cells becomes predominantly 

one-dimensional in a relatively short period of time.  

Challenge test results showed that micropollutants with similar structures exhibited 

similar fate in biofiltration cells (e.g. triazines had comparable behaviour). Pollutant 

mass balance during all conducted tests clearly showed that pollutants were being 

retained in the biofiltration cells by either sorption, degradation or other removal 

processes. Some pollutants (e.g. atrazine, simazine) had outflow concentrations that 

were higher than the inflow ones, indicating that the pollutant mass is being retarded i.e. 

the pollutant mass is being sorbed by the biofilter media and/or plants. This evidence 

indicates that the future model needs to have at least sorption and degradation to be able 

to reproduce the measured data.  
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4 MODEL DEVELOPMENT  

4.1 Introduction  

For biofilters to be used as an effective stormwater management measure, it is important 

to model their performance, since only through continuous simulations of their 

hydraulic and treatment efficiencies the long-term impact on the reduction of 

stormwater pollution levels and loads can be predicted.  

Bearing in mind all the strengths and weaknesses of models reviewed under Chapter 

2.4, the aim of this study was set to develop a general treatment model of stormwater 

biofilters that is applicable to a wide range of micropollutants and allows for long-term 

simulations when combined with integrated stormwater models. The latter requires the 

model concept to make a compromise between the little available data and the needed 

complexity to accurately describe the nature of the system, i.e. practical useability 

versus scientific rigour. The model needs to be able to simulate the key treatment 

processes within stormwater biofilters, i.e. volatilisation, sorption, and bio-chemical 

degradation. It can therefore be easily applied to any micropollutant if its key removal 

mechanisms are known (e.g. for removal of pesticides sorption and biodegradation are 

predominate processes, while volatilisation can be neglected). This chapter presents the 

development of the MPiRe model (MicroPollutants In RaingardEns – quality model). 

4.2 Model structure selection 

In order to make the model applicable to a wide range of micropollutants and allow for 

long-term simulations when combined with integrated stormwater models, the 

following key model structure elements needed to be defined as per McCarthy (2008): 

1) Scale of the problem, that includes both the timestep and the space 

conceptualization; 

2) Governing equations should be easily transferrable to other biofiltration systems, 

and should capture the essence of transport and fate so to be adaptable to other 

pollutants; 
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3) Preferred model outputs should be micro-pollutant concentrations, to estimate 

peaks, and micro-pollutant loads, to estimate long term performance; 

4) Model data requirements should be easily fulfilled, to secure usability. 

When choosing the appropriate time-step, it is necessary to consider the real time 

response of the stormwater systems to rainfall events, and the modelling purpose: event 

modelling or long-term system effects. The choice for the MPiRe model was to be able 

to deal with events, but also to be scalable. As rainfall events usually occurr in a sub-

daily time frame, with most urban stormwater quality models being set up to run in 

minutes to perform well (e.g. MUSIC Model – Wong et al., 2006, SWMM – EPA, 

2007, FITOVERT – Giraldi et al., 2010, STUMP – Vezzaro et al, 2012), it was natural 

to choose minute-resolution for the MPiRe model as well. The model was set in a way 

where it is possible to change the timestep, and it can give stable results with a far larger 

time-step (e.g. 1 hour, 2 hours, etc.), but for the results to make sense, especially for the 

quality component, it is advisable to use minutes. For most of the testing procedures, the 

actual timestep is set as to as low as 30-seconds to follow the data collection system’s 

resolution (see Chapter 3.2.1).  

The space conceptualization is selected to be one-dimensional in the vertical direction. 

The dimensionality of flow in the biofilter has been tested using tracers in combination 

with ERT (see Chapter 3.4). 

The governing equations were selected to be mechanistic, rather than regression based, 

as this should assure that the model is transferrable between different biofiltration 

systems, and among different pollutants. The water quality set of equations is based on 

pollutant water and soil concentrations, as intensive quantities. However, as the water 

quality model is coupled with a water flow model, it is possible to calculate the model 

outputs as pollutant loads. Most of the water quality legislation (Clean Water Act, EU 

WFD, etc.) is written so to prescribe maximum allowable concentrations. However, 

from the managerial point of view, it is important to estimate total pollutant loads. 

The model is written in the Python programming language, and is set to be compatible 

with CITY DRAIN © (Achleitner et al, 2007). CITY DRAIN © is an open source 

toolbox for integrated modelling of urban drainage systems realized in 
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Matlab/Simulink, and is capable of being extended with different subsystems, such as 

this one – a biofiltration system. The modelling environment is set to calculate all 

blocks simultaneously. Fluxes (water, pollutant) between different blocks (e.g. from a 

catchment to biofilter) are sent at the end of each time interval, so all blocks need to be 

set to have calculations explicit in time. 

4.3 Fluid flow 

The water flow module was not developed, but rather adapted, with some small 

changes, from Lintern et al. (2012) and eWater (2009). This was done because that type 

of a model has performed quite well among different types of biofilters, and especially 

on the Monash Car Park site.  

 

Figure 4-1 The main biofilter zones and flow scheme 

When stormwater enters a biofilter it can form a temporary pond on top of the filter 

media (Figure 4-1), which depends on the dynamic of its inflow and the ability of the 

system to filtrate. While the water infiltrates through the biofilter media (from which it 

is collected by a drainage pipe) any excessive water will overflow over a security weir. 

The system can be lined or unlined (therefore promoting infiltration), and can contain a 

submerged zone, usually formed by a riser pipe that is connected to the drainage pipe. 

These processes are modelled using so called the ‘three tank’ approach (also known as a 
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bucket approach), where the tanks represent (1) the ponding zone, (2) the filter media, 

and (3) the submerged zone.  

The key variables that are modelled are:  

• water depth in the ponding zone, hp,  

• saturation of the filter media, S, and  

• depth in the submerged zone, hsz (if this zone exists).  

At the same time the following flow rates are calculated using the equations listed in 

Table 4-2 with their parameters listed in  

Table 4-3: infiltration flows (Equations 4.1, 4.2, 4.4, 4.8, 4.11), overflowing flows 

(Eqs. 4.3, 4.12), capillary rise flow (Eq. 4.6) and evapo-transpiration (Eq. 4.9).  

Infiltration flows are governed by Darcy’s law if the media is saturated, or by modified 

Darcy’s law with the relative hydraulic conductivity presented with Sb (Eq. 4.8) 

according to Dingman (2002). Flow over the weir is calculated by a weir discharge 

equation. The capillary rise and the evapotranspiration are both represented with 

empirical functions derived by Daly et al. (2009). Equations 4.5, 4.10, and 4.13 present 

water mass balance equations in each of the buckets, which are solved for the key 

variables.  

Flow equations 4.2, 4.4, 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12 are solved explicitly in time, 

therefore a special care needs to be given to the physical conditions – mass 

conservation, so each flow is a minimum of (i) what is physically possible, (ii) what is 

available at the upstream tank, and (iii) what is available at the downstream tank for a 

particular moment in time. Flow over the weir is the only flow that is solved implicitly; 

i.e. the flow at a time step t is dependent upon depth in the pond in the same time t, so 

that the mass balance equation in the pond (Eq. 4.5) has to be solved iteratively. This is 

done with using the false position method.  

Stability of the model under different time steps was extensively tested, showing 

excellent results (not included in the thesis). However, it is recommended to use the 

model with sub-hourly time steps, due to the dynamic nature of the key modelled 
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processes. It can be noted that the model does not show the position of the wet front in 

the filter media, but rather assumes average saturation over the entire porous media. 

Table 4-1 Biofilter geometry and state variables 

Pond  
Ap Horizontal area of the pond [L2] 
hp Pond water depth [L]  
hmax Max. depth of water in pond [L] 
hover Weir height [L] 
Filter 
Af Horizontal area of the filter [L2] 
nf Filter material porosity [-] 
Df Filter depth [L] 
S Filter water saturation [-]  
Submerged zone 
Asz  Horizontal area of subm. zone [L2] 
nsz Submerged zone porosity [-] 
Dsz Depth of the submerged zone [L] 
hsz Water depth in the subm. zone [L]  

 

Table 4-2 Water flow model equations 

Water Flow Model Equation   Eq. No. 

General form of equations 
( )min physically possible, available upstream, available downstreamFlow =  

  

Max. infiltration to surrounding soil through filter and submerged 

zone
 

 (4.1) 

( )
max
inf,

0 , if biofilter is lined
sz

s f s sz

Q
K A C P

=  + ⋅
 

Ponding zone tank   

Infiltration from pond to filter media (4.2) 

( ) max
inf,

1 1min , , 1 1
t t

p f sz
pf f f p p in f f f sz sz f sz

f szt

h D hQ K A h A Q dt S n D A n D A Q
D t t D

+∆  +    
= + − + − +       ∆ ∆      

∫
 

Weir overflow (rectangular weir)  (4.3) 

( ) ( )3 1min 2 , , ,  
t t t t

over Q p over p over p in pf p over
t t

Q C B g h h h h A Q dt Q dt h h
t

+∆ +∆  
= − − + − − >   ∆   

∫ ∫  
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Water Flow Model Equation   Eq. No. 

Infiltration from pond to surrounding soil

 

 (4.4) 

( )inf,
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t t t t t t
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t t t
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t
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∫ ∫ ∫  

Water mass balance in the ponding zone
 

 (4.5) 

( )
inf,
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Q Q Q Q
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Filter zone tank   

Flow due to capillary rise

 

 (4.6) 
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Estimated saturation at time level n+1
 

 (4.7) 
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Infiltration from filter to submerged zone

 

 (4.8) 
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Flow due to evapotranspiration
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Water mass balance in the filter zone
 

 (4.10) 
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Submerged zone tank   

Infiltration from submerged zone to surrounding soil
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Water Flow Model Equation   Eq. No. 

Flow through drainage pipe
 

 (4.12) 

( ) inf,
1min , , , if 

t t t t t t

pipe sz pipe sz sz fs hc sz sz pipe
t t t

Q h h n A Q dt Q dt Q dt h h
t
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∫ ∫ ∫  

Water mass balance in the submerged zone
 

 (4.13) 

( )
inf,

sz sz sz
fs hc sz pipe

d n h A
Q Q Q Q

dt
= − − −  

 

Table 4-3 Water flow model parameters 

Water flow model parameters 
Ks Hydraulic conductivity of the surrounding material [L T-1] 
Cs Side infiltration coefficient [-] 
P Unlined perimeter [L] 
Kf Hydraulic conductivity of the filter material [L T-1] 
B Length of overflow weir [L] 
CQ Weir overflow coefficient [-] 
Ss Filter material saturation at plant “stress” water content [-] = 0.22(1) (no 

saturated zone), 0.37(1)  (saturated zone) 
Sfc Filter material saturation at field capacity [-] = 0.37(1)  (no saturated 

zone), 0.61(1)  (submerged zone) 
Еmax Potential evapotranspiration [L T-1] 
Sh Filter material saturation at hygroscopic water content [-] = 0.05(1) 
b Relative hydraulic conductivity coefficient dependent on soil type [-

]:sand – 11, loamy sand – 13, sandy loam – 13, loamy clay – 14, clay – 
14  

Sw Filter material saturation at wilting point [-] = 0.11(1) 
Ew Evapotranspiration at wilting point [L T-1] = 0.001(1)  md-1 

(1)According to Daly et al. (2009) 

4.4 Pollutant transport and fate 

The pollutant transport module simulates advection and dispersion of micro-pollutants, 

as well as the three key treatment processes that occur in biofilters: volatilization, 

sorption and degradation. Exchange of pollutant mass between stormwater and 

atmosphere in the process of volatilization is assumed to happen only through the 



 
Chapter 4: Model Development  

| Page 99 
 

surface area of the ponded water. Sorption and degradation are assumed to occur both in 

the filter and submerged zones, but not in the pond, because the filter media has far 

larger sorption capacity than plants submerged within the pond, and is characterized by 

longer stormwater retention time than the ponding zone (at least two times).  

Table 4-4 Pollutant transport model equations 

Pollutant Transport Model Equation   Eq. No. 

Ponding zone tank   

Pollutant mass balance in the ponding zone
 

 (4.14) 

( ) ( ), inf,

1 1
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Volatilization model  (4.15) 
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,
/
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dt H k k

′
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Filter zone tank   

Continuity condition at pond – filter interface
 

 (4.16) 

, ,p out f inc c=  

Pollutant mass balance in the filter zone
 

 (4.17) 
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Sorbed concentration at instantaneous sites at equilibrium  (4.18) 
 ; e

e d f d oc ocs f K c K K f= ⋅ ⋅ =  

Sorbed concentration at kinetic sites at equilibrium  (4.19) 
( )1k

e e d fs f K c= − ⋅ ⋅  

Kinetic sorption model
 

 (4.20) 
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Biodegradation constant with Arrhenius eq.
 

 (4.21) 
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Pollutant Transport Model Equation   Eq. No. 

Average unit flow through the filter media
 

 (4.22) 

, 

where 1,  and 1 at upper boundary,  = 1 at lower boundary

pf fsnet

f f

Q QQ
q

A A
α β

α β α β

+
= =

+ = =

 

Dispersion coefficient  (4.23) 

LD qα= ⋅  

Submerged zone tank   

Continuity condition at filter – submerged zone interface
 

 (4.24) 

, ,f out sz inc c=  

Pollutant mass balance in the submerged zone
 

 (4.25) 

( ) ( ) ( ) ( ), inf,

1 1
,

, 

assuming fully mixed  

e k
sz f sz fsz sz sz f

f fs sz out hc pipe sz bio sz sz sz f

n n
sz sz out

d s h A d s h Ad c n h A
c Q c Q Q Q k c n h A

dt dt dt
c c

ρ ρ

+ +

+ + = − + + −

⇒ =

  

 

Similar to the water flow module, the transport module simulates transport and removal 

to occur within a series of connected tanks, where each tank represents one of the 

biofilter zones (Figure 4-1). All adopted transport equations are listed in Table 4-4 for 

each of the tanks, with their main parameters presented in Table 4-5. The pond is 

assumed to be fully mixed with volatilisation being the only sink (Eq. 4.14). 

Volatilization is modelled using Lee et al. (1998) approach (Eq. 4.15), but only for 

pollutants that have a high Henry’s constant. Although there is no universal threshold 

value of this constant that can indicate whether volatility is important or not for a 

pollutant, the model assumes that this threshold is 100 Pa m3 mol-1 as per Byrns (2001). 

This was regarded as a sufficiently robust approach, because the key volatile 

micropollutants occur in very low concentrations in stormwater, and therefore the mass 

transfer between liquid and gas is controlled by the liquid phase.  

The processes within the filter media and the submerged zone tanks are modelled using 

a one-dimensional vertical advection-dispersion model for saturated/unsaturated soil. 

Presence of the plant root system is accounted for through an equivalent porosity, which 

is a bulk parameter representing the biofilter media as specified by Hatt et al. (2009).  
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Table 4-5 Pollutant transport model parameters 

Pollutant transport model parameters 
c Concentration in water phase [ML-3] 
se Sorbed concentration that would be reached at equilibrium with the 

liquid phase concentration at instantaneous sorption sites[M M-1 soil] 
sk Sorbed concentration of the kinetic sorption sites [M M-1 soil] 
se

k Sorbed concentration at equilibrium with the liquid phase concentration 
at kinetic sorption sites [M M-1 soil] 

ρ Bulk soil density [ML-3] 
q Unit/specific flow [L T-1]  
αL Dispersivity [L] 
D Dispersion coefficient [L2 T-1] 
kbio Biodegradation rate constant [T-1] 
T1/2 Biodegradation half-life [T] 
fe Fraction of exchange sites assumed to be in equilibrium instantaneously  
αK Kinetic sorption rate [T-1] 
Kd Soil water partitioning coefficient [L-3 M soil] 
Koc Soil water partitioning coefficient normalized to organic carbon [L-3 M 

soil], 
foc Soil organic carbon content [-] 
Hc` Non dimensional Henry’s constant [-] 
(kL/kG)sur,p Mass transfer between liquid and air through pond surface area 

(volatilization) 
KLasur,p Overall surface-desorption gass-transfer coefficient for pond 
Tvol “Half-life” for the process of volatilization defined by Kvol (eq. 4.15) [T] 

 

Sorption of organic pollutants is influenced by pollutant’s intrinsic properties 

(hydrophobicity, polarity, aromaticity etc.) and soil physico-chemical characteristics 

(e.g. pH, cation exchange capacity, ionic strength, surface area, soil organic matter and 

water temperature, as per Delle Site, 2001). In a review of pesticides’ soil sorption 

parameters, Wauchope et al. (2002) identified three scales of sorption processes (1) 

rapid, reversible sorption to “accessible” sites of soil surfaces driven by diffusion, that 

can be reasonably be assumed to be instantaneous (2) slower exchange of pollutant 

between water and soil phases, with equilibrium being achieved in the order of hours to 

a couple of days, and (3) very slow exchange in the order of days to years, that is 

irreversible and not easily distinguishable from degradation. To simulate these 
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phenomena, a chemical non-equilibrium two-site model of sorption is used (Van 

Genuchten and Wagenet, 1989; Šimůnek and Van Genuchten, 2008), as per Eqs. 4.19-

4.20. The model assumes instantaneous sorption to one fraction of sites, fe, following 

linear sorption isotherm (Eq. 4.18). Soil organic matter content is used to estimate soil-

water partitioning coefficient, Kd. Kinetic sorption is assumed to occur on the other 

fraction of sites, (1-fe), also following the linear sorption isotherm with identical soil-

water partitioning coefficient, and allowing simulation of the desorption process.  

The process of biodegradation is dependent on two main factors: the amount of 

pollutant, and the amount of degrading biomass present. Although Monod-based 

biodegradation models are expected to be more accurate (e.g. Plosz et al., 2010), a 

simple first order decay model was selected (Eq. 4.21) due to difficulties in estimation 

of biomass parameters (it is also hypothesised that the influence of micropollutant mass 

that can accumulate in stormwater systems is negligible for biomass production). 

Degradation is assumed to affect only the dissolved phase of the micropollutant in the 

filter media and the submerged zone, as it is the practice in the vast majority of 

published micropollutant models (Pommies et al. 2013).  

The transport equations listed in Table 4-4 are solved sequentially, with all time 

dependent equations (Eqs. 4.14, 4.17, 4.20, 4.25) being solved explicitly. Advection 

term in Eq. 4.17 is calculated by upwind or central differences depending on the value 

of Peclet number, while dispersion term is approximated by central differences 

(Hyakorn and Pinder, 1983). 
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5 MODEL TESTING 

5.1 Introduction 

This chapter presents the testing of the MPiRe model developed in Chapter 4. The two 

modules, the water flow module and the pollutant transport module were tested and 

calibrated separately and verified against field data. Since the water flow module has 

been extensively tested, the calibrated values of its key parameters were compared to 

previously determined values of these parameters (previous studies, e.g. Lintern et al., 

2012). 

The transport module was, however, tested under different scenarios, as the aim was to 

delevelop a model that would be usable under variable data accessibility. The transport 

module was tested under the following scenarios: 

• Field data exists: calibrated against field data and predictions tested against 

separate set of field data (simple 50:50 split); 

• Laboratory data exists: calibrated on laboratory data (batch and column studies) 

and predictions tested against field data.  

The aim of this chapter is to gain insight on how the model performed with different 

pollutants in different availabilities of calibration data. 

5.2 Model testing settings and procedures 

5.2.1 Input data and boundary conditions 

The model testing was done by running the entire model continuously for the each test 

series on a 30-second time-step. The input data included, beside inflow rates, 

meteorological (daily values of potential evapotranspiration and rainfall) and geometry 

data, as shown in Table 5-1. Rainfall data for naturally occurring events was taken from 

a local rain gauge (as explained in Chapter 3.5.1). Daily evapotranspiration data was 

obtained from the Bureau of Meteorology (BOM, 2011, 2012 – www.bom.gov.au) for 

station No. 86071 in Melbourne (Melbourne Regional Office). This station is 16 km 

northwest of the measuring site (Figure 5-1). The evapotranspiration rates were 
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calculated using the FAO Penman-Monteith equation (Allen et al., 1998). The flow 

module was additionally run for 6 weeks prior the challenging series to “warm up the 

model”, i.e. to ensure that the antecedent soil and submerged zone conditions for the test 

period are simulated well (Table 5-1). Six weeks was chosen as an arbitrary period, 

where the main objective was to have at least one large-volume rain event, that will 

saturate the biofilter and “reset” its moisture content from that point onwards (make it 

unrelated to antecedent period).  

The boundary conditions included defining flows and pollutant fluxes at all 

“boundaries” i.e. drainage to the surrounding soil, exchange to the atmosphere 

(evaporation) and possible outflows (flow over the weir, flow through the pipe). Most of 

these conditions were defined by geometry e.g. the shape of the weir and its elevation 

defined the overflow (see Eq. 4.3). Since the tested biofilters were lined, there was no 

water or pollutant mass flow toward the surrounding soil. Exchange with the 

atmosphere was via evaporation for water, where the pollutant itself concentrated in the 

remaining water (does not evaporate itself), or in case where the pollutant was volatile, 

it may have passed to the atmosphere via volatilization (again not carried by the water 

itself). 

 

Figure 5-1 The meteorological station no. 086071 distance from the biofilter location 
(adapted from www.bom.gov.au) 

Biofilter location 
Site name: Melbourne Regional Office 
Site number: 086071 
Latitude: 37.81° S 
Longitude: 144.97 ° E 
Elevation: 31 m 
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The initial conditions for the transport module assumed that the biofilter cells were 

“free” of micropollutant presence: micropollutant concentrations were zero in all zones 

of the biofilter, in both the water and soil phase as per Table 5-1. 

Table 5-1 Biofilter characteristics and initial conditions for the two test series 

Biofilter characteristics Cell 1 Cell 2 

Length [m] 10 10 

Width [m] 1.5 1.5 

Filter depth [m] 0.7 0.5 

Ponding depth [m] 0.41 0.41 

Saturated zone depth[m] 0 0.2 

Porosity [-] 0.35 0.49 

1)Dispersivity [m] 0.29 0.14 

Initial conditions  16/08/2011 19/11/2012 16/08/2011 19/11/2012 

Pond hp [m] 0 0 0 0 

Filter S [-] 0.5 0.6 0.8 0.5 

Saturated zone hsz/Dsz [-] - - 1 1 

Conc. of pollutant in water [mg/L] 0 0 0 0 

Conc. of pollutant on soil [mg/kg] 0 0 0 0 

1)Determined from separate conservative tracer tests – see Chapter 5.2.4 

5.2.2 Calibration procedure 

PEST (Doherty, 2013) was selected as a tool for automatic model calibration: it 

minimises the objective function (sum of equally weighted residuals i.e. squared 

deviations between model and measurements a.k.a observations) using the Gauss-

Marquardt-Levenberg algorithm. The objective function favours the peaks in values and 

is of the following form: 

( )2

1

m

i i
i

w r
=

Φ =∑ , ( )'model output value' - 'measurement' ir =     (5.1) 

Where ri are residuals, wi weight, and m is the number of measurement. The weights are 

inversely proportional to the standard deviation of the observation they are associated 
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with (Doherty, 2013). In case all measurement belong to the same population (i.e. 

measurements include only flow rates, or only pollutant concentrations), then the weight 

of each observation is the same, and can be set to 1. The weight can also be manually 

changed to be higher for measurements that are more favoured e.g. when instead of the 

peaks, which is inherent to the objective function, the aim is to model well the low 

values. The calibration algorithm minimises the Φ function (Eq. 5.1).  

Initially, the model was manually calibrated, to get a first insight into the model 

behaviour. This included choosing specific values for input parameters, running the 

model and checking agreement with measured data by visual inspection or some 

likelihood measure like the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970). 

Manual calibration results were then used for setting the parameter range in the PEST 

control file. The PEST control file communicates with both input and output template 

files to write input parameter value-sets and to read the output model data (after model 

execution) and calculate selected objective function until finding the best parameter set 

(Figure 5-2). 

Calibration was performed separately for the flow and transport module. The objective 

function for the flow module contains non-transformed measurements of outflow rates 

at 30-sec interval. The only parameter that was calibrated for the water flow module 

was hydraulic conductivity, K, as the porosity (the only other flow parameter, Table 

5-1) was set to its measured value determined in 2011 (Lintern et al, 2012). It was 

assumed that the porosity did not change over time, since the biofilters had more than 5 

years of establishing (Le Coustumer et al., 2012). 

The objective function for the pollutant transport module was made with non-

transformed concentration measurements at the outflow pipe (cca. 10 measurements per 

each event). The following pollutant transport model parameters were calibrated for 

each of the micropollutants:  

• the three sorption coefficients, Koc, fe, and αK,  

• the degradation coefficient (half-life, T1/2), and 

• volatilization coefficient (half-life Tvol) for pollutants with high value of the 

Henry-constant. 



 
Chapter 5: Model Testing 

| Page 108 
 

 

Figure 5-2 Scheme of PEST “wrapping-up” the standalone model 

The calibration was done using the measured concentrations of the five pollutants (not 

their flux), as this was suggested by previous investigations of McCarthy (2008). When 

calibration is done on the pollutant flux, the objective function is minimizing the 

residuals between composite and not directly measured quantities which include both 

variability of the flow rate and the pollutant concentration. Advection/dispersion terms 

in Eq. 4.17 were applied and estimated (dispersivity) using conservative tracer test data 

(Potassium chloride, KCl) from an experiment performed on the two biofilter cells in a 

separate event (see Chapter 3.3). 

5.2.3 Model performance assessment 

The model results are presented graphically as: 

• time series flow rates, pollutant concentrations and pollutant fluxes, 

• scatter plots of measured vs. modelled event mean concentrations (EMCs) for 

pollutants, and 

• scatter plots of measured vs. modelled event loads for pollutants.  

The event mean concentration and event load were calculated in the same manner for 

both measured and modelled values as per Eqs. 5.2 and 5.3, where ΔVi is the outflow 

volume corresponding to the measured/modelled concentration ci, and m is the number 

of measurements.  

Input parameters Model.exe 

PEST 

Control file Output template Input template 

Measured data* 

Objective 
function 

Additional input data 
Optimum 
reached 

Output data  

Model standalone 

PEST cycle 

*Measured data is supplied to Control file 
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Additionally, the model assessment was performed numerically calculating the value of 

the Nash-Sutcliffe coefficient (E, Eq. 5.4) for both time-series and scatter plots, and the 

adjusted coefficient of determination (R2, Eq. 5.5) for scatter plots only. The Nash-

Sutcliffe coefficient indicates how well the model outputs represent the measurements 

when compared to the mean value of measurements (E = 1 is a perfect match; E = 0 

model predictions are as accurate as the mean value of measurements; E < 0 the mean 

value of measurements is a better predictior than the model; E > 0.6 is considered 

acceptable in hydrology). The adjusted coefficient of determination takes into account 

the low number of observations (i.e. there is a maximum of 12 events for one pollutant 

– 6 per cell), and uses the variance, instead of the square residuals only (R2 = 1 is a 

perfect match). The variances (Varres, Vartot) were calculated in an unbiased manner as 

per Eqs. 5.6 where m is the number of measurements, and p is the degree of freedom: in 

this case p = 1 (1 degree of freedom in terms of regression is the vector of measured 

values) (Montgomery and Runger, 2010). 
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5.2.4 Conservative tracer test analysis 

The longitudinal dispersivity (αL) was estimated from the in-situ study with a 

conservative tracer, potassium chloride, using Eq. 4.17 without the adsorption and 
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biodegradation terms. The Nash-Sutcliffe coefficient, E, was used as a measure of 

calibration performance (see Chapter 5.2.2).  

Calibration was very successful for Cell 2, with E value of 0.96, and acceptable for Cell 

1, with E value of 0.86. The dispersivity, αL, was found to be 0.29 m for Cell 1, and 

0.14 m for Cell 2. 

 

Figure 5-3 Pollutographs of KCL for Cells 1 and 2 - estimation of dispersivity 

5.2.5 Model calibration and verification with field data 

The model was calibrated against field tests explained in Chapter 3.5.4. The data from 

the two series was split, so that one half is used for calibration and the second half for 

validation. The 2nd test series (challenging tests 4-6) was used for calibration, because it 

had more reliable flow and soil moisture measurements. First step involved calibration 

of the key model parameter (hydraulic conductivity) for the flow module, and then in 

the second step the key model parameters for the transport module were calibrated using 

the modelled flows and moisture contents. This was done for all the detected 

micropollutants (atrazine, prometryn, simazine, glyphosate and chloroform). The 

calibrated model was then verified using the data from the 1st test series (challenge tests 

1-3).  

Additionally, the calibrated hydraulic conductivities of both cells were compared to 

previously measured and estimated values by Lintern et al, (2012), while the calibrated 

transport module parameters were compared to the literature values (fate process 

parameters). To assess the robustness of the model, the Nash-Sutcliffe coefficient (Nash 

and Sutcliffe, 1970) was calculated between the modelled and measured values (of both 
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calibration and verification data series) for the following variables: the filter moisture 

content, the outflow rates and the concentrations of the 5 micropollutants. 

5.2.6 Model parameter estimation from batch studies data 

The sorption and biodegradation parameters (Kd, fe, αk and Kbio (or T1/2)) were 

determined through laboratory batch studies for fluorescein, here used as a 

micropollutant-surrogate (a.k.a. reference micropollutant). Fluorescein as it is low in 

cost and easy to use (easy detection method). Although fluorescein is commonly used as 

a tracer, it has been criticized due to its relative high potential for sorption onto soils and 

biodegradation (Smart and Laidlaw, 1977; Sabatini, 2000). These characteristics make 

fluorescein a very good surrogate or reference micro-pollutant that can be used to study 

sorption and biodegradation process in biofilters. Although fluorescein is prone to 

photolysis, it was assumed that it did not occur in the vegetated biofilters as exposure to 

sunlight is negligible because of the dense plants above. Fluorescein was hydrolytically 

stable in stormwater: concentration change of fluorescein (200 µg/L and 340 µg/L) in 

stormwater was within ± 2.0% under different temperatures (4, 15 and 30°C) for over 5 

days. 

 

Figure 5-4 Example plot of laboratory sorption data with characteristic concentrations 
used for determination of sorption parameters in the transport module 

Soil samples for these tests were collected from surface (top 5 cm) and deep soil 

samples from the two biofilters (Monash Car park site, see Chapter 3.2). Since the tests 

were done to sterile samples (no microbes) and non-sterile samples, it was possible to 

determine both sorption and degradation parameters. Volatilization was not studied in 

these tests (fluorescein is not prone to it). 
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The sorption parameters from Eq. 4.17 (i.e. Kd, fe and αk) were estimated from data plots 

from the sorption laboratory (batch) tests (Figure 5-4). The plot shows the 

approximation of the laboratory data with an exponential function of the following 

form: 

( ) ( )0
slowK t

eq eqc t c c c e− ⋅′− = − ⋅         (5.7) 

Where c(t) is the pollutant concentration in water phase at time t (mg/L), ceq is 

concentration reached at equilibrium (mg/L), 0c ′  is pollutant concentration after fast 

sorption has happened (mg/L), and Kslow is kinetic sorption rate (s-1). This format is 

taken as a generalization of various sorption kinetic models reviewed by Qiu et al., 

(2009).  

0
0

0 0

,   ,   where  is initial pollutant concentration in water (mg/L)eq
fast eq

ccK K c
c c
′

= =  (5.8) 

Introducing Kfast and Keq as fast sorption coefficient and equilibrium sorption 

coefficient, respectively, as per Eq. (5.8), and rearranging Eq. 5.7, the following 

equations for pollutant concentrations in water phase (Eq. 5.9) and soil phase (Eq. 5.10) 

are obtained: 

( ) ( )( )0
slowK t

eq fast eqc t c K K K e− ⋅= ⋅ + − ⋅        (5.9) 

( ) ( )( ) ( )( )0 0 1 slowK t
eq fast eq

water waters t c c t c K K K e
soil soil

− ⋅= ⋅ − = ⋅ ⋅ − − − ⋅    (5.10) 

Where water
soil

 is ratio of water solution (L) to soil sample (kg). Similarly, 0s ′ or 

pollutant concentration in soil that is instantaneously sorbed can be expressed as: 

( ) ( )0 0 0 0 1 fast
water waters c c c K
soil soil

′ ′= − = ⋅ ⋅ −       (5.11) 

Eq. 5.11 can be compared with Eq. 4.18, here written again for convenience, to make a 

relation between (1) experimental and (2) two-site chemical non-equilibrium model 

parameters as per Eq. 5.12. 
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0 0
e

e ds s f K c′ = = ⋅ ⋅          (4.18) 

( )
two-site chemical 

experimental parameters non-equilibrium 
model parameters

1 fast e d
water K f K
soil

− = ⋅




        (5.12) 

Similar can be done with kinetic-sorption equation from the two-site chemical non-

equilibrium model: Eq. 5.13 is written with Eqs. 4.19 and 4.20. The derivative in the 

new equation is changed to the total derivative since the batch is homogeneous across 

volume (assumption), so the pollutant concentrations in water (or soil) phase change 

only with time. Eq. 5.13 is solved (integrated) with known initial condition: no pollutant 

in the soil phase at t = 0 (Eq. 5.14). The final form of the sorbed concentration at the 

kinetic sorption sites, sk(t), for the two-site chemical non-equilibrium model is given 

with Eq. 5.15. Its counterpart written in terms of batch experimental parameters is 

written as Eq. 5.16. Comparing the two, Eq. 5.15 and Eq. 5.16, using Eq. 5.12, the 

relationship is established between model and experimental parameters as per Eq. 5.17. 

( )( )01
k

k
k e d

ds f K c s
dt

α= − ⋅ ⋅ −         (5.13) 

( ) ( )
0

       solving with 0 0
1

k
k

kk
e d

ds dt s t
f K c s

α= = =
− ⋅ ⋅ −∫ ∫     (5.14) 

( ) ( ) ( )01 1 k tk
e ds t f K c e α− ⋅= − ⋅ ⋅ ⋅ −        (5.15) 

( ) ( ) ( )( )exp 0 0 1 1slowK tk
eq fast eq fast

waters s t s c K K K e K
soil

− ⋅′= − = ⋅ ⋅ − − − ⋅ − −    (5.16) 

( ) 1( )= 1 ;  ; 
( ) 1

fast
d eq e k slow

eq

Kwater solution LK K f K
soil kg K

α
−

− = =
−

    (5.17) 

Fast sorption and equilibrium concentration ( 0c ′  and ceq) were estimated as 

concentration values at 0.5 h and 32 h respectively (the first measured and the last from 

the dataset). When these concentrations were determined, Kfast and Keq were calculated 

using Eq. 5.8. Kslow was estimated using the least-squares method while fitting Eq. 5.9 
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with experimental data. Model parameters (Kd, fe, αk) were then determined using 

relations in Eq. 5.17. 

To estimate biodegradation rates (Kbio), fluorescein concentrations from non-sterile 

samples were adjusted to the concentrations of sterile control ones to account for the 

effects of sorption. Once data was prepared, the kinetic rate was estimated using the 

least-squares method while fitting the first order decay equation to adjusted 

experimental data. 

The model was first applied to the field challenge tests with parameters estimated from 

the laboratory batch experiments (Kd, fe, αk and Kbio) and dispersivity (αL) estimated 

from separate conservative tracer tests performed on site (see Chapter 3.3). The model 

was set as to differentiate between surface (first 10 cm) and deep filter media (>10cm), 

as batch experiments were separately done on the two types of soils. Dispersivity was, 

however, taken to be constant throughout the filter media. The Nash-Sutcliffe 

coefficient was used to assess the model performance: E was calculated for modelled 

and measured outflow concentrations.  

Additionally, the model was calibrated against field data from the fluorescein tracer test 

(see Chapter 3.3) to estimate model parameters (Kd, fe, αk and Kbio) that give the best fit 

with the measured data. To avoid over-parameterization, this model setup did not 

differentiate between surface and deep soils. The calibration was done using PEST 

software, as explained in Chapter 5.2.2. During the calibration, all the other parameters 

(i.e. bulk density, soil organic matter and porosity) were fixed at measured values as per 

Table 5-1. This “field calibration” was done to compare the best fitted parameters with 

estimated from the batch studies i.e. to analyse the transferability of batch experiment 

results to field conditions. 

5.2.7 Model parameter estimation from column studies 

The sorption parameters (Kd, fe, and αk) were determined through laboratory column 

studies for herbicides: glyphosate, atrazine, simazine and prometryn. It was not possible 

to study the process of degradation due to short duration of the experiments. However, 

discrete samples were collected at the outflow, so the developed pollutant transport 
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model was used to estimate the sorption parameters. This was done in a two-step 

process:  

• Estimation of the conservative transport parameters using tracer test’s results  

• Estimation of the reactive transport parameters using herbicide tests’ results.  

Both steps were done using the developed model and the calibration procedure (Chapter 

5.2.2). 

5.3 Model testing results and discussion 

5.3.1 Model calibration and verification with field data 

5.3.1.1 Flows 

The model was mostly capable of predicting flow rates for both cells and both test series 

(Figure 5-5, Figure 5-6). However, events following long dry periods (e.g. TESTS 1-6, 

2-6) showed some disagreement i.e. the model was “late” and failed to predict high 

initial peak in the flow rate, which can probably be attributed to the cracking of the soil 

in both cells (which was not represented by the model itself).  

 
Figure 5-5 Inflow, measured and modelled flow at the outflows of Cell 1 for the two test 
series: calibration data from 2012, E = 0.876 (bottom), verification data from 2011, 
E = 0.611 (top). Nomenclature TEST X-Y: X – cell number, Y – test number 
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Figure 5-6 Inflow, measured and modelled flow at the outflows of Cell 2 for the two test 
series: calibration data from 2012, E = 0.881 (bottom), verification data from 2011, 
E = 0.904 (top) 

The slight difference between simulated and measured flows was also evident with 

events that start with low inflows (e.g. TESTS 1-2, 1-3, 2-2, 2-3). This was very likely a 

consequence of biofilters not behaving as one-dimensional systems (variably saturated 

along cross-section), which was the main assumption of the flow module. Cell 1 had an 

additional peculiar event, which started with high inflow (TEST 1-1), where model 

failed to predict the extremely high initial flow peak (again, possible short-circuiting 

due to high organic content soils’ tendency to crack when dry; similar was not seen with 

soil in TEST 2-1). 

5.3.1.2 Micropollutants 

Figure 5-7 to Figure 5-16 show the agreement between simulated and measured 

concentrations and fluxes in outflows for glyphosate, atrazine, prometryn, simazine, and 

chloroform in Cells 1 and 2. Table 5-2 shows the Nash-Sutcliffe model efficiency 

coefficient, E, for concentrations for both calibration and verification events, as well as 

the calibrated model parameters and their literature values (as per Mackay et al., 2006). 
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The modelled glyphosate concentrations followed well the measured calibration data for 

Cell 2 (e.g. the model efficiency was 0.736), but slightly underestimated outputs for the 

verification series (E = 0.611/0.486) (Figure 5-8). Although, E value of 0.611 might 

indicate good agreement, E value of 0.486, calculated for TESTS 2-2 and 2-3 only 

(excluding 2-1, where measured outflow concentrations were below the detection limit), 

is a more reliable performance indicator. The concentrations in both TESTS 2-2 and 2-3 

were underestimated and one reason can be the failure to detect any inflow 

concentration in TEST 2-1 i.e. the absence of glyphosate in the inflow might be a 

measurement fault, since the inflow tank was dosed with the same amount of pollutant 

as in the other tests (Table 3-3). If this was the case, then the mass is not balanced for 

the field test data i.e. the modelled biofilter is “supplied” with less inflow pollutant mass 

than the actual biofilter.  

 

Figure 5-7 Inflow and outflow concentration and pollutant flux time series for 
glyphosate and Cell 1: calibration, E = 0.575 (bottom), verification, E = 0.545 (top) 

 

On the other hand, it is possible that not all the processes relevant to the glyphosate 

removal were presented by the model: e.g. biomass growth/die off, or some sorption 

related phenomena (Figure 5-7). Biomass dynamics was willingly excluded from the 
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model, as it would require large amount of additional data. On the other hand, peculiar 

behaviour of glyphosate (unexpectedly high outflow concentrations i.e. leaching) was 

observed even in controlled laboratory conditions with non-vegetated columns (e.g. 

Magga et al., 2012), so it might be that for reliable per-event prediction sorption model 

would need additional leaching component (desorption is already present). Although 

alteration can be done to the model for it to be more precise, the simplicity (low data 

requirements) and good performance indicators (E values mostly above 0.5) go in its 

favour. This is additionally confirmed with Cell 1, where the model efficiency was 

0.575 for 2012, and 0.545 for 2011 (Table 5-2), with model equally under- and over-

estimating concentrations.  

 

 

Figure 5-8 Inflow and outflow concentration and pollutant flux time series for 
glyphosate and Cell 2: calibration, E = 0.736 (bottom), verification, E = 0.611 (top) 
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Figure 5-9 Inflow and outflow concentration and pollutant flux time series for atrazine 
in Cell 1: calibration, E = 0.876 (bottom), verification, E = 0.536 (top) 

 

The model was successful in replicating the fate of all three triazines (E value well 

above 0.5), with well simulated starting and ending concentrations and its 

variability/trend during most events (except simazine). Events where outflow 

concentrations were underestimated consistently among pollutants were the ones 

following long dry periods (e.g. 2-3, 2-6 or 1-3 seen in Figure 5-10, Figure 5-12, Figure 

5-14 or Figure 5-9, Figure 5-11, Figure 5-13). It is hypothesized that this was a 

consequence of inflow applied in pulses, rather than continuous flow (Figure 5-5, 

Figure 5-6), on the dry filter media (that must have contained some cracks), which 

emphasized flow along preferential paths with decrease in the residence time. The two E 

values reported for Cell 1 for prometryn and simazine (Table 5-2) were for: (1) the 

entire test series (negative) and (2) TEST 1-1 and 1-2 only. TEST 1-3 was found to 

decrease the model performance indicator substantially, as the outflow concentrations 

were very low, therefore, slight difference in modelled and measured concentrations 

(e.g. order of measurement precision) gave a high relative error. A visual inspection, 

however, assured that the modelled outputs were following trends in the measured data.  
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Figure 5-10 Inflow and outflow concentration and pollutant flux time series for atrazine 
in Cell 2: calibration, E = 0.776 (bottom), verification, E = 0.941 (top) 

Chloroform was the only pollutant where modelling of volatilization was included. The 

model’s performance was excellent, with high values of E high: for calibration series 

being above 0.9, and verification around 0.7 (Table 5-2). On TESTS 2-2 and 2-3 

(Figure 5-16), as well as on 1-2 and 1-3 (Figure 5-15), outflow concentrations were 

slightly underestimated which was, again, hypothesized to be a consequence of cracks 

formed after long dry periods. 

The calibrated pollution transport parameters are in the range of reported literature 

values (Table 5-2), with Cell 1 being characterized by lower sorption parameter values 

(literature median) and longer degradation half-life (literature maximum) than Cell 2. 

Glyphosate was found to be very persistent in Cell 1 (T1/2 = 198) and somewhat 

degradable in Cell 2 (T1/2 = 51). It was also found to be sorbable (logKoc = 2.87/4.39) 

and somewhat prone to kinetic sorption: greater fraction of sites is prone to kinetic 

sorption in Cell 1 (89% compared to 67%), with kinetic sorption rate also being higher 

(1.5 compared to 0.18E-05 s-1). The three triazines showed similar sorption 

characteristics, with prometryn having the highest soil-water partitioning coefficient of 

the three (logKoc = 2.30/3.34), and simazine, on average, being the most prone to kinetic 
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sorption (60-70% of sites, 0.5 to 7E-05 s-1 kinetic sorption rate). The similar behaviour 

of triazines is not unusual, as they share similar molecular structure. 

 

Figure 5-11 Inflow and outflow concentration and pollutant flux time series for 
prometryn in Cell 1: calibration, E = 0.730 (bottom), verification, E = 0.782(0.595) 
(top) 

 

As for the degradation, atrazine and prometryn were found to be persistent in Cell 1 

(T1/2 around 140 days), unlike simazine (T1/2 = 61 days), while all three were prone to 

degradation in Cell 2 (T1/2 is 23 to 37 days). Calibrated parameters showed that 

chloroform was almost completely prone to kinetic sorption (99% of sites), with high 

soil-water partitioning coefficient (close to simazine). Chloroform was found to be 

degradable in both cells (T1/2 = 35/24 days). As for volatilization, chloroform half-life in 

a biofilter system was longer than what is reported in literature, and that may be because 

data is reported for far larger water bodies with higher horizontal velocities than found 

in biofiltration ponds (e.g. horizontal water velocity in the tested cells would be close to 

zero for most of the experiments). The volatilization time is almost identical for the two 

cells, which is expected, since ponding zone was identical for the two (same surface, 

same depth). 
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Figure 5-12 Inflow and outflow concentration and pollutant flux time series for 
prometryn in Cell 2: calibration, E = 0.907 (bottom), verification, E = 0.893 (top) 

 

Comparing Cells 1 and 2, it can be concluded that pollutants experience higher 

degradation rate in Cell 2, which might seem unexpected since this cell has the filter 

media material with smaller specific surface (i.e. lower content of clay and silt), and 

lower nutrient content – both factors that can cause a decrease in biomass growth. 

Cell 2, unlike Cell 1, has a submerged zone, which is shown to maintain soil moisture 

regime capable of sustaining both plant and microbial activity especially during 

prolonged dry periods (Zinger et al, 2013). It is interesting to note the difference in Koc 

values between the two cells for the same pollutant (higher in Cell 2), as this parameter 

is usually assumed to be only pollutant specific. It is hypothesized that the difference is 

due to the neglect of sorption to other matter other than organic carbon that is present in 

the soil (e.g. cations, dissolved organic content etc.), meaning that the sorption is not 

driven by foc only (so that Koc value obtained is not the “real” Koc value, and therefore 

not constant for a single pollutant). It can also be noted that the soil pH values of the 

two cells did not differ enough (Cell 1: pH=7.1, and Cell 2: pH=7.4) to cause the 

difference in Koc values (as suggested by Jeppu et al., 2012). 
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Table 5-2 The Nash-Sutcliffe values between the measured and modelled concentration, 
E, and the model parameter values as calibrated and reported by Mackay et al. (2006) 

 

  Literature values 
   logKoc  T1/2 Tvol 
  Lower Median Upper [d] [d] 

  Glyphosate 1.22 3.1 4.38 20, 47, 100  
  Atrazine 0.7 2.1 4.2 36, 75, 150  
  Prometryn 1.77 2.3 3.24 40, 60, 150  
  Simazine 1.68 2.7 3.66 30, 75, 180  
  Chloroform 1.4 1.8 2.8 10, 50, 100 0.5, 1 

    Calibrated model parameters 
   E fe logKoc αK T1/2 Tvol 

Cell 2012 2011 [-]  [s-1] [d] [d] 

Glyphosate 
1 0.575 0.545 0.107 2.87 1.51E-05 198  
2 0.736 0.611 0.326 4.39 0.18E-05 51  

Atrazine 
1 0.876 0.536 0.375 1.81 1.02E-05 142  
2 0.776 0.941 0.095 2.83 5.66E-05 23  

Prometryn 
1 0.730 -0.782 

(0.595) 0.179 2.30 0.53E-05 143  

2 0.907 0.893 0.201 3.34 3.79E-05 27  

Simazine 
1 0.700 -0.286 

(0.293) 0.294 1.76 0.49E-05 61  

2 0.511 0.285 0.378 2.87 6.99E-05 37  

Chloroform 
1 0.967 0.705 0.010 1.05 52.8E-05 35 5.11 
2 0.947 0.685 0.011 3.03 0.43E-05 24 5.14 

 

Figure 5-13 Inflow and outflow concentration and pollutant flux time series for 
simazine in Cell 1: calibration E = 0.700 (bottom), verification E = 0.286(0.293) (top) 
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Figure 5-14 Inflow and outflow concentration and pollutant flux time series for 
simazine in Cell 2: calibration, E = 0.511 (bottom), verification, E = 0.285 (top) 

 

 

Figure 5-15 Inflow and outflow concentration and pollutant flux time series for 
chloroform in Cell 1: calibration, E = 0.967 (bottom), verification, E = 0.705 (top) 
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Figure 5-16 Inflow and outflow concentration and pollutant flux time series for 
chloroform in Cell 1: calibration, E = 0.947 (bottom), verification, E = 0.685 (top) 

5.3.1.3 Performance assessment 

To get a more general performance assessment, scatter plots of measured vs. modelled 

event mean concentrations and event loads were made. The 1:1 line separates the zones 

where the model is overestimating – below the line, from where it is underestimating 

EMCs (or event loads) – above the line, as can be seen in Figure 5-17.  

Figure 5-18 to Figure 5-20 show scatter plots of measured vs. predicted EMCs (in 

mg/L) and event loads (in mg) for atrazine, prometryn, simazine, glyphosate and 

chloroform for both cells and 6 separate events giving a total of 12 events per 

micropollutant. Additionally, graphs include E and R2 values, showing how well the 

two (measured and modelled) agree.  

Figure 5-18 to Figure 5-20 show the performance of model on the triazines: atrazine and 

prometryn have very high values of E and R2 for both EMCs and event loads, while 

model was slightly underestimating simazine, equally for both cells 1 and 2. The E 

values are still quite high (above 0.77), so the model is still considered to do a good job. 
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Figure 5-17 The predicted and measured pollutant Event Mean Concentration (EMC) 
with marked zones where the model is under and over estimating EMCs 

Glyphosate EMCs were probably predicted the worst by the model, as can be seen in 

Figure 5-19 - bottom, where major underestimate is evident for Cell 1 – and this is 

related to TEST 1-5 (Figure 5-7). This only complements the discussion on page 118 

regarding the unpredictable behaviour of glyphosate. Although the event loads of 

glyphosate seem to be well predicted, since the values of E and R2 are above 0.8, this is 

misleading. The actual source of the high numeric values is the peculiar high event in 

cell 1 (event load above 2000 mg). Without this event, the actual values of E and R2 are 

0.616 and 0.605 respectively, which still can be considered rather high. 

 

Figure 5-18 Predicted and measured pollutant Event Mean Concentration (EMC) in 
mg/L (left) and event load in mg (right) for atrazine 
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Figure 5-19 Predicted and measured pollutant Event Mean Concentration (EMC) in 
mg/L (left) and event load in mg (right) for prometryn (top), simazine (middle) and 
glyphosate (bottom) 
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As for the chloroform, the model shows good predictive capabilities, as most of the 

EMCs and event loads are estimated well (Figure 5-20).  

 

Figure 5-20 Predicted and measured pollutant Event Mean Concentration (EMC) in 
mg/L (left) and event load in mg (right) for chloroform 

5.3.2 Model parameter estimation via laboratory testing 

5.3.2.1 Pollutant transport module parameters estimation from batch tests 

Figure 5-21 shows the results of performed batch experiments as the change of 

fluorescein concentration in the water phase (c(t), left) and the change of fluorescein 

concentration in the soil phase (s(t), right) for experiment duration. The latter one was 

derived from the mass balance and the known soil-water ratio.  

 

Figure 5-21 Batch test results: sorption of fluorescein in different biofilter soils – 
fluorescein concentration in water (left) and fluorescein concentration on soil (right)  

The sorption kinetics exhibited a two-step process: the initial step was quite rapid 

(< 0.5 hr), while the second step was slower and exhibited equilibration. It was assumed 
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in this study that instantaneous sorption occurred in the first rapid step while the first-

order sorption occurred in the second step (as per Eq. 5.7). The sorption parameters (fe, 

αk and Kd) were estimated as explained in Figure 5-4 and Eqs. 5.8 and 5.17. Figure 5-22 

depicts estimation of kinetic sorption rate, as well as R2 values obtained for each soil.  

 

Figure 5-22 Batch test results analysis: estimation of kinetic sorption rate of fluorescein 
in different biofilter soils  

Table 5-3 Transport and fate model parameters for fluorescein obtained from laboratory 
batch studies and model calibration 

Model parameters Parameters estimated from laboratory 
experiments 

Calibrated 
parameters to 

achieve the best fit 
to in-situ data2 

Model type 
Cell 1 Cell 2 Cell 1 Cell 2 

S D S D S/D S/D 

Instantaneous sorption fraction, fe [-] 0.23 0.21 0.20 0.16 0.19 0.13 

Kinetic adsorption rate, αk [h
-1] 0.11 0.11 0.078 0.061 0.085 0.055 

Soil water partit. coefficient Kd [L kg-1] 2.2 1.4 0.45 0.33 2.7 1.5 

Biodegradation rate, Kbio [h-1] 2.5E-03 1.5E-03 3.0E-03 2.9E-03 2.9E-03 9.0E-03 

Nash-Sutcliffe coefficient, E -1.2 / -0.541 0.67 / 0.881 0.69 0.90 

1 E value based on the whole part of the test/E value based only on spiking part of the test;  
2 combined calibrated parameters of surface and deeps soils were obtained to avoid over-
parameterization.  
Table 5-3 shows transport and fate model parameters for fluorescein obtained from 

laboratory batch studies and model calibration. The fe, αk and Kd values of loamy sand 

(average 0.22, 0.11 h-1 and 1.8 L kg-1
, respectively) were higher than that of sand media 

(average 0.18, 0.070 h-1 and 0.39 L kg-1
, respectively), which may be due to the higher 
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clay and organic matter content in loamy sand media compared to sand media (Table 

3-1). It has been reported that higher soil organic matter content may contribute to 

higher sorption capacity (René and Schwarzenbach, 1993). Similarly, these parameter 

values in surface media were higher than that in the deep media. The first order kinetic 

rate (αk) in this study was much lower than that was found by Abdus-Salam and Buhari 

(2014) who used pseudo-first order to describe the kinetic adsorption of fluorescein (αk 

=3.36h-1). The Kd value estimated in this study (average 0.39 L kg-1 for sand and 1.8 L 

kg-1 for loamy sand) were lower than the reported value (Kd = 10.3 L kg-1) by Omoti and 

Wild (1979) who used loamy sand (~85% sand, ~10% clay) to study fluorescein 

adsorption equilibrium through column experiments. However, the values of this study 

were close to reported value (Kd = 0.33L kg-1) by Sabatini and Austin (1991) who used 

aquifer sand (97.3% sand, 2.2% silt and 0.5% clay) to study adsorption characteristics 

of fluorescein using batch experiments. The differences between soil properties of the 

studied biofilter media (Table 3-1) and other studies may be attributed to the different 

Kd values. 

 

Figure 5-23 Batch test results: degradation of fluorescein in different biofilter soils 

Figure 5-23 shows changes of fluorescein concentration in different soils during 

performed degradation-batch experiments: sterile soils were assumed to experience 

sorption only, while regular samples were assumed to experience a combination of 

sorption and degradation. Fluorescein concentration dropped in all the soils during the 

entire experiment (~21 days). As anticipated, the decrease in concentration was lower 

for the sterile-soils when compared with regular ones, with the least decrease in sterile 

sand deep soil (~10% reduction). Figure 5-24 presents estimation of a degradation rate 



 
Chapter 5: Model Testing 

| Page 131 
 

from the trend in fluorescein concentration change: the concentrations from the 

experiments were first adjusted, so to show net-degradation (without sorption). The 

change was assumed to follow first-order kinetics. The numerical values are shown in 

Table 5-3. From these results, it is evident that the degradation process was having a 

much slower pace than the sorption kinetics. However, degradation cannot be neglected, 

especially during the dry weather periods that occur between storm events, as some of 

these periods can be up to 500 hours (more details in Zhang et al., 2014). As can be seen 

in Figure 5-23, the drop in fluorescein concentration for long dry periods (> 500 h) due 

to degradation only can be up to 30% for the deep loamy sand or sand soils. Slightly 

higher biodegradation rates were found in the sand media (3.0 ×10-3 h-1 for surface and 

2.9×10-3 h-1 for deep) compared to the loamy sand media (2.5×10-3 h-1 for surface and 

1.5×10-3 h-1 for deep).  

 

Figure 5-24 Batch test results analysis: estimation of degradation rate of fluorescein in 
different biofilter soils 

Figure 5-25 shows how the model fits the measured outflow rates during the fluorescein 

field test. While the model was quite successful for Cell 2 (E = 0.709), it was not as 

much with Cell 1 (E = 0.284). The major difference occurred on day when both KCl 

and fluorescein were introduced at the same time. It is hypothesized that KCl interacted 

with the clay in the filter media, and actually changed the apparent soil structure, 

influencing the hydraulic conductivity to change as well (decrease) (as seen in other 

studies e.g. Shainberg et al., 1981, Yilmaz et al., 2008). Unfortunately, this discrepancy 

influences the pollutant modelling substantially, so conclusions made on Cell 1 should 

be taken with reservations. 
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The model parameters estimated from the batch experiments were used in a predictive 

mode against the field fluorescein data, and results showed good agreement with Cell 2 

(E = 0.67) and poor agreement with Cell 1 (E = -1.27) (Figure 5-26).  

 

 

Figure 5-25 Measured and modelled flow at the outflow pipe for fluorescein test: Cell 1 
(top), E = 0.284 and Cell 2 (bottom), E = 0.709 

 

The model struggled to predict well the starting concentrations of flushing part of the 

test, when presumably desorption wass occurring (this holds for both cells). The high 

starting concentration of the flushing event could also be attributed to underestimated 

degradation rate. Once the initial phase of desorption occured, the model was quite 

successful in replicating the measured concentrations for Cell 2. As for the Cell 1, the 

model struggled even during events when hydraulics was well modelled (first spiking, 

first flushing, Figure 5-26). Since the model was overestimating outflow concentrations 

in all events, it is concluded that analysis of results of batch studies underestimates both 

sorption and degradation parameters (applicable to field conditions).  



 
Chapter 5: Model Testing 

| Page 133 
 

 

Figure 5-26 Batch test results application: measured and modelled fluorescein outflow 
concentration for in-situ test for Cell 1 (top), E = -1.27, and Cell 2 (bottom), E = 0.67. 
Field model parameters estimated from batch test results 

 

The model was also calibrated with field data for both cells and the results are shown in 

Figure 5-27 and Table 5-3. High values of Nash-Sutcliffe are evidence of good fit 

(E = 0.69 for Cell 1, E = 0.90 for Cell 2). The field calibrated sorption parameters 

indicate a more kinetic sorption with higher soil-water partitioning coefficient when 

compared to estimates with batch experiments. The degradation rate is also higher, 

eventually producing lower starting concentrations for flushing events. 
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Figure 5-27 Measured and modelled fluorescein outflow concentration for in-situ test 
for Cell 1 (top), E = 0.69, and Cell 2 (bottom), E= 0.90. Field model parameters 
calibrated on field data 

5.3.2.2 Pollutant transport module parameters estimation from column tests 

As explained in Chapter 3.6.2, three replicates of columns were set up. The samples 

were taken simultaneously and the average concentration was reported. Figure 5-28 

presents results from tracer test along with modelled values assuming conservative 

transport (no sorption, no degradation). A high value of the Nash-Sutcliffe coefficient 

(E = 0.97) indicates a very good agreement between measured and modelled 

concentrations, and therefore high reliability in estimated transport parameter for the 

conservative transport. The dispersivity (used for calculation of dispersion coefficient) 

was found to be quite low (αL = 0.007 m), indicating that the flow in the columns was 

predominantly advective. It is hypothesized that this might be due to the uniform 

packing that was accomplished while setting up the columns, as well as the rinse-out of 

the smallest particles (see Chapter 3.6.2 for column establishment procedure).  
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Figure 5-28 Measured and modelled outflow concentrations of KCl during column test 
normalized to initial concentration C/C0 

 
Figure 5-29 Measured and modelled outflow concentrations of glyphosate (left) and 
atrazine (right) normalized to initial concentration C/C0 

 
Figure 5-30 Measured and modelled outflow concentrations of simazine (left) and 
prometryn (right) normalized to initial concentration C/C0 

For the second step, the model was calibrated against outflow concentrations for column 

tests with herbicides. Figure 5-29 and Figure 5-30 show measured and modelled 

outflow concentrations for glyphosate, atrazine, simazine, and prometryn, as well as the 

performance measure (Nash-Sutcliffe). The values of E are quite high, having a range 
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from 0.89 (simazine) up to 0.98 (glyphosate), indicating very good estimates of sorption 

parameters made with column study’s results. 

  

Once the dispersivity and sorption model parameters have been estimated (Table 5-4), 

the model was used in predictive mode against the field data (Chapter 3.5.4). Since the 

degradation process was not studied in the column tests, half-life for model predictions 

was taken as field-calibrated values from Table 5-2. Figure 5-31 to Figure 5-34 show 

model predictions against field measured pollutant concentrations and fluxes for all 

tested herbicides. In addition to the column test estimated parameters, Table 5-4 

includes E values for the column test (calibration) as well as E values for field data for 

both 2011 and 2012.  

 

Table 5-4 Values of sorption model parameters calibrated on column test for herbicides; 
E values for column test (calibrated) and field tests (prediction) 

Herbicides 
E value - 
column 

test 

E value – field Calibrated parameters Field* 

2011 2012 
Log Koc 

[log L/kg] 

fe 

[-] 

αk 

[s-1] 

T1/2 

[day] 

Glyphosate 0.98 0.205 -1.410 4.31 0.193 6.53E-06 51 

Atrazine 0.90 0.929 0.478 2.60 1.000 5.95E-05 23 

Simazine 0.89 0.193 0.502 2.74 1.000 1.15E-05 37 

Prometryn 0.97 0.736 0.452 3.26 0.476 1.28E-05 27 

*Degradation half-life is taken from the field calibration 

Model outputs for glyphosate show overestimates for both years, with especially high 

values obtained for 2012 (Figure 5-31, bottom). Therefore, one can assume that the 

column testing analysis appears to underestimate the sorption parameter values. 

Triazines outflow concentrations, however, were not substantially overestimated by the 

model for neither 2011 nor 2012. Atrazine and prometryn concentrations were modelled 

reasonably well, with E values being lower than field-calibrated but still around and 

above 0.5 (Figure 5-32, Figure 5-33). Simazine outflow concentrations were slightly 

overestimated, but are comparable to the field-calibrated results: E values were as 

follows for the two testing periods: 2011 – 0.193 for column compared to 0.285 for field 

and 2012 – 0.502 compared to 0.511 (Figure 5-34).  
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Table 5-5 Comparison of field and column calibrated sorption parameters’ values 

Herbicides 

Field calibrated parameters Column calibrated parameters 

log Koc 
[log L/kg] 

fe 
[-] 

αk 
[s-1] 

log Koc 
[log L/kg] 

fe 
[-] 

αk 
[s-1] 

Glyphosate 4.39 0.326 0.18E-05 4.31 0.193 0.65E-05 

Atrazine 2.83 0.095 5.66E-05 2.60 1.000 5.95E-05 

Simazine 2.87 0.378 6.99E-05 2.74 1.000 1.15E-05 

Prometryn 3.34 0.201 3.79E-05 3.26 0.476 1.28E-05 
 

Once the column calibrated sorption parameter values were compared to the ones from 

the calibration against field data (Table 5-5), it was concluded that the kinetic sorption 

parameters (fe, αk) can be extremely different and still give similar results. That is, in the 

column tests, atrazine and simazine were found to be completely prone to instantaneous 

sorption, while field calibrated values point to substantial kinetic behaviour (most 

evident in fe: 1.0 compared to 0.1 for atrazine, and 1.0 to 0.4 for simazine, Table 5-5). 

 
Figure 5-31 Inflow and outflow concentration and pollutant flux time series for 
glyphosate at Cell 2 using column test parameters: 2011, E = 0.205 (top), 2012, and 
E = -1.410 (bottom) 
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Figure 5-32 Inflow and outflow concentration and pollutant flux time series for atrazine 
at Cell 2 using column test parameters: 2011, E = 0.929 (top), 2012, and E = 0.478 
(bottom) 

 

 
Figure 5-33 Inflow and outflow concentration and pollutant flux time series for 
prometryn at Cell 2 using column test parameters: 2011, E = 0.736 (top), 2012, and 
E = 0.452 (bottom) 
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Figure 5-34 Inflow and outflow concentration and pollutant flux time series for 
simazine at Cell 2 using column test parameters: 2011, E = 0.193 (top), 2012, and 
E = 0.502 (bottom) 

This is indication of the model’s “equifinality” (Beven, 1993; Beven, 2006), or the 

absence of a unique parameter set, but rather several equally possible parameter sets. As 

noted by Dotto (PhD thesis, 2013) there are several possible reasons for this effect, and 

the mostly probable in this case are: (1) parameter space has several local minima 

regions and (2) parameters can exhibit a high degree of correlation. Since the effect of 

equifinality can substantially reduce confidence in the modelled results (Kuczera and 

Parent, 1998), it will be of outmost importance to perform a through uncertainty 

analysis of the model. Chapter 6 is, therefore, completely devoted to this subject.  

5.4 Conclusions 

Water flow was very well simulated for the well-designed Cell 2, but was not 

completely verified for Cell 1. This was attributed to profound cracking after dry 

periods of the Cell 1 media (which had high clay content). Most pollutants were well 

modelled in both cells, with the exception of simazine and prometryn for low inflow 

events after prolonged dry periods. Pollutants were found to sorb well in both cells, and 

exhibiting a more kinetic behaviour in Cell 1. Degradation was found to be more 
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dominant in Cell 2, and this is believed to be due to the presence of the submerged zone 

that sustains microbial activity during dry periods.  

The model was run with laboratory data from batch studies (fluorescein as referent 

pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A 

procedure was developed for the estimation of parameters from batch studies, and a 

regular calibration method was used for parameter estimation from column tests. 

Parameters for both sorption and degradation were found to be underestimated from 

batch studies. This is hypothesized to be due to differences in the water to soil ratio in 

batch studies, when compared to the field. The sorption parameters estimated from 

columns were also somewhat underestimated, and when used with the model produced 

higher outflow pollutant concentrations. This is especially the case with glyphosate, and 

only slightly with the triazines. Column studies also indicate less-kinetic-sorption 

behaviour when compared with the field data. It is hypothesized that kinetic sorption 

behaviour on the field may be apparent, and a consequence of the assumption that the 

flow is one dimensional, when in reality it is not, leading to conclusion that the kinetic 

behaviour is due to structural heterogeneity of the biofiltration material, rather than 

chemical. It is possible that the sorption process in the field is accounting for both 

micropollutant sorption to sorption and to the vegetation. This, however, can only be 

checked with additional laboratory column studies with undisturbed samples and 

vegetation. 

The calibrated model parameters were in agreement with the available literature values, 

which makes the use of this model promising for the tested groups of organic pollutants.  
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6 MODEL UNCERTAINTY ANALYSIS 

6.1 Introduction 

Uncertainty is inherent to every modelling process and has multiple sources. By 

mapping and analysing sources of the uncertainty, especially their impact on modelling, 

one can make model predictions more reliable i.e. less uncertain. This chapter deals 

with the following: (1) Calibration data selection, and (2) General uncertainty. 

The MPiRe model was applied to atrazine, simazine, prometryn, glyphosate and 

chloroform with data from Monash Car Park biofilter (field data). The uncertainty due 

to calibration data selection was assessed by choosing different parts of dataset for 

calibration, and comparing different optimal parameter sets. The general uncertainty 

assessment was performed using (1) GLUE (Beven and Binley, 1992) to create 

parameter probability distributions (PDs) and (2) to create 95th percentile confidence 

intervals for modelling results.  

6.2 Materials and methods 

6.2.1 Calibration data selection uncertainty procedure 

To assess the influence of used calibration dataset on model uncertainty, the available 

dataset of measurements was divided into several smaller datasets of different sizes. 

These smaller datasets were used for event-based model calibration. Calibration was 

done automatically using PEST (Doherty, 2013) against measured outflow rates and 

pollutant concentrations (as in Chapter 5.2.2). The Nash-Sutcliffe coefficient is used as 

model efficiency criteria. It should be noted that calibration uncertainty procedure was 

quite limited by the amount of data (number of events) available, and is just shown as a 

method. Additionally, calibration of separate events was done under constant 

degradation rate (calibrated), as the major impact of degradation is between events. 

6.2.2 General uncertainty procedure 

Sensitivity analysis (creation of probability density (PDs) histograms of model 

parameters) was done using Generalized Likelihood Uncertainty Estimation method 

(GLUE, by Beven and Binley, 1992), similar to other urban drainage water modelling 
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studies (e.g. Dotto et al, 2012, Mannina and Viviani, 2010, Vezzaro et al, 2012). GLUE 

is based on Monte-Carlo simulations, where parameters are sampled randomly from 

assumed prior PDs. Parameter sets are evaluated for their ability to reproduce measured 

data using a likelihood function - Nash-Sutcliffe coefficient for (1) flow measurements 

for hydraulic module and (2) pollutant concentrations for pollutant module. The 

accepted parameter sets – the ones with likelihood function above a certain threshold, 

are used to construct the density distribution histograms for each of the calibration 

parameters, as well as to examine their cross correlations. 

Prior parameter PDs were assumed to be uniform on intervals. The ranges for 

parameters of the hydraulic module were: hydraulic conductivity, Kf  10 – 250 mm/h, 

porosity, n  0.15 – 0.55 and starting filter pore saturation s 0.0 – 1.0. The range for each 

parameter of the pollutant module was estimated using manual calibration and is shown 

in Table 6-1 with respective likelihood function thresholds. A total of 100 000 

parameter sets is created for hydraulic module and each of the micropollutants using 

Latin Hypercube sampling (McKay et al., 1979).  

Table 6-1 Parameter range for uniform prior PDs with the E - threshold 

Parameter Atrazine Prometryn Simazine Glyphosate 

logKoc -1.6 – 3.6 -1.6 – 3.6 -1.6 – 3.6 0.4 – 5.0 

fe [-] 0 – 1 0 – 1 0 – 1 0 – 1 

αk [s-1] 1e-7 – 1e-5 1e-7 – 1e-5 1e-7 – 1e-5 1e-7 – 1e-5 

T1/2 [day] 5 - 300 5 -300 5 - 300 5 - 300 

E-threshold 0.4 0.6 0.4 0.6 

Posterior PDs of parameter sets were then used to run the model and produce 95th 

percentile confidence intervals for micropollutant concentration in order to assess its 

robustness. It should be noted that the confidence interval is inversely proportional to 

the likelihood function threshold value: larger values produce narrower confidence 

intervals. 
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6.3 Results and discussion 

6.3.1 Calibration data selection 

Table 6-2 shows hydraulic module parameter values estimated for each of the test days 

alongside parameters estimated for the complete continuous series. The parameters of 

Cell 2 are found not to vary substantially when calibration is event-based for singular 

test days or when run as a continuous simulation, suggesting that the model could be 

successfully calibrated for Cell 2.  

Table 6-2 Model parameter and Nash-Sutcliffe values for different periods for hydraulic 
module on Cell 2 

 Test 1 Test 2 Test 3 Continuous series 

Kf   [mm/h] 141.8 151.9 160.0 155.5 

n [-] 0.400 0.422 0.450 0.400 

s [-] 0.498 0.843 0.283 0.406 

E [-] 0.909 0.953 0.877 0.893 

* Test 1 (19-11-2012), Test 2 (20-11-2012), Test 3 (11-12-2012) 

Table 6-3 Model parameter and Nash-Sutcliffe values for different calibration periods 
for atrazine on Cell 2 

 Test 1 Test 2 Test 3 Continuous series* 

logKoc
 [logL/kg] 5.44 2.72 3.04 2.83 

fe [-] 0.431 0.113 0.029 0.095 

αK [s-1] 2.46e-05 1.35e-06 7.85e-05 5.66e-05 

Nash-Sutcliffe (E) 0.721 0.899 0.857 0.776 

 Test 4 Test 5 Test 6 Continuous series* 

logKoc
 [logL/kg] 3.45 1.74 2.12 1.81 

fe [-] 0.431 0.113 0.029 0.375 

αK [s-1] 4.46e-06 5.43e-06 2.73e-05 1.02e-05 

Nash-Sutcliffe (E) 0.897 0.698 0.887 0.876 

* Continuous series are joined single events 
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Table 6-3 shows these pollutant module parameter values estimated for each of the test 

days and for the complete continuous test series for atrazine at Cell 2. The most 

sensitive parameter is found to be the soil-water partitioning coefficient normalized to 

organic carbon content, Koc, which differs over 2 orders of magnitude (in logarithmic 

scale) between different calibration periods. The least sensitive is the kinetic sorption 

rate, αK, with at most 3 times difference. Interestingly, Nash-Sutcliffe is increased when 

the calibration period is short (only one event), and is around 0.7 and above for all 

periods. Similar is found for all the other micropollutants (see Appendix): Koc is the 

most sensitive, and αK the least sensitive. However, it should have in mind that 

biodegradation rate is not evaluated in this study.  

6.3.2 General uncertainty 

Figure 6-1 shows matrix plot of cross-correlation scatter plots (off diagonal) between 

model parameters and model parameters and likelihood function (top row). Diagonal 

plots on Figure 6-1 are posterior parameter PDs.  

E 

 

Kf 

n 

s 

 Kf n s 

Figure 6-1 Matrix plot of cross-correlation scatter plots (off-diagonal) and posterior 
parameter probability density functions (diagonal) for flows at Cell 2 using GLUE and 
likelihood E > 0.6 (Prodanovic et al., 2014) 

It is clear that there is only one sensitive parameter in the hydraulic module: the 

filtration coefficient (Kf), which has a clear peak value as seen in Figure 6-1. The model 
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is insensitive to changes in the value of parameters porosity (n) and saturation of the 

filtration layer (s). Cross-correlation scattered plots in Figure 6-1 also show that there is 

no apparent correlation between the parameters, additionally confirmed by correlation 

coefficient values in Table 6-4.  

Table 6-4 Matrix of parameter cross-correlation coefficients for flows at Cell 2, using 
GLUE, E > 0.6 

Hydraulics E Kf n s 
E 1 0.361 -0.037 0.019 
Kf  1 0.105 0.014 
n   1 -0.048 
s    1 

Parameter mutual independence is highly valued in modelling, as the contrary signals an 

ill-posed model. (Dotto et al., 2012) From the above, it is concluded that the hydraulic 

module is well-posed. 

 

Figure 6-2 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency 
density(upper left corner) and posterior parameter probability density functions 
(diagonal) for atrazine concentrations at Cell 2 using GLUE and likelihood E > 0.4 
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Figure 6-2 shows the parameter sensitivity for atrazine at Cell 2 using GLUE with the 

likelihood function cut-off E > 0.4. The posterior parameter PDs show that the soil-

water partitioning coefficient, Koc, and fraction of instantaneous sorption sites, fe, have 

clear peaks, indicating that their optimal values are easily identified. Posterior PDs for 

kinetic sorption rate, αk, and degradation half-life, T1/2, do not have clear peaks (they 

may be considered multi-modal, or almost uniform); therefore, their calibrated values 

have a high uncertainty.  

Table 6-5, that includes parameter cross-correlation coefficients for atrazine at Cell 2, 

using GLUE with a cut-off E > 0.4, shows that parameters logKoc and fe are 

substantially correlated, with R = -0.711. This means that the two compensate for each 

other: combination of high logKoc and low fe produces similar sorption results to low 

logKoc and high fe. This is expected, as the sorption model includes their mutual 

product. However, although they are correlated, it is not difficult to find their optimal 

values. The correlation and high peaks indicate that calibration would probably be better 

performed (with less uncertainty) for two unrelated parameters formed from the 

combination of Koc and fe such as (1) their product and (2) another relation derived from 

kinetic sorption model (Doherty, 2013). 

Table 6-5 Matrix of parameter cross-correlation coefficients for atrazine at Cell 2, using 
GLUE, E > 0.4 

Atrazine E LogKoc fe αk T1/2 
E 1 0.176 -0.377 0.099 -0.032 

LogKoc  1 -0.711 -0.044 0.277 
fe   1 0.084 -0.357 
αk    1 0.031 

T1/2         1 

The likelihood function is most sensitive to logKoc and fe, indicated by the narrowest 

distribution function, with a clear peak (Figure 6-2, top row) and high R values in Table 

6-5. Insensitivity of the likelihood function to values of degradation half-life are 

anticipated to be consequences of (1) assumptions regarding degradation being relevant 

in dissolved micropollutant phase only (water pollutant concentration) and (2) low data 

for determination of this value. As it was previously concluded, degradation is a process 
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relevant between events (Chapter 5.3). Inter-event data is very scarce: there are only a  

few soil samples (usually not showing any detected concentration) and the major weight 

of the degradation rate estimation is held by two outflow concentration points (ending 

of one event, and start of the next event). It is hypothesized that longer continuous series 

of measured outflow pollutant concentrations (with more events) would decrease 

uncertainty regarding this parameter, and show that it is a well-chosen model parameter. 

 

Figure 6-3 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency 
density(upper left corner) and posterior parameter probability density functions 
(diagonal) for simazine concentrations at Cell 2 using GLUE and likelihood E > 0.4 
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Simazine E LogKoc fe αk T1/2 
E 1 -0.178 -0.170 -0.026 -0.131 

LogKoc  1 -0.638 -0.359 0.121 
fe   1 0.268 -0.083 
αk    1 -0.119 

T1/2         1 

0 100 200 3000 5 10

x 10
-6alfa [s-1]

0 0.5 1
fe

0 2 4
logKoc

0.4 0.6 0.8

0
100
200
300

E

H
al

fli
fe

 [d
]

0

5

10
x 10

-6

al
fa

 [s
-1

]

0

0.5

1

fe

0

2

4

Lo
gK

oc

0.4

0.6

0.8

Halflife [d]

E



 
Chapter 6: Model Uncertainty Analysis 

| Page 149 
 

Figure 6-4 and Figure 6-5 shows the parameter sensitivity for simazine and prometryn 

at Cell 2 using GLUE with the likelihood function cut-off E > 0.4 and E>0.6, 

respectively. Parameter cross-correlation scatter plots and parameter probability density 

functions for simazine and prometryn are very similar to atrazine. Similarity can be seen 

in correlation values, as well (Table 6-6, Table 6-7): logKoc and fe  are strongly 

correlated, but due to the narrowness of their probability distributions, it is easy to 

determine their optimal values. The kinetic sorption rate, αk, and degradation half-life, 

T1/2, do not have a clear peak in PDs. (Figure 6-4, Figure 6-5) The Nash-Suttcliffe 

coefficient is mostly influenced by logKoc for both simazine and prometryn. 

 

Figure 6-4 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency 
density(upper left corner) and posterior parameter probability density functions 
(diagonal) for prometryn concentrations at Cell 2 using GLUE and likelihood E > 0.6 
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Figure 6-5 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency 
density(upper left corner) and posterior parameter probability density functions 
(diagonal) for glyphosate concentrations at Cell 2 using GLUE and likelihood E > 0.6 

Table 6-8 Matrix of parameter cross-correlation coef. for glyphosate at Cell 2, using 
GLUE, E > 0.6 

Glyphosate E LogKoc fe αk T1/2 
E 1 0.399 -0.240 -0.309 0.008 

logKoc  1 -0.789 -0.273 0.073 
fe   1 0.149 -0.099 
αk    1 -0.037 

T1/2         1 
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and fe. (Table 6-8) The degradation half-life exhibits the same behaviour as with the 

other pollutants and the same is hypothesized about the need for longer continuous 

series of measured outflow pollutant concentrations (with more events). 

 

Figure 6-6 Atrazine, simazine, prometryn and glyphosate (top-bottom) pollutographs at 
biofilter outflow pipe with measured and modelled concentrations including a 95% 
confidence interval from GLUE analysis 
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Figure 6-6 shows pollutographs at biofilter outflow pipe with measured and modelled 

concentrations and a 95% confidence interval for atrazine, simazine, prometryn and 

glyphosate at Cell 2. Most of measurements fall well between the confidence intervals 

that suggests that the model is well-posed: 76% for atrazine, 66% for simazine, 90% for 

prometryn and 97% for glyphosate. It can be observed that ending and starting event 

concentrations have the widest confidence interval, meaning they have the highest 

uncertainty (which further confirms the hypothesis about degradation half-life posterior 

PD).  

6.4 Conclusions 

The MPiRe model was checked with micropollutant data at Monash Car Park biofilter. 

The model was successfully calibrated, and then model uncertainty analysed. The 

following is concluded: 

• Different calibration datasets produce different optimal model parameters, with 

soil-water partitioning coefficient (normalized to organic carbon content) being 

the most sensitive to this procedure.  

• The longest dataset gives the most average values of parameters, and the lowest 

value of likelihood function.  

• Uncertainty analysis performed with GLUE confirmed that the soil-water 

partitioning coefficient (normalized to organic carbon content) is the most 

sensitive model parameter, but also found correlation between sorption 

parameters, and high uncertainty in the degradation rate estimation. It is 

suggested that these procedure needs to be redone with longer continuous series 

of measured outflow pollutant concentrations (with more events). 

• Additionally, the predictive uncertainty is assessed by making 95% confidence 

intervals for model predictions, and it suggests that the model is sound. 
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7 CONCLUSIONS AND FURTHER RESEARCH 

7.1 Summary of conclusions 

This main aim of this research was to develop a process based model that is capable of 

simulating water and micropollutant transport though stormwater biofilters. To get 

insight into the dimensionality of the flow, conservative tracer tests and ERT were 

performed on-site with two different biofiltration units. ERT data visually confirmed 

that the transition from two-dimensional to one-dimensional flow is fast when water is 

introduced into a variably saturated biofiltration system, and that transport is one 

dimensional. The tracer test measurement data was successfully simulated with the 

proposed one-dimensional model with conservative advective-dispersive transport. 

The MPiRe model’s final form included three key processes that govern behaviour of 

micropollutants in these systems: (1) sorption, (2) degradation and (3) volatilisation. 

The water flow contained at-least one calibration parameter (hydraulic conductivity) 

while the pollution transport required calibration of additional four or five parameters. 

The model was used to simulate the fate of five organic micropollutants (glyphosate, 

atrazine, simazine, prometryn, and chloroform) in two different biofiltration cells; one 

cell was designed according to the best Australian design practice (Cell 2) and the other 

cell has a high organic and clay content (Cell 1). The cells were tested under variable 

and challenging operational conditions. The model was calibrated and independently 

validated on two separate data series. 

The water flow was very well simulated for the well-designed Cell 2, but was not 

completely verified for Cell 1. This was attributed to pronounced cracking after dry 

periods of the Cell 1 media (which had a high clay content). The model was successful 

in capturing pollutograph trends and peaks for most micropollutants. The exceptions 

were simazine and prometryn during low inflow events after prolonged dry periods, 

where outflow concentrations were underestimated. The pollutants were found to sorb 

better in Cell 1 (lower outflow concentrations), and exhibited a more sorption kinetic 

behaviour in Cell 2 (higher sorption rate for most pollutants). Degradation was also 
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found to be more dominant in Cell 2, and this is believed to be due to the existence of a 

submerged zone that sustains microbial activity during dry periods.  

The model was run with laboratory data from batch studies (fluorescein as referent 

pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A 

procedure was developed for the estimation of parameters from batch studies, and a 

regular calibration method was used for parameter estimation from column tests. 

Parameters for both sorption and degradation were found to be underestimated from 

batch studies. This is hypothesized to be due to differences in the water to soil ratio in 

batch studies, when compared to the field. The sorption parameters estimated from 

columns were also somewhat underestimated, and when used with the model produced 

higher outflow pollutant concentrations. This was especially the case with glyphosate, 

and only slightly with the triazines. Column studies also indicated less-kinetic-sorption 

behaviour when compared with the field data. It is hypothesized that kinetic sorption 

behaviour on the field may be apparent, and a consequence of the assumption that the 

flow is one dimensional, when in reality it is not. This leads to a conclusion that the 

kinetic behaviour is due to the structural heterogeneity of the biofiltration material, 

rather than chemical heterogeneity. It is also possible that the sorption process in the 

field accounts for both micropollutant sorption to soil and to vegetation. This, however, 

can only be checked with additional laboratory column studies with undisturbed 

samples and vegetation. 

The calibrated model parameters were in agreement with the available literature values, 

which makes the use of this model promising for the tested groups of organic pollutants. 

Sensitivity and uncertainty analysis indicated that the most sensitive parameter of the 

water module is the hydraulic conductivity, while for the pollutant module it is the soil-

water partitioning coefficient. The degradation rate was found to be an uncertainty 

parameter, and it is suggested that uncertainty analysis needs to be redone with longer 

continuous series of measured outflow pollutant concentrations (with more events) 

when data becomes available. The model’s predictive uncertainty is not high, and most 

measurements fell well between the 95th percentile confidence intervals. 
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7.2 Research aim evaluation 

Goal 1: To develop a transport and fate model for organic micropollutants in stormwater 

biofilters.  

1. It was hypothesized that micropollutants can be grouped according to their 

chemical structure and nature into a few groups, and that a good “representative” 

can be selected from each group, whose transport and fate models can be 

“transferred” to each member of the group. 

Atrazine, prometryn and simazine were considered to belong to the same group 

of pollutants as they share a similar structure (triazines). Modelling results from 

this research suggest that a similar model can be applied to all of them, giving 

satisfactory results (Chapter 5). Unfortunately, many of the micropollutants that 

were introduced into the biofiltration system were detected in the outflow 

(Chapter 3) so the conclusion made for triazines cannot be confirmed with other 

micropollutant groups. It is suggested that this hypothesis needs to be further 

confirmed when new data becomes available. 

2. It was hypothesized that the complex hydrodynamic behaviour of urban 

stormwater in WSUD systems can be conceptualized by a multiple reservoir 

approach (one-dimensional model with dominant vertical flows). 

In order to check this hypothesis, and eventually develop a model based on it, a 

group of tests was performed on a biofiltration system (field site): tracer tests 

with conservative and non-conservative tracers and the ERT. A tracer test was 

successfully simulated using a proposed one-dimensional model with dominant 

vertical flows and the advective-dispersive equation (Chapter 5.2.4). ERT results 

gave visual evidence of a short transition from two-dimensional to one-

dimensional flow when water is introduced in a variably saturated biofiltration 

system (Chapter 3.4.4). 

3. It was hypothesized that the transport of micropollutants in the biofilter can be 

predicted by a linear advective dispersive transport equation (vertical), while 

conceptual 1st and 2nd order decay models could be used to assess the removal 

processes that may be physical/chemical/biological in nature (settling, straining, 



 
Chapter 7: Conclusions and Further Research 

 

| Page 157 
 

volatilization, photodegradation, hydrolysis, aerobic/anaerobic biodegradation, 

adsorption, and desorption).  

To check this hypothesis, and develop a model, a series of tests were performed 

with fluorescein – as a reference micropollutant that included: conservative 

tracer test, field fluorescein test, and laboratory batch and column studies. A 

model based on a one-dimensional bucket hydraulical module and advective-

dispersive transport equation with processes modelled as two-site sorption 

model, and first order degradation (basis of the developed MPiRe model) as the 

water quality module, was successfully applied to measured data (Chapter 

5.3.2), confirming this hypothesis.  

Goal 2: To conduct controlled lab and field tests to refine the model component that 

simulates the micropollutant treatment in biofilters; 

4. It was hypothesized that a large amount of data should be collected to ensure 

accurate testing and verification of the newly developed model. 

This hypothesis was confirmed with successful modelling results presented in 

Chapter 5, which included: (1) successful simulation of measured outflow 

concentrations in field conditions at two different biofiltration systems, and (2) 

successful simulation of measured outflow concentration in laboratory 

conditions (column studies), with parameters that can be transferred to the field. 

However, this hypothesis confirmation will benefit from results with additional 

measurement data. 

Goal 3: To calibrate, validate, and assess uncertainties in the model using field data 

from two stormwater systems (biofilters with different designs). 

5. It was hypothesized that uncertainty analysis (using two different field data sets) 

will point to sensitive parameters and provide insightful information about the 

processes. 

This was confirmed in Chapter 6 that presents the model parameter uncertainty 

analysis conducted using GLUE methodology. The most sensitive parameters 

are identified to be sorption parameters, in particular the soil-water partitioning 
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coefficient. Large uncertainty related to the degradation rate is evaluated to be 

due to scarce inter-event data.  

 

7.3 Discussion on model development 

The pollutant removal processes emphasised in the model development are sorption, 

biodegradation and volatilisation. These are most certainly important processes but why 

were other presumably relevant processes such as sedimentation and vegetative filtering 

excluded? 

When the model was in its initial development stage, many other processes were 

included (such as stripping, sedimentation etc.). But attempts to calibrate the model 

were not very successful: (1) it was difficult to source the parameter values from the 

literature and (2) the model was overparametrized since there were more parameters 

than measured data points. Additionally, it was very encouraging to see that even with 

relatively small number of processes (parameters) the model was able to predicting the 

removal. Therefore, it is author’s belief that it is not necessary (at this point) to add 

complexity to the model.  

This is why all but the most dominant processes were taken out (sorption, degradation 

and volatilization). Sedimentation was neglected, as it was found that most of these 

pollutants are mostly dissolved rather than particulate (Zgheib et al., 2012) while in the 

water column, meaning they would sorb to the filter media rather than settle. As for the 

vegetative filtering (sorption to plants) it is hypothesized that due to relatively short 

contact time (only during ponding), this process has a low impact on the overall 

removal. This was further encouraged by the fact that stormwater biofilters are vertical 

flow systems, and very little if any water movement is horizontal, therefore the filtering 

is mostly through the soil media. 

However, the author is completely aware that the neglected processes are compensated 

by the calibration coefficients e.g. sorption to grass (plants) and straining are fused with 

sorption to soil particles.  
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The usability of the model is very important for practical applications (both system 

sizing and validation monitoring), and there comes the tendency to keep it as simple as 

possible and still get meaningful results. 

7.3.1 Model’s usability in practical applications 

The MPiRe model was developed as a tool to ease the management of stormwater 

biofiltration systems when they are used for water harvesting or to control the polluted 

urban runoff to water receiving bodies. The model can be used to predict biofilter’s 

long-term performance in removal of some of the key stormwater micropollutants 

(glyphosate, triazines, chloroform). The model is an alternative to STUMP (Vezzaro et 

al., 2010, the only other available model in literature that can predict micropollutant 

behaviour in biofilters), but it allows a more accurate water flow modelling and can be 

used even when there is no information on suspended solids data. The model parameters 

for the tested herbicides and chloroform agree with the literature, suggesting that the 

model is physically sound. It was therefore hypothesized that the model can be easily 

extended for other types of micropollutants (PAHs, phenols, phthalates, etc.) by 

adjusting model parameters to their properties directly sourced from literature.  

The way the MPiRe model is set up enables it to be implemented for exploration of (1) 

different biofilter designs (geometry, material composition etc.) and (2) testing of 

biofilters performance under different scenarios (e.g. variable wetting and drying 

periods, different inflow pollutant concentrations, etc.). These model traits would 

eventually lead to optimal designs and operational regimes of these systems.  

The MPiRe model can also facilitate the validation monitoring of biofilter systems. 

Since full scale tests are usually expensive, and in most cases impractical for large 

stormwater biofilters, the alternative is to use the MPiRe model to complement the 

measured data and assess the biofilter performance. The MPiRe model has already been 

adopted and tested for this purpose, as discussed in Zhang et al. (2016); this work shows 

that the model can be used to optimize the monitoring procedure (that is necessary to 

demonstrate that the treatment processes are capable of achieving the required water 

quality objectives) by selecting only the most valuable data points to be collected, 

thereby minimizing the total expenses (number of measurements).  
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7.4 Future research 

Although the research aims have been, for the most part, achieved, inevitably new 

research questions are opened, and are anticipated to be part of future research. 

1. Testing the model on longer continuous series of measured outflow 

concentrations with extensive inter-event data 

The major weakness of the model is found to be in the high uncertainty related to 

degradation process. This was identified to be due to scarce data on which this 

particular process is developed and modelled. It would be valuable to perform 

uncertainty analysis on longer measurement data series. 

2. Calibration of the model using additional micropollutants 

It would be valuable to truly check the 1st hypothesis regarding group – representative 

micropollutants. This would, inevitably, require more data on biofilter outflow 

concentrations. The model would also profit if the micropollutants are prone to other 

fate processes, such as photodegradation, straining, etc.  

3. Re-evaluation of the sorption model 

The model for sorption used in the model is found to give mostly good results, based on 

micropollutant behaviour in both laboratory and field conditions. Since, the aim was to 

develop a practically usable model, it was an imperative to make model that is easily 

transferred from laboratory to the field. However, due to differences in kinetic rates 

determined for pollutants in laboratory vs. field, it is hypothesized that the model would 

profit from another set of laboratory experiments involving undisturbed soil columns 

with vegetation. The model would also benefit from experiments with variable input 

concentrations to test whether competitive sorption plays a role in the process (a 

micropollutant being able to cause desorption of another pollutant due to its higher 

sorption ability). 

4. Biofiltration system aging modelling 

It would be interesting to see how the model parameter (both flow and pollutant) change 

over time, and whether it is possible to easily model such changes. 
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5. Further uncertainty analysis 

A thorough uncertainty analysis should be conducted for the new micropollutant model, 

focusing on determining the impact of uncertainties in (1) input data (2) measurement 

data, and (3) model structural uncertainty. The first two questions can be addressed with 

additional data, while the third requires development of structurally different models for 

micropollutants in biofiltration systems. 
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дозвољава комерцијалну употребу дела и прерада. 

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно 
саопштавање дела, без промена, преобликовања или употребе дела у свом делу, 
ако се наведе име аутора на начин одређен од стране аутора или даваоца 
лиценце. Ова лиценца дозвољава комерцијалну употребу дела. 

6. Ауторство - делити под истим условима. Дозвољавате умножавање, 
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на 
начин одређен од стране аутора или даваоца лиценце и ако се прерада 
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава 
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, 
односно лиценцама отвореног кода. 
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