UNIVERSITY OF BELGRADE

FACULTY OF CIVIL ENGINEERING

Anja Randelovic

MODELLING TRANSPORT OF
MICROPOLLUTANTS IN
BIOFILTRATION SYSTEMS FOR
STORMWATER TREATMENT

Doctoral Dissertation

Belgrade, 2016



YHUBEP3UTET Y BEOI'PALLY

PABEBUHCKU GAKYIITET

Arna PaHhenosuh

MOOEJNIMPAHE TPAHCIIOPTA
MUKPOIMNOJIYTAHATA'Y
BUODPUIITEPCKUM CUCTEMUMA 3A
TPETMAH KWLWHUX BOOA

[IOKTOpCKa aucepTaumja

beorpag, 2016



nHoAALII O MEHTOPY 1 YWIAHOBUMA KOMHUCHUIE

Mentopu:

IMpod. np Ama Jlenermh, VYumBepsuter Monash, ®akynrer 3a

WH)XemepcTBo, JlemapTman 3a rpalheBuny

Honent np Henan Jahumosuh, Yuusepsurer y beorpany, I'paheBuncku

dakynTer

UtaHOBU KOMHCH]E:

IMpod. np Ama Jlenermh, VYumBepsuter Monash, ®akynrer 3a

WH)XemepcTBo, JlemapTman 3a rpalheBuny

[Tpod. np Ayman Ilponanosuh, Yuusepsurer y beorpany, I'paheBuncku

dbakynTer

B. mpoo. np 3opana Haynosuh, Yuusepsurer y beorpany, I'paheBuncku

(bakynrer

Honent np bpanucnasa Jlekuh, Yausepsurer y beorpany, I'paheBuncku

(bakynrer

Houent np Henan Jahumosuh, Yausepsurer y beorpany, I'paheBunckn

(bakynrer

Jlatym onOpaHe JOKTOPCKE AUCepTalnje:




3AXBAJIHUIIA

[Tocebny 3axBamHOCT AyTyjeM MeHTOpY, pod. ap Anu Jlenetuh, koja MU je HeCEOUYHO
npykaia TOAPUIKY Yy J0CalallllbeM HaydHOM M CTPYYHOM YycaBpiuaBamy. llpaBa je
MpPUBUJIETH]a PAIUTH Ca HOM U HEHUM THUMOM. 3axBajbyjeM mnpod. np [ymany
[IponanoBuhy jep Cy MU HErOBH MYJIPH CaBETH IMOMOTIIH Ja OyaeM 00JbU CTpYyUHhaK U
YOBEK. 3axBaJjbyjeM MEHTOpY, o1 np Henany JahumoBuhy, Ha makJbHBOM HCUNTABAKY
Hucepranyje. Benuky 3axBaiHOCT AyryjeM cBUM 4iaHoBuMa Kommcuje Ha moapy u

Ha KOPUCHUM CyrecThjama OKOM u3paje u nperiena Jucepramnuje.

My eternal gratitude goes to my good friend and colleague dr Kefeng Zhang, without
whom this Thesis would not be the same. It has been my privilege to endure this voyage
with you. | am grateful to my colleagues in the Civil Engineering Department,
especially to Cintia, David, DuSan and Sandy, who each, in their own way, helped me
finish this thesis.

3axBasbyjeM O] cplia U CBUM Kojerama ca MHCTUTYyTa 32 XUIPOTEXHHUKY KOjU CY YBEK
OWJIM PACTIONOKEHM 3a TUCKYCH]Y WM CIPEMHHU J1a MU MOMOTHY, Mehy kojuma Omx
n3nBojuna XKesbka, Auapujany, Jbusby u [paryruna. [loce6Ho 6ux ce 3axBanuna byau
u Jlymany, ca Kojuma cam Jyro Jeiluia KaHIENIapujy U KOjU Cy MOjU HajCTapuju |
HajBpeIHMjHU cabopI y OBOj AUCIUILTUHY. 3axBasbyjeM ce u Hukonu 3naranouhy Ha

OpojUM KOPUCHHUM CyTeCTHjaMa U JUCKyCHjaMa.

[Tocebny, Hajpehy 3axBajqHOCT JIyryjeM MOjUM HajONMKUMa, YOIy U MaMH, KOjU Cy
MH TOKOM TOJIHA TpYyXaJii 0e3pe3epBHy moapmKy. HemaM peun kojuma MOTy OnmHcaTH

KOJIMKO MU j€ TO 3HAYHIIO!

V¥ Beorpany, 2016

Ama



MODELLING TRANSPORT OF MICROPOLLUTANTS IN BIOFILTRATION
SYSTEMS FOR STORMWATER TREATMENT

Abstract

Biofiltration systems, also known as bioretentions or rain-gardens, are widely used for
stormwater treatment. In order to successfully design biofilters, it is important to
improve models that can predict their performance. This thesis presents a rare model
that can simulate removal of a wide range of micro-pollutants from stormwater by
biofilters. The model is based on (1) a bucket approach for water flow simulation, and
(2) advection/dispersion transport equations for pollutant transport and fate. The latter
includes chemical non-equilibrium two-site model of sorption, first-order decay, and
volatilization, thus is a compromise between the limited availability of data (on
stormwater micro-pollutants) and the required complexity to accurately describe the

nature of the phenomenon.

The model was calibrated and independently validated on two field data series collected
for different organic micro-pollutants at two biofilters of different design. This included
data on triazines (atrazine, prometryn, and simazine), glyphosate, and chloroform. The
data included variable and challenging biofilter operational conditions; e.g. variable
inflow volumes, dry and wet period dynamics, and inflow pollutant concentrations. The
model was able to simulate water flow well, with slight discrepancies being observed
only during long dry periods when, presumably, soil cracking occurred. In general, the
agreement between simulated and measured pollutographs was good. As with flows, the
long dry periods posed a problem for water quality simulation (e.g. simazine and
prometryn were difficult to model in low inflow events that followed prolonged dry
periods). However, it was encouraging that pollutant transport and fate parameters
estimated by the model calibration were in agreement with available literature data. This
suggests that the model could probably be adopted for assessment of biofilter
performance of other stormwater micro-pollutants (PAHSs, phenols, phthalates, etc.).
The model, therefore, could be applied in practice for sizing of biofilter systems and

their validation monitoring, when used for stormwater harvesting.



The model was run with laboratory data from batch studies (fluorescein as referent
pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A
procedure was developed for the estimation of parameters from batch studies, and a
regular calibration method was used for parameter estimation from column tests.
Parameters for both sorption and degradation were found to be underestimated from
batch studies. This is hypothesized to be due to differences in the water to soil ratio in
batch studies, when compared to the field. The sorption parameters estimated from
columns were also somewhat underestimated, and when used with the model produced
higher outflow pollutant concentrations. This is especially the case with glyphosate, and
only slightly with the triazines. Column studies also indicate less-kinetic-sorption
behaviour when compared with the field data. It is hypothesized that kinetic sorption
behaviour on the field may be apparent, and a consequence of the assumption that the
flow is one dimensional, when in reality it is not, leading to conclusion that the kinetic
behaviour is due to structural heterogeneity of the biofiltration material, rather than

chemical.

Uncertainty analysis was conducted using GLUE methodology that pointed the most
sensitive parameters: soil-water partitioning coefficient and fraction of sites prone to
instantaneous sorption. Additionally, the predictive uncertainty was assessed by making
95% confidence intervals for model predictions, and it suggested that the model is

sound.
Keywords

Stormwater biofilter, micropollutant modelling, atrazine, simazine, prometryn,

glyphosate, chloroform, uncertainty analysis
Research area: Civil Engineering

Specific research areas: Ecological engineering, Fluid mechanics and hydraulics,

Transport processes in hydrotechnical engineering
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MOAEJIMPABBE TPAHCIIOPTA MUKPOIIOJIYTAHATA V BUODOUIITEPCKUM
CUCTEMHUMA 3A TPETMAH KNIIHNUX BOJA

Pe3ume

Buodunrepcku cucremu, Mo3HATH M Kao OMOpETEH3Wj€ MM KHIIHE OaliTe, ce YecTo
KOPHUCTE 3a TPETMaH KUIIHUX Boja. Jla 6u 6uoduntepn OMiM yCcHemHo npojeKTOBaHH,
HEOTXOIHO j€ MOOOJBIIIake MoJIeNia KOJH MOTY Jia TpeABUIE HUXOBO MoHamame. OBa
JMcepTanyja CcaapKd MOZET KOjH MOXKE Ja CHMYJHpa OTKJIamame IIUpe Ipyme
MHUKpPOIOJyTaHaTa M3 KUIIHUX Boja rnomohy Omodunrepa. Mogen je 6asupan Ha (1)
METOAM JIMHEAPHUX pe3epBoapa KOjUMa Ce OINHUCYyje TOK BoJe U (2) aJABEKTHBHO-
JIMCIICp3UBHE TPAHCIIOPTHE jeHAYMHE 32 TPAHCIOPT MHUKPOIIOIyTaHaTa. TpaHcmopTHA
jemHayMHa CampKM M MOJEN 3a XEMHJCKH HEYPaBHOTEKEHY JBOCTEIICHY COPIIIIH]Y,
Ouopasrpajmy IO peakiju NPBOT peda, W BOJATHIU3ALM]y, U TaKO IpPeICTaBiba
KoMmrpoMuc wu3Mel)y orpaHmueHuxX mojaTtaka (0 MHUKPOIOJIYTaHTHMA Yy KHUIIHOM

OTHIIA]y) U HEOIXO/IHE CIIOKEHOCTH JIa C€ OTHUIIIE Mpupoaa peHoMeHa.

Mopen je kanmuOpricaH M HE3aBUCHO BepH(PUKOBAH Ha JIBE CepUje TEPEHCKHUX IMojaTaKa
NPUKYIUBCHE 33 Pa3JINYUTE OPTaHCKE MUKPOTIOIyTaHTe Ha Ba onodwirepa. [loganum cy
0 TpUa3WHHMMA (aTpa3uH, MPOMETPHH, CHMa3uH), riaudocary, u xiopodopmy. [logamm
o0OyxBaTajy OIEpaTHBHE YCIOBE KOJU Cy BapujadMJIHU ¥ HW3a30BHU: BapujaOUIIHE
3alpeMUHEe BOJE Ha yia3y y Ouodmirep, pa3iiMuuTy IWHAMHUKY CYIIHUX WU KHIITHHX
nepuosa W BapujaOWIIHE KOHIIGHTpaluje 3arahuBavya y KHWIIHO] Boau. Mogen je
YCIIEIIHO CUMYJIHpAo TOK BOJE, ca pa3jhuKkamMa Yy MEPeHUM W CHMYJIUPaHUM
BpPEIHOCTHMA MPOTOKA YOUJbUBUM Y MEpUOIMMA TIOCIIE JYTHX CYIIa, KaJa je 3eMJBHILTE
ucnynano. Crnarame n3Mely CUMyIUpaHuX U MEPEHHX IOJIyTorpaMa je OMiIo yriiaBHOM
no6po. Kao m ca mpoToruma, Iyru CyIIHH MEPUOAN Cy MPEICTaBJballd MPoOIeM | 3a
CUMYyJIallMje KBAJIUTETa BOJIE (HIP. CUMa3uH U IPOMETPUH HUCY HA]OOJbE MOJICITUPAHH Y
Nepuoly MAJOBOJHUX KHIIHMX €MU30/1a KOje Cy YCIEAWJEe IOCie AYror CYIIHOT
nepuona). Mehyrum, 6uno je oxpabpyjyhe na cy mapameTpu MOZen 3a TPAHCIOPT
MoJTyTaHaTa OICHEHU TMyTeM KanuOpalyje OWM Yy CcarjlaCcHOCTH ca BPEAHOCTHMA Y
muteparypu. OBO Jaje Ha3HaKe Ja OM MOJEN MOTrao Ja ce KOPHUCTH M 32 CUMYJIUPAHE

NOHAIIAka JPYTUX MHUKPONOJIyTaHTa (MOJUIMKINYHUX YIJbOBOJOHHIA, (eHoa,



¢ranara, uta.) y buopunrepuma. Mozen 6u, gakie, MOrao a ce IpUMEHHU U Yy IpaKkcu

3a JUMCH3HMOHHUCALEC 6HO(bHHTGpCKHX CUCTCMA U BAJIMJATUOHU MOHUTOPUHT .

Mogen je ucnpoban u ca 1abopaTopujckuM noganuma ca batch tecrosa (¢yopecuenn
Kao pedepeHTHH MHUKPOIIONYTAHT) U ca KOJOHA (XepOWIMIW: aTpa3uH, MPOMETPHH,
cuMasuH W riaudocar). Pa3Bujena je mpormenypa 3a MpOIEHY IMapaMarepa Mojena
KopuinhemeM mopataka ca batch TectoBa, a momamm ca konoHa cy kopumheHu 3a
kanuOpauujy mozaena. [lapamerpu Mozena Koju ONHCY]y COPIIHUjy U OuOpasrpaamy
onpehenn momohy batch tecroBa cy 6mmm mano mortuemenu. Cmarpa ce na je y3pok
TOME Pa3IM4YUT OJHOC 3EMJBHINTE-BOAA KOjU j€ TMPUMEHEH Y TECTOBHMA y OJHOCY Ha
OHaj KOju ce Hajazno Ha TepeHy. CopnumoHu mapameTpu oapeheHu ca KoJioHa Cy
Takohe OWIM Majo TMOTHEHEHH, W JaBaiu cy Behe wu3Ia3He KOHIGHTpaluje
MuKponoiayranara. OBo je moceOHO ciyyaj ca rimdocaroM, W Majl0 Mame ca
tpuazuauMa. [loganm ca KojoHa Ccy MOKa3anu Aa ce y HBHMa OJBHja MPOLEC COPIIHje
KOjH MMa JTAJIEKO Marmhe KapaKTePUCTHKY KHHETUKE, HEro OHO HITO CYy IOKa3aJIy MOAAIH
ca tepeHa. CMaTpa ce J1a je KUHETHKa COpIIIHje Ha TepeHy BEpOBATHO MPUBHUIHA, U Ja
je mocienuia MpeTnocTaBke Ja jé TOK BOAE Kpo3 OnoduiaTep jenHOIMMEH3MOHANAH.
Takohe ce cmarpa nma je jemaH oJ pasjiora 3a NMPUBHIHO KUHETHYKE KapaKTEPUCTHKE
COpIIIIMje Ha TEPEHY CTPYKTypalaHa XETEpOoreHOCT OmodmiITepcKkor Marepujaia, a He

XeMHjcKa (IITO je MPEeTIoCTaBKa MOJIENA).

Amnanuza nHeonpehenoctu je cnposeneHa xopuinhewem GLUE mertononoruje koja je
yKa3aja Ha HajoCeTJbHBHjEe MapamMeTpe Mojena: KOS(pHUIMjeHT MapTULUje U MPOLeHAT
COpIIIMOHHUX MeCTa KOja Cy CKJIOHa MHCTaHT copruuju. [logaTHo, HampaBsbeH je 95%
WHTEpBaJ TOBEpeHa, KOjU je TMokazao Ja je BehmHa mepewma a00po oOyxBaheHa

MOACIOM.

Kibyune peun

buodunrtep 3a TperMaH KUIIHMX BOJa, MOJEIHMPAKE MHKPOIOJIyTaHaTa, aTpa3uH,

CHUMa3HH, IPOMETPHH, Taudocar, xaopodopm, ananuza Heoxpehenoctu
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1 INTRODUCTION

Micropollutants found in stormwater are becoming a noticeable issue, and an increasing
number of studies illustrate their toxicological effects. Although micropollutant
concentration levels are usually lower than what is the maximum allowed level (by
regulations), and pharmaceutical products’ levels are usually lower than therapeutic
doses, adverse effects still exist while their cumulative effects are unknown. In some
cases, harmful effects are caused by micropollutant byproducts. The presence of certain
micropollutants or their byproducts at even low levels are sufficient to change the
metabolism of living cells, which results in deterioration of cell self-protection, making
them susceptible to illnesses and malignant degenerations. The effects are increased in
high population density areas, as well as in industrial and commercial city zones.
Micropollutants and their byproducts have been found in both surface and ground
waters in such areas. These micropollutants are involved in sorption and degradation
processes that eventually lead to their attenuation. Urban stormwater, a possible major
carrier of micropollutants, can contain disinfection products, herbicides, hydrocarbons
and other miscellaneous organic compounds. This is of particular problem for
stormwater harvesting practices that aim to treat captured urban runoff for both non-

potable and (in rare cases) potable uses.

Biofilters, wetlands and other Water Sensitive Design technologies are effective
stormwater treatment technologies. They have been shown to efficiently reduce loads of
nutrients, sediments and metals, but there is no understanding on whether these systems
can remove common stormwater micropollutants. More importantly there are no
reliable models that can predict micropollutant behavior in Water Sensitive Urban
Design navesti puno ime skracenice pre prvog koriscenja u tekstu (WSUD) stormwater
treatment systems. Even models for assessing micropollutant discharges from urban
catchments are very rare. However, without such models, it is difficult to assess impacts
of micropollutants on receiving waters and even more difficult to design and assess

performance of the stormwater treatment and harvesting systems.

Water legislation regulates micropollutant concentrations in waterways either directly,

by controlling their discharge (e.g. National Pollutant Discharge Elimination System,
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US EPA) or indirectly, by setting requirements for achieving a good water status (e.g.
EU Water Framework Directive). Lists of priority pollutants (a.k.a. emerging
pollutants), such as the EU WFD 2008/105/EC, include a large number of organic
micropollutants, some of which are often found in stormwater. To achieve legislative
requirements that call for limiting pollutant discharge concentrations, and especially to
achieve a good water status, it is necessary to collect a substantial amount of
measurement data. The main issue with measurements related to micropollutants in
various environments (water, soil, air) is that due to their very low concentrations (order
of magnitude is pg/L) data uncertainty is quite high: representative samples are difficult
to produce and sample analysis methods include operations that can induce large errors
e.g. concentrating samples to get detectable amounts of micropollutants. This is why
measurements of micropollutant concentrations require high technical and financial
resources. The difficulties in conducting measurements give an additional value to the
development of a micropollutant-biofilter model, as it can be used as a tool to optimize
the monitoring procedure (that is necessary to demonstrate that treatment processes are
capable of achieving the required water quality objectives) by selecting only the most
valuable data points to be collected, thereby minimizing the total expenses (number of

measurements).

1.1 Biofiltration water quality modelling

As previously stated, for biofilters to be used as an effective stormwater management
measure, it is important to accurately model their performance: continuous simulations
of biofilter hydraulic and treatment efficiencies allow for predictions of long-term
impact on reduction of stormwater pollution levels and loads. Reliable modelling of
biofilter performance is crucial for adequate sizing of biofiltration systems when used

for both pollution control and stormwater harvesting.

There are not that many stormwater quality models that can be easily applied to
stormwater biofilters without oversimplifying the processes. Some of the widely used
stormwater software tools, such as MOUSE (DHI, 2009a-c), SWMM (Rossman, 2010)
and STORM (US Army Corps of Engineers, 1977) use reservoir equations for
modelling of biofiltration (i.e. bioretention) hydraulics, while they offer simple user

defined regressions for the assessment of their treatment performance. These regression
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equations need an abundandance of data, which in the case of micropollutants is quite
difficult to obtain (technically and financially). Additionally, they lack the
transferability between different variants of systems and do not perform well under
different operational conditions. Even software specifically developed for stormwater
biofilters, such as MUSIC software (eWater CRC, 2009), although includes a more
complex biofiltration hydraulic model that continuously assesses outflows and moisture
content within the systems, still relies heavily on regression equations for the transport
and fate of pollutants (it uses first-order decay (USTM by Wong et al., 2006), but also
experimentally derived regression curves (EWATER CRC, 2009)). It should be noted
that, to the best of author’s knowledge, none of the above models have been tested with

micropollutants.

There are, however, models more physically based developed for biofilters (e.g.
STUMP (Vezzaro et al., 2010)) or vertical flow constructed wetlands (e.g. CW2D
(Langergraber and Simtinek, 2005)), but they are either dependent on data shown to
have low correlation with micropollutant concentrations (such as TSS, as shown by
Zhang et al, 2015b), or are too complex (excessive data needed).

A more suitable model that is able to simulate the main treatment processes within the

stormwater biofilter with parameters that are easily estimated is needed.

1.2 Overall aim

The aim of this study was to develop a general treatment model that allows for long-
term simulations of stormwater biofilters and their performance for a wide range of
micro-pollutants. The model needed to be reliable even when little data is available,
which is almost always the case. Therefore, the model was required to simulate the main
treatment processes within stormwater biofilters (at least volatilisation, sorption, and

bio-chemical degradation) where the model parameters can be easily determined.
The aim was achieved through following specific objectives:

1. To develop a stormwater micropollutants model that includes the transport and
fate of pollutants in biofiltration systems (the aim for the model was to be mechanistic,
so that it can be easily transferred to other WSUD systems such as filters, infiltration

trenches, swales, wetlands, etc.);
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2. To conduct controlled lab and field tests to refine model components that

simulate micropollutant treatment in biofilters;

3. To calibrate, validate, and assess uncertainties in the model using field data from

two stormwater systems (two types of biofiltration design).

The developed model is anticipated to be used as a tool to ease the management of
stormwater biofiltration systems when they are used for water harvesting or for control
of the polluted urban runoff to water receiving bodies. The model can also facilitate the

validation monitoring of biofilter systems (Zhang et al., 2015).

1.3 Scope of the thesis

The model developed in this study focuses on predicting micropollutants levels in urban
stormwater treated by biofiltration systems of varying design. Model outputs include
both micropollutant concentrations and loads. Although the model can be useful in
water quality assessments, it does not include a specific part that can assist with that
type of analysis (assessment criterias are not incorporated).

The development of the model and its testing was conducted on datasets that were
collected throughout this research, as well with some data previously collected at the
same sites. Data was collected from two different biofiltration cells, located at Monash
campus in Melbourne and from several biofilter column testing tubes. Long term and
high resolution flows, water levels, and soil moisture were measured. Composite and
discrete inflow and outflow samples were analyzed to obtain data on TSS, TP, TN, total
petroleum hydrocarbons, PAHS, glyphosate, triazines (atrazine, simazine, prometryn),
phthalates (dibutyl phthalate, di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and
phenols (phenol, pentachlorophenol).

The sensitivity analysis was performed using the less formal likelihood method GLUE
(Generalized Likelihood Uncertainty Estimation, Beven and Binley, 1992), as it has no
drawback when compared to the strictly Bayesian methods as shown by Dotto et al.
(2010). The main focus of the uncertainty analysis was the module for the transport and

fate of micropollutants.
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1.4 Outline of the thesis

Chapter 2 provides a literature review as well as the identification of the key knowledge
gaps, and presents the research aims and the main hypotheses. The review has four
distinct parts: (1) stormwater quality and identification of key micropollutants, (2)
biofiltration system operation characteristics, (3) review on existing models and
modelling techniques, and (4) sources of uncertainty and uncertainty assessment in

stormwater quality models.

Chapter 3 presents experimental data collected at the field and laboratory scale. It
includes the field tracer tests, field electroresistive tomography, field spiking tests and
laboratory column and batch studies. The column and batch studies were mostly
performed by Kefeng Zhang (PhD thesis, 2015) and are only summarized here.

Chapter 4 presents the development of the MPiRe model, which includes both the
adaptation of the water flow module, as well as the total development of the water

quality part. This chapter includes governing equations and their solving techniques.

Chapter 5 includes model testing against field data i.e. calibration and verification. In
addition to the input data and the boundary conditions, the calibration procedure is
explained and model performance indicators are presented. This chapter also includes
the methodology for estimating model parameters from column and batch tests. The
initial testing includes analysis of the model performance against field data, and the

meaning of parameter values.

Chapter 6 explores the model further via an uncertainty analysis. The calibration
uncertainty is assessed by choosing different parts of dataset for calibration. The
uncertainty of input data is visualized with impact of different scenarios (introduction of
systematic errors to measurement data) on the probability distributions of model
parameters. The results are used for the evaluation of sensitivity and predictive

uncertainty of the stormwater quality model.

Chapter 7 provides a summary of the key findings, as well as a critical overview of the
thesis’ main strengths and weaknesses. A summary of necessary further investigations

IS given.

| Page 6



CHAPTER 2. LITERATURE REVIEW



Chapter 2: Literature review

2 LITERATURE REVIEW

2.1 Introduction

This chapter presents a literature overview of the broader research topic. The first topic
is the stormwater quality in general with a focus on micropollutants, where different
studies reported in literature are explored in search for the key micropollutants (their
importance is estimated by their presence in the stormwater, as well as the hazard they
present to humans and aquatic biota). This is followed by an overview of the major
characteristics of stormwater biofiltration systems that includes their design and mode
of operation. The major focus is the review of existing models and modelling
techniques, which is the base for the development of the model in this thesis
(Chapter 4). The final topic is the review of the uncertainty assessment methods
applicable to stormwater quality modelling that present a theoretical background for
Chapter 6. The literature review is concluded by identifying the key knowledge gaps

and subsequently presenting the specific research aims and main hypotheses.

2.2 Stormwater quality
2.2.1 Micropollutants, priority or emerging pollutants

Micropollutants, priority substances, priority and emerging pollutants are terms that are
sometimes used interchangeably; although the terms overlap to some extent, they have
different origins. The term “micropollutant” is a scientific classification, while the terms
“priority substance”, “priority pollutant” or “emerging pollutant” can be considered

regulatory classifications.

Micropollutants are defined as compounds present in traces in the environment (with
concentrations in the pg/L to ng/L range) that can affect the health of living organisms
(Schwarzenbach et al., 2006). This broad definition does not limit the scope of
substances that can be classified as micropollutants, so literature identifies
micropollutants as various inorganic substances (metals, minerals) as well as different
organic compounds (pesticides, polycyclic aromatic hydrocarbons, phenols, volatile

organic substances, pharmaceuticals and personal care products, etc.).
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Priority pollutants are defined in the US water quality regulatory programs under the
Clean Water Act (CWA of 1977) as “toxic pollutants, with an available chemical
standard test, that are found in water with a frequency of occurrence of at least 2.5% and
are produced in significant quantities.” The list contains a total of 129 pollutants, most
of which are organic substances. The majority of priority pollutants, but not all, are also
considered micropollutants, as they are detected in very low concentrations in the

environment.

Priority substances are defined under the Annex Il of Directive 2008/105/EC (EU Water
Framework Directive, 2008). The list contains a total of 33 organic and inorganic

substances, which are all considered to be micropollutants.

Emerging pollutants are a never-ending list of synthetic or natural substances that are
“not commonly monitored but have a potential to enter the environment and cause
adverse ecological and human health effects” (Geissen et al., 2015). These compounds
are a new frontier in science; some do not have a long history of release into the
environment and are only now becoming detectable due to advances in monitoring
methods, while others are newly synthesized materials or are created by changes in use
or disposal of existing chemicals (Geissen et al.,, 2015). The Norman-network

(www.norman-network.net) lists more than 700 emerging pollutants. Most of these

substances are considered to be micropollutants.

2.2.2 Notable stormwater quality studies

Stormwater as a major non-point pollution source can have a significant impact on
receiving water bodies and as such has been a subject of many studies to date. Probably
the most comprehensive and thorough study is the 1995 Makepeace et al. review of
multiple physical, chemical and microbiological contaminants and indicators covering
around 140 literature sources over a span of 25 years (1967 — 1992). The compilation’s
significant contribution is that it identified and quantified specific parameters (such as
metals, organic compounds, microorganisms, temperatures, alkalinity etc.) rather than
the traditionally used overall quality parameters. The reported levels of these parameters
were compared to their regulated values and additionally to reported possible adverse

effect levels. In addition to defining the most critical stormwater contaminants that
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affect humans (through drinking water) and aquatic life, the study also helped in
identifying the knowledge gaps in the toxicity of the combinations of certain organic
and/or inorganic parameters. Duncan (1999) presented a statistical overview of reported
urban runoff water quality and included interactions between stormwater quality with
land use, population density, traffic density, and other catchment characteristics. The
work by Duncan (1999) was based on data that covered a span of 47 years (1950 —
1997) and 21 specific water quality parameters: suspended solids, nutrients, COD,
BOD, oils, TOC, pH, turbidity, heavy metal concentrations, and faecal coliforms. Gobel
et al. (2007) went even further by developing a matrix for urban stormwater runoff
concentrations for different types of surfaces (roofs, roads, etc.) that is usable in
stormwater quality modelling. This includes event mean concentration range, as well as
the representative average concentrations for 22 pollutants in 12 types of surface runoff
(physico-chemical parameters, sum parameters, nutrients, heavy metals, main ions, and

organic substances).

One of the first extensive priority pollutant specific studies was a monitoring
programme conducted by Cole et al. (1984) across various cities throughout the United
States, which included a total of 129 pollutants (pesticides, inorganic compounds,
PCBs, halogenated aliphatics, phenols, etc.) and their potential risk to human health. A
more recent and comprehensive two-part study was performed in the urban areas of
Paris, France by Zgheib et al. (2012) and Gasperi et al. (2012). The named authors
analysed a total of 88 priority pollutants in separate (“pure” stormwater) and combined
storm sewers, such as metals, PAHs, PCBs, pesticides, volatile organic compounds,

phthalates, etc., and presented their occurrence in particulate and dissolved phases.

2.2.3 Organic micropollutants detected in stormwater

Based on the results of Programme 5: Risks and Health of the Cooperative Research
Center for Water Sensitive Cities (CRCWSC, Australian Government), a list was
compiled that includes organic micropollutants detected in stormwater. The
methodology for the formation of the list was to find whether regulated priority
pollutants are detected in stormwater. The search lists included EPA and EU regulated

priority substances from three major lists:
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The US EPA Priority Pollutants list (126 chemicals) (US EPA, 2009);

The US EPA Unregulated Contaminants Monitoring Rule 2: Assessment
monitoring list 1 and Screening survey list 2 (25 chemicals) (US EPA, 2010);
The European Commission Priority Substances list (33 chemicals) (ECE, 2008).

2-1 shows a list of 91 organic substances from regulated lists of priority

pollutants that are reported to be detectable in stormwater, as well as their detection

range.

Table 2-1 Organic micropollutants detected in stormwater (list adapted from P5: Risks

and Health (CRCWSC, Australian Government) and Zhang (2015))

No. Category Compound CAS No. Detection Range Reference
Halogenated Tribromomethane
! Aliphatics (Bromoform) 75-25-2 lug/L [1]
Trichloromethane

2 (Chloroform) 67-66-3 0.2-12pg/L [1]

3 Chlorodibromomethane 124-48-1 2ug/L [1]

4 Dichlorobromomethane 74-82-8 2ug/L [1]

1], [2], [14
5 Dichloromethane 75-09-2 1.5-14.5ug/L (a1, [[1]é][ L
Tetrachloromethane

6 (carbon tetrachloride) 56-23-5 1-2pg/L [1], [2]
7 Trichlorofluoromethane 75-69-4 0.6-27ug/L [1]

8 1,1-dichloroethane 75-34-3 1.5-3ug/L [1]

9 1,2-dichloroethane 107-06-2 <4ug/L [1], [2]
10 1,1,1-trichloroethane 71-55-6 1.6-10pg/L [1], [2]
11 Trichloroethylene 79-01-6 0.3-10pg/L [1], [2]
12 1,1,2-trichloroethane 79-00-5 2-3ug/L [1]

13 Tetrachloroethylene 127-18-4 4.5-43ug/L [1], [2]
14 1,1,2,2-tetrachloroethane 79-34-5 2-3ug/L [1]

15 1,1-dichloroethene 75-35-4 1.5-4pg/L [1]

16 1,2-dichloroethene 156-59-2 1-3ug/L [1], [2]
17 Trichloroethene 79-01-6 0.3-10pg/L [1]

18 Tetrachloroethene 127-18-4 4.5-43ug/L [1]

19 1,2-dichloropropane 78-87-5 <3ug/L [1], [2]
20 PAHs Total PAHs Unspecified 0.24-33.7ug/L [1[]é][2[]l1([;]”'
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No. Category Compound CAS No. Detection Range Reference
21 Anthracene 120-12-7 0.005-10pg/L [1], [2], [7]
22 Acenaphthene 83-32-9 0.013-0.044 [14], [15]
23 Acenaphthylene 208-96-8 0.027-0.126 [14], [15]
24 Benzo(k)fluoranthene 207-08-9 0.0012-103pg/L [1], [2], [3]
25 Benzo(b)fluoranthene 205-99-2 0.0034-260ug/L [1], [2], [3]
26 Benzo(k)fluoranthene 207-08-9 0.0012-103pg/L [1], [2], [3]
27 Benzo(e)pyrene 192-97-2 4-6.1pg/L [2]

28 Benzo(g,h,i)perylene 191-24-2 0.0024-1.5ug/L [1], [2]
29 Chrysene 218-01-9 0.0038-10ug/L [1], [2]
30 Fluoranthene 206-44-0 0.3-110pg/L [1], [2], [3]
31 Fluorene 86-73-7 0.006-1pg/L [1], [2]
32 Benzo(a)pyrene 50-32-8 0.0025-300pg/L (11, [[é]]' 31,
33 Naphthalene 91-20-3 0.018-100pg/L [1][’6[]2][17[]311
34 Phenanthrene 85-01-8 0.026-10ug/L [1], [2], [7]
35 Pyrene 129-00-0 0.045-120pg/L [11, [21, [3]
36 2-methylantracene 613-12-7 0.01-1.6pg/L [2]

37 9,10-diphenylanthracene 781-43-1 1-1.4pg/L [2]

38 Indeno[1,2,3-cd]pyrene 193-39-5 0.031-0.05 [2], [14], [15]
39 Pesticides Aldrin 309-00-2 0.1ug/L [1]

40 Atrazine 1912-24-9 0.0003-0.0016 [13]

41 Aminotriazole 61-82-5 0.14-0.53 [14], [15]
42 AMPA 74341-63-2 0.48-0.73 [14], [15]
43 a-BHC 319-84-6 0.0027-0.01pg/L 111, [2]
44 B-BHC 319-85-7 0.1pg/L [1], [2]
45 v-BHC (lindane) 58-89-9 0.052-0.01pg/L [1], [2]
46 6-BHC 319-86-8 <0.1pg/L [1], [2]
47 Chlordane 12;;3?7_2_39-6/ 0.01-10pg/L (11, [[12613'] 31,
8 P e 72-54-8 <0.008pg/L 1, 2]
49 DDZI(SPLIZTL‘Z;;'EP:;”V' 72-55-9 <0.015ug/L 1], [2]
50 DDT (di-chloro-diphenyl- 50-29-3 <0.1pg/L (11, 2]

trichloroethane)
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No. Category Compound CAS No. Detection Range Reference

51 Dieldrin 60-57-1 0.005-0.1pg/L [1], [2]

52 Diuron 330-54-14 0.02-0.65ug/L [13[]:'[;:][4]'

53 a-endosulfan 959-98-8 0.1-0.2pg/L [1], [2]

54 Endrin 72-20-8 <0.005pg/L [2]

55 Glyphosate 1071-83-6 <1.92 [14], [15]

56 Heptachlor 76-44-8 0.1pg/L [1]

57 Heptachlor epoxide 1024-57-3 0.1pg/L [1]

58 Isophorone 78-59-1 <10pg/L [1], [2]

59 1,3-dichloropropene (DCP) 115-07-1 1-2ug/L [1], [2]

60 Methoxychlor 72-43-5 <0.02 pg/L [2]

61 Metaldehyde 108-62-3 <0.062 pg/L [14], [15]

62 Pentachlorophenol (PCP) 87-86-5 1-115pg/L [1], [2]

63 Simazine 122-34-9 0.06-0.17 [13]

64 PCBs Total PCBs Unspecified 0.03-1.12 pg/L [2]

65 PCB 118 31508-00-6 <0.01-0.104 pg/L [15]

66 PCB-1260 (Arochlor 1260) 11096-82-5 0.03pg/L [1]

67 Phthalates Diethyl Phthalate (DEP) 84-66-2 2-10pg/L [1], [2]

68 Dibutyl Phthalate (DBP) 84-74-2 0.5-11pg/L [11, [2]

69 Dioctyl phthalate (DOP) 117-84-0 0.4-1pg/L [1], [2]

70 Diethy”‘(‘;xEy:IE;‘thalate 117-81-7 0.45-60.9 pg/L [[11]152%15;]
[15]

71 Butyl benzyl phthalate 85-68-7 3.3-130ug/L [1], [2], [3]

Pharmaceuticals
72 :a"rz z‘:;;‘:nci's Ibuprofen 15687-27-1  <0.0026-0.674ug/L (5]
(PPCPs)

73 Naproxen 22204-53-1 <0.0004-0.145pg/L [5]

74 Triclosan 3380-34-5 0-0.029 pg/L [5]

75 Phenols Phenol 108-95-2 3-10ug/L [1]

76 2-chlorophenol 95-57-8 2ug/L [1]

77 2,4-dimethylphenol 105-67-9 <10ug/L [1], [2]

78 Nonylphenol 104-40-5 0.01-9.17 pg/L [Ggii?’]’[ii]’

79 4-n-octylphenol 1806-26-4 0.018-0.24 [12]

80 4-nitrophenol 100-02-7 1-19ug/L [1]

| Page 13



Chapter 2: Literature review

No. Category Compound CAS No. Detection Range Reference
81 Bisphenol A 80-05-7 0.0015-0.113pg/L [5]
82 Ethers Bis(2-chloroethyl) ether 111-44-4 2.0-87ug/L [3]
83 Bis(2-chloroisopropyl) ether 39?3::2;__?3/ 3.0-400ug/L [3]
Other
84 mis;‘::::i?us Benzene 71-43-2 3.5-13ug/L (1], 2]
chemicals

85 Chlorobenzene 108-90-7 1-10ug/L [1], [2]
86 Ethylbenzene 100-41-4 1-2pg/L [1], [2]
87 Toluene 108-88-3 9-12ug/L [1], [2]
88 Perfluorooc(t;:gss)ulfonic acid 1763-23-1 0.051g/L (10]
89 Perfluor((l):?:gZToic acid 335.67-1 0.09ug/L (10]
90 Perylene 198-55-0 0.05-0.5ug/L [2]
91 m-cresol, p-chloro- 108-39-4 <1.5ug/L [1], [2]

[1] Cole et al., 1984; [2] Makepeace et al., 1995; [3] Pitt et al., 1995; [4] Ngabe et al., 2000; [5]
Boyd et al., 2004; [6] Eriksson et al., 2005; [7] Hwang and Foster, 2006; [8] Go6bel et al., 2007;
[9] Bjorklund et al, 2009; [10] Murakami et al., 2009; [11] Clara et al., 2010; [12] Bressy et al.,
2011; [13] Page et al., 2011; [14] Zgheib et al., 2012; [15] Gasperi et al., 2012; [16] Gillbreath
and McKee, 2015

The organic compounds identified in Table 2-1 were further classified according to
whether they were detected in levels that are considered to have no detrimental effects
to humans. The detection ranges of organic pollutants listed in Table 2-1 were compared
to Australian Drinking Water Guidelines (ADWG, 2011), and Australian Guidelines for
Water Recycling: Augmentation of Drinking Water Supplies (AGWR, 2008). Organic
pollutants detected above AGWR-ADW guideline values are presented in Table 2-2.
The exclusion of other detected organic micropollutants does not imply that their
environmental presense and concentration levels are safe and that they can be neglected,
as the AGWR and ADW guidelines mainly focus on hazards likely to be present in
wastewater and potable water and may overlook a broader range of hazards that may be
present in stormwater (especially for aquatic biota). The chemicals not identified by
AGWR-ADWG as hazards should be further analysed for potential risk to humans and
aquatic biota (Zhang, 2015).
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Table 2-2 Micropollutants detected in stormwater above Australian drinking water
guideline values

Category Compound Detection range Guideline value

Halogenated

Aliphatics Dichloromethane 1.5-14.5 pg/L 4 pg/L®
PAHs Benzo(a)pyrene 0.0025-300ug/L 0.01ug/L?
Naphthalene 0.018-100pg/L 70ug/L"
Pesticides Chlordane 0.01-10ug/L 2ug/L?
Pentachlorophenol (PCP) 1-115pg/L 10pg/L?®
PCBs Total PCBs 0.03-1.12 ug/L 0.14pg/L"®
PCB 118 <0.01-0.104 pg/L 0.016 ng/L "
Phthalates Diethylhexyl phthalate (DEHP) 0.45-60.9 pg/L 10pg/L®
Other MOCs Benzene 3.5-13pug/L 1pg/L?®

& Australian Drinking Water Guidelines (NHMRC-NRMMC, 2011)
® Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies
(NRMMC et al., 2008)

2.2.3.1 Halogenated aliphatics

Halogenated aliphatics are non-aromatic hydrocarbons. A total of 19 halogenated
aliphatics is reported to be detected in stormwater with only one compound,
Dichloromethane, detected in the concentration range above the AGWR-ADW
guidelines (Table 2-2). However, having in mind that the AGWR-ADW guidelines do
not consider all potential hazards to human health and aquatic biota, Chloroform
(Trichloromethane) was also included as a compound of particular significance. This is
due to the high toxicity of chloroform (e.g. stillbirths, Dodds et al., 2004), which is of
particular interest if stormwater is to be harvested for potable use. Sources of
dichloromethane and chloroform in stormwater include solvents, aerosols, fire-retardant
chemicals, and products of reactions of chlorine with organic chemicals (Makepeace et
al., 1995).

2.2.3.2 Polycyclic aromatic hydrocarbons (PAHS)

Polycyclic aromatic hydrocarbons (PAHs) have two or more aromatic rings. Some
PAHSs are volatile (e.g. naphthalene), while most PAHs are hydrophobic (non soluble in
water). Depending on the number of rings, PAHSs can be classified as light (3-rings and
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less: naphthalene, acenaphthene, acenaphylene, fluorene, etc.) or heavy (more than 3-
rings: fluoranthene, pyrene, benzo(a)pyrene, etc.). All PAHs are considered to be
cancerogenous. A total of 18 PAHs are identified in stormwater, with only two
surpassing the concentration levels prescribed by the AGWR-ADW guidelines:
benzo(a)pyrene and naphthalene (Table 2-2). In addition, pyrene (a PAH with five
benzene rings) is also considered to be a significant organic micropollutant as it
contributes substantially to the total PAHs load, and is detected in concentrations
(120 pg/L) close to the AGWR-ADW guideline values (150 pg/L). PAHs are
ubiquitously present in the environment as they are produced by an incomplete

combustion and many fuel processing operations.

2.2.3.3 Pesticides

Pesticides include: (1) herbicides that are chemicals used for prevention of growth or
killing of certain types of vegetation, like weeds, and (2) biocides that are chemicals
used for prevention of reproduction or killing of pest animals (insects, fungi, rodents
etc.). Biocides are also referred to as fungicides, insecticides and pesticides. Pesticides,
therefore, include various chemical compounds such as triazines, organophosphorus,
organochlorines, amino-phosphonates, etc. Chlordane and pentachlorophenol (PCP) are
the only two pesticide compounds detected in stormwater at concentrations above the
AGWR-ADW guidelines (Table 2-2). Glyphosate, an active ingredient in many popular
herbicides, including Monsanto’s Roundup® brand herbicide, is probably the most used
and most studied worldwide pesticide. Due to its classification as “probably
carcinogenic to humans” by the International Agency for Research on Cancer (IARC,
2015) and its widespread use, it was selected as one of the key micropollutants.
Triazines (especially atrazine and simazine) are also popular choices as pesticides due to
their high efficiency in eliminating weeds. Although banned in many countries (e.g.
Serbia, since 2008; EU, since 2003), triazines can still be found and are widely used in
the US and Australia (SoE, 2011). Major sources of pesticides in stormwater are runoff

from gardens, agriculture areas, and pesticide production and storage points.

2.2.3.4 Polychlorinated biphenyls (PCBsS)
Polychlorinated biphenyls (PCBs) are very toxic substances that are persistent and

readily transported from sites of contamination to remote areas (Beyer and Biziuk,
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2009). Total PCBs and PCB 118 are found to surpass the set guidelines (Table 2-2). It
should be noted that PCBs are found to be 100% particle-bound in stormwater (Zgheib
et al., 2012). Main sources of PCBs in stormwater include leaching of lubricants,

hydraulic fluids, landfills, and old transformer fluids.

Table 2-3 The key organic micropollutants that exist in stormwater runoff with their
physicochemical properties (Mackay et al, 2006)

Solubility
(mg/L)

Kienry Half-life

Category Compound (Pa m*/mol) (days)

Log Kow Log Ko

1.3-191 (sandy I)

Halogenated .\ " ethane 16940 1.31 1.68 110-450 54.8 (sand)

Aliphatics 12.7 (sandy clay)
100 (soil)
* - R
Chloroform 8452 1.95 1.65-1.90 200-700 56-180 (grondw.)
PAHs Benzo(a)pyrene 0.002 6.13 6.6-6.8 8-74E-03 229-309 (sandy |.)
Naphthalene 32.2 3.33 2.30-3.17 35-125 80 (soil); 220 (gw)
Pyrene* 0.1 5.13 3.11-6.50 0.5-0.2 199-260 (sandy |.)
Pesticides Chlordane 0.1 2.78 4.19-4.39 0.2-10 476-2272
Pentachlorophen 18.9 483  3.483.60  0.003-0.28 23-178
ol (PCP)
Glyphosate* 12000 3.5 3.42-4.38 1.4E-05 4-210
Atrazine* 29.8 2.65 2.09 2.7-6.2E-04 36-116
Simazine* 5.7 2.18 2.13 0.3-3.4E-04 11-70
PCBs Total PCBs insoluble >4.0 >3.7 20-100 3-100
PCB 118 0.1-0.2 5.4 4.5-5.3 20-101.5 1-120
Diethylhexyl
Phthalates phthalate (DEHP) 0.029 7.48 4.0-5.0 0.004-4 2-69.3
5-16 (soil)
Other MOCs Benzene 1748 2.17 1.99 270-650 10-720 (gw.)

* Micropollutant detection range in stormwater was not above selected guidelines, but is selected

according to different criteria

2.2.3.5 Phthalates

Phthalates are esters of the phthalic acid and are mainly used as additives in the
production of plastic compounds such as polyvinyl chlorids (PVC). Phthalates can be
easily released from plastics, as they do not form a covalent bond, but rather only stay
entangled (Wilkes et al., 2005). This is why many monitoring campaigns of human

urine, food, and environment report the presence of phthalates (e.g. Griffiths et al.,
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1985). As can be seen in Table 2-2, bis(2-ethylhexyl) phthalate (DEHP) is the only
phthalate detected in concentration above the set guidelines. Sources of phthalates are

plastic pipings, varnishes, safety glass and plastic food wraps.

2.2.3.6 Pharmaceuticals and personal care products (PPCPs)

Pharmaceuticals and personal care products (PPCPs) include various compounds and
are usually found in the sewer (from showers, toilets, etc.). There is some evidence of
PPCPs presence in stormwater (Boyd et al., 2004), but the detected levels are far below

selected guidelines.

2.2.3.7 Phenols

Phenols are compounds that are derivatives of the phenol — carbolic acid. Due to their
inexpensive production, phenols are used across different industries: production of
plastics, polycarbonates, epoxide resins, precursor to different pharmaceutical products,
cosmetics, herbicides, etc. The wide use of phenols results in their abundant presence in
the environment. Although there are 7 different priority phenols detected in stormwater,
only four of them have guideline values: 4-nitrophenol (30 ug/L), 2-chlorophenol (300
ug/L), nonylphenol (500 pg/L) and Bisphenol A (200 pg/L). None of the listed phenols
are detected in stormwater concentrations that surpass the selected AGWR-ADW

guidelines.

2.2.3.8 Other Miscellaneous organic chemicals

Of the many non-classified organic chemicals, only benzene is detected in stormwater
in concentrations far above the guidelines (Table 2-2). Sources of benzene in
stormwater include spills and combustion of fuels (especially from motor vehicles), and

petrochemical and chemical manufacturing emissions.

2.2.3.9 Inorganic chemicals

Although not a research aim in this thesis, some inorganic chemicals are also considered
to be micropollutants. The most studied of them are the heavy metals (elements starting
with Sc, sometimes Na). The presence of heavy metals in stormwater is interesting as
they are quite toxic and persistent (are not degraded chemically or biochemically). The
main sources of heavy metals in stormwater are depositions throughout catchments

(Djuki¢ et al., 2016) or emissions in the atmosphere due to either anthropogenic

| Page 18



Chapter 2: Literature review

activities or natural causes. Anthropogenic sources include vehicle brake emissions,
weathering of roof materials, petrol additives, paints, batteries, pesticides, etc. Natural
sources are activities of volcanoes, forest fires, erosion of rock materials, minerals etc.
Lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg),
platinum (Pt), and nickel (Ni) are identified as priority pollutants, while Zhang (2015)
reports six more metals to be detected in stormwater at concentrations above the
AGWR-ADW qguidelines: antimony (Sb), aluminium (Al), arsenic (As), iron (Fe),

manganese (Mn) and selenium (Se).

2.2.3.10 Summary

Table 2-3 presents selected key micropollutants present in the stormwater along with
their physicochemical properties (solubility (S), octanol-water partitioning coefficient
(log Kow), soil-water partitioning coefficient normalized to organic carbon content (log
Koc), Henry constant (Knenry), and biodegradation half-life (T1/,). Possible transport and

fate mechanism for the key pollutants are explored in Chapter 2.4.

2.3 Biofiltration systems characteristics

Stormwater biofilters, also known as bioretentions and rain-gardens, are soil-based
filtration systems that contain a rich plant community that enhances their physical,
chemical and biological treatment processes. Stormwater biofilters are widely used in
the protection of waterways from polluted urban runoffs, and more recently for
stormwater harvesting (Wong et al, 2012). Due to their attractive designs and good
performance in removing sediments (e.g. Li and Davis, 2008a), nutrients (e.g. Hunt et
al., 2006; Davis, 2007, Hatt et al, 2009), heavy metals (e.g. Li and Davis, 2008b; Feng
et al, 2012), and faecal microorganisms (Li et al., 2012; Chandrasena et al., 2012),
stormwater biofilters are popular Water Sensitive Urban Design (WSUD) measures
(also known as Low Impact Development - LID technology or Sustainable Urban
Drainage System, SUDS). Stormwater biofilters have also been tested for organic
stormwater micropollutants at field scale; DiBlasi et al. (2009) showed good
bioretention performance against 16 polycyclic aromatic hydrocarbons (PAHSs). The
importance of organic micropollutants comes from their harmful effect on both (1)
aquatic systems (e.g. toxicity of pesticides to fish (Chopra et al., 2011)) and (2) humans

(e.g. Australian drinking water guidelines regulate maximum allowed concentrations).
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2.3.1 Biofilter design

Soils used as filter media in biofiltration systems need to be structurally stable, with
moderate infiltration capacity, to promote stormwater treatment. The actual
recommendations on compacted hydraulic conductivity rate differ slightly among

regions and continents:

¢ In Australia and Asia infiltration capacities range between 100 and 300 mm/h, in
temperate climates, and up to 600 mm/h in tropical climates (e.g. FAWB, 2009;
ABC Waters — Design Features, 2014);

e In North America the recommended infiltration rates are between 50 and 100
mm/h for natural soils and up to 300 mm/h for engineered soils (soil mixtures)
(e.g. Hinman, 2009; Maryland Stormwater Design Manual Volumes | and II,
2009),

e In Europe, the most comprehensive design manual for biofiltration systems is
CIRIA’s SuDS Manual (2015) form the UK, that adopted recommendations
from FAWB (2009) and suggests infiltration rates of around 100 — 300 mm/h.

The infiltration rates allowed in tropical climates are usually higher, as rain episodes
have larger volumes and are more frequent, and therefore pollutant concentrations are

lower (diluted).

A loamy sand, either natural or engineered, is recommended by most design manuals,
provided it is free of toxicants and weed seeds. The granulometry of the soil should be
such that there is less than 5% clay and silt fractions (< 0.063 mm, w/w) and that the
distribution curve is continuous (FAWB, 2009). The total porosity of the material
should be more than 30% (e.g. The SuDS Manual, 2015). There are limits to organic
matter content (up to 5%), pH (5.5-8.5), and contents of major plant nutrients (total

nitrogen, total phosphorus, extractable potassium etc.).

The area of the biofilter depends on its filter media hydraulic rate, but as a rule of
thumb, it corresponds to around 2% of the catchment area (Hatt et al, 2007). The
recommended depths for different layers of the system are: extended detention 200-

500 mm, filter media 400-700 mm (300-600 mm, in case a submerged zone exists),
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transitional sand layers of 100-150 mm, and gravel (with perforated pipe) of around
150 mm (e.g. FAWB, 2009; The SuDS Manual, 2015). The perforated pipe should have
a slope of at least 0.5% (5% the most) if it is freely draining, or no slope when a

submerged zone is present.

Figure 2-1 Some of the commonly used plants in biofiltration systems: Cephalanthus
occidentalis (upper left), Salix nigra (upper right), Scirpus microcarpus (lower left),
Eupatorium purpureum (lower right). Source: Wikipedia.org

The choice of plants used in biofiltration systems depends on local climatic conditions,
but all plants share a possession of a well-structured root system and a tendency to
sustain wet/dry regimes. The plants have two major roles: (1) to help in the removal of
nutrients and (2) to keep the biofiltration system from clogging (Read et al, 2008). The
plants promote the microorganism and fungi growth in the filter media and the root
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system that help with removal of various pollutants. The plants additionally help in
water retention during dry periods and influence the pH level (e.g. Schnoor et al., 1995).
FAWB, for example, recommends Carex appressa, Melaleuca ericifolia, Juncus
amabilis and Juncus flavidis for effective nutrient removal. The Maryland Stormwater
Design Manual (2009) lists multiple trees (Acer rubrum, Betula nigra, Quercus spp.,
Salix nigra etc.), shrubs (Cephalanthus occidentalis, Hamemelis virginiana, llex spp.,
etc.) and herbaceous plants (Eupatorium purpureum, Scirpus spp., Dichanthelium

scopariu, etc.) as commonly used species.

The additional features for biofiltration systems include the construction of a submerged
zone, addition of organic matter to this zone (mulch, peat, etc.) and inclusion of specific
materials in the engineered soil composition (e.g. Cu®* - exchange zeolite, Li et al.,
2014). These additional features enhance biofilter performance in terms of the removal
of nutrients (e.g. Hatt et al, 2009, Bratieres et al., 2008), heavy metals (e.g. Blecken et
al, 2009; Bratieres et al., 2008) and pathogens (e.g. Chandrasena et al., 2014; Li et al.,
2014). The submerged zone additionally helps in maintaining the vegetation and

microorganism community during prolonged dry periods.

2.3.2 Mode of operation

Stormwater biofilters function as intermittent treatment systems, consisting of:

e The active phase, when stormwater ponds and filtrates through the media during
rain events, and
e The passive phase, when during dry weather pollutants retained in the soil and

captured water are further treated by plants and microbes.

Good practices for biofilter design suggest a retention time in the range of 1 to 3 hours
(FAWB, 2009) during the active phase, while the length of the passive phase depends
on local climatic conditions which are highly variable. The removal of most pollutants
occurs through three main processes (Hong et al., 2006; LeFevre et al, 2012; Zhang et
al., 2014): volatilisation within the biofilters pond and sorption to the filter media and
plant root system — predominate during the active phase, and bio-chemical
transformation and degradation - predominate during the passive stage.
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The hydraulic performance of biofilters decreases with time, as shown by an extensive
study by Le Costumer et al (2009). Most of the change in hydraulic conductivity
happens due to the formation of a so called surface cake i.e. surface clogging, caused by

sediment deposition.

2.4 Review of stormwater and related treatment models
2.4.1 Overall view

A scientific model is an aproximation of the observed reality created to better
understand its nature, underlying processes, and to allow for future predictions. Once
the relevant processes for a particular system are observed, a set of mathematical
equations is selected that transforms the input to output data. These equations represent
only a part of a model’s structure. The remaining structural components include a
solving technique for equations (an algorithm or a numerical model), a procedural
model (a code), and parameter values (estimated from measured data or calibrated). The
model is then tested: (1) against an independent dataset (not used for its calibration) and
(2) for robustness using uncertainty analysis (see Chapter 2.5). Depending on the

knowledge on the system’s processes and observed data, models can be:

e Empirical — completely data-driven models with parameters that do not have any
physical meaning, and, therefore, need to be determined via calibration:
regression equations (e.g. Biofilter treatment equations in MUSIC, eWater CRC,
2009), neural networks (Loke et al., 1997), etc.

e Conceptual — models with processes that have some physical meaning, but are
represented by a highly simplified “concept”; parameters are estimated
indirectly by calibration and directly from measured data (e.g. CITY DRAIN ©
by Achleitner et al, 2007; USTM by Wong et al., 2006), and

e Mechanistic — physically based process models with parameters reasonably
determined from measured data (e.g. CW2D by Langergraber and Siminek
(2005), FITOVERT by Giraldi et al. (2010))

Model equations may be deterministic, where a set of input data always has a unique
output set, or may be stochastic, where the processes are described with random

components, so different model runs on same input data give different model outputs.
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The stochasticity in models serves to account for a process uncertainty that cannot be
reduced by gathering new knowledge; this is known as aleatoric uncertainty (Beven,
2009). Although this quality gives stochastic models a certain advantage, it limits their
calibration, validation and sensitivity analysis, as they do not give consistent results.
Deterministic models are considered a standard approach in many fields, as well as in
urban drainage (Butler and Davis, 2011).

2.4.2 Stormwater biofilter models and water quality modelling

Some of the widely used stormwater software tools, such as MOUSE (DHI, 2009a-c),
SWMM (Rossman, 2010) and STORM (US Army Corps of Engineers, 1977) use
reservoir equations for modelling of biofiltration (i.e. bioretention) hydraulics, while
they offer simple user defined regressions for the assessment of biofilter treatment
performance. The MUSIC software (eWater CRC, 2009) is widely used in Australia and
New Zealand and includes a more complex biofiltration hydraulic model that
continuously assesses outflows and moisture content within the systems. MUSIC can
predict treatment of only sediments and nutrients by biofilters; it is based on a
combination of the first order decay treatment equation (USTM by Wong et al., 2006)
and experimentally derived regression curves (EWATER CRC, 2009), and is therefore a
conceptual-empirical model. The problem of this approach is in the amount of data
needed for their calibration, and its poor transferability between systems used under
different operational conditions. These models are also seldom, if ever, used for the

assessment of micropollutant removal.

Process based models, that simulate the key treatment mechanisms, although far more
reliable and transferable (Loucks et al, 2005), are very rarely used in stormwater
practice. One of the rare examples is STUMP (Vezzaro et al., 2010), characterized by a
simplified water mass balance model, with pollutant fate governed by the removal of
Total Suspended Solids (TSS). The model has not yet been tested for organic
micropollutant removal by stormwater biofilters, but showed good results when tested
for the removal of heavy metals by a biofilter (Vezzaro et al., 2010) and organic
micropollutants (iodopropynyl butylcarbamate - IPBC, benzene, glyphosate and pyrene)

at a stormwater pond (Vezzaro et al., 2011).
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Another example of a mechanistic model is a model by He and Davis (2009), which has
been set up for bioretention water quality in COMSOL Multiphysics to simulate the fate
of naphthalene and pyrene in single events. The flow model is based on Richard’s
Equation with Van Genuchten soil-water parameters, while the water quality model
includes only linear sorption. This model showed good results, but is missing the ability
to simulate pollutant degradation, and therefore has not been tested for continuous

simulations.

2.4.3 Water quality models potentially applicable to stormwater organic
micropollutant modelling

While stormwater treatment literature is very limited on this subject, a literature review
has been done on micropollutant removal processes and their modelling in soil-based
media (especially in the field of bioremediation) and wastewater treatment systems.
Among the many diverse types of micropollutants found in soil media literature,
pesticides and PAHs have been studied most frequently, with a substantial number of
process-based models being set up to include leaching, sorption, aerobic and anaerobic
degradation, uptake by plants, and volatilization at different scales — column, field, and
catchment (e.g. Mulder et al., 2001, Tao et al., 2003, Kdhne et al., 2009). Most of the
models follow the interaction between water and soil (sorption-desorption), and present
processes as different sink terms in the pollutant mass conservation partial differential
equation (PDE). Depending on how the water flow is solved (Richards’s equation,

Philips infiltration, etc.) the PDE is accordingly discretised.

Particularly interesting are the models for Vertical Flow Constructed Wetlands; though
used for wastewater treatment, they share several operating principles with stormwater
biofilters, such as inlet spraying to the surface of the filter media, presence of
macrophytes, vertical flow to the drainage zone, etc. It should be noted that there is a
major difference between wetlands and biofilters: wetlands are permanently wet
systems, while biofilters’ dry weather treatment processes are crucial for their
performance (e.g. Hatt et al., 2009). This makes the loading rates (eWater, 2009) and
selection of plants (Read et al, 2008) for the two types of systems very different.

The models used for Vertical Flow Constructed Wetlands range from simple first-order
decay lumped models (Kadlec and Knight, 1996), to more complex process-based
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multicomponent reactive transport models (e.g. CW2D (Langergraber and Simtnek,
2005), FITOVERT (Giraldi et al., 2010)). The former have been assessed as inadequate
by Kadlec himself (e.g. Kadlec, 2000), while the latter have been adapted from
Activated Sludge Models (Henze et al., 2000) and therefore include complex and
intertwined cycles of substances such as oxidation of carbon sources, organic matter
hydrolysis, nutrient transformation, etc.

CW2D (Langergraber and Simanek, 2005) was developed for HYDRUS-2D software to
model the biochemical transformation and degradation processes. The HYDRUS-2D
software numerically solves the Richard's equation for saturated/unsaturated water flow
and the advection—dispersion equation for heat and solute transport using finite-
elements. The water flow equation incorporates a sink term to account for water uptake
by plant roots. The transport equations include advective—dispersive transport in the
liquid phase, diffusion in the gaseous phase, as well as non-linear non-equilibrium
reactions between the solid and liquid phases — sorption (Siminek et al., 1999). To
demonstrate the complexity of the CW2D module, its 12 components and 9 processes

are listed:

e Components: dissolved oxygen, organic matter (inert, slowly and readily
degradable), ammonium, nitrite, nitrate, and nitrogen gas, inorganic phosphorus,
and heterotrophic and two species of autotrophic micro-organisms;

e Processes: hydrolysis, mineralization of organic matter, nitrification (modelled
as a two-step process), denitrification, and a lysis process (as the sum of all

decay and loss processes) for the microorganisms.

Organic nitrogen and organic phosphorus are modelled as nutrient contents of the
organic matter (they are calculated as a percentage of COD). The biochemical
elimination and transformation processes are based on Monod-type expressions used to
describe the process rates. This adds up to a total of 46 model parameters.

As CW2D has been set up for nutrient analysis, most studies have been successfully
carried out with that particular purpose (e.g. Toscano et al., 2009; Langergraber et al.,
2009). To the best of author’s knowledge, no modelling studies have been performed

with heavy metals or organic micropollutants. This is not surprising having in mind the

| Page 26



Chapter 2: Literature review

number of parameters, and the available data on these pollutants: it should be noted that
only very recent studies present the behaviour of heavy metals and organic pollutants in
constructed wetlands (e.g. Schmitt et al., 2015; Gao et al., 2015).

FITOVERT (Giraldi et al., 2010) was developed as a more practical tool for the design
and operation optimization of vertical flow constructed wetlands. The complexity of the
model is lower than that of the CW2D module. The flow is considered to be dominantly
vertical and is described by the Richard’s equation. Biochemical transformation
processes are similar to the CW2D module, as they both come from the standard
Activated Sludge Models (Henze et al., 2000). FITOVERT is able to handle the
porosity reduction due to bacteria growth and accumulation of particulate components.
This means that the clogging process is also simulated: hydraulic conductivity decreases
with the pore size reduction. Although current settings of FITOVERT are not applicable
to heavy metal or organic micropollutant modelling, it is anticipated that its philosophy

will be useful for the biofilter model set up.

Another important constructed wetland model type is the RSF_Sim model (Meyer et al.,
2008; Meyer and Dittmer, 2015). The RSF_Sim model is a simple phenomenological
model that describes purification processes in retention soil filters (RSFs). It was
designed to be combined with sewer quality models (e.g. SWMM, Mike Urban,
InfoWorks) in long term simulations. The RSF_Sim model works with three complete

stirred tanks in vertical series:

e Ponding: the retention layer provides the water storage on top of the process
layer,

o Filter layer: the process layer describes the sand/gravel layer (saturated during
feeding, drained afterwards) in which the treatment occurs,

e Drainage layer: improves the volume balances.

Descriptions of treatment performances are kept very simple. The total COD is
separated into two fractions: particulate COD is reduced by filtration (down to a
background concentration), and dissolved COD is reduced by a treatment efficiency
factor (varies with temperature, outflow limitation rates and the duration of antecedent
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dry periods). The retention of NH4-N is calculated with a steady-state two-stage linear
sorption isotherm, and nitrification with 1% order kinetics.

The simplicity of the RSF_Sim model allows for very successful calibrations and
validations, and usage in general. However, it should be noted that detailed predictions

of treatment failures are not possible.

2.4.4 Process modelling

Since treatment systems include pollutant flow, it is first necessary to define the
transport processes. The movement of pollutants in the fluid or porous media is driven
by three distinct processes: advection, dispersion and diffusion (Pinder and Celia,
2006). Advection is a transport mechanism of mass (or a conserved property like
temperature) achieved by fluid’s bulk motion: it is a movement by the average fluid
stream velocity. Dispersion is pollutant movement by means of small-scale velocity
variations e.g. due to porous media chaotic structure and/or non-uniform velocity
profile. Diffusion is transport due to the existence of the concentration gradient. As
diffusion and dispersion are similar in that they cause spreading of the pollutant, they
are usually combined in models, and their bulk parameter is the hydrodynamic
dispersivity (Pinder and Celia, 2006). The most commonly used transport process
modelling concepts are (1) the advective-dispersive equation and (2) the tank-in-series
approach. The former is considered a scientific notation of the substance conservation
principle (Hirsch, 2007). The latter, although it represents a conservation principle, is
not considered a “true” transport model: it is a chemical reactor model designed to
contain chemical reactions. However, the tank-in-series or the continuous-stirred-tank-
reactors (CSTRs) are capable of mimicking the advective-dispersive transport for one-
dimensional problems i.e. the input pollutograph can be transformed using CSTRs so as
to have a time-lag (consequence of advection) and a decrease in the amplitude or
spreading (consequence of dispersion). This is achieved by the proper selection of tank
layouts, and is commonly used for modelling ponds and constructed wetlands (Kadlec
and Knight, 1996).

Biofilter ecosystems can be divided into five phases: air, water, sediments (particulates

settled in the ponding zone), filter media and plants. Table 2-4 shows the anticipated
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physical, physico-chemical or bio-chemical processes affecting the mass balance of
pollutants in the five phases. Some processes are only phase exchanges (e.g.
sedimentation, resuspension, straining, sorption/desorption, volatilization) while others
represent pollutant mass sinks (e.g. hydrolysis, photodegradation, biodegradation, plant
uptake). Biodegradation and plant uptake are considered mass sinks, because they
usually include transformation processes where the “original” pollutant species is lost,

while its metabolites are formed.

Table 2-4 Processes anticipated in stormwater biofilters and their impact on pollutant
mass balance in each of the phases

Process Phase air water sediments filter media plants
physical

sedimentation - +

resuspension + -

straining - +

volatilization + - -

physico-chemical

adsorption - + + +
desorption + - - -
hydrolysis -
photodegradation - - -

bio-chemical

aerobic biodegradation - -
anaerobic biodegradation - -

plant uptake - - +

Some of the key treatment processes (e.g. sorption, degradation) have been extensively
studied in biofilters and soil-water environments, and there is a number of fairly
detailed and robust models (e.g. Simtinek and Van Genuchten, 2008, Sniegowski et al.,
2009). Other processes, e.g. volatilization from stormwater biofilter treatment ponds,
have not been studied, and knowledge transfers need to be done from other types of
treatment systems containing a free water surface such as conventional wastewater
systems (Lee et al., 1998) or free surface constructed wetlands (Kefee et al., 2004; De
Biase et al., 2011). Some of the relevant processes for the identified key stormwater
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micropollutants are shown in Table 2-5. Table 2-7 shows some of the common equation
types used for process modelling.

Table 2-5 Some of the key stormwater micropollutants’ properties relevant for fate

processes
Category Compound Volatile”  Sorbable”  Mobile®™  Persistent™

:ﬁ;iet?castm Dichloromethane ++ - +++ No
Chloroform ++ - ++ Slightly

PAHs Benzo(a)pyrene - ++ -—- Yes
Naphthalene + +- + Slightly

Pyrene - ++ - Yes

Pesticides Chlordane - +- - Very
Pentachlorophenol (PCP) - ++ -- Slightly
Glyphosate - +- --- Varies
Atrazine -- +- ++ Slightly
Simazine -- +- ++ Slightly
PCBs Total PCBs + ++ - Slightly
PCB 118 + ++ - Slightly

Phthalates Diethylhexyl phthalate (DEHP) - ++ -—- No
Other MOCs Benzene ++ - ++ Varies

Yvolatility is based on the Henry’s constant, H [Pa m® mol™] (Sebastian, 2013): “++" highly

volatile: > 100; “ +-" volatile 1 - 100; “-” non vol. 0.003 - 1; “--" non vol. < 0.003

2Sorbability is based on the octanol-water partitioning coefficient logKs, (Sebastian., 2013):

“++” high > 4; “ +-” moderate 2.5 - 4; “--” low < 2.5

®Mobility is based on soil-water partitioning coefficient normalized to organic carbon content
Ko (Rogers, 1996): “+++" very high 0-50; “++” 50-150; “+” 150-500; “-” 500-2000; “--" 2000-
5000; “---” very low >5000

“Persistence is based on degradation half-life Ty, [day]: No < 100, Yes > 100, Slightly ~ 100

Sedimentation and resuspension are movements of suspended solids from water to the
bottom of the biofilter’s pond and vice versa. Since a major drive of these processes is a
combination of gravity vs. fluid viscosity vs. particle shape, most of the models contain

a settling velocity (e.g. Stokes’ law) and water depth. A very versatile model is
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proposed in a ScorePP deliverable on Unit Process Models for Fate of Priority
Pollutants (Vezzaro et al., 2009) which proposes sedimentation to be modelled as a
1% order kinetic process affecting the particulate phase of micropollutants (i.e. mass
sorbed to the Total Suspended Solids), assuming there is a fraction of a non-settleable

concentration.

Straining or filtering, in the domain of this work, is a mechanical process of separating
solid matter from liquids by the attenuation of small particles by large one in the porous
media. In a broader sense, filtration involves three different types of processes as per
Table 2-6, where straining is equivalent to mechanical filtration. According to some
researchers, large particles follow the fluid streamlines but are stopped in the
passageways too narrow for passage (crevices and constrictions). The resulting particle
deposits continuously reduce the size of the free passage and eventually can cause
blockage (Herzig et al., 1970).

Table 2-6 Deep filtration types with possible capture mechanisms and decolmatage
characteristics (after Herzig et al., 1970)

Filtration Particle Retention Retention Capture Spontaneous Provoked

type size sites forces mechanism  decolmatage decolm.

Mechanical 2=30um  Constrictions, Friction, fluid Sedimenta- Improbable Flow
crevices, pressure tion, direct direction
caverns inter- reversal

ception
Physico- ~1um Surface sites  Van der Direct inter- Possible Increase in
chemical Waals forces, ception flowrate

electrokinetic

forces
Colloidal <0.1lum  Surface sites  Van der Direct inter- Possible Increase in
Waals forces, ception flowrate

electrokinetic
forces,
chemical

bonding
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Yao et al. (1971) identifies three different transport processes of particles: (1)
gravitational pull of small particles by larger ones, which is referred to as interception,
(2) net effect of buoyant weight vs. fluid drag force, or sedimentation, and Brownian
movement of small particles influenced by surrounding molecules in the fluid, which
can be described as diffusion. In the domain of mechanical filtration, capture processes
are sedimentation and direct interception due to (1) the fluid pressure holding a particle
immobilized against the opening at a constriction site, and/or (2) the friction force
keeping a particle moving from being wedged in a crevice (Herzig et al., 1970).
Filtration is, therefore, influenced by the ratio of suspended solids particle size to filter
bed pore size, but also water depth, flow rate, filter and suspended solids material, filter

bed specific surface, temperature, pore structure, etc.

Model types used for straining range from simple empirical (regression) models like
Siriwardene et al. (2007), across moderately complex kinetical process models like
models by Yao et al. (1971) and Altoé et al. (2006), to complex kinetical models that
include both particle and liquid flow coupled with an increased pressure drop due to
particle retention, like presented by Herzig et al. (1970). Complex models are based on
the probability theory, where retention is described using a collision efficiency factor, as
in the Yao model, or a retention probability, as in the work of Herzig et al. (1970).
These probability coefficients are proportional to the rate of suspended solids removal,

and are used in Kkinetic first-order rate equations.

Table 2-7 Some of the common equation forms/models in environmental modelling

Equation forms Process type

1. Equilibrium processes

H H “u:ry
¢; - concentration in “i” phase non-limited process

K = “driving” coefficient (e.g. e.g. sorption isotherm; c.= 0,
partitioning coeff.) Freundlich isotherm

¢, =K-c;+¢,

n - exponent

c.— non reacting fraction

“ry

K.c ¢; - concentration in “i” phase limited process
G = 1+K-c,,, C K — “driving” coefficient (e.g. e.g. Langmuir isotherm
partitioning coeff.)

Cmax— limiting factor (e.g. max.
adsorption conc.)
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Equation forms

Process type

2. Kinetic processes

dc
—C
dt

¢ — concentration

K, — kinetic rate coefficient
(x=0, 1, 2 - zero, first, second order)

kinetic — rate process

e.g. first order rate:
sedimentation, straining,
volatilization, sorption,
hydrolysis, photodegradation,
biodegradation

e.g. second order rate:
sorption

steady flux oc D, &
OX

do
dt OX

2
de, p, o'
dt OX
a ox._C
dt K.+cC

dC  Hmx y . C

— C

dt Y s
dXx c

o K re

S

K.+cC

¢ — concentration

D, — diffusive rate coefficient
(x=0, 1, 2 — steady, advection,
dispersion)

¢ — pollutant concentration
X — catalyst amount
k — specific process rate — “driving”

K — half saturation coeff. — “limiting”

¢ — pollutant concentration

X — catalyst amount

Umax — Maximum rate

Y — catalyst yield

Umay/Y — Spec. process rate — “driving”

K, — half saturation coeff. — “limiting”

Fick’s law — processes

e.g. plant uptake,
volatilization, D, — advection,
D, — dispersion and diffusive

fluxes

catalyst limited process

e.g. biodegradation: Michaelis-
Menten, volatilization (Lee et
al., 1998), photodegradation -

Langmuir-Hinshelwood

catalyst limited — catalyst
evolving process
e.g. biodegradation: Monod

growth model

Volatilization is a physical process in which a volatile substance dissolved in water is

released and transferred to the atmosphere. In the simplest way, the contact between the

water surface and the atmosphere can be described by four layers: (1) well-mixed,

turbulent, bulk air, (2) thin stagnant layer of air, (3) thin stagnant layer of water and (4)

well-mixed, turbulent, bulk water below the interface region. The transfer is believed to

occur between the two stagnant thin layers of water (3) and air (2) by molecular

diffusion. It is also assumed that resistances in the air and the water film are additive,

although they are of different magnitudes. These two concepts are the basis of the two-
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film theory published by Lewis and Whitman (1924), usually used for the description of
the process of volatilization.

The model consists of pollutant mass transfer through the two layers with a combined
water-air diffusion mass flux (mass-transfer). The equilibrium condition for this theory
is expressed in terms of the Henry’s law. The mass balance is a dynamic steady-state
that does not allow for pollutant mass accumulation in any of the two layers.
Volatilization is influenced by pollutant properties, such as the Henry’s constant and
solubility, and by water and air properties such as temperature, viscosity, partial
pressure, etc. Two-film models have successfully been used for modelling of volatile
organic compounds in primary and secondary settling tanks (e.g. Lee et al., 1998) and
constructed wetlands (e.g. Keefe et al., 2004). It should be mentioned that for more
turbulent environments, models have been developed that do not have a stagnant
boundary between air and water. These include (1) the surface renewal model (Higbie,
1935) — in which new surfaces are formed by breaking waves, air bubbles entrapped in
the water, and water droplets ejected into the air, and (2) the boundary layer model
(Deacon, 1977) — an upgrade to the two-film model that includes a continuous

diffusivity profile and transport of turbulence (kinematic viscosity).

Sorption is a complex physico-chemical process by which one substance (e.g. dissolved
in fluid) becomes attached to another (e.g. mineral surface). This is achieved by
absorption (when substance is incorporated into the volume of another), adsorption
(surface adhesion) and/or ion-exchange. Sorption of pollutants is influenced by
pollutant’s intrinsic properties (hydrophobicity, polarity, aromaticity etc.) and soil
physico-chemical characteristics (e.g. pH, cation exchange capacity, ionic strength,

surface area, soil organic matter, water temperature, etc.) (Langmuir, 1997).

Sorption is usually described using a plot of the sorbate versus concentration in solution
measured at a constant temperature when equilibrium is reached (a.k.a. a sorption
isotherm). The two most commonly used isotherm models for fluid solutions are
(Langmuir, 1997):

e Freundlich — which assumes an infinite supply of unreacted sorption sites, and

e Langmuir — which assumes a finite supply of sorption sites.
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Sorption isotherms are not always adequate to describe sorption processes, even in
simple cases such as batch-experiments, as they lack information on process Kinetics.
This is where e.g. adsorption kinetic models come in place. Qiu et al. (2009) made an

extensive critical review of adsorption kinetic models, grouping them into:

e Adsorption reaction (e.g. pseudo-first-order rate eq., pseudo-second-order rate
eq., Elovich’s eq.) and

e Adsorption diffusion models (e.g. liquid film, intraparticle, double-exponential).

Although both types can fit the kinetic data in batch tests, Qiu et al. (2009) give slight
preference to adsorption diffusion models. This is due to their capability of representing
the real adsorption course “more reasonably”, while the diffusion parameter determined
from these models can be useful for system design (e.g. flow-through treatment
systems). Similar conceptual kinetic models exist for both absorption and ion-exchange.

Stepping up from batch tests to pollutant flow through the porous media, it is necessary
to formulate conceptual models of mass transport which include both transport and
sorption processes. In these cases, isotherms are modified (simplified) and/or combined

with kinetic models, allowing for non-equilibrium models.

The simplest model is the equilibrium Kyq — model (a linear Freundlich isotherm) with
parameter estimates compiled in most textbooks (e.g. Langmuir, 1997; Schwarzenbach
et al., 2003; Mackay, 2006). The Ky parameter is not pollutant specific, but a lumped
parameter that depends on the porous media composition and conditions at which it is
determined, which is why most compilations include this metadata as well. There are
attempts to “break” the Ky parameter into pollutant-specific and media-specific parts
e.g. Ky for organic pollutants is described as a product of the soil-water partitioning
coefficient normalized to organic content, which is pollutant-specific, and soil organic
carbon content (Karickhoff et al., 1979; Karickhoff, 1984). The equilibrium Ky — model
is usually used with the advective-dispersive transport equation, while K4 as a parameter

IS present in many non-equilibrium models.

Probably the most extensive review on non-equilibrium sorption-transport in the
variably saturated porous media is given by Simiinek and van Genuchten (2009). The

models are grouped in:
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e Conceptual physical non-equilibrium for water flow and solute transport and

e Conceptual chemical non-equilibrium models for reactive solute transport.

Both types of models try to compensate for simplifications made with the porous media,
which is assumed to be structurally and chemically homogeneous. Physical non-
equilibrium models compensate for assumed structural homogeneity (Figure 2-2). They
are derived from a so-called uniform flow model (the original version of the transport
equation, with bulk parameters such as hydraulic conductivity and porosity), by
assuming that the soil particles have their own microporosities. These micropores allow
(1) dissolved pollutants to move in-and-out by diffusion (Mobile-Immobile Water
model) or (2) both water and dissolved pollutants to move in-and-out (Dual-Porosity
model). More complex models include the Dual-Permeability models that assume
existence of two types of pores: (1) large a.k.a. interporosity domain with fast fluid and
solute movement and (2) small a.k.a. intraporosity domain with slow fluid and solute
movement, and can be combined with “stationary” pores (such as in Mobile-Immaobile
water). Physical non-equilibrium models may be considered to account for pollutant
absorption to soil, although that is not their primary intent. The motivation for their
development comes from laboratory column experiments with uniform flow and
conservative tracers which show extensive tailing in the pollutograph, indicating
structural heterogeneity.

Equilibrium Model Non-Equilibrium Models
a. Uniform Flow  b. Mobile-Immobile Water ¢, Dual-Porosity d. Dual-Permeability ¢. Dual-Permeability with MIM
| Water Water Water
l Water l l Water l Immob) Mobile * Slow Fast ‘ Slow Fast
-~ e L
Solute Solute fl Solute Solute
l, Solute l Immob| Mobile [immob|  Mobile Slow Fast|| |im.| Stow Fastl
- l -t l - -} >

Figure 2-2 Conceptual physical non-equilibrium models for water and solute transport
(after Simtinek and van Genuchten, 2009)

Chemical non-equilibrium models compensate for assumed chemical homogeneity.
These are: (1) One Kinetic Site — assuming Kinetic nature of sorption and modelled
using any of the kinetic models (usually the first order rate) (2) Two-Site — assuming

instantaneous sorption to one fraction of sorbing sites and kinetic to the rest, modelled
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using a combination of sorption isotherms and kinetic models, and (3) Two Kinetic
Sites models — assuming two natures of sorption sites, each modelled by a kinetic model
(Figure 2-3). When dealing with pollutants in real systems, it is natural to expect both
physical and chemical non-equilibrium. Combination models, such as the Dual-Porosity
with One Kinetic Site or the Dual-Permeability with Two-Site sorption, should be used

when the two processes are of equal intensity (Simiinek and van Genuchten, 2009).

The desorption process is implicitly accounted for in equilibrium sorption modelling,
since sorption isotherm parameters depict net-sorption (sorption-desorption). In non-
equilibrium sorption models, desorption is a kinetic process with identical or different
kinetical model than sorption. Desorption kinetical models are usually first order rate
models (e.g. STUMP byVezzaro et al., 2009).

4. Ome Kinetic Site Model b. Two-Site Model ¢, Two Kinetic Sites Model

=

Figure 2-3 Conceptual chemical non-equilibrium models for reactive solute transport
(6 — soil water content, ¢ — pollutant concentration in water, s° — pollutant concentration
sorbed on soil at equilibrium, s — pollutant concentration sorbed on soil kinetically
(after Simianek and van Genuchten, 2009)

Hydrolysis is a chemical process in which water molecules break existing bonds in
substances and form new molecules: e.g. hydrolysis of organic molecules, RX, includes
reaction with water where anion group X is substituted by OH’, changing the water
acidity. However, hydrolysis is sometimes used as a prototype reaction for any of the
chemical decomposition or displacement reactions in which a nucleophile (electron-rich
species) attacks an electrophilic atom (an electron-deficient reaction centre)
(Schwarzenbach et al., 2003). Hydrolytic reactions are catalysed by acids, bases and, to

some extent, water. Hydrolytic type reactions are usually modelled using kinetic:
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e Pseudo-first order rate equations, when nucleophile is water or its concentration
is constant or unknown, or
e Second order rate equations, when nucleophile concentration is changing and

known (Schwarzenbach et al., 2003).

In most cases, the nucleophile is assumed to be water, and first-order rate is determined
based on experimental data using reaction rate constants. Environmental compilations,
such as Mackay et al. (2006), include hydrolysis “half-life” parameters in various

environmental compartments, which are easily transformed to hydrolysis rates.

Photodegradation is a process of pollutant transformation following light absorption.
This is also referred to as the direct photolysis (Schwarzenbach et al., 2003). Indirect
photolysis, on the other hand, includes light excitation of photosensitive chemicals that
easily react with organic species e.g. hydroxyl radicals, singlet oxygen, or ozone are
formed in the presence of light. Although, indirect photolysis is induced by light
absorption, it is usually neglected in the presence of other degradation mechanisms, due
to its minor impact on the overall degradation rate. Photodegradation is a kinetic
process that depends on (1) solar radiation intensity and wavelength, (2) suspended
matter, colour and other factors influencing the penetration of light through water, (3)
pollutant sensitivity to different wavelengths, and (4) the quantum yield — fraction of

adsorbed photons that result in a chemical reaction (Schwarzenbach et al., 2003).

The kinetics of photodegradation of organic compounds is usually best described using
a Langmuir-Hinshelwood scheme (Gaya and Abdullah, 2008). This is because a plateau
type kinetic profile is observed where the initial rate (increased with longer irradiation
time) changes to zero over time. According to the Langmuir-Hinshelwood model, the
photocatalytic reaction rate is proportional to the reaction rate constant, organic
compound concentration and the Langmuir adsorption constant. However, this scheme
simplifies to a first order rate when applied to micropollutants (at low concentrations).
Reaction rate constant is determined from experimental data, or can be calculated using
pollutant specific data such as the quantum yield, and site-specific data such as water-
depth, irradiation intensity, and water media light attenuation property (ScorePP,
Vezzaro et al.,, 2009). Mackay et al. (2006) report experimentally determined

photodegradation “half-life” parameters in various water bodies.
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Biodegradation is a chemical process of substance dissolution catalysed by
microorganisms: bacteria, viruses, fungi, protozoa or parasites. In this reaction,
microorganisms profit as they receive carbon, nitrogen and energy necessary for their
metabolism. Biodegradation may occur with or without oxygen, depending on the
catalyst microorganism, and can be classified as aerobic or anaerobic. Biodegradation
depends on the availability of microorganisms and substance (e.g. sorbed substance may
be unavailable to microorganisms), but also on redox conditions, pH, temperature, or
any other environmental parameter that limits the metabolism of microorganisms (e.g.
oxygen) (Corapcioglu and Hossain, 1990). Biodegradation can be modelled using some
of the simpler models, such as the zero order rate (constant) or first order rate kinetics
model, or growth — models that include information on microorganisms, which are
usually based on Monod (Monod, 1949) or Michaelis-Menten type kinetics (Johnson
and Goody, 2011). Growth models include relationships between microorganism
growth and substrate (i.e. substance being degraded). Monod type Kinetics assume that
the substance being degraded is a limiting factor in microorganism growth, while
Michaelis-Menten type Kkinetics assumes that microorganism growth is either constant,
or not influenced by the substrate itself: it is an equation developed for enzyme kinetics.
This is why Monod may be more applicable to nutrient degradation modelling, while
Michaelis-Menten may be more suitable for micropollutants. However, there are
multiple cases where Monod kinetics have been used for pollutants that are not apparent
nutrients, such as pesticides (Cheyns et al., 2010; Sniegowski et al., 2009), but the
purpose was to model pesticide-degrading bacteria. Mackay et al. (2006) report
experimentally determined half-life estimates (assuming first-order rate Kkinetics) for
different environmental compartments such as different soils, surface water,

groundwater etc.

Plant uptake (and storage) of organic compounds is one of the important steps in the
global cycling of persistent pollutants (Collins et al., 2006). There is a substantial
amount of evidence of plant contamination with a diversity of toxic organic pollutants,
like accumulation of volatile substances in mosses, lichens, and higher plants due to air-
plant interactions (e.g. Thomas et al., 1984) or phenanthrene and pyrene by soil-plant
interactions (e.g. Gao and Zhu, 2004). Major plant uptake pathways are identified as
follows: (1) passive and active uptake from soil into plant roots, (2) particulate
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depositions followed by desorption into leafs and (3) gaseous interchanges at leaf levels
(additionally influenced by transport of pollutants within the xylem) (Figure 2-4). The
processes depend on the pollutant, plant and soil specific properties like sorption
mechanisms (include octanol-water and octanol-air partitioning coefficients), solubility,
plant lipid content, plant metabolism, temperature, etc. Simple process modelling,
which is usually used for non-nutrient type pollutants, is based on partitioning models at
root or leaf levels (Chiou et al., 2001; Collins et al., 2006), to calculate the plant uptake
factor (PUF) as a driving force for either first-order Kinetic rate (driven by
concentration) or diffusive fluxes (driven by the concentration gradient). The Nye-
Tinker-Barber model, used for nutrient type substances, uses a heuristic Michaelis-
Menten kinetics to model nutrient uptake at root level (Roose, 2000). In addition to the
root uptake, nutrient models include transport through the xylem, and transpiration

fluxes.

Evaporation and
volatilization from leaf

Gaseous deposition to leaf

Dry and wet deposition of via cuticle and stomata

particles followed by
desorption into leaf

Transport in the
transpiration stream
within the xylem

Suspension of soil
particles by wind
and rain

Desorption from soil / ‘ .
followed by root uptake t ‘
from soil solution ‘

Volatilization from
soil

Figure 2-4 Major uptake processes of organic substances by plants (after Collins et al.,
2006)

2.5 Uncertainty analysis
2.5.1 Introduction

Uncertainty is present in every modelling process, with sources ranging from decisions

on model conceptualisation, to data collection, calibration and verification. By mapping
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and analysing sources of the uncertainty, especially by quantifying their impact on
modelling (e.g. estimating confidence intervals), model predictions can become more
reliable i.e. less uncertain. Additionally, by knowing the impact of a particular error
source on the overall simulation uncertainty, it is possible to decide on investing
resources in improving the quality of that particular source e.g. if it is the input data that
has the highest impact on the total simulation uncertainty, then the right decision would
be to work on the data collection system, rather than to increase model complexity or
improve calibration techniques (Vrugt, 2008). This section presents some of the

methods for uncertainty assessment and uncertainty sources identified in the literature.

2.5.2 Uncertainty assessment

A fair number of studies investigated the uncertainty in groundwater, hydrological or
environmental modelling in the past few decades (e.g. Beck, 1987; Beven and Binley,
1992; Kuczera and Mroczkowski, 1998; Kuczera and Parent, 1998; Muleta and
Nicklow, 2005; Refsgaard et al, 2007). In the beginning, the research was directed
primarily toward parameter uncertainty (Kuczera and Mroczkowski, 1998), then toward
calibration induced uncertainty (McCarthy, 2008), only to find its way to the model
structure (Gupta et al., 2012). Urban drainage modelling studies, on the other hand, do
not have such a long history of uncertainty assessment (e.g. Kleidorfer et al., 2009;
Lindblom et al., 2011; Vezzaro et al, 2012; Dotto et al., 2012), but have mostly acquired
frameworks developed for hydrological models. Many of the uncertainty assessment
concepts have been developed into commercial software models, where methods range
from formal Bayesian like the Markov-Chain Monte-Carlo approaches (e.g. MICA by
Doherty (2003), DREAM by Vrugt (2008)), to less formal likelihood methods as the
Generalized Likelihood Uncertainty Estimation (GLUE by Beven and Binley, 1992).
Either concept is used for (1) simple sensitivity analysis (usually qualitative study on
parameters), (2) structural study of uncertainties by examining prior and posterior
parameter distribution while propagating errors through the modelling process, and (3)

evaluating predictive uncertainty using confidence intervals.

2.5.2.1 Methods for Uncertainty Assessments
Many methods for uncertainty assessment are developed for automatic model
calibration. These methods solve an inverse problem and are based on a Bayesian
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approach: (1) prior probability distribution function (PDF) of model parameters is
estimated based on the best-available-knowledge (usually a uniform distribution), which
is then (2) readjusted by sampling data and a likelihood function to obtain a posterior
parameter PDF. The shape of the posterior PDF indicates uncertainty, with extremes

being:

e Total certainty — defined as a Dirac 6 function at the parameter value, and
e Total uncertainty — represented by a uniform PDF over (-0, +00) (Kottegoda and
Rosso, 2008).

Deletic et al. (2012) identify the most commonly used methods for uncertainty
assessment in urban drainage modelling to be the Generalized Likelihood Uncertainty
Estimation — GLUE (Beven and Binley, 1992), Shuffled Complex Evolution Metropolis
Algorithm — SCEM-UA (Vrugt et al., 2003), Multi-objective calibration algorithm —
AMALGAM (Vrugt and Robinson, 2007), and MICA (Doherty, 2003).

GLUE is considered a non-formal Bayesian method, due to its lack of a formal
likelihood function, and its brute-force algorithm for parameter space exploration.
GLUE is based on Monte-Carlo simulations, where model parameters sets are sampled
randomly from their prior PDFs. A user defined likelihood function is used to compare
model results with observations. Model parameter sets with “low” likelihood values are
discarded, while the ones retained are used for formation of a posterior PDF. A “low”
likelihood function is a user defined threshold. The major advantage of this method is
its lack of assumptions on the error distribution function. However, the method may be
computationally costly, and suffers from modeller’s subjectivity on the choice of a

threshold value for the likelihood function.

MICA belongs to the group of Markov-Chain Monte-Carlo methods (MCMC). Markov-
Chain methods sample from a random walk which adapts to the true posterior

distribution and in such way decreases the number of Monte-Carlo runs:

e Initial parameter sets are randomly sampled from the prior PDF;

e Model runs from these sets are evaluated by using the likelihood function;

| Page 42



Chapter 2: Literature review

e Subsequent parameter sets (a.k.a. proposed) are sampled from an updated
parameter PDF function which depends on the values of the previously
generated parameter sets;

e Proposed parameter sets can be accepted or rejected based on the comparison

between their likelihood function with that of the previous set.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is one such
MCMC, where proposed parameter sets can be accepted even when they have a lower
likelihood function than their parent sets, allowing for a broader parameter space search
(avoiding local optima). MICA uses Bayes’ theorem for calculation of posterior
distributions, and assumes normal distribution of errors. The acceptance of parameter
sets is not based on subjective threshold criteria for the likelihood function, but on the

Metropolis-Hastings algorithm and assumed likelihood function.

SCEM-UA is a hybrid between GLUE and MICA: it explores the parameter space using
the Metropolis-Hastings algorithm, but finalizes the posterior parameter PDFs by
selecting those parameter sets with likelihood values above user defined threshold.
AMALGAM is a complex 4-step algorithm that includes a genetic algorithm,
Metropolis search, and GLUE-like cut-off. Both have a major advantage over the brute-
force method (like GLUE) in that they can explore larger parameter spaces, with small
computer costs, by focusing only on areas with high likelihood values. However, both
have issues with subjective criteria for the likelihood functions.

Dotto et al. (2012) explored these four uncertainty techniques on simple water quantity
and quality models, and concluded that all of them generated similar posterior PDFs and
predictive uncertainties (confidence intervals on model results). The compromise is
between the need for a strict theoretical description of uncertainty (e.g. MICA), which
requires extensive modeller’s knowledge, simplicity (e.g. GLUE) and computer time
(SCEM-UA and AMALGAM are very time efficient algorithms).

2.5.3 Sources of uncertainty in stormwater quality models

Deletic et al. (2012) presents development of a conceptual framework for uncertainties
assessment in urban drainage modelling: a Global Assessment of Modelling

Uncertainties (GAMU). In this framework, three key groups of uncertainty sources are
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identified: (i) Model input uncertainties, (ii) Calibration uncertainties, and (iii) Model

structure uncertainties.

(1l1) Model structure uncertainties

(1) Model input uncertainties ‘ 7, Canceptualisation |

[ 8. Equations

and boundaries

1. Input data (ID) ‘ 9. Numerical methods

2.Model
Parameters (P)
5. Calibration
3. Calibration data 4. Calibration data Aleoiihmic)
measurements (CD-M) selection (CD-5) 6. Objective

Functions (OF)

(1) Calibration uncertainties

Figure 2-5 Key sources of uncertainties in urban drainage models and links between
them (after Deletic et al., 2012)

Model input uncertainties are mostly associated with measured data uncertainties, and
are caused by systematic and/or random errors. This type of uncertainty is usually
defined as a dispersion of measured values. A probabilistic approach for expressing
uncertainty is a probability density function associated with input data (and this does not
necessarily have to be a normal distribution). Sometimes, it is not possible to find input
data probability distribution functions due to an insufficient amount of available
measured data. In this case, estimates can be made based on the-best-available-
knowledge (e.g. information on the accuracy in the equipment used and assuming
normal error distribution) or the Monte Carlo method to propagate probability
distribution of the least restrictive type (e.g. uniform). In either case, uncertainties are
propagated by running the model multiple times to obtain confidence intervals on model
results. If these intervals are narrow, then it is safe to assume that input uncertainties do
not play an important part in the overall uncertainty. Uncertainties in input data have
been addressed by some urban drainage modelling studies in two ways: (1) “simply” —
by propagating errors through the model by keeping the model parameters fixed (e.g.
Rauch et al., 1998) or (2) “in-depth” — by assessing the impact of input data
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uncertainties on model parameters and model results (e.g. Kleidorfer et al., 2009; Dotto
etal., 2014).

Calibration uncertainties arise due to any of the selections made in the calibration
process: (1) calibration dataset selection, (2) calibration algorithm or (3) the objective
function. In addition to having similar uncertainties as the input data (due to
measurements), calibration dataset should be selected to fit the purpose of the model’s
application. McCarthy (2008) showed that the microorganism model gave better
predictions when it was calibrated using instantaneous concentrations instead of
microorganism fluxes. In addition, many studies dealt with the selection of data for
calibration and model verification (e.g. Vaze and Chiew, 2003). Todorovic (2015)
studied the impact of the calibration period on parameter estimates in conceptual
hydrological models. She found that with an increase in the length of the calibration
period, variability of the parameters slightly decreases. Multiple studies have addressed
the impacts of calibration and uncertainty analysis methods, along with a choice of
different objective functions, on model predictions (e.g. Dotto et al., 2012; Kleidorfer et
al.,, 2012). It was shown that different calibration methods can lead to different
parameter sets, while still having a similarly good fit between measured and modelled
data. This can happen due to difficulties in finding the global optimum, particularly
pronounced in complex systems with a multi-modal objective function surface. It can
also be the case that the model is “ill-posed” (Dotto et al., 2009), and that some of the
model parameters are not “true”, but rather compensate for the neglected or ill-
conceptualized processes. The concept that a unique optimal parameter set exists is
something that many researchers do not hold for granted, but rather accept the concept
of “equifinality”, introduced by Beven (2009), in which more than one parameter set
may be able to provide an equally good fit between the model predictions and

measurements.

Model structure uncertainties can be associated with (1) conceptualization (conceptual
model), or determination of relevant processes to be modelled, (2) equation selection
(mathematical model) or (3) solving technique (computational model) (Deletic et al,
2012; Gupta et al., 2012). Inspired by the idea that “we must be able to establish

whether a model structure is adequate to the task of simulating system behaviours under
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past, current, and potential future conditions for both similar and relatively different
locations and/or modelling conditions”, Gupta et al. (2012) performs an in-depth
analysis on model structural adequacy and synthesizes current knowledge from several
different modelling communities: groundwater (GW), unsaturated zone (UZ), terrestrial
hydro-meteorology (THM), and surface waters (SW), suggesting a five-step framework
for model evaluation (Figure 2-6). Although, model structure uncertainties are
recognized to be relevant, there are not that many studies which actually address their
impact on modelling results. A rare example is a study by Blumensaat et al. (2014)
performed on river water quality models. In addition to presenting the assessment
framework, it shows that model structure and parameter uncertainties are of the same

order of magnitude.

Conceptual Physical Structure
THM: Physical structure defined in terms of dominant processes & assumed to be correct [
SW: Physical structure defined in terms of dominant processes & assumed to be correct 1
UZ: The physical structure of soil is subject to large uncertainty [ ]
Conceptual GW: Substantial challenge to determine the 3-D structure of the hydro-geological system [ |
Model
Conceptual Process Structure
THM: Recent work includes missing processes such as groundwater & impact of carbon on transpiration |
SW: Typically uses fixed model structure and focuses attention on estimating parameter values 1
UZ:  Process description typically assumed to be complete [
GW: Process description typically assumed to be complete
Spatial Variability Structure
THM: 1-D with attention to within-grid variability in land cover & between grid variability in parameters | [ 7]
SW: Typically a set of 1-D elements with attention to spatial variability in model parameters
UZ:  Substantial challenge to estimate spatial variability (especially horizontal) in soil hydraulic properties| [ |
Math GW: Substantial challenge to estimate spatial variability in aquifer properties [ ]
Model Equation Structure
THM: Some debate about choice of model equations, especially when empirical solutions are used I:'
SW: Model equations largely empirical guesses | ]
UZ: Mathematical forms of water retention and hydraulic conductivity generally assumed adequate [
GW: Typical to rely upon macroscopic-scale equations, with some use of stochastic PDEs
Computational Structure
Comp THM: Numerical errors relatively easy to control, although Richards’ equation requires special attention [
Model SW: Numerical errors often assumed to be insignificant 1
UZ: Prone to substantial numerical errors because of highly transient & non-linear processes [
GW: Compromises frequently made between numerical accuracy & computational efficiency [

Figure 2-6 Subjective assessment of the emphasis (indicated by the length of bars) given
by different modelling communities to various sources of model inadequacy (after
Gupta et al., 2012)
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2.6 Conclusion: Identification of key knowledge gaps

There is a fair number of stormwater quality studies that provide good insight into
possible stormwater compositions. However, the mechanisms of pollutant transport and
fate across the catchment, and particularly treatment systems, are not fully known. Even
though a large number of studies have been performed specifically studying the
behaviour of various pollutants in stormwater biofiltration systems, they have rarely
included the most common stormwater micropollutants. This opens certain research

questions:

e Are biofilters capable of treating micropollutant rich stormwater? If so, under
which conditions?
e What are the key transport and fate mechanisms for micropollutants in

biofilters?

Since the data on micropollutant behaviour in stormwater biofilters is scarce, it is only
natural that models capable of reproducing their behaviour are also rare or non-existent.
A literature review indicates that there are only a few models that can be adjusted to be
used for micropollutants in biofiltration systems. These models either have very simple
water dynamics, or lack some of, what is believed to be, key mechanisms. As such, the

literature review indicates that:

e A new model is required that can adequately predict micropollutant behaviour

in stormwater biofiltration systems.

This model can benefit from the reviewed models’ algorithms e.g. a hydrodynamic
module based on MUSIC (eWater, 2012) may be useful, or a treatment module adapted
from RSF_Sim (Meyer et al., 2008; Meyer and Dittmer, 2015) or from the Hydrus
family (Simtinek et al., 1999).

There is a wide range of uncertainties that can impact the modelling results. It is,
however, not standard practice to acknowledge and evaluate these uncertainties. This is
particularly the case with urban drainage water quality models, which is why this

research will attempt to perform such analysis on the developed model.
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2.7 Research aims and objectives

The literature review found that significant knowledge and data gaps exist and in order
to develop a new biofilter micropollutant model, a number of these gaps need to be
filled. The overall aim presented above will be accomplished by completing a number

of smaller, more specific, aims/objectives and hypotheses as follows:

1. To develop a transport and fate model for organic micropollutants in stormwater

biofilters:

e It is hypothesized that micropollutants can be grouped according to their
chemical structure and nature into a few groups, and that a good “representative”
can be selected from each group, whose transport and fate models can be
“transferred” to each member of the group.

e It is hypothesized that the complex hydrodynamic behaviour of urban
stormwater in WSUD systems can be conceptualized by a multiple reservoir
approach (one-dimensional model with dominant vertical flows).

e It is hypothesized that transport of micropollutants in the biofilter can be
predicted by a linear advective dispersive transport equation (vertical), while
conceptual 1% and 2" order decay models could be used to assess the removal
processes that may be physical/chemical/biological in nature (settling, straining,
volatilization, photodegradation, hydrolysis, aerobic/anaerobic biodegradation,

adsorption, and desorption).

2. To conduct controlled lab and field tests to refine the model component that simulates

the micropollutant treatment in biofilters:

e It is hypothesized that a large amount of data should be collected to ensure

accurate testing and verification of the newly developed model.

3. To calibrate, validate, and assess uncertainties in the model using field data from two

stormwater systems (biofilters with different designs):

e It is hypothesized that uncertainty analysis (using two different field data sets)
will point to sensitive parameters and provide insightful information about the

processes.
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2.8 Methodology used to complete the research aims

There is a total of seven chapters in this thesis, with each one contributing to the above
listed aims. Chapter 2 is a literature review which should result in a better understanding
of micropollutants present in stormwater, their transport and fate processes through the
biofiltration systems and assess available micropollutant and similar models potentially
useful in the development of the future model. Chapter 3 presents experimental
methodology and collection of data for model development and testing. Chapter 2 and 3
provide necessary knowledge and data for the development of the model in Chapter 4.
Chapter 5 presents calibration and verification of the model developed in Chapter 4
using data presented in Chapter 3. The data used for model testing includes field data,
laboratory column and batch test data. Chapter 6 includes uncertainty analysis of the
developed model, and its result should point to sensitive parameters. Chapter 7 gives a

summary of conclusions, evaluation of research aims, and further research ideas.

Major parts of the overall thesis include field and laboratory studies as well as model
development and testing. The information from data analysis and literature review will
assist in the development of the micropollutant model. The models’ code will be written
using Python language, which was selected on the basis of its widespread use as a
scripting language in commercial and open source programs. Model calibration,
verification and uncertainty analysis will be conducted using an array of available

softwares.
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3 EXPERIMENTAL DATA

3.1 Introduction

This chapter presents the data collection methodology used in this study. Data collected
through laboratory and field experiments is used for the development and testing of a

micropollutant transport and fate model in biofiltration units.

The chapter begins with a description of the field experimental site, where both tracer
and micropollutant spiking tests were performed. This is followed by an explanation of
the measuring system for flow and meteorological data, as well as sample collection and
analysis methods. The tracer test is complemented with an Electrical Resistivity
Tomography to visualise the vertical flow field, and the field measurements are
accompanied by laboratory batch and column studies. The collected data is presented
with its statistical measures, and a brief estimate of possible data uncertainty is

provided.

3.2 Field experimental site

Field data was collected from the Monash Car Park Biofilter built inside Monash
University (Australia) campus, which harvests stormwater from a nearby multi-level
parking lot for irrigation of a sports oval (Figure 3-1). This biofiltration system consists
of three separate cells (all lined), with different configuration of the filtration layers and
plant covers. Although the biofilter has been in operation for 9 years, it is not in its
original state. The biofiltration system were reconfigured in 2009, when barriers were
placed between cells (to avoid fluid mixture among cells) and middle cell has been
filled with media following the Guidelines for Soil in Filter Media in Biofiltration
Systems (FAWB, 2009). This study was performed on only two of the cells, as the third

cell experienced a high degree of clogging.

Cell 1 is a biofilter which is made with loamy sand and planted with Carex appressa
(Table 3-1). The loamy sand that is used has a nutrient content well above the best
design practice (FAWB, 2009), with on average 1600 mg/kg total nitrogen (TN) and
320 mg/kg total phosphorus (TP). There is an abundance of soil organic matter (SOM),
4.6% on average, and the soil’s pH value of below 7.5 is considered to be normal
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according to the same guidelines. Loamy sand is placed at a depth of 50 cm, and below
it was a drainage layer consisting of small gravel and sand. There is no transitional
layer. The drainage layer also has a central sloping (1%) PVC perforated pipe. The pipe
is placed at the bottom of the cell, made out of an impermeable concrete, which extends
all the way to the sides of the cell, isolating the cell from the surrounding soil media.
The outlet of the PVC pipe is at the same level as the cell bottom, so the filter media can
drain completely. This pipe is the outlet of the biofilter. There is an extended detention
zone, provided by the placement of a security weir at a height of approximately 40 cm

above the ground level (Figure 3-2).

Stormwater
Pond

a (Treated water)
O
O]
O
—

Monash O

Parking

Lot

p Flow measuringj point
® Sampling point

— Water flow

---- Pipe

Figure 3-1 The Monash Car Park Biofiltration system — a scheme

Cell 2 is a biofilter which is made with sand and planted with Melaleuca ericifolia
(Table 3-1). The sand used has a nutrient content in accordance with the best design
practice (FAWB, 2009), having on average 850 mg/kg TN and 255 mg/kg TP. The
SOM, 2.2 % on average, and soil’s pH value of below 7.5 are also considered to be
normal (FAWB, 2009). Sand is placed at a depth of 70 cm, with the material between
50 and 70 cm being at the same time a drainage layer and a submerged zone with extra
organic content provided by the presence of woodchips and dry peat. Similarly to Cell
1, the drainage layer also has a central sloping (1%) PVC perforated pipe, placed at the
bottom of the cell, but the outlet of the pipe is 20 cm above the cell bottom, allowing for
submerged zone to be formed. This cell is also completely isolated from the

surrounding soil by an impermeable concrete. There is an extended detention zone,
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provided by the placement of a security weir at a height of approximately 40 cm above
the ground level (Figure 3-3).

Table 3-1 Soil Characteristics and configurations of the two field biofilters, Nov 2013

Cell 1 Cell 2
(loamy sand, no (sand, with submerged
submerged zone) zone)
Soil Characteristics
Sampling point (sample ID) depth” 10 cm 30 cm 10 cm 30cm
sand (0.063 — 2.0 mm) 91.4% 92.8% 95.3% 99.4%
Soil texture  Silt (0.002 —0.063 mm) 6.10% 4.10% 3.70% 0.30%
clay (£ 0.002 mm) 2.50% 3.10% 0.10% 0.30%
pH 7.10 7.40 7.10 7.20
Bulk Density (g/cm?) 1.58 1.61 1.56 1.59
Soil Organic Matter, SOM (%) 5.30 3.90 4.20 0.350
Total Phosphorus, TP (mg/kg) 470 260 420 30.0
Total Nitrogen, TN (mg/kg) 2,000 1,200 1,400 300
Average Soil Porosity 0.35 0.40
Geometry
Length (m) 9.65 9.65
Width (m) 1.35 1.35
Ponding depth (m) 0.41 0.41
Filter depth (m) — design value 0.50 0.50
0.20 (coincides with
Drainage layer (m) — design value 0.20
submerged zone)
filter material mixed
sand and small gravel with woodchips and dry
perforated PVC pipe peat
@100 perforated PVC pipe
@100
Submerged zone depth (m) No 0.20
Plant species Carex appressa Melaleuca ericifolia

) Depth measured from the soil surface during dry period
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Figure 3-2 Cell 1 at the Monash car park biofiltration system — a scheme
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Figure 3-3 Cell 2 at the Monash car park biofiltration system — a scheme

3.2.1 Measuring and sample collection system

Water quantity data. The biofiltration system is equipped with flow measuring

devices for inflow - I, outflow - D (drainage pipe), and overflow — O (flow over the
security weir) (Figure 3-4).

Mixing
Tank

Cell 1 H
*L (manual) ®' O dp
b (ultra-sonic)
LJ H
¥], (manual) ¢ O
Cell 2 (ultra-sonic)

(Cipolletti weir 0 v ¢
and ultra-sonic) D, D,
(V-notch and
ultra-sonic)

Figure 3-4 The flow measuring system scheme
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The measuring system for flow is composed of V-notch weirs for inflow and outflows,
trapezoidal (Cipolletti) weir for overflows, equipped with an open channel flow meter -
Siemens Milltronics OCM I1l. Data was logged using the dataTaker ® 500 which

connects to a PC via the DelLogger software.

The OCM I emits ultrasonic pulses that echo off the water surface and get captured by
its transducer (supplied with velocity, auxiliary head and temperature sensors). The
measured time for the echo is temperature compensated and converted into a
measurement of head for a given zero reading (Instruction Manual PL-505, 2001). The

range of the measurements is 0.3 m min to 1.2 m max, and the resolution is 0.2 mm.

Although the Siemens Milltronics flow meter can provide flow measurements using its
velocity sensor, in this biofilter setup it was used as an ultrasonic depth measuring
device, and the measured water depth was converted to flow using a calibration
equation. The equation is Kindsvater and Shen’s formula (USBR, 1997) of the

following form:

8 0 5/2
Q=C9-E-\/ﬁ~tan(5j-(H +k) (3.1)

where Q is the flow in the function of water head — H [L], and V-notch angle § [deg]. Ce
is the flow coefficient, and k [L] is the head correction, both functions of 6 (C. is
additionally a function of the flow regime over the weir e.g. fully contracted flow). All

V-notch weirs on site have a 9 equal to 30°.

Figure 3-5 The Theta Probe — soil moisture sensor type ML2x
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Since, it was found out that the ultrasonic depth sensors were not functioning properly
at the inflow weir — I, the flow was additionally measured manually (discrete

measurements) by a volumetric method.

Measurements of the water depth near the overflow Cipolletti weirs were at the same
time measurements of water depth in the ponding zone of the biofilter — marked as H in
Figure 3-4. The ultra-sonic depth measurements were averaged on a 30-sec interval for
all measuring points (the sampling rate was 10 Hz).

Soil moisture measurements were taken with the Theta Probe sensors (Figure 3-5)
placed horizontally at multiple sections and different depths of the biofilter as can be
seen in Figure 3-6. The probe sends an output voltage proportional to the difference in
amplitude of the standing wave in two point of the transmission line. The standing wave
is produced by the emission and the reflection of the 100 MHz sinusoidal signal sent via
a transmission line ending with an array of four rods in the soil. The change in the
impedance of the rod array is influenced by the dielectric constant of the continuum
between the rods, and since the dielectric of water is much higher than both soil and air
(40 — 80 times), therefore, it can be completely attributed to the water content (Theta-
Probe USER Manual, 1999). The probe output, which is in mV, is converted to

volumetric water content via the following equation:

(1.1+ 4.44"“"‘“”“\”)—610 ,
o 1000 m (3.2)
3 m’

where a, and a; are calibration coefficients specific to soil, and for these biofilter cells
are: a, = 1.3727, a; = 9.6992. The full measurement range is 0.0 to 1.0 m®*m™, but the
accuracy of +0.01 m®m applies to the range 0.05 — 0.6 m®m™ (0 - 40°C) (Theta-Probe
USER Manual, 1999).

The placement of the probes was optimized to capture variations of soil moisture profile
with distance from the inlet and with depth. Data from the soil probes was stored using
the dataTaker ® 600 in 15-min intervals (this was selected due to the not so dynamic
change in soil moisture, as seen with previous experiments, and to save memory to

allow for long term observations).
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Figure 3-6 Soil moisture probes scheme

Water quality data. To assess the water quality in field experiments, two types of
discrete samples were taken at both inflow, I, and outflow points, D: high frequency
small volume and low frequency large volume samples. The small volume samples
were taken to measure temperature and electrical conductivity (EC) with a multi —
parameter probe PCSTestr 35 (temperature range 0 — 50°C, accuracy £0.5°C; EC range
200 —2000uS/cm, accuracy +1%), while large volume samples were collected in
standardized bottles (plastic, dark glass etc.), kept on ice during the experiment, and
taken to the laboratory for further analysis (pH, EC, nutrients, organic matter,
micropollutants etc.). Inflow samples were grab samples, taken by sterile containers and
transferred to smaller bottles (standards and replicates for laboratory analysis), while
samples at the outflow were collected using a peristaltic pump, with the hose set in the
lower ¥4 of the outflow pipe and directly poured in bottles. The samples were taken at a
faster rate in the rising part of the breakthrough curve (e.g. every 200 to 500 L of
cumulative outflow volume) and less frequently toward the end of an event (1000 to
1500 L), as can be seen in Figure 3-7 (this is important for calculations of EMCs —

event mean concentrations).
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Depending on the experiment type, the samples brought to the lab were analysed for
pH, turbidity, fluorescein concentration, and EC. The pH and EC were checked with the
HACH senslON+ MM374 multi-parameter benchtop meter. The measurement range for
EC with this meter is 0.2 mS/cm to 200 mS/cm with an accuracy of <0.5%, and for the
pH is 0 to 14 pH with an accuracy of 0.002 pH. Turbidity measurements were done with
a HF Scientific Micro TPI portable turbidimeter.

Sampling points in an event

1.0 10000
Flow rate
- --- Cumulative Volume ____- A— - -
_ 0.8 7 A Sampling points M. 8000 "
< A | E
=06 N - 6000 3
2 =
= ”
E ’ g
£ 04 +———————pf+H -1 A~ - A - 4000
o . &
= E
02 ———gF W et - 2000 5
s}
0.0 T T T T T 0

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00
time [hh:mm)]

Figure 3-7 The sampling points showing the custom sampling procedure

AQUAFIuor® was used for measurements of fluorescein concentration in water
samples with a linear detection range between 0.4 to 400 ppb (equivalent to pg/L).
Linear detection range provides that the reading of the AQUAFIluor is directly
proportional to the content of fluorophore. The device can be used for sample
temperatures between 5 and 40°C, but since the readings are very sensitive to
temperature, it is important to assure that the readings done on samples are temperature
compensated to the temperature of the calibration standard. Fluorescence readings are
also pH dependant, so each data point needed to be accompanied by a measurement of
the pH value.

Once collected, the water samples were stored on ice, after which they were delivered to
a NATA accredited laboratory (NATA — National Association of Testing Authorities,
Australia) for analysis. All the samples were analysed for THMs, phenols, phthalates,
PAHs and triazines using GCMS, for glyphosate using HPLC and for TPHs using GC
FID (USEPA SW 846 Rev 2007) (see Table 3-2). The limit of report (LOR) for THMs,
phenols, PAHs and phthalates was 1 pg/L. The LORs for glyphosate, triazines and
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TPHs were 30 pg/L, 2 pg/L, and 100 pg/L, respectively. Electric conductivity (EC) was
measured for all samples using a HACH sensION 378. The total dissolved solid (TDS)
were then calculated based on a correlation between the EC and TDS determined by

laboratory experiments.

Table 3-2 Summary of the pPs’ physico-chemical properties, 95" percentile stormwater
concentrations, measured inflow concentrations, Australian drinking water guideline
(ADWG) values, and analytical methods used to quantify the pollutants in the collected
water samples and their associated Limits of Reporting (LOR).

th

Physico-chemical 95 Measured
properties” percentile mean infow ~ ADWG  Analysis  LOR
Pollutants .
concentratio value = STD [ug/L] method [me/L]
S [mg/L] Koc n? [ug/L] (n=9-12) [pg/L]
Sum of TPH i i
TPHs - - 147 Dieselin  coh04392 2 GCFID 100
>C10-C40 5KL
Pyrene 0.1 4.81 100 9.7£3.6 150
PAHs GCMS 1
:2phtha'e 32.2 2.74 250 16.2£6.9 70
Glyphosate 12000 3.90 2000 1600+205 1000 HPLC 30
Atrazine 29.8 2.09 60 49.519.4 20
Herbicides
Simazine 5.7 2.13 60 43.316.2 30 GCMS 2
Prometryn 48.0 2.38 60 47.2+4.9 20
DBP 9.9 2.20 60 41.3+4.4 35
Phthalates GCMS 5
DEHP 0.029 4.50 60 17.048.6 10
THMs Chloroform 8452 1.75 250 55.1+11.3 200 GCMS 1
PCP 18.9 3.50 60 27.116.1 10
Phenols GCMS 1
Phenol 83119 1.34 200 203.3140.8 -3

Y mean values compiled from Mackay et al (2006)

2 Equates to target or challenge concentration

¥ no Australian Drinking Water Guideline (ADWG) value

In addition to the micropollutant concentrations, all water samples were analysed for
potential surrogates’ concentrations (total suspended solids (TSS), total phosphorus

(TP), total nitrogen (TN), ammonia, mono nitrogen oxides (NOx), dissolved organic
carbon (DOC), and UV absorption at 254 nm (UVA).
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Soil samples were taken at both cells during the 2" test series from both the surface
(5cm) and deep (15cm) soil layers. A sample for one cell and one depth was made in a
250 ml glass jar as a composite from three points: upstream, at 1.5 m, middle, at 4.8 m,
and downstream, at 8.15 m (all distances measured from the wall at inflow end). The
LOR for the pollutants was as follows: TPHs 20 mg/kg, phthalates, phenols and
chloroform 5 mg/kg, triazines and PAHs 1 mg/kg. Glyphosate was not analysed.

3.3 Field tracer testing

A series of in-situ tests were conducted, named “challenge tests”, involving pumping
multiple pore volumes (PVs) of water from an adjacent stormwater pond spiked with
120 pg/L of fluorescein (1st and 2nd spiking tests) or without fluorescein (1st and 2nd
flushing tests) into each biofilter. The inflow concentration of 120 pg/L was selected as
it was best suited to the detection range of the measurement device — the AquaFluor®
Handheld Fluorometer (Turner) (0.4 - 200 ug/L), and it allowed for visualisation of

fluorescein in the water.

120 4

Spiking Test (FL Flushing Spiking Test (FL+KCI) N Flushing
a x X | X
-5 100 O Xx + Celll
= X XX )?
p |
_g 20 x y x x X x Cell2
© x % )
= X I —— Inflow Fluorescein
o X >°< " ¥ concentration
g 60 X X |
X X |
8 xx b x
< REY . X x }
z 40 ..0 & % y
] >6 % o'g( X
5} P % X& ® x
S 20 & . « X e,
= + X
& x \..“ * XK
L

0 - }
0.0 1.0 2.0 0.0 10 0.0 1.0 20 00 10 2.0

Pore volume

Figure 3-8 Pollutographs of fluorescein during tracer tests at Cell 1 and Cell 2

The 1st spiking test was conducted with 2.5 PVs inflow dosed into each biofilter, while
the 2nd spiking test was conducted with 2.0 PVs. Before and after the 2nd spiking test,
each biofilter was flushed by 2 PVs of un-spiked stormwater (1st flushing test and 2nd
flushing test), which were aimed to flush the fluorescein in biofilters. Zhang et al.
(2014) previously determined 2 - 3 PVs of inflow as being suitable for a challenge test
for these biofilters. During the tests, about 10 discrete inflow samples and over 20

discrete outflow samples were collected for each test. Samples were analysed for
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fluorescein concentration using a fluorometer, which was tested and validated for
fluorescein detection in laboratory using standard fluorescein concentrations (10 pg/L
and 100 pg/L) (Figure 3-8).

In spite of identical fluorescein infow concentrations, a substantial difference in
fluorescein outflow concentrations was measured at Cell 1 and Cell 2 (Figure 3-8).
Fluorescein outflow concentrations at Cell 1 were mostly lower than measured at Cell 2,
which is hypothesized to be due to higher organic content of filter media in Cell 1, and

presumable higher sorption of fluorescein in this cell.

Potassium chloride test

400 -
*
350 | SZM Jet? 5
X 0t *
— 300 8 <8
= X * :
a0 250 x * x
= . . + Cell 1 measured
— x ®  Spiking Flushing
- 0o . ’; + x Cell 2 measured
£ 150 x .
100 x* x *
* X
50 4 *
0 T
8:00:00 16:00:00 0:00:00 8:00:00 16:00:00

Figure 3-9 Pollutograph of KCI during the tracer test at Cell 1 and Cell 2
The conservative tracer testing was performed by pumping 2 PVs stormwater with a
chlorine ion (CI) concentration of 400 mg/L, followed by 2 PVs of stormwater (no
tracer spiked) (Figure 3-9). CI" was analysed using a FIA Automated lon Analyser
(QuickChem 8500).

The difference in measured outflow concentration of CI" in Cell 1 and Cell 2 was
attributed to a substantial decrease in hydraulic conductivity observed at Cell 1. This
change in hydraulic conductivity was attributed to soil swelling (Dif and Bluemel,
1991) that happened due to the introduction of salt ions in an organic rich soil. Soil
swelling is a phenomenon known to occur in the area, and it additionaly changes the

porous structure of the filter media.

3.4 Field Electro Resistive Tomography (ERT)
3.4.1 Introduction

The main aim of the Electro Resistive Tomography (ERT) field experiments was to

explore the dimensionality of the water flow i.e. whether one-dimensional flow was a
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too high level of problem abstraction. Additionally, the collected data complemented
the field tracer test data to uncover possible routes of short circuiting i.e. preferential
flow paths.

3.4.2 About the method

Electro-Resistive Tomography for subsurface imaging is one of the non-invasive
geophysical imaging methods that measures electrical resistivity distribution in soils.
Because it is rarely the case that the subsurface is a homogeneous and steady
continuum, but rather contains different soil materials with variable porosity, moisture
and ionic content, measurement of resistivity allows for differentiation between them.
This method can be used in both static characterizations of the subsurface, as well as to
obtain a dynamic representation — series of images showing changes in resistivity
caused by e.g. change in water saturation of pores. Since the resistivity of water is more
than 8 times smaller than resistivity of air (at 20°C: water 2x10° Qm, air 2x10'° Qm), a

local increase in soil resistivity can be attributed to increase in air content in pores i.e.

drying out.
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Figure 3-10 Sample electrode array placement and measurement points for ERT (after
Keller and Frischknecht, 1996)

Measurements for the ERT are done so that a direct current | (Figure 3-10) is supplied
via one pair of electrodes (electrodes A and B, placed in the subsurface zone) and a
potential difference V (voltage drop) is measured at another pair of electrodes

(electrodes M and N, also placed in the subsurface zone). Usually a large even number
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of electrodes is placed, and electrodes are interchangeably used for supplying the
current (only one pair at a time) and measurement of voltage drop (between pairs of
remaining electrodes). For this purpose, a cable is placed from a High-Speed Data
Acquisition System to all the electrodes, and so is formed an electrode array. Depending
on the spacing of the electrodes, the measurement scale can go from a few centimetres
to a few kilometres and can produce 2D or 3D images of the subsurface resistivity
distribution. Also, depending on which pair of electrodes measures the voltage drop, the

measurement point can be closer or further from the soil surface.

The raw measurements present an apparent resistivity (due to the heterogeneity of the
subsurface) and need to be converted applying local boundary conditions to Poisson

type equation (Garré et al., 2011) to get the calculated resistivity:

V-(EC,Vp)-V-j, =0 (3.3)
Where EC, is the bulk soil electrical conductivity (Q'm™), ¢ is the electric potential
(V), and js is the source current density (Am™). Solving of the equation can be done
using some of the state-of-the-art inversion algorithms e.g. error-weighted, smoothness

constraint Occam type algorithm as per Garré et al. (2011).

3.4.3 Field setup

The two biofilter cells at Monash Carpark were equipped each with 30 metal rods,
stabbed verticaly 5 cm in the subsurface at an equidistance of 30 cm. The electrodes
were placed in the middle longitudinal cross section of the cell, as seen in Figure 3-11,
and connected to the ABEM Terrameter LS device — a high speed data acquisition
system for resistivity measurements (ABEM, 2012). ABEM Terrameter LS is supplied
with a high power true current transmitter (output power 250 W; maximum output
current 2.5 A; maximum output voltage + 600 V), and a sensitive receiver that allows
for high resolution data recording with 4, 8 or 12 galvanically separated channels (input
impedance 200 MQ, precision 0.1%), and is set to use a dipole — dipole electrode array
(ABEM, 2012). ERT measurements were conducted in an experiment setting very
similar to the first two events of the 2012 Challenge Test (see 0): with identical inflow
dynamics of treated stormwater, from a nearby pond, with added fluorescein tracer. The
rationale behind that was to obtain soil resistivity/moisture distribution throughout the
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spiking test, but avoiding simultaneous experiments as ERT might induce electrolysis of
micro-pollutants. Soil moisture probes were removed prior to the experiment, to avoid
possible electrical damage. The tracer was used to serve as a reference between the two

experiments (the same tracer was used for spiking tests as well).

A
75cm
: 4 LR B BN B BN B BN BN B B B B B B BN BN BN BN BN BN BN BN BN OB BN B B BN BN

75 cm 39 Sm 30 electrodes
v

Figure 3-11 Electrode placement at the biofilter site - Monash Carpark

Prior to the actual experiment, the biofilter system was conditioned in a similar way as
before the second challenge test: the system was saturated with 2.5 pore volumes of
“clean” stormwater and left to freely drain for a period of two days. In that way, the
starting saturation for the actual testing days was around 75% for Cell 1 and 55% for
Cell 2. On the first testing day a total of 3 pore volumes was introduced in both cells
with a constant average concentration of 112 ug/L of fluorescein (background
concentration was 1.2 pg/L; concentration in deionized water was 0.3 pg/L). Ten hours
following the end of the ponding phase of the first testing day, a second test was
conducted: a total of 1.8 pore volumes were introduced in Cell 1 and 3 pore volumes in
Cell 2 with an average fluorescein concentration of 119 ug/L. The water was dosed so
that all the water was treated (nothing flowed over the security weir), which is the

reason why Cell 1 only received 60% of the planned inflow water quantity.

Measurements included flow measurements at inflow and outflow pipes, depth of water
at the ponding site, EC (Hach probe) and fluorescein concentration (AquaFluor

Fluorometer) (see section 3.2.1. for details).

3.4.4 Results and Discussion

The inverted ERT data i.e. resistivity in Ohms, is shown in Figure 3-12 as a time lapse
in a 10 minute increment for Cell 1 on 9/11/2012 and in Figure 3-13 for Cell 2 on
8/11/2012.

The resistivity fields in Figure 3-12 and Figure 3-13 show that it took Cell 1 around 20
minutes and Cell 2 around 50 minutes to become steady i.e. spatial heterogeneity of the

| Page 64



Chapter 3: Experimental Data

resistivity field, closely linked to the water saturation level, becomes “uniformly
layered” at these times. This means that the change in resistivity (and, by assumption,
the soil water content) becomes gradual in the vertical direction i.e. becomes one-

dimensional.

It should be noted that the biofilters were not fully saturated prior to the test start and
that inflow pattern was such that flows were very low (0.1 — 0.2 L/s). Even in these
conditions 20 or 50 minutes is seen as a short period when compared to the total
duration of the spiking tests (3 — 5 h). It is, therefore, safe to assume that the one-

dimensional flow model can be used for spiking tests.
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Figure 3-12 Time lapse of ERT inverted data for Cell 1 on 9/11/2012 (10 min inverval)
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Figure 3-13 Time lapse of ERT inverted data for Cell 2 on 8/11/2012 (10 min inverval)

3.5 Field “spiking” testing

The field “spiking” tests (a.k.a. challenge tests) were carried out at the Monash Carpark
biofiltration system described in detail in Chapter 3.2. The main aim of the tests was to
provide sufficient data for model development, while at the same time allowing for the
development of the validation framework (see Zhang, 2015). The tests were performed
under challenging conditions: these included high target concentrations of
micropollutants in the inflows, as well as extreme (the systems were run at their full
infiltration capacity, but without any overflow) and highly variable operational

conditions that biofilters could be exposed to (e.g. different drying/wetting regimes).
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3.5.1 Experimental setup

A total of seven groups of micropollutants were selected to be checked in challenging
conditions at Monash Carpark biofilter, as various studies report them to be present in
stormwater (e.g. Cole et al., 1984; Makepeace et al., 1995; Duncan, 1999; Gobel et al.,
2007; Zgheib et al., 2012) (For more details see Chapter 2.2.3). These include total
petroleum hydrocarbons (TPHSs), polycyclic aromatic hydrocarbons (PAHS),
glyphosate, triazines (simazine, atrazine and prometryn), phthalates (dibutyl phthalate,
di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and phenols (phenol,
pentachlorophenol). Table 3-3 shows details regarding these micropollutants, with their
classification according to groups, physico-chemical properties (solubility in water, K
— soil water partitioning coefficient normalized to organic carbon content, Henry’s
constant, pK, — acid dissociation constant as logarithmic value, and half-life in soil),
expected removal process in biofilters, and target concentration during tests. The target
concentration was selected based on reported concentrations found in the literature.
Event mean concentration (EMC) from each publication was considered where possible
(measured values of single samples were not considered). In this way at least 15 EMC
values were gathered for each micropollutant and the 95" percentile concentrations
were calculated. The 95" percentile was adopted as the challenge concentration for
consistency with the validation of pathogen removal in wastewater recycling schemes
(DHV, 2013). Since some reports included very low micropollutant concentrations (that
were far below the Australian Drinking Water Guideline (ADWG)), a value of twice the
ADWG value was set as the target concentration (e.g. for naphthalene, glyphosate,
DBP, chloroform). The idea behind the choice of target concentration values was to
simulate operational conditions that may cause hazard to humans or other biota, and
with full acknowledgment that stormwater data regarding micropollutants is scarce and

usually does not include extreme conditions.

Regarding the operational conditions, literature review indicates the following are
important (Zhang, 2015):

1) The total volume of water to be treated per event — e.g. Li et al. (2012) conclude
that the residual water in the submerged zone and in soil voids affects the

treatment performance;
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Extreme wet conditions — e.g. Zhang et al. (2014) show that the occurrence of
two or more large consecutive events within a short period can lead to breaking
of the system function during the later events in which the system cannot
provide reliable treatment;

Infiltration rate (velocity of water filtrating through soil media) - e.g.
Chandrasena et al. (2012) show it is of little importance in the removal of

nutrients, while Li et al. (2012) show high importance for pathogen removal;

e 3-3 Summary of the micropollutants’ physico-chemical properties, expected

removal processes in biofiltration system, and target concentrations during tests

. : iacl
Physico-chemical properties Expected

removal target
Pollutants . Khenry Half- . conc.?
Sc[)r::b/l:_l]ty logKoc [Pa pK, lives in prg_cefs_lses n [ng/L]
& m*/mol] soil [d] iofilter
3) i i i i Volatilisation 29.4 ml/L
TPHs Adsorption Diesel
Pyrene 0.1 4.8 13 - 346 Adsorption, 100
PAHs .
Naphthalene 28 3.2 54.9 ; 36 Adsorption 140
Biodegradation
Glyphosate 12425 3.1 14x10° 08 47 2000
Atrazine 38 21 39x10* 17 75 Adsorption 60
Herb. ; i
Simazine 6 23 18x10* 17 77 Biodegradation 60
Prometryn 41 2.7 95x10”" 4.1 60 60
DBP 10 2.9 0.2 - 16 . 70
Phthal. B.Aj”rp;"’tr.‘
DEHP 15 5.1 0.8 - 65 lodegradation 50
Adsorption
THMs Chloroform 8452 1.8 330.2 - 51 Biodegradation 400
Volatilisation
PCP 19 3.2 0.1 4.9 48 Adsorption 60
Phenols Biod dati
Phenol 83119 1.7 0.9 10.0 4.9 lodegradation 200

Ymedian values compiled from Mackay et al;
2Equates to 95™ percentile concentration (DEHP, PCP and phenol) or doubled ADWG values;

physico-chemical properties vary dramatically with different petroleum chemicals therefore
not presented,;

4)

Duration of dry periods between successive storm events — longer dry periods
decrease nitrogen removal (e.g. Hatt et al., 2008), while pathogen removal is

decreased with very short dry periods (e.g. Chandrasena et al., 2012);
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5) Temperature — an important variable that influences the rate of some of the
processes in the biofilters (e.g. biodegradation, Blecken et al., 2010).

Operational conditions listed under (1), (2) and (4) were determined using data included
in the MUSIC 5.1 software for modelling of urban stormwater systems using water
sensitive urban design (eWater, 2012). The model was set up to simulate long term
performance of the Monash Carpark biofilter — it included a highly urbanized (100%
impervious) catchment with a surface area equal to the one of the Monash Car parking
lot (4000m?) that drains into the biofilter (characteristics of Cell 2, see Table 3-1). The
model was run continuously for data between 1980 and 2010 (31 years of data, with
1980 being a model “warm-up” sequence). This included 6 minute rainfall data and
measured monthly evaporation data for Melbourne. To determine the duration of the dry
periods, a probability distribution function (log-normal) was applied to estimate the 95"
percentile of the biofilter inflows. The inflow dataset was previously pre-processed and
low inflow volumes were removed (i.e. everything below 1% of the maximum outflow-
rate was discarded, as these events do not have the potential to saturate the biofilter, and
to produce enough outflow to be measured). The challenging dry period length for

Melbourne climate was found to be 21 days.

As for the wet weather events, two challenge scenarios were proposed: (1) the challenge
volume of a single wet weather event and (2) the challenge volumes of two consecutive
events, within 12 hours of each other. The two consecutive rainfall events with only 12
hours of dry period were seen as an extreme condition, since the system was not able to
recover completely i.e. the system is saturated and barely drains before the second storm
commences. The statistics were formulated on outflows, rather than on inflows,
because: (i) many events were either too small (having no outflow) or too large (leading
to overflow), and are seen as outliers in terms of this analysis; and (ii) treated water is
more important in terms of stormwater harvesting, therefore to be on the safe side, the
use of outflows for estimations was favoured. Again, 1% of the maximum outflow-rate
of the system was used as a cut-off to determine when outflow begins or ends. This cut-
off value was determined with reference to experience from previous biofilter field tests
(maximum measurable flow). For the first case, the 95" percentile cumulative volume

for a single event was 4 pore volumes (PV where a PV roughly equals to 3.5 m® for
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each biofilter). For the second scenario, the 95™ percentile of two consecutive events
that occur less than 12 hours apart was 3 PVs for each event (3 PVs, followed by 12
hours of dry period, and another 3 PVs). These events correspond to 2™ test series in
Table 3-4.

Another sequence of events was also tried as part of the challenge with more natural and
higher probability events. These are 85" percentile single event outflow water volumes,
and 40™, 90™, and 80" percentile dry period durations. This second series of events were

selected arbitrary and corresponds to the 1% test series in Table 3-4.

The infiltration rate (4) is a biofilter intrinsic property that can change with age (Hatt et
al., 2007), and is not a plausible parameter to change during a challenge test. Because of
that, the challenge test was done on two biofiltration units that have different infiltration

rates (different filter media and plant content).

Although the analysis was done to determine (5) the challenging temperature, it was not
possible to control this feature during the actual field testing. Using 30 years of
minimum and maximum daily temperature data from Bureau of Meteorology (BOM)
(station No. 86232 in Melbourne) cumulative distribution curves were created and
extreme values (5th percentiles of the minimum daily data as well the 95th percentiles
of the maximum daily data) were determined to be 5°C / 33°C. The 5"/ 95" percentile
is selected since it is usually acquired as the cut off in other validation procedures
(DHV, 2013).

3.5.2 Challenge tests characteristics

Two series of in-situ experiments were conducted, each consisting of three separate
challenge tests (i.e. six challenge tests in total). These challenge tests covered different
operational conditions, ranging from the above selected challenge scenario conditions to

more typical operational conditions (Table 3-4).

The 1% series of challenge tests (TESTS 1-3) was conducted during the winter of 2011,
whereas the 2" series (TESTS 4-6) was performed during the summer 2012. Between
TEST 1 and TEST 2 and after TEST 6, the biofilters received two natural stormwater
events (Table 3-4).
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Table 3-4 Detailed information of challenge tests

Date Inflow volume [m3] Preceding dry Daily Air
/percentilel) periods o) thl Temperature
/percentile
TEST 1 16-08-2011 8.4 (2.4PVs) /85" 84/40™ 10.9-19.2
1%t TEST2 31-08-2011 8.4 (2.4PVs) /85" 352/90" 8.2-15.2
series  Natural events 2 17.3 (5 PVs)
TEST 3 22-09-2011 8.4 (2.4PVs) /85" 240/80" 11.5-22.9
TEST 4 19-11-2012  10.5 (3PVs) /957 66/30" 6.8-23.6
TESTS 20-11-2012  Cell 1: 6.3 (1.8 PVs)/80™  10/<1"? 8.6-27.4
e Cell 2: 10.5 (3PVs) /95"
series TEST6 11-12-2012 14 (4PVs) /95" 496/95" 9.0-27.3
Natural Event 1¥  15-12-2012 2.1 (0.60PV) 89 18.6-23.1
Natural Event 2" 19-12-2012 2.2 (0.63PV) 84 16.2-30.8

Y Corresponding percentile value of 30-year rainfall statistic using MUSIC.

2 3 rainfall events observed on 09-09-2011 (10.6mm), 10-09-2011 (3.11mm) and 11-09-2011
(4.2mm) but no samples were taken during this period.

% <1st percentile of dry periods, extreme wet condition; ¥ 3.2mm rainfall observed on 15-12-
2012 and 4.8mm on 19-12-2012.

Semi-synthetic stormwater (water quality is shown in Table 3-5) was prepared in the
distribution tank (net volume of 4.2 m®) using water from an adjacent stormwater pond.
The stormwater sediment (from a local wetland inlet basin), raw sewage (from a local
wastewater treatment plant — Pakenham), commercial diesel fuel (from a local fuel
station; according to the Australian Fuel Standard (Automotive diesel) determination
2001 contains a maximum of 11% m/m PAHSs) and selected micropollutants (from
Sigma-Aldrich) were added and then well mixed manually to attain the target
concentrations (Table 3-3). As most of the micropollutants were in solid state (powder),
special preparation was done before the actual experiment: concentrated solutions of
micropollutants were prepared using deionized water in special glass vials that were
added directly into the distribution tank. This was done to assure the homogeneity of the

mixture.

During each test, in order to simulate challenge infiltration rates and make the biofilters
work under full capacity, attempts were made to control the ponding depth of each

biofilter to a stable level of 470+10mm from the surface of the biofilter (which was

| Page 72



Chapter 3: Experimental Data

close to the overflow weirs). In the outlet, outflow rates were recorded by using v-notch
weirs equipped with ultrasonic depth sensors (Siemens Milltronics), which were

calibrated using manual flow measurements before and during the tests.

Table 3-5 Water quality of the semi-synthetic stormwater in the challenge tests

Parameters T (°C) pH EC (us/cm) TSS (mg/L) TP (mg/L)
Mean value+ STD 17 series  19.241.2 7.4+0.1 419.9+6.1 52.7+11.0 0.88+0.02
(n=3-9) 2" series  10.2¢1.6 7.30.2 NAY 70.0+11.9 1.1#0.1
Parameters TN (mg/L) NH; (mg/L) NOy (mg/L) DOC (mg/L) UVA
Mean value +STD 1% series  2.74#0.1 0.29+0.09 0.12+0.03 19.7+1.1 0.551+0.09
(n=3-9) 2" series  3.1%0.5 NA NA NA NA

Y NA: Not analysed

3.5.3 Sampling and analysis

In the 1% series of challenge tests, a flow-weighted composite sample of the inflow
water was collected, while during the 2" series, three composite inflow samples (each
consisting of three discrete samples) were collected during the course of each event. In
addition, 10 discrete outflow samples were taken over the course of the test from each
cell in both series. During the natural events of the 2" Series (after Test 6), natural
stormwater grab samples were taken from the distribution tank; outflow samples were
collected using autosamplers (Sigma 900). The autosamplers were triggered by flow
measurements (cumulative volumes), so samples were taken as flow-weighted discrete
samples. This sampling was completed after two rainfall events, after which time the
micropollutant concentrations returned to below reporting limits in both the inflow and

outflow samples.

To obtain an estimate of the ‘overall’ effluent quality for an entire event, the pollutant
concentrations from 10 discrete samples were used alongside flow measurements to

calculate the Event Mean outflow Concentration (EMC).

The samples were distributed in multiple plastic, transparent and colored flasks to
prevent any type of degradation. The samples were stored on ice until they were
delivered to a NATA accredited laboratory for analysis (see Chapter 3.2.1). It should be

noted that in cases where the concentrations were lower than the detectable limits, half
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of the lowest detectable limit was taken as the concentration for determination of EMC

and mass balances.

Soil samples were taken during the 2" test series only. Table 3-6 shows the soil

sampling date and time, and the soil sample type: surface (5 cm) or deep (15 cm).

Table 3-6 The soil sampling sequence and sample type

sample type Surface Deep Surface Deep Surface Deep
date Nov. 19" Nov. 20" Nov. 22th
time 11:00 AM 7:00 AM 3:30 PM
sample type Surface Deep Surface
date Nov. 26" Dec. 3"
time 10:50 AM 3:30 PM
sample type Surface Surface Deep
date Dec. 11" Dec. 11"
time 6:00 AM 4:30 PM
sample type Surface Deep Surface
date Dec. 13" Dec. 17"
time 2:20 PM 11:00 AM

3.5.4 Challenge test: Results and Discussion

3.5.4.1 Hydraulic Performance

A water balance (including measured inflow and outflow volumes, estimated storage
change and evaporation and vegetation-uptake) was produced for each biofilter over
each series of challenge tests (see Table 3-7). The estimated errors of the water balance
were between 2.3-5.9% of the total inflows, with higher errors estimated for cell 1

(loamy sand).

Figure 3-14 presents the inflow and outflow rates measured during the 1% and the 2"
test series of the spiking tests. Cell 1 shows a significant decrease in the infiltration rate
during Test 5, and it was not able to treat the entire targeted volume (it treated only
6.3 m® instead of 10.5 m®) in the selected timeframe without overspills. The reduction in
the hydraulic rate is linked to a prolonged wetting period (there were only 10 hours

between Tests 4 and 5) which might have caused soil swelling due to high clay content
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(Dif and Bluemel, 1991). The 1% test series does not hold similar behaviour of Cell 1, as
the wetting conditions were not as challenging (e.g. the minimum dry period was 84h,
meaning that the system had time to recover before the subsequent wet weather period).
On the other hand, Cell 2, designed according to the FAWB guidelines, had a consistent

hydraulic rate during all of the tests (under varying conditions).
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Figure 3-14 Inflow and outflow rates measured during the 1% (top) and the 2" (bottom)
test series

3.5.4.2 Treatment Performance
Table 3-8 presents the results of the measured inflow concentrations and outflow Event
Mean Concentrations (EMCs), while Table 3-9 shows calculated mass balances of the
tested micropollutants for the two series of challenge tests. The attempt is made to
estimate uncertainties in the mass balance as follows:

o 1% Test series — by assuming that the pollutant mass balance error equals the

water balance error:
uncertainty pollutant mass water balance

in the mass balance reduction error
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o 2" Test series — by using TDS as a measure of mass balance uncertainty,

assuming it is a conservative quantity:
uncertainty pollutant mass
= x  TDS balance error
in the mass balance reduction

Table 3-7 The water balance of the two test series of challenge tests: Unit m®

change Evaporation Water balance
. & plants
in Total error
Cell Test Inflow Outflow storage uptake error® .
i g during dry (/?oftotal
periods 2) inflow)
Test 1 8.4 7.5
Test 2 8.4 8.1
0.315 1.43
1 Natural Events 11.6 10.5
Test 3 8.4 8.1
é Subtotal 36.8 34.2 0.315 1.43 1.49 4.0%
&
% Test 1 8.4 7.5
Test 2 8.4 8.1
0.14 1.6
2 Natural Events 11.6 10.8
Test 3 8.4 8.1
Subtotal 36.8 34.5 0.14 1.6 0.84 2.3%
Test 4 10.5 9.5
Test5 6.3 5.4
Test 6 14 13.1 0.26 1.29
1
Natural Event 2.1 1.9
Natural Event 1.9 1.8
é Subtotal 34.8 31.7 0.26 1.29 2.07 5.9%
(]
(%]
2 Test 4 10.5 9.6
(o]
Test 5 10.5 9.8
Test 6 14 13.1 0.115 2.2
2
Natural Event 2.1 1.8
Natural Event 1.9 1.7
Subtotal 39.0 36.0 0.115 2.2 0.92 2.3%

Y Estimated by calculating the change of soil moisture before and after that series of tests;
2 Estimated by calculating the change of soil moisture during dry days;

¥ Inflow — outflow + change in storage - evaporation & plants uptake: if there is no error,
should be equal to zero
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The micropollutants were generally classified according to the removal efficiencies:
o excellent removal (removal>80%) e.g. TPHSs, glyphosate, DBP, DEHP, pyrene
and naphthalene;
e good removal (50% < removal < 80%) e.g. phenol and PCP in Cell 2);
e intermediate removal (20% <removal<50%) e.g. Chloroform

e and poor removal (removal<20%) e.g. atrazine and simazine in Cell 2.

Generally, the removal performance of biofilters in the 1* series tests was better than
that in the 2" series, especially for triazines (that can be grouped into intermediate
category in the 1% series), a fact mainly due to the more challenging conditions
conducted in the 2" series. Also, it can be noted that the removal performance is higher
or equal in Cell 1 than the removal in Cell 2. This is hypothesized to be due to the

higher soil organic matter content of Cell 1: 4.6% compared to 0.4%.

The removal of pollutants is significantly influenced by adsorption. Soil organic matter
(SOM) content is particularly important for adsorption of organic compounds, such as
micropollutants used in this study, since most of them are dominated by apolar groups:
aliphatic and/or aromatic. This fact is used to calculate the theoretical maximum of

micropollutant mass that can adsorb prior to the breakthrough:

theoretical maximum adsorbed mass = K. - f. - Ci s - M oi (3.4)

oc

Where SOM value is the organic carbon content, foc; Koc is the soil-water partitioning
coefficient (Table 3-3); ci, is the micropollutant inflow concentration; and M is the
total mass of soil in a biofilter cell.

TPHSs, pyrene and phthalates (DEHP and DBP) were bellow detection limits for all
outflow samples (see TPHs are a mixture of petroleum-based chemicals, some of which
volatilize quickly (e.g. benzene Kyeny= 500 Pa-m®mol) while several others attach to
the soil easily (e.g. benzo(a)pyrene logKq.=6.1). Pyrene and DEHP have a high Kq
value (log Ky > 4), meaning they also have a strong tendency to adsorb. The mass
reduction of pyrene, DEHP and DBP was lower than the maximum adsorption mass,
indicating that the biofilters still have a capacity to absorb more of these micro-

pollutants. For the adsorbed micropollutants, other removal processes (e.g.
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biodegradation) may also be occurring during dry periods, allowing the regeneration of
adsorption sites. Zhao et al. (2004) reported that adsorption and biodegradation
influenced the removal of DBP in a vertical flow constructed wetland. Naphthalene was
also well removed: it has a moderate adsorption tendency (logKq=2.74) and is prone to

biodegradation in soils (T,=36d).

Glyphosate showed good removal (>80% in all tests) by biofilters. Glyphosate attaches
to soil readily (logK,.=3.1) and the mass reduction was lower than predicted by Kqc
values. Glyphosate is also possibly degraded by soil microorganisms with a half-live

averaging on 47d.

Biofilter cells were not so successful in removing triazines (especially Cell 2). This was
attributed to their moderate tendency to adsorb (logK,=2.1-2.7), and low
biodegradation rate ie. quite slow and variable, with half-lives in different soils varying
from weeks to a year (Mackay et al., 2006). Although biodegradation is highly unlikely
to occur during the biofilter’s residence time (around 3h), there is a possibility for it to

happen during dry periods (EMCs lower after prolonged dry periods).

Chloroform was removed between 26.9 and 61.5%: it has a low biodegradation rate
(T1/2>50d) and is weakly adsorbed to soil (log Ko,.=1.8), however it is quite volatile

(Khenry =330.2 Pa-m*/mol), which may have contributed to its removal.

PCP has good removal in both biofiltration cells: it sorbs well (log K,:=3.2), but has a
low biodegradation rate (T1,,=49d). EMC values of PCP in Cell 2 during Test 5 and
Test 6 were much higher than that in Test 4. It is hypothesized that this could be
because the adsorption sites were limited in this sandy media and these were mostly
occupied during Test 4, leaving fewer sites for adsorption to occur during Test 5 and
Test 6.

Cell 1 showed better removal (>80%) of phenols as compared with Cell 2 (50-80%).
Phenol is very mobile in soil systems (log K, =1.7) and biodegrades quickly
(T12=4.9d). However, phenol outflow concentrations peaked during Test 6. It is
hypothesized that the peak is caused by short-circuiting through cracks formed in the
filter media after prolonged dry period (and pollutants high mobility).
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Table 3-8 Measured inflow concentrations and outflow event mean concentrations
(EMC:s) for micropollutants during the two challenge tests

Measured concentrations

Inflow+STD Outflow EMC (ug/L)
(ug/L) Cell1 Cell 2
1% series tests T1.1 T1.2 T1.3 T2.1 T2.2 T2.3
TPHs 12700707 <100 <100 <100 <100 <100 <100
Glyphosate 1950+353 NA 54 100 NA 41 105
Atrazine 55+13 14 34 17 32 65 23
Simazine 4716 3 11 6 7 25 7
Prometryn 53+4 4 9 2 13 26 5
DBP 3345 <1 <1 <1 <1 <1 <1
DEHP 24+10 <1 <1 <1 <1 <1 <1
Chloroform 43415 9 24 19 15 49 28
2" series tests T1.4 T1.5 T1.6 T2.4 T2.5 T2.6
TDS [ppm] 214 210 210 212 210 210 214
TPHs 4300+220 <100 <100 <100 <100 <100 <100
Pyrene 10+2.6 <1 <1 <1 <1 <1 <1
Naphthalene 17+6.6 2 2 2 3 1 3
Glyphosate 16004100 99 116 187 29 106 70
Atrazine 4816 25 28 27 35 42 49
Simazine 4243 22 32 24 33 49 43
Prometryn 50+4 11 14 15 20 29 32
DBP 4214 <1 <1 <1 <1 <1 <1
DEHP 17+8 <1 <1 <1 <1 <1 <1
Chloroform 59+7 32 38 40 40 47 49
PCP 27+6 1 6 4 2 19 11
Phenol 203+£15 2 1 18 1 3 106

Legend for Table 3-9:

Y Uncertainties in mass reduction = pollutant mass reduction x water balance error (1% test
series) and = pollutant mass reduction x TDS balance error (2™ test series), percentage removal

in parentheses;

2 Max adsorption: theoretical maximum mass of micropollutants that can be adsorbed onto the

organic carbon of biofilter soils before breakthrough (equals to Koc*foc*Cinfiow*Mass of soil);
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Table 3-9 Calculated mass balances for micropollutants during the two challenge tests

Calculated mass balances

Cell 1 Cell 2

1st series tests In Out Reduction” A’\ilf)z() In Out Reduction” A'\fjé)z()
TPHs 3247 12 32;;2;3'9 ; 324.7 1.2 32(;;’2;)9)'1 ]
Glyphosate 32.8 13 3{;6531/)3 11687  32.8 1.2 3(;':_3;;)9 144.1
Atrazine 176 052 1&%%&? 33 176 095 légﬁzs 0.4
Simazine 094 0.6 Oégﬁg?’ 45 094 031 Oéiiﬁﬁ 0.6
Prometryn 102 012 Oégﬁg“ 126 102 035 Oizgﬁ%(;él 1.6
DBP 045 001 0&3‘7‘%8(;0)2 125 045 001 0&3‘7‘%;2;3 1.5
DEHP 0.6 0.01 o.?:;g.)oz 14384 06 0.01 ng";f)a 177.3
Chloroform 109 042 Oigiﬁga 13 1.09 0.74 Oigfsoof)z 0.2
2™ series tests In Out Reduction” Ma)2<) In Out Reduction” Ma>2<)

Ad. Ad.
TDS [ppm] 74419 67444  697.5 (9.4%) - 8336 76303 7057 (8.5%) -
TPHSs 1483 16 l‘tgg;g's : 1609 18 15(3'81;;3)'5
Pyrene 03 002 Oégﬁg?’ 3004 033 002 Oi;f;f)a 37
Naphthalene 056 006 Oégﬁg’ 128 062 008 Oéfﬁ%of 16
Glyphosate 47.5 4 ‘gf_z;)l 9589 542 22 5(;5;;;‘ 118.2
Atrazine 145 0.77 Oiiglig‘;‘;s 2.9 167 144 Oégf‘&o)z 0.4
Simazine 13 0.72 Oiijig;;S 4 1.49 14 0'?2 (‘:f;;;)l 0.5
Prometryn 1.39 0.4 0(351312(3%0)9 11.9 1.6 0.94 O(i(it;)%(;G 1.5
DBP 128 0.02 1&52'1&1)2 159 145 002 1&32#8%1)2 2
DEHP 058  0.02 082%6%5 10188 063 0.2 oigéj_rg%o)s 125.6
Chloroform 1.85 11 O&Zg_i;z(y 1.8 2.08 1.52 Oégﬁzs 0.2
0803 Ty 24 0% os Tgu 28
Phenol 6.1 065 > ig;i;;)l 4.8 702 153 ° g:iﬂzo 0.6
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3.5.4.3 Intra-event variability

Figure 3-16 — Figure 3-18 show how the concentrations of selected micropollutants vary
over the duration of the challenge tests. Micropollutants were well removed at the very
beginning of the series. The outflow concentrations increased over the duration of each
test, and then dropped towards the end. This drop is probably due to low infiltration
rates through the biofilter (after inflows stopped, the hydraulic head decreases),
resulting in longer residence times (2-4 hours longer) and therefore better removal (due

to adsorption).
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Figure 3-15 Pollutographs of glyphosate during 1% test series (top) and 2" test series
(bottom) for Cell 1 and Cell 2

The starting outflow concentrations of Tests 2 and 3 were lower than ending
concentrations of Test 1 for all pollutants. This indicates that micropollutant

biodegradation occurred between these events. The starting outflow concentrations of
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Test 5 were within the range of the finishing concentrations of Test 4 for the majority of
micropollutants. This suggests that micropollutants were retained in the biofilters during
Test 4 and no significant degradation occurred during the short dry period of 10h before
the start of Test 5. As a result, Cell 2 showed a net production of simazine (i.e. outflow
concentrations > inflow concentrations) recorded during Test 5 and Test 6 (the so called
“production” can be seen with chloroform in Tests 2 and 3, atrazine and prometryn in
Tests 5 and 6).

Figure 3-19 and Figure 3-20 show pollutographs for naphthalene, PCP and phenol

(detected in the outflow only during the 2™ test series).
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Figure 3-16 Pollutographs of chloroform during 1% test series (top) and 2" test series
(bottom) for Cell 1 and Cell 2
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Figure 3-17 Pollutographs of atrazine during 1% test series (top) and 2" test series
(middle) and of simazine during 1% test series (bottom) for Cell 1 and Cell 2
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Figure 3-18 Pollutographs of simazine during 2™ test series (top) and of prometryn
during 1% test series (middle) and 2" test series (bottom) for Cell 1 and Cell 2
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Figure 3-19 Pollutographs of naphthalene during 2" test series for Cell 1 and Cell 2
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Figure 3-20 Pollutographs of PCP and phenol during 2™ test series for Cell 1 and Cell 2
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3.5.4.4 Soil sample analysis results

TPHSs, pyrene and DEHP are the only pollutants that were detected in the surface soil

samples (although, they were not detected in deep); concentrations of all the other

micropollutants were below the limit of report.

Sum of TPH >C10-C40

1000
900 +
800
700 -
600
500
400 +
300 -
200 +
100

" Test on 19th Nov. and 20th Nov.

——CELL1
~=CELL 2

Test on 11th Dec. “

Concentraion [mg/kg]

0 5 10 15 20 25 30
Time [Day]

Pyrene

w
[=]

" Test on 19th Nov. and 20th Nov.

B o
wmoo W

—4—CELL1
==CELL 2

(=1

(=]

Test on 11th Dec.

Concentraion [mg/kg]
=R l\m.t o

[y
nmn o wv

i
=

0 5 10 15 20 25 30
Time [Day]

(=]
I
L

DEHP

12 , Test on 11th Dec,
" Test on 19th Nov. and 20th Nov.

10 -
—=CELL1

8 =s=CELL 2

Concentraion [mg/kgl
L=a]

0 5 10 15 20 25 30
Time [Day]

Figure 3-21 TPHSs, pyrene and DEHP concentration detected in soil samples taken from

surface soil at Cell 1 and Cell 2 during the 2™ test series

| Page 86



Chapter 3: Experimental Data

However, it should be noted that soil samples have a higher limit of report than water
samples (mg/kg compared to ug/L, see Chapter 3.2.1). Figure 3-21 shows TPHSs, pyrene
and DEHP concentrations found in soil samples taken from surface soil at Cell 1 and
Cell 2 during the 2" test series. The results are not surprising for these three chemicals,
as they were removed well in both cells (high above 90%). The fact that they were
detected in surface samples only agrees with other studies reported in literature that
most of the removal is happening in the upper most layer of the biofilter media (the

hummus zone).

Interestingly, Cell 2 soil samples showed a higher micropollutant content than Cell 1’s
samples. It is hypothesized that this is due to plant litter formed in the upper zone (more

profound with Melaleuca ericifolia, than with Carex appressa).

3.5.4.5 Summary

The following is a summary of the challenge test results:

e Extreme wet conditions could be of high importance for hydraulic performance,
but only in systems in excess of certain clay content, whereas it seems that it
should not be a problem for well-designed biofilters;

e Cell 1 is better or equal than Cell 2 in removing micropollutants;

e Good removal was achieved for TPHSs, glyphosate, DBP, DEHP, pyrene and
naphthalene;

e Moderate removal was achieved for PCP and chloroform;

e Poor removal was achieved for triazines;

e TPHSs, pyrene and DEHP were the only pollutants detected in surface soil
samples;

e Formation of cracks during long dry periods caused short-circuiting and
enlarged EMCs.

3.6 Laboratory batch and column testing

This chapter presents the methodology of conducted batch and column tests. Obtained
results and data analysis are presented in Chapter 5.3.2. It should be noted that most of

the testing was performed by Kefeng Zhang.
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3.6.1 Batch studies

The batch technique is a very popular procedure for estimating the capacity of soils to
remove chemicals from a water solution. The procedure includes mixing a water
solution of known composition (and concentration) with a known quantity of soil
(adsorbent) for a given period of time. The solution is then separated from the adsorbent
(e.g. by centrifuging) and analysed for solute concentration. The difference between this
and the initial concentration is assumed to have been sorbed on the soil. The method is
highly influenced by contact time, method of mixing, soil to solution ration, solution
pH, hydrolysis, biodegradation, photodegradation etc. (US EPA, 1992).

Batch tests conducted as part of this research were done with fluorescein only (as a
model micropollutant) and included two types of experiments: (1) adsorption and (2)
biodegradation. The adsorption experiments included sterilization of the soil samples.
The biodegradation experiments were done on non-sterilized soil, and showed
influences of both adsorption and biodegradation. Methodology on how to extract data

on biodegradation only is presented in Chapter 5.3.2.

Detailed experiment methodology

The laboratory tests were done on surface (top 5 cm) and deep soil samples collected
from the two biofilters (Cell 1 and Cell 2 at Monash Car park site, see Chapter 3.2).
Before the test, soil samples were air dried and then sieved (< 5.6 mm).

Adsorption experiments were performed using 200 mL amber glass bottles containing
10 g of sterilised soil (autoclaved at 120°C for 30 min, three times), mixed with 45 mL
synthetic stormwater (according to the procedure described previously by Blecken et al.
(2009)) spiked with 120 pg/L fluorescein. The bottles were shaken on a rotatory shaker
at 100 rpm for 32 hours at 15 £ 0.5°C in the dark. Samples were taken at 0, 0.5, 3, 6, 9,
24 and 32 hours and centrifuged at 4000 rpm for 10 min. The centrifuging speed and
time were tested to be enough to settle the sediment from the mixture. The supernatants
were then analysed for fluorescein concentrations. All the experiments were performed

in triplicate. Positive and negative controls were prepared at the same time.

Biodegradation experiments were conducted in 500 mL amber glass bottles containing
10 g non-sterile soil and 45 mL synthetic stormwater spiked with 120 pg/L fluorescein.
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The bottles were incubated at 15 + 0.5°C in the dark without shaking for 21 days to
mimic the biodegradation of fluorescein during dry periods. The temperature (15 *
0.5°C) was derived from the average soil temperature according to a year of online
monitoring of the two field biofilters in 2011 (Monash Carpark Meteo Station: internal
data). Samples were taken at 0, 0.25, 1, 2, 3, 7, 14 and 21 days. The bottles were shaken
for 1 min at each sampling point. Collected samples were centrifuged and the

supernatants were analysed for fluorescein as described above.

3.6.2 Column studies

Three replicate stainless steel columns were packed with filter media collected from the
two biofilters used in the field challenge test. The soil profile of the columns (diameter
99mm; total depth 706:2mm; submerged zone depth 200mm), the porosity (0.39), and
bulk density (1.59 g/cm®) were very similar to the field biofilter a total depth 700mm,
submerged zone depth 200mm, porosity 0.39 and bulk density 1.59 g/cm®. The filter
media were air dried and then sterilized by gamma irradiation at 25 kGy before column
packing. Once packed, the columns were flushed using 12 x 2L pulses of deionised
water to remove finer particles that results from column packing and to allow the media
to settle. Up-flow flushing (5L) was performed to remove air bubbles and to ensure the
columns were fully saturated at the beginning of the experiment. The columns were then
equilibrated with synthetic stormwater without herbicides until the outflow electrical
conductivity (EC) and pH values were stable (EC ~400 uS/cm and pH ~7.1).

Sorption column experiments were performed using a flow rate of ~21 £ 0.6 mL/min
(hydraulic conductivity of 164 = 5 mm/hr which was similar to the field condition
which had an average of 155 mm/hr). Two series of experiments were conducted:

e the first involved dosing 4 PVs of synthetic stormwater with atrazine, simazine
and prometryn, and

e the second series involved passing 10 PVs of the same synthetic stormwater
with 1,900 + 20 pg/L glyphosate.

Previous work showed that the sorption rate of glyphosate to stormwater biofilter media
iIs much higher than the triazines and is reflected in the Ko values (Zhang et al., 2014),

e.g. after up to 3 PVs inflow, the outflow concentrations of triazines showed
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breakthrough while that of glyphosate was just ~25% of inflow. A further limitation was
the relatively small column used, which was not able to produce enough sample for co-
analysis of glyphosate and triazines in the same test. Three composite inflow samples
were collected during the dosing periods while 8-10 discrete outflow samples were
collected over the entire experiment. All the samples were analysed for the selected

herbicides.

3.7 Conclusions

This chapter presented experimental methodology and some experimental results for
tests conducted at Monash Car Park field site, and laboratory batch and column tests.
Field data included conservative and reactive tracer tests, electro-resistive tomography,

and micropollutant challenge tests.

Tracer test and ERT data showed that Cell 1 of Monash Car Park biofiltration system
has a lower hydraulic conductivity than Cell 2, and is prone to soil swelling.
Additionally, ERT data demonstrated that the flow in both cells becomes predominantly
one-dimensional in a relatively short period of time.

Challenge test results showed that micropollutants with similar structures exhibited
similar fate in biofiltration cells (e.g. triazines had comparable behaviour). Pollutant
mass balance during all conducted tests clearly showed that pollutants were being
retained in the biofiltration cells by either sorption, degradation or other removal
processes. Some pollutants (e.g. atrazine, simazine) had outflow concentrations that
were higher than the inflow ones, indicating that the pollutant mass is being retarded i.e.
the pollutant mass is being sorbed by the biofilter media and/or plants. This evidence
indicates that the future model needs to have at least sorption and degradation to be able

to reproduce the measured data.

| Page 90



CHAPTER 4. MODEL DEVELOPMENT



Chapter 4: Model Development

4 MODEL DEVELOPMENT

4.1 Introduction

For biofilters to be used as an effective stormwater management measure, it is important
to model their performance, since only through continuous simulations of their
hydraulic and treatment efficiencies the long-term impact on the reduction of

stormwater pollution levels and loads can be predicted.

Bearing in mind all the strengths and weaknesses of models reviewed under Chapter
2.4, the aim of this study was set to develop a general treatment model of stormwater
biofilters that is applicable to a wide range of micropollutants and allows for long-term
simulations when combined with integrated stormwater models. The latter requires the
model concept to make a compromise between the little available data and the needed
complexity to accurately describe the nature of the system, i.e. practical useability
versus scientific rigour. The model needs to be able to simulate the key treatment
processes within stormwater biofilters, i.e. volatilisation, sorption, and bio-chemical
degradation. It can therefore be easily applied to any micropollutant if its key removal
mechanisms are known (e.g. for removal of pesticides sorption and biodegradation are
predominate processes, while volatilisation can be neglected). This chapter presents the

development of the MPiRe model (MicroPollutants In RaingardEns — quality model).

4.2 Model structure selection

In order to make the model applicable to a wide range of micropollutants and allow for
long-term simulations when combined with integrated stormwater models, the

following key model structure elements needed to be defined as per McCarthy (2008):

1) Scale of the problem, that includes both the timestep and the space
conceptualization;

2) Governing equations should be easily transferrable to other biofiltration systems,
and should capture the essence of transport and fate so to be adaptable to other

pollutants;

| Page 92



Chapter 4: Model Development

3) Preferred model outputs should be micro-pollutant concentrations, to estimate
peaks, and micro-pollutant loads, to estimate long term performance;

4) Model data requirements should be easily fulfilled, to secure usability.

When choosing the appropriate time-step, it is necessary to consider the real time
response of the stormwater systems to rainfall events, and the modelling purpose: event
modelling or long-term system effects. The choice for the MPiRe model was to be able
to deal with events, but also to be scalable. As rainfall events usually occurr in a sub-
daily time frame, with most urban stormwater quality models being set up to run in
minutes to perform well (e.g. MUSIC Model — Wong et al., 2006, SWMM - EPA,
2007, FITOVERT - Giraldi et al., 2010, STUMP — Vezzaro et al, 2012), it was natural
to choose minute-resolution for the MPiRe model as well. The model was set in a way
where it is possible to change the timestep, and it can give stable results with a far larger
time-step (e.g. 1 hour, 2 hours, etc.), but for the results to make sense, especially for the
quality component, it is advisable to use minutes. For most of the testing procedures, the
actual timestep is set as to as low as 30-seconds to follow the data collection system’s
resolution (see Chapter 3.2.1).

The space conceptualization is selected to be one-dimensional in the vertical direction.
The dimensionality of flow in the biofilter has been tested using tracers in combination
with ERT (see Chapter 3.4).

The governing equations were selected to be mechanistic, rather than regression based,
as this should assure that the model is transferrable between different biofiltration
systems, and among different pollutants. The water quality set of equations is based on
pollutant water and soil concentrations, as intensive quantities. However, as the water
quality model is coupled with a water flow model, it is possible to calculate the model
outputs as pollutant loads. Most of the water quality legislation (Clean Water Act, EU
WED, etc.) is written so to prescribe maximum allowable concentrations. However,

from the managerial point of view, it is important to estimate total pollutant loads.

The model is written in the Python programming language, and is set to be compatible
with CITY DRAIN © (Achleitner et al, 2007). CITY DRAIN © is an open source

toolbox for integrated modelling of wurban drainage systems realized in
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Matlab/Simulink, and is capable of being extended with different subsystems, such as
this one — a biofiltration system. The modelling environment is set to calculate all
blocks simultaneously. Fluxes (water, pollutant) between different blocks (e.g. from a
catchment to biofilter) are sent at the end of each time interval, so all blocks need to be

set to have calculations explicit in time.

4.3 Fluid flow

The water flow module was not developed, but rather adapted, with some small
changes, from Lintern et al. (2012) and eWater (2009). This was done because that type
of a model has performed quite well among different types of biofilters, and especially

on the Monash Car Park site.
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Figure 4-1 The main biofilter zones and flow scheme

When stormwater enters a biofilter it can form a temporary pond on top of the filter
media (Figure 4-1), which depends on the dynamic of its inflow and the ability of the
system to filtrate. While the water infiltrates through the biofilter media (from which it
is collected by a drainage pipe) any excessive water will overflow over a security weir.
The system can be lined or unlined (therefore promoting infiltration), and can contain a
submerged zone, usually formed by a riser pipe that is connected to the drainage pipe.

These processes are modelled using so called the “three tank’ approach (also known as a
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bucket approach), where the tanks represent (1) the ponding zone, (2) the filter media,
and (3) the submerged zone.

The key variables that are modelled are:

e water depth in the ponding zone, hy,
e saturation of the filter media, S, and

e depth in the submerged zone, hg, (if this zone exists).

At the same time the following flow rates are calculated using the equations listed in

Table 4-2 with their parameters listed in

Table 4-3: infiltration flows (Equations 4.1, 4.2, 4.4, 4.8, 4.11), overflowing flows
(Egs. 4.3, 4.12), capillary rise flow (Eq. 4.6) and evapo-transpiration (Eqg. 4.9).

Infiltration flows are governed by Darcy’s law if the media is saturated, or by modified
Darcy’s law with the relative hydraulic conductivity presented with S (Eq. 4.8)
according to Dingman (2002). Flow over the weir is calculated by a weir discharge
equation. The capillary rise and the evapotranspiration are both represented with
empirical functions derived by Daly et al. (2009). Equations 4.5, 4.10, and 4.13 present
water mass balance equations in each of the buckets, which are solved for the key

variables.

Flow equations 4.2, 4.4, 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12 are solved explicitly in time,
therefore a special care needs to be given to the physical conditions — mass
conservation, so each flow is a minimum of (i) what is physically possible, (ii) what is
available at the upstream tank, and (iii) what is available at the downstream tank for a
particular moment in time. Flow over the weir is the only flow that is solved implicitly;
I.e. the flow at a time step t is dependent upon depth in the pond in the same time t, so
that the mass balance equation in the pond (Eg. 4.5) has to be solved iteratively. This is

done with using the false position method.

Stability of the model under different time steps was extensively tested, showing
excellent results (not included in the thesis). However, it is recommended to use the

model with sub-hourly time steps, due to the dynamic nature of the key modelled
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processes. It can be noted that the model does not show the position of the wet front in
the filter media, but rather assumes average saturation over the entire porous media.

Table 4-1 Biofilter geometry and state variables

Pond

A, Horizontal area of the pond [L°]
hp Pond water depth [L]

Nmax Max. depth of water in pond [L]
Nover Weir height [L]

Filter

A Horizontal area of the filter [L?]

N¢ Filter material porosity [-]

Dy Filter depth [L]

S Filter water saturation [-]
Submerged zone

A, Horizontal area of subm. zone [L2]
Nsz Submerged zone porosity [-]

Ds, Depth of the submerged zone [L]
hs; Water depth in the subm. zone [L]

Table 4-2 Water flow model equations

Water Flow Model Equation Eg. No.

General form of equations

Flow = min (physically possible, available upstream, available downstream)

Max. infiltration to surrounding soil through filter and submerged (4.1)
zone

0, if biofilter is lined
Qe :{ K, (A +C,-P,)

Ponding zone tank

Infiltration from pond to filter media (4.2)

t+At

. h +Df 1 1 hsz max
Qy :mln(KfPD_fAf,E(hpAp+ J: Qindtj,ﬂ((l—s)nfoAf +(1— 5 ]nSZDSZAf]+sz]

Sz

Weir overflow (rectangular weir) 4.3)

3 1 t+At t+At
Qover = mln[CQB\'Zg (hp _hover) ’E((hp _hover)Ap + J Qindt_ I pr dtJ'_J’ hp > hover
t t
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Water Flow Model Equation Eg. No.

Infiltration from pond to surrounding soil (4.4)
t+At t+At t+At
Qurp = Min| K, [(Ap—Af)+CS-Pp] {h A+ j Q, dt— j Q,dt - j QoverdtJ ]

Water mass balance in the ponding zone (4.5)

d(hyA,)

dt = Qin _pr _Qover _Qinf,p

Filter zone tank

Flow due to capillary rise (4.6)

. szhszA 1 t+At
Q, = mln[AfCr(S—Ss)(Sfc —S),A—t,At[(l—S)nfoAf - ! prdtD,

4E
when S, <S(t)<S,, otherwise Q, =0, C, =——™=&—
25(S,-S,)

Estimated saturation at time level n+1 4.7)

(. QpAt - L
Seq =Min| S" + . ,1.0 |, where n denotes beginning of time interval At

L Bl |

Infiltration from filter to submerged zone (4.8)

h,+D,

t+At t+At
Qfszmin[A,K,(pD—)Sebst, . [(S S )n D A + J. prdt+ ,[ thdtJ J
f

Flow due to evapotranspiration (4.9)

0,5, <§,

est —

S-S5, t+At teAt teat
ABug oS <Su <8, (S=S,)n DA + [ Qudt+ [ Qudt+ [ Qt
t t t

w h

Q. =min

S-S, ,S,, < Sy < S,
S-S

w

At

Af [Ew+(Emax - Ew)

S, <S,, <1

f max s est —
Water mass balance in the filter zone (4.10)

d(sn,D,A,)

dt :pr +QhC_Qfs_Qet

Submerged zone tank

Infiltration from submerged zone to surrounding soil (4.11)

Qinfsz mm[ (& +C- P ) . [ sz szp%z I Qfsdt J. thdtJ ]
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Water Flow Model Equation Eg. No.

Flow through drainage pipe (4.12)

1 t+At t+At t+At
Qpipe = mm(_'E[(hsz _hpipe)nsz'%z + .[[ Qfsdt_ ! thdt_ ‘!. Qinf,szdt]’_]' if hsz 2 hpipe

Water mass balance in the submerged zone (4.13)

d nSZ hSZ &Z
% = Qfs - th - Qinf,sz - Qpipe

Table 4-3 Water flow model parameters

Water flow model parameters

Ks Hydraulic conductivity of the surrounding material [L T7]

Cs Side infiltration coefficient [-]

P Unlined perimeter [L]

Kt Hydraulic conductivity of the filter material [L T™]

B Length of overflow weir [L]

Co Weir overflow coefficient [-]

Ss Filter material saturation at plant “stress” water content [-] = 0.22® (no
saturated zone), 0.37" (saturated zone)

Ste Filter material saturation at field capacity [-] = 0.37Y) (no saturated
zone), 0.61Y (submerged zone)

Emax Potential evapotranspiration [L T™]

Sh Filter material saturation at hygroscopic water content [-] = 0.05®%

b Relative hydraulic conductivity coefficient dependent on soil type [-
]:sand — 11, loamy sand — 13, sandy loam — 13, loamy clay — 14, clay —
14

Sw Filter material saturation at wilting point [-] = 0.11®

Ew Evapotranspiration at wilting point [L T] = 0.001® md™

WAccording to Daly et al. (2009)

4.4 Pollutant transport and fate

The pollutant transport module simulates advection and dispersion of micro-pollutants,
as well as the three key treatment processes that occur in biofilters: volatilization,
sorption and degradation. Exchange of pollutant mass between stormwater and

atmosphere in the process of volatilization is assumed to happen only through the
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surface area of the ponded water. Sorption and degradation are assumed to occur both in
the filter and submerged zones, but not in the pond, because the filter media has far
larger sorption capacity than plants submerged within the pond, and is characterized by

longer stormwater retention time than the ponding zone (at least two times).

Table 4-4 Pollutant transport model equations

Pollutant Transport Model Equation Eqg. No.

Ponding zone tank

Pollutant mass balance in the ponding zone (4.14)
d(c.h A
% = CinQin _Cp,oul (pr +Q0ver +Qinf,p )_ hpAp Kvolcp’
assuming fully mixed = ¢ =c}',
Volatilization model (4.15)
d(c.h A '
M:_h AKa, — He ¢
dt PR (K Tk )y,

Kyol

Filter zone tank

Continuity condition at pond — filter interface (4.16)
Coout = Ctin
Pollutant mass balance in the filter zone (4.17)
wﬂ)@; +p%=a—i(3~nfD%J—a(g?)—S~nfkbi00f
Sorbed concentration at instantaneous sites at equilibrium (4.18)
st =1,-K,-¢c; ; Ky =K Ty
Sorbed concentration at kinetic sites at equilibrium (4.19)
sk =(1-f,) K, -c,
Kinetic sorption model (4.20)
& o (s —s)

ot
Biodegradation constant with Arrhenius eq. (4.21)
Kyo = In2 «(r-2c)

Tl/z

where « is Arrhenius constant corresponding to temperature T = 20°C
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Pollutant Transport Model Equation Eqg. No.
Average unit flow through the filter media (4.22)
q :%: anf +ﬂQfs

Af Af ’

where o + f =1, and « =1 at upper boundary, S = 1 at lower boundary
Dispersion coefficient (4.23)

D= -q

Submerged zone tank

Continuity condition at filter — submerged zone interface (4.24)
Cf,out = csz,in
Pollutant mass balance in the submerged zone (4.25)
d(c n,h, A d(s°h, A d(s*h, A

( f ) +p ( f ) +p ( f ) = Cfos _Csz.out (th +Qpipe +Qinf,sz ) - kbiocsznszhsz Af '

dt dt dt
assuming fully mixed = ¢ =cl"

sz~ “sz,out

Similar to the water flow module, the transport module simulates transport and removal
to occur within a series of connected tanks, where each tank represents one of the
biofilter zones (Figure 4-1). All adopted transport equations are listed in Table 4-4 for
each of the tanks, with their main parameters presented in Table 4-5. The pond is
assumed to be fully mixed with volatilisation being the only sink (Eq. 4.14).
Volatilization is modelled using Lee et al. (1998) approach (Eqg. 4.15), but only for
pollutants that have a high Henry’s constant. Although there is no universal threshold
value of this constant that can indicate whether volatility is important or not for a
pollutant, the model assumes that this threshold is 100 Pa m*® mol™as per Byrns (2001).
This was regarded as a sufficiently robust approach, because the key volatile
micropollutants occur in very low concentrations in stormwater, and therefore the mass

transfer between liquid and gas is controlled by the liquid phase.

The processes within the filter media and the submerged zone tanks are modelled using
a one-dimensional vertical advection-dispersion model for saturated/unsaturated soil.
Presence of the plant root system is accounted for through an equivalent porosity, which

is a bulk parameter representing the biofilter media as specified by Hatt et al. (2009).
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Table 4-5 Pollutant transport model parameters

Pollutant transport model parameters

c Concentration in water phase [ML™]

s° Sorbed concentration that would be reached at equilibrium with the
liquid phase concentration at instantaneous sorption sitesfM M™ soil]

s¢ Sorbed concentration of the kinetic sorption sites [M M™ soil]

Se¢ Sorbed concentration at equilibrium with the liquid phase concentration
at kinetic sorption sites [M M™ soil]

p Bulk soil density [ML™]

q Unit/specific flow [L T™]

oL Dispersivity [L]

D Dispersion coefficient [L? T™]

Kpio Biodegradation rate constant [T™]

T Biodegradation half-life [T]

fe Fraction of exchange sites assumed to be in equilibrium instantaneously

oK Kinetic sorption rate [T™]

Kg Soil water partitioning coefficient [L™ M soil]

Koc Soil water partitioning coefficient normalized to organic carbon [L?M
soil],

foc Soil organic carbon content [-]

He Non dimensional Henry’s constant [-]

(ki/k)surp  Mass transfer between liquid and air through pond surface area
(volatilization)

KLasur,p Overall surface-desorption gass-transfer coefficient for pond

Tvol “Half-life” for the process of volatilization defined by Ko (eq. 4.15) [T]

Sorption of organic pollutants is influenced by pollutant’s intrinsic properties
(hydrophobicity, polarity, aromaticity etc.) and soil physico-chemical characteristics
(e.g. pH, cation exchange capacity, ionic strength, surface area, soil organic matter and
water temperature, as per Delle Site, 2001). In a review of pesticides’ soil sorption
parameters, Wauchope et al. (2002) identified three scales of sorption processes (1)
rapid, reversible sorption to “accessible” sites of soil surfaces driven by diffusion, that
can be reasonably be assumed to be instantaneous (2) slower exchange of pollutant
between water and soil phases, with equilibrium being achieved in the order of hours to
a couple of days, and (3) very slow exchange in the order of days to years, that is

irreversible and not easily distinguishable from degradation. To simulate these
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phenomena, a chemical non-equilibrium two-site model of sorption is used (Van
Genuchten and Wagenet, 1989; Simtinek and Van Genuchten, 2008), as per Eqs. 4.19-
4.20. The model assumes instantaneous sorption to one fraction of sites, f., following
linear sorption isotherm (Eq. 4.18). Soil organic matter content is used to estimate soil-
water partitioning coefficient, Kq. Kinetic sorption is assumed to occur on the other
fraction of sites, (1-f¢), also following the linear sorption isotherm with identical soil-

water partitioning coefficient, and allowing simulation of the desorption process.

The process of biodegradation is dependent on two main factors: the amount of
pollutant, and the amount of degrading biomass present. Although Monod-based
biodegradation models are expected to be more accurate (e.g. Plosz et al., 2010), a
simple first order decay model was selected (Eq. 4.21) due to difficulties in estimation
of biomass parameters (it is also hypothesised that the influence of micropollutant mass
that can accumulate in stormwater systems is negligible for biomass production).
Degradation is assumed to affect only the dissolved phase of the micropollutant in the
filter media and the submerged zone, as it is the practice in the vast majority of
published micropollutant models (Pommies et al. 2013).

The transport equations listed in Table 4-4 are solved sequentially, with all time
dependent equations (Egs. 4.14, 4.17, 4.20, 4.25) being solved explicitly. Advection
term in Eq. 4.17 is calculated by upwind or central differences depending on the value
of Peclet number, while dispersion term is approximated by central differences
(Hyakorn and Pinder, 1983).
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5 MODEL TESTING

5.1 Introduction

This chapter presents the testing of the MPiRe model developed in Chapter 4. The two
modules, the water flow module and the pollutant transport module were tested and
calibrated separately and verified against field data. Since the water flow module has
been extensively tested, the calibrated values of its key parameters were compared to
previously determined values of these parameters (previous studies, e.g. Lintern et al.,
2012).

The transport module was, however, tested under different scenarios, as the aim was to
delevelop a model that would be usable under variable data accessibility. The transport

module was tested under the following scenarios:

e Field data exists: calibrated against field data and predictions tested against
separate set of field data (simple 50:50 split);
e Laboratory data exists: calibrated on laboratory data (batch and column studies)

and predictions tested against field data.

The aim of this chapter is to gain insight on how the model performed with different

pollutants in different availabilities of calibration data.

5.2 Model testing settings and procedures
5.2.1 Input data and boundary conditions

The model testing was done by running the entire model continuously for the each test
series on a 30-second time-step. The input data included, beside inflow rates,
meteorological (daily values of potential evapotranspiration and rainfall) and geometry
data, as shown in Table 5-1. Rainfall data for naturally occurring events was taken from
a local rain gauge (as explained in Chapter 3.5.1). Daily evapotranspiration data was
obtained from the Bureau of Meteorology (BOM, 2011, 2012 — www.bom.gov.au) for
station No. 86071 in Melbourne (Melbourne Regional Office). This station is 16 km

northwest of the measuring site (Figure 5-1). The evapotranspiration rates were
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calculated using the FAO Penman-Monteith equation (Allen et al., 1998). The flow
module was additionally run for 6 weeks prior the challenging series to “warm up the
model”, i.e. to ensure that the antecedent soil and submerged zone conditions for the test
period are simulated well (Table 5-1). Six weeks was chosen as an arbitrary period,
where the main objective was to have at least one large-volume rain event, that will
saturate the biofilter and “reset” its moisture content from that point onwards (make it

unrelated to antecedent period).

The boundary conditions included defining flows and pollutant fluxes at all
“boundaries” i.e. drainage to the surrounding soil, exchange to the atmosphere
(evaporation) and possible outflows (flow over the weir, flow through the pipe). Most of
these conditions were defined by geometry e.g. the shape of the weir and its elevation
defined the overflow (see Eqg. 4.3). Since the tested biofilters were lined, there was no
water or pollutant mass flow toward the surrounding soil. Exchange with the
atmosphere was via evaporation for water, where the pollutant itself concentrated in the
remaining water (does not evaporate itself), or in case where the pollutant was volatile,
it may have passed to the atmosphere via volatilization (again not carried by the water
itself).

."- :J' :‘. ‘".'. B ot | e L — Topographic scale
LA g AR
y ..'""-_H ( | :__ { ) 0 150 300 500 B00Om
it Lo £ Projection: World Mercator

1 .-:'. [ I S '\ e
I; ::} ) . \. .
\ f “MELBOURNE REGIONALOFFICE . ~“|
s ! .'cM'albwms 5 I -
! RN ] 0 Site name: Melbourne Regional Office
YA Lz ”6‘:\4* Biofilter location I,-‘: 1§ Site number: 086071
i i/ j | /%) Latitude: 37.81° S
N i Longitude: 144.97 ° E
& P Elevation: 31 m

Figure 5-1 The meteorological station no. 086071 distance from the biofilter location
(adapted from www.bom.gov.au)
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The initial conditions for the transport module assumed that the biofilter cells were

“free” of micropollutant presence: micropollutant concentrations were zero in all zones

of the biofilter, in both the water and soil phase as per Table 5-1.

Table 5-1 Biofilter characteristics and initial conditions for the two test series

Biofilter characteristics Cell 1 Cell 2
Length [m] 10 10
Width [m] 1.5 1.5
Filter depth [m] 0.7 0.5
Ponding depth [m] 0.41 0.41
Saturated zone depth[m] 0 0.2
Porosity [-] 0.35 0.49
UDispersivity [m] 0.29 0.14
Initial conditions 16/08/2011  19/11/2012 16/08/2011  19/11/2012
Pond hp [m] 0 0 0 0
Filter S[] 0.5 0.6 0.8 0.5
Saturated zone hsz/Dsz [-] - - 1 1
Conc. of pollutant in water [mg/L] 0 0 0 0
Conc. of pollutant on soil [mg/kg] 0 0 0 0

YDetermined from separate conservative tracer tests — see Chapter 5.2.4

5.2.2 Calibration procedure

PEST (Doherty, 2013) was selected as a tool for automatic model calibration: it
minimises the objective function (sum of equally weighted residuals i.e. squared
deviations between model and measurements a.k.a observations) using the Gauss-
Marquardt-Levenberg algorithm. The objective function favours the peaks in values and

is of the following form:

m

D= Z(Wil’i )2 , I, =('model output value' - 'measurement" )
i=1

(5.1)

Where r; are residuals, w; weight, and m is the number of measurement. The weights are

inversely proportional to the standard deviation of the observation they are associated
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with (Doherty, 2013). In case all measurement belong to the same population (i.e.
measurements include only flow rates, or only pollutant concentrations), then the weight
of each observation is the same, and can be set to 1. The weight can also be manually
changed to be higher for measurements that are more favoured e.g. when instead of the
peaks, which is inherent to the objective function, the aim is to model well the low
values. The calibration algorithm minimises the ® function (Eq. 5.1).

Initially, the model was manually calibrated, to get a first insight into the model
behaviour. This included choosing specific values for input parameters, running the
model and checking agreement with measured data by visual inspection or some
likelihood measure like the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970).
Manual calibration results were then used for setting the parameter range in the PEST
control file. The PEST control file communicates with both input and output template
files to write input parameter value-sets and to read the output model data (after model
execution) and calculate selected objective function until finding the best parameter set
(Figure 5-2).

Calibration was performed separately for the flow and transport module. The objective
function for the flow module contains non-transformed measurements of outflow rates
at 30-sec interval. The only parameter that was calibrated for the water flow module
was hydraulic conductivity, K, as the porosity (the only other flow parameter, Table
5-1) was set to its measured value determined in 2011 (Lintern et al, 2012). It was
assumed that the porosity did not change over time, since the biofilters had more than 5

years of establishing (Le Coustumer et al., 2012).

The objective function for the pollutant transport module was made with non-
transformed concentration measurements at the outflow pipe (cca. 10 measurements per
each event). The following pollutant transport model parameters were calibrated for

each of the micropollutants:

e the three sorption coefficients, Ko, e, and ok,
o the degradation coefficient (half-life, Ty/,), and
e volatilization coefficient (half-life T,,) for pollutants with high value of the

Henry-constant.
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: ' PESTcycle
I PES_-I—/: -_._l_l_._l_._ - I
| v ;
Input template }e Control file » Output template [
____________________________________________ T._._..! l i
Input parameters—»  Model.exe — Output data .~ Objective i

i function !

Additional input data Measured data* | i 'v i

! Optimum !

: ( reached >:

Model standalone — |

*Measured data is supplied to Control file

Figure 5-2 Scheme of PEST “wrapping-up” the standalone model

The calibration was done using the measured concentrations of the five pollutants (not
their flux), as this was suggested by previous investigations of McCarthy (2008). When
calibration is done on the pollutant flux, the objective function is minimizing the
residuals between composite and not directly measured quantities which include both
variability of the flow rate and the pollutant concentration. Advection/dispersion terms
in Eq. 4.17 were applied and estimated (dispersivity) using conservative tracer test data
(Potassium chloride, KCI) from an experiment performed on the two biofilter cells in a

separate event (see Chapter 3.3).

5.2.3 Model performance assessment

The model results are presented graphically as:

e time series flow rates, pollutant concentrations and pollutant fluxes,
e scatter plots of measured vs. modelled event mean concentrations (EMCs) for
pollutants, and

e scatter plots of measured vs. modelled event loads for pollutants.

The event mean concentration and event load were calculated in the same manner for
both measured and modelled values as per Egs. 5.2 and 5.3, where A4V; is the outflow
volume corresponding to the measured/modelled concentration c;, and m is the number

of measurements.

| Page 108



Chapter 5: Model Testing

i AV, i AV,

EMC =1L = (mg /L) (5.2)
AVi Vtotal
i=1
Event Load = ) AVic; (mg) (5.3)
i=1

Additionally, the model assessment was performed numerically calculating the value of
the Nash-Sutcliffe coefficient (E, Eq. 5.4) for both time-series and scatter plots, and the
adjusted coefficient of determination (R? Eq. 5.5) for scatter plots only. The Nash-
Sutcliffe coefficient indicates how well the model outputs represent the measurements
when compared to the mean value of measurements (E = 1 is a perfect match; E = 0
model predictions are as accurate as the mean value of measurements; E < 0 the mean
value of measurements is a better predictior than the model; E > 0.6 is considered
acceptable in hydrology). The adjusted coefficient of determination takes into account
the low number of observations (i.e. there is a maximum of 12 events for one pollutant
— 6 per cell), and uses the variance, instead of the square residuals only (R> = 1 is a
perfect match). The variances (Vares, Vary) were calculated in an unbiased manner as
per Egs. 5.6 where m is the number of measurements, and p is the degree of freedom: in
this case p = 1 (1 degree of freedom in terms of regression is the vector of measured

values) (Montgomery and Runger, 2010).

(meas, —mod, )’

2

E=1-i —, (<0,1] (5.4)
Z(measi — meas)
i=1
Var,

R? =1- - (w01 .
Var, (-0,1] (5.5)
Zm:(meas —mod)’ i(meas - meas)2

Var, =12 , Var,_ =12 (5.6)

res tot
m-p-1 m-1

5.2.4 Conservative tracer test analysis

The longitudinal dispersivity (a.) was estimated from the in-situ study with a

conservative tracer, potassium chloride, using Eq. 4.17 without the adsorption and
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biodegradation terms. The Nash-Sutcliffe coefficient, E, was used as a measure of
calibration performance (see Chapter 5.2.2).

Calibration was very successful for Cell 2, with E value of 0.96, and acceptable for Cell
1, with E value of 0.86. The dispersivity, o,, was found to be 0.29 m for Cell 1, and
0.14 m for Cell 2.

450
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8:00:00 16:00:00 0:00:00 8:00:00 16:00:00 0:00:00

Potassium chloride test

IS e
.0
¢ Cell 1 measured

——Cell 1 modelled
Spiking Flushing

[CI-] [mg/L]

x Cell 2 measured

——Cell 2 modelled

Figure 5-3 Pollutographs of KCL for Cells 1 and 2 - estimation of dispersivity

5.2.5 Model calibration and verification with field data

The model was calibrated against field tests explained in Chapter 3.5.4. The data from
the two series was split, so that one half is used for calibration and the second half for
validation. The 2" test series (challenging tests 4-6) was used for calibration, because it
had more reliable flow and soil moisture measurements. First step involved calibration
of the key model parameter (hydraulic conductivity) for the flow module, and then in
the second step the key model parameters for the transport module were calibrated using
the modelled flows and moisture contents. This was done for all the detected
micropollutants (atrazine, prometryn, simazine, glyphosate and chloroform). The
calibrated model was then verified using the data from the 1% test series (challenge tests
1-3).

Additionally, the calibrated hydraulic conductivities of both cells were compared to
previously measured and estimated values by Lintern et al, (2012), while the calibrated
transport module parameters were compared to the literature values (fate process
parameters). To assess the robustness of the model, the Nash-Sutcliffe coefficient (Nash
and Sutcliffe, 1970) was calculated between the modelled and measured values (of both
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calibration and verification data series) for the following variables: the filter moisture
content, the outflow rates and the concentrations of the 5 micropollutants.

5.2.6 Model parameter estimation from batch studies data

The sorption and biodegradation parameters (Kg, fe, ax and Kyjo (0or Ti)) were
determined through laboratory batch studies for fluorescein, here used as a
micropollutant-surrogate (a.k.a. reference micropollutant). Fluorescein as it is low in
cost and easy to use (easy detection method). Although fluorescein is commonly used as
a tracer, it has been criticized due to its relative high potential for sorption onto soils and
biodegradation (Smart and Laidlaw, 1977; Sabatini, 2000). These characteristics make
fluorescein a very good surrogate or reference micro-pollutant that can be used to study
sorption and biodegradation process in biofilters. Although fluorescein is prone to
photolysis, it was assumed that it did not occur in the vegetated biofilters as exposure to
sunlight is negligible because of the dense plants above. Fluorescein was hydrolytically
stable in stormwater: concentration change of fluorescein (200 pg/L and 340 pg/L) in
stormwater was within £ 2.0% under different temperatures (4, 15 and 30°C) for over 5

days.

Initial concentration

Ll

Figure 5-4 Example plot of laboratory sorption data with characteristic concentrations
used for determination of sorption parameters in the transport module

Soil samples for these tests were collected from surface (top 5 cm) and deep soil
samples from the two biofilters (Monash Car park site, see Chapter 3.2). Since the tests
were done to sterile samples (no microbes) and non-sterile samples, it was possible to
determine both sorption and degradation parameters. Volatilization was not studied in

these tests (fluorescein is not prone to it).
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The sorption parameters from Eq. 4.17 (i.e. Ky, fe and ax) were estimated from data plots
from the sorption laboratory (batch) tests (Figure 5-4). The plot shows the
approximation of the laboratory data with an exponential function of the following

form:
! ~Ksion't
c(t)-c, =(c0 —ceq)-e (5.7)

Where c(t) is the pollutant concentration in water phase at time t (mg/L), Ceq IS

concentration reached at equilibrium (mg/L), ¢, is pollutant concentration after fast

sorption has happened (mg/L), and Kgow is kinetic sorption rate (s*). This format is
taken as a generalization of various sorption kinetic models reviewed by Qiu et al.,
(2009).

C L .
K, =—, where c, is initial pollutant concentration in water (mg/L) (5.8)

fast — ’ eq

Co Co

Introducing Kt and Keq as fast sorption coefficient and equilibrium sorption
coefficient, respectively, as per Eq. (5.8), and rearranging Eq. 5.7, the following
equations for pollutant concentrations in water phase (Eq. 5.9) and soil phase (Eq. 5.10)

are obtained:

C(t) =y (Keg +(K o ~Kyg ) -€7") (5.9)
water water Ky
s(t) == (G —e(t) === 0y (L Ky (K g — Ko ) €7 (5.10)
water . . . . .. '
Where is ratio of water solution (L) to soil sample (kg). Similarly, s, or

soil

pollutant concentration in soil that is instantaneously sorbed can be expressed as:

,  water ' water
s = (5% )= g% (1K) 51D

Eq. 5.11 can be compared with Eq. 4.18, here written again for convenience, to make a
relation between (1) experimental and (2) two-site chemical non-equilibrium model

parameters as per Eq. 5.12.
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! e
s, =s"=f,-K, ‘¢, (4.18)
water
—(l_ Kfast ) = fe ’ Kd (512)
soil ——
- two-site chemical
experimental parameters non-equilibrium

model parameters

Similar can be done with kinetic-sorption equation from the two-site chemical non-
equilibrium model: Eq. 5.13 is written with Egs. 4.19 and 4.20. The derivative in the
new equation is changed to the total derivative since the batch is homogeneous across
volume (assumption), so the pollutant concentrations in water (or soil) phase change
only with time. Eq. 5.13 is solved (integrated) with known initial condition: no pollutant
in the soil phase at t = 0 (Eq. 5.14). The final form of the sorbed concentration at the
kinetic sorption sites, s (t), for the two-site chemical non-equilibrium model is given
with Eg. 5.15. Its counterpart written in terms of batch experimental parameters is
written as Eq. 5.16. Comparing the two, Eq. 5.15 and Eg. 5.16, using Eqg. 5.12, the
relationship is established between model and experimental parameters as per Eq. 5.17.

O (1 1)Ky ¢ ) (5.13)
.‘-(1_ fe).d;: e = jakdt solving with s* (t=0)=0 (5.14)
() =(1-1,) Ky ¢, -(1-e) (5.15)
sk, =S(t)—s,) = V\;itﬁr -C, -(1— Keg —(Kfast ~Keq ) Kot —(1— K )) (5.16)

e Wategjicl’ '(L;tgi;m(L)( ~Ky )i o =%; ot = Ky (5.17)

Fast sorption and equilibrium concentration ( ¢, and c.) were estimated as

concentration values at 0.5 h and 32 h respectively (the first measured and the last from
the dataset). When these concentrations were determined, Kt and Keq Were calculated

using Eq. 5.8. Kqow Was estimated using the least-squares method while fitting Eq. 5.9
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with experimental data. Model parameters (Kgq, fe, ox) were then determined using
relations in Eq. 5.17.

To estimate biodegradation rates (Kpjo), fluorescein concentrations from non-sterile
samples were adjusted to the concentrations of sterile control ones to account for the
effects of sorption. Once data was prepared, the kinetic rate was estimated using the
least-squares method while fitting the first order decay equation to adjusted

experimental data.

The model was first applied to the field challenge tests with parameters estimated from
the laboratory batch experiments (Kg, fe, ax and Kyi,) and dispersivity (o) estimated
from separate conservative tracer tests performed on site (see Chapter 3.3). The model
was set as to differentiate between surface (first 10 cm) and deep filter media (>10cm),
as batch experiments were separately done on the two types of soils. Dispersivity was,
however, taken to be constant throughout the filter media. The Nash-Sutcliffe
coefficient was used to assess the model performance: E was calculated for modelled

and measured outflow concentrations.

Additionally, the model was calibrated against field data from the fluorescein tracer test
(see Chapter 3.3) to estimate model parameters (Kgq, fe, ax and Kpjo) that give the best fit
with the measured data. To avoid over-parameterization, this model setup did not
differentiate between surface and deep soils. The calibration was done using PEST
software, as explained in Chapter 5.2.2. During the calibration, all the other parameters
(i.e. bulk density, soil organic matter and porosity) were fixed at measured values as per
Table 5-1. This “field calibration” was done to compare the best fitted parameters with
estimated from the batch studies i.e. to analyse the transferability of batch experiment

results to field conditions.

5.2.7 Model parameter estimation from column studies

The sorption parameters (Kg, fe, and ax) were determined through laboratory column
studies for herbicides: glyphosate, atrazine, simazine and prometryn. It was not possible
to study the process of degradation due to short duration of the experiments. However,

discrete samples were collected at the outflow, so the developed pollutant transport
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model was used to estimate the sorption parameters. This was done in a two-step
process:

e Estimation of the conservative transport parameters using tracer test’s results

e Estimation of the reactive transport parameters using herbicide tests’ results.

Both steps were done using the developed model and the calibration procedure (Chapter
5.2.2).

5.3 Model testing results and discussion
5.3.1 Model calibration and verification with field data

5.3.1.1 Flows

The model was mostly capable of predicting flow rates for both cells and both test series
(Figure 5-5, Figure 5-6). However, events following long dry periods (e.g. TESTS 1-6,
2-6) showed some disagreement i.e. the model was “late” and failed to predict high
initial peak in the flow rate, which can probably be attributed to the cracking of the soil

in both cells (which was not represented by the model itself).
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Figure 5-5 Inflow, measured and modelled flow at the outflows of Cell 1 for the two test
series: calibration data from 2012, E = 0.876 (bottom), verification data from 2011,
E =0.611 (top). Nomenclature TEST X-Y: X — cell number, Y — test number
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Figure 5-6 Inflow, measured and modelled flow at the outflows of Cell 2 for the two test
series: calibration data from 2012, E = 0.881 (bottom), verification data from 2011,
E =0.904 (top)

The slight difference between simulated and measured flows was also evident with
events that start with low inflows (e.g. TESTS 1-2, 1-3, 2-2, 2-3). This was very likely a
consequence of biofilters not behaving as one-dimensional systems (variably saturated
along cross-section), which was the main assumption of the flow module. Cell 1 had an
additional peculiar event, which started with high inflow (TEST 1-1), where model
failed to predict the extremely high initial flow peak (again, possible short-circuiting
due to high organic content soils’ tendency to crack when dry; similar was not seen with
soil in TEST 2-1).

5.3.1.2 Micropollutants

Figure 5-7 to Figure 5-16 show the agreement between simulated and measured
concentrations and fluxes in outflows for glyphosate, atrazine, prometryn, simazine, and
chloroform in Cells 1 and 2. Table 5-2 shows the Nash-Sutcliffe model efficiency
coefficient, E, for concentrations for both calibration and verification events, as well as

the calibrated model parameters and their literature values (as per Mackay et al., 2006).
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The modelled glyphosate concentrations followed well the measured calibration data for
Cell 2 (e.g. the model efficiency was 0.736), but slightly underestimated outputs for the
verification series (E = 0.611/0.486) (Figure 5-8). Although, E value of 0.611 might
indicate good agreement, E value of 0.486, calculated for TESTS 2-2 and 2-3 only
(excluding 2-1, where measured outflow concentrations were below the detection limit),
is a more reliable performance indicator. The concentrations in both TESTS 2-2 and 2-3
were underestimated and one reason can be the failure to detect any inflow
concentration in TEST 2-1 i.e. the absence of glyphosate in the inflow might be a
measurement fault, since the inflow tank was dosed with the same amount of pollutant
as in the other tests (Table 3-3). If this was the case, then the mass is not balanced for
the field test data i.e. the modelled biofilter is “supplied” with less inflow pollutant mass

than the actual biofilter.
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Figure 5-7 Inflow and outflow concentration and pollutant flux time series for
glyphosate and Cell 1: calibration, E = 0.575 (bottom), verification, E = 0.545 (top)

On the other hand, it is possible that not all the processes relevant to the glyphosate
removal were presented by the model: e.g. biomass growth/die off, or some sorption

related phenomena (Figure 5-7). Biomass dynamics was willingly excluded from the
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model, as it would require large amount of additional data. On the other hand, peculiar
behaviour of glyphosate (unexpectedly high outflow concentrations i.e. leaching) was
observed even in controlled laboratory conditions with non-vegetated columns (e.g.
Magga et al., 2012), so it might be that for reliable per-event prediction sorption model
would need additional leaching component (desorption is already present). Although
alteration can be done to the model for it to be more precise, the simplicity (low data
requirements) and good performance indicators (E values mostly above 0.5) go in its
favour. This is additionally confirmed with Cell 1, where the model efficiency was
0.575 for 2012, and 0.545 for 2011 (Table 5-2), with model equally under- and over-

estimating concentrations.
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Figure 5-8 Inflow and outflow concentration and pollutant flux time series for
glyphosate and Cell 2: calibration, E = 0.736 (bottom), verification, E = 0.611 (top)
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Figure 5-9 Inflow and outflow concentration and pollutant flux time series for atrazine
in Cell 1: calibration, E = 0.876 (bottom), verification, E = 0.536 (top)

The model was successful in replicating the fate of all three triazines (E value well
above 0.5), with well simulated starting and ending concentrations and its
variability/trend during most events (except simazine). Events where outflow
concentrations were underestimated consistently among pollutants were the ones
following long dry periods (e.g. 2-3, 2-6 or 1-3 seen in Figure 5-10, Figure 5-12, Figure
5-14 or Figure 5-9, Figure 5-11, Figure 5-13). It is hypothesized that this was a
consequence of inflow applied in pulses, rather than continuous flow (Figure 5-5,
Figure 5-6), on the dry filter media (that must have contained some cracks), which
emphasized flow along preferential paths with decrease in the residence time. The two E
values reported for Cell 1 for prometryn and simazine (Table 5-2) were for: (1) the
entire test series (negative) and (2) TEST 1-1 and 1-2 only. TEST 1-3 was found to
decrease the model performance indicator substantially, as the outflow concentrations
were very low, therefore, slight difference in modelled and measured concentrations
(e.g. order of measurement precision) gave a high relative error. A visual inspection,

however, assured that the modelled outputs were following trends in the measured data.

| Page 119



Chapter 5: Model Testing

TEST 2-1 16/08/11 TEST 2-2 31/08/11 TEST 2-3  22/09/11
0.14 sy - T — 0.00
“(.\ AN N LA
50412 “ A ) ~eaa-A 0.02
= ~
E \ =
= 010 '8 No A Natural 0.04 2
S b inflow A & weather Eﬂ
008 357h ek 526h 0.06 %
§ (14.9¢) 5 ©  measured c (219 =2
§ 0.06 60 og modeled ¢ days) roos g
S . total o =
2 0.0 o inflow ¢ . 010 ©
b= inflow 5 a
g 0.02 A measured M | 17.3 m? o L 012
- - - modeled v | (effect)) & °
0.00 T T T O T T 0.14
08:00 10:00 12:00 08:00 10:00 12:00 14:00 16:00 9:00 11:00 13:00 15:00
TEST 2-4 19/11/12 TEST 2-5 20/11/12 TEST 2-6  11/12/12
0.14 s o — — & 0.00
Q\ A L7 ‘A~ ,A‘ - a\ J ’
S 012 \‘A A" o s At ‘P;LB A L 0.02
& - T Ny ST
E 010 - O  measured c A No - Long dry A . A 004 T
5 modeled ¢ inflow period: g
T 0.08 inflow ¢ 10h No inflow 0.06 %
c 496h =
g 006 1 A measuredM ol (205 o 0 o o - 0.08 E
o o =1
2 goq | ---- modeledM o GMO days) &0 —3 0103
= M
© 0.02 0.12
0.00 T T T T T 0.14
11:00 13:00 15:00 17:00 19:00 7:00 9:00 11:00 13:00 8:00 10:00 12:00 14:00

Figure 5-10 Inflow and outflow concentration and pollutant flux time series for atrazine
in Cell 2: calibration, E = 0.776 (bottom), verification, E = 0.941 (top)

Chloroform was the only pollutant where modelling of volatilization was included. The
model’s performance was excellent, with high values of E high: for calibration series
being above 0.9, and verification around 0.7 (Table 5-2). On TESTS 2-2 and 2-3
(Figure 5-16), as well as on 1-2 and 1-3 (Figure 5-15), outflow concentrations were
slightly underestimated which was, again, hypothesized to be a consequence of cracks

formed after long dry periods.

The calibrated pollution transport parameters are in the range of reported literature
values (Table 5-2), with Cell 1 being characterized by lower sorption parameter values
(literature median) and longer degradation half-life (literature maximum) than Cell 2.
Glyphosate was found to be very persistent in Cell 1 (T, = 198) and somewhat
degradable in Cell 2 (T1, = 51). It was also found to be sorbable (logKq. = 2.87/4.39)
and somewhat prone to kinetic sorption: greater fraction of sites is prone to kinetic
sorption in Cell 1 (89% compared to 67%), with Kinetic sorption rate also being higher
(1.5 compared to 0.18E-05 s™). The three triazines showed similar sorption
characteristics, with prometryn having the highest soil-water partitioning coefficient of
the three (logK, = 2.30/3.34), and simazine, on average, being the most prone to kinetic
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sorption (60-70% of sites, 0.5 to 7E-05 s™ kinetic sorption rate). The similar behaviour

of triazines is not unusual, as they share similar molecular structure.
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Figure 5-11 Inflow and outflow concentration and pollutant flux time series for
prometryn in Cell 1: calibration, E = 0.730 (bottom), verification, E = 0.782(0.595)

(top)

As for the degradation, atrazine and prometryn were found to be persistent in Cell 1
(T, around 140 days), unlike simazine (Ty, = 61 days), while all three were prone to
degradation in Cell 2 (Ty, is 23 to 37 days). Calibrated parameters showed that
chloroform was almost completely prone to kinetic sorption (99% of sites), with high
soil-water partitioning coefficient (close to simazine). Chloroform was found to be
degradable in both cells (T1, = 35/24 days). As for volatilization, chloroform half-life in
a biofilter system was longer than what is reported in literature, and that may be because
data is reported for far larger water bodies with higher horizontal velocities than found
in biofiltration ponds (e.g. horizontal water velocity in the tested cells would be close to
zero for most of the experiments). The volatilization time is almost identical for the two
cells, which is expected, since ponding zone was identical for the two (same surface,
same depth).
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Figure 5-12 Inflow and outflow concentration and pollutant flux time series for
prometryn in Cell 2: calibration, E = 0.907 (bottom), verification, E = 0.893 (top)

Comparing Cells 1 and 2, it can be concluded that pollutants experience higher
degradation rate in Cell 2, which might seem unexpected since this cell has the filter
media material with smaller specific surface (i.e. lower content of clay and silt), and
lower nutrient content — both factors that can cause a decrease in biomass growth.
Cell 2, unlike Cell 1, has a submerged zone, which is shown to maintain soil moisture
regime capable of sustaining both plant and microbial activity especially during
prolonged dry periods (Zinger et al, 2013). It is interesting to note the difference in Ko
values between the two cells for the same pollutant (higher in Cell 2), as this parameter
is usually assumed to be only pollutant specific. It is hypothesized that the difference is
due to the neglect of sorption to other matter other than organic carbon that is present in
the soil (e.g. cations, dissolved organic content etc.), meaning that the sorption is not
driven by foc only (so that K, value obtained is not the “real” K, value, and therefore
not constant for a single pollutant). It can also be noted that the soil pH values of the
two cells did not differ enough (Cell 1. pH=7.1, and Cell 2: pH=7.4) to cause the
difference in K, values (as suggested by Jeppu et al., 2012).
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Table 5-2 The Nash-Sutcliffe values between the measured and modelled concentration,
E, and the model parameter values as calibrated and reported by Mackay et al. (2006)

Literature values

logKoc LEV) Tool
Lower Median Upper [d] [d]
Glyphosate 1.22 3.1 4.38 20,47, 100
Atrazine 0.7 2.1 4.2 36, 75, 150
Prometryn 1.77 2.3 3.24 40, 60, 150
Simazine 1.68 2.7 3.66 30, 75, 180
Chloroform 1.4 1.8 2.8 10,50,100 0.5,1
Calibrated model parameters
E fe logKoc o LEV) Tool
Cell 2012 2011 [-] [S_l] [d] [d]
1 0.575 0.545 0.107 2.87 1.51E-05 198
Glyphosate
2 0.736 0.611 0.326 4.39 0.18E-05 51
. 1 0.876 0.536 0.375 1.81 1.02E-05 142
Atrazine
2 0.776 0.941 0.095 2.83 5.66E-05 23
1 0.730 "0.782 0.179 2.30 0.53E-05 143
Prometryn (0.595)
2 0.907 0.893 0.201 3.34 3.79E-05 27
-0.286
1 0.700 0.294 1.76 0.49E-05 61
Simazine (0.293)
0.511 0.285 0.378 2.87 6.99E-05 37
0.967 0.705 0.010 1.05 52.8E-05 35 5.11
Chloroform
0.947 0.685 0.011 3.03 0.43E-05 24 5.14
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Figure 5-13 Inflow and outflow concentration and pollutant flux time series for
simazine in Cell 1: calibration E = 0.700 (bottom), verification E = 0.286(0.293) (top)
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Figure 5-14 Inflow and outflow concentration and pollutant flux time series for
simazine in Cell 2: calibration, E = 0.511 (bottom), verification, E = 0.285 (top)
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Figure 5-16 Inflow and outflow concentration and pollutant flux time series for
chloroform in Cell 1: calibration, E = 0.947 (bottom), verification, E = 0.685 (top)

5.3.1.3 Performance assessment

To get a more general performance assessment, scatter plots of measured vs. modelled
event mean concentrations and event loads were made. The 1:1 line separates the zones
where the model is overestimating — below the line, from where it is underestimating

EMCs (or event loads) — above the line, as can be seen in Figure 5-17.

Figure 5-18 to Figure 5-20 show scatter plots of measured vs. predicted EMCs (in
mg/L) and event loads (in mg) for atrazine, prometryn, simazine, glyphosate and
chloroform for both cells and 6 separate events giving a total of 12 events per
micropollutant. Additionally, graphs include E and R? values, showing how well the

two (measured and modelled) agree.

Figure 5-18 to Figure 5-20 show the performance of model on the triazines: atrazine and
prometryn have very high values of E and R? for both EMCs and event loads, while
model was slightly underestimating simazine, equally for both cells 1 and 2. The E
values are still quite high (above 0.77), so the model is still considered to do a good job.

| Page 125



Chapter 5: Model Testing

0.10

i SCeli™ "
s
- i Model under- s Cell 2,7 :

1 e (
®» 008 1, estimating S0
ET S
g : ,r/,’ 1
1 RO 1
W 0,06 -1 4 :
é : n”/’,/ :
2004 |, Ry |
3 ! . /.”,’ Model over- |
2 ! R estimating ;
© 1 ./ 7 A 1
8002 {1 =, " :
= i E=XXX
AL 1
P RZ=XXX |
0.00 B Sy

0.00 0.02 0.04 0.06 0.08 0.10
Predicted pollutant EMC [mg/L]

Figure 5-17 The predicted and measured pollutant Event Mean Concentration (EMC)
with marked zones where the model is under and over estimating EMCs

Glyphosate EMCs were probably predicted the worst by the model, as can be seen in
Figure 5-19 - bottom, where major underestimate is evident for Cell 1 — and this is
related to TEST 1-5 (Figure 5-7). This only complements the discussion on page 118
regarding the unpredictable behaviour of glyphosate. Although the event loads of
glyphosate seem to be well predicted, since the values of E and R? are above 0.8, this is
misleading. The actual source of the high numeric values is the peculiar high event in
cell 1 (event load above 2000 mg). Without this event, the actual values of E and R? are

0.616 and 0.605 respectively, which still can be considered rather high.
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Figure 5-18 Predicted and measured pollutant Event Mean Concentration (EMC) in
mg/L (left) and event load in mg (right) for atrazine
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Figure 5-19 Predicted and measured pollutant Event Mean Concentration (EMC) in
mg/L (left) and event load in mg (right) for prometryn (top), simazine (middle) and

glyphosate (bottom)
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As for the chloroform, the model shows good predictive capabilities, as most of the

EMCs and event loads are estimated well (Figure 5-20).
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Figure 5-20 Predicted and measured pollutant Event Mean Concentration (EMC) in
mg/L (left) and event load in mg (right) for chloroform

5.3.2 Model parameter estimation via laboratory testing

5.3.2.1 Pollutant transport module parameters estimation from batch tests

Figure 5-21 shows the results of performed batch experiments as the change of
fluorescein concentration in the water phase (c(t), left) and the change of fluorescein
concentration in the soil phase (s(t), right) for experiment duration. The latter one was

derived from the mass balance and the known soil-water ratio.

Sorption of fluorescein in different biofilter soils Sorption of fluorescein in different biofilter soils
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Figure 5-21 Batch test results: sorption of fluorescein in different biofilter soils —
fluorescein concentration in water (left) and fluorescein concentration on soil (right)

The sorption kinetics exhibited a two-step process: the initial step was quite rapid

(< 0.5 hr), while the second step was slower and exhibited equilibration. It was assumed

| Page 128



Chapter 5: Model Testing

in this study that instantaneous sorption occurred in the first rapid step while the first-
order sorption occurred in the second step (as per Eq. 5.7). The sorption parameters (fe,
ax and Ky) were estimated as explained in Figure 5-4 and Eqgs. 5.8 and 5.17. Figure 5-22

depicts estimation of kinetic sorption rate, as well as R® values obtained for each soil.
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Figure 5-22 Batch test results analysis: estimation of kinetic sorption rate of fluorescein
in different biofilter soils

Table 5-3 Transport and fate model parameters for fluorescein obtained from laboratory
batch studies and model calibration

Calibrated
Parameters estimated from laboratory parameters to
Model parameters . . .
experiments achieve the best fit

to in-situ data’

Cell 1 Cell 2 Cell 1 Cell 2
Model type
S D S D S/D S/D
Instantaneous sorption fraction, f, [-] 0.23 0.21 0.20 0.16 0.19 0.13
Kinetic adsorption rate, oy [h_l] 0.11 0.11 0.078 0.061 0.085 0.055
Soil water partit. coefficient K4 [L kg_l] 2.2 1.4 0.45 0.33 2.7 1.5

Biodegradation rate, Kbio[h’l] 2.5E-03 1.5e-03  3.0E-03  2.9E-03 2.9E-03 9.0E-03

Nash-Sutcliffe coefficient, E -1.2 /-0.54" 0.67 / 0.88" 0.69 0.90

L E value based on the whole part of the test/E value based only on spiking part of the test;

2 combined calibrated parameters of surface and deeps soils were obtained to avoid over-
parameterization.

Table 5-3 shows transport and fate model parameters for fluorescein obtained from
laboratory batch studies and model calibration. The fe, ax and Kq4 values of loamy sand
(average 0.22, 0.11 h™ and 1.8 L kg™ respectively) were higher than that of sand media
(average 0.18, 0.070 h™ and 0.39 L kg™ respectively), which may be due to the higher
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clay and organic matter content in loamy sand media compared to sand media (Table
3-1). It has been reported that higher soil organic matter content may contribute to
higher sorption capacity (René and Schwarzenbach, 1993). Similarly, these parameter
values in surface media were higher than that in the deep media. The first order kinetic
rate (o) in this study was much lower than that was found by Abdus-Salam and Buhari
(2014) who used pseudo-first order to describe the kinetic adsorption of fluorescein (o
=3.36h™). The Kq value estimated in this study (average 0.39 L kg™ for sand and 1.8 L
kg™ for loamy sand) were lower than the reported value (Kq= 10.3 L kg™) by Omoti and
Wild (1979) who used loamy sand (~85% sand, ~10% clay) to study fluorescein
adsorption equilibrium through column experiments. However, the values of this study
were close to reported value (Kq= 0.33L kg™) by Sabatini and Austin (1991) who used
aquifer sand (97.3% sand, 2.2% silt and 0.5% clay) to study adsorption characteristics
of fluorescein using batch experiments. The differences between soil properties of the
studied biofilter media (Table 3-1) and other studies may be attributed to the different

Kg4 values.

Degradation of fluorescein in biofilter soils
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Figure 5-23 Batch test results: degradation of fluorescein in different biofilter soils

Figure 5-23 shows changes of fluorescein concentration in different soils during
performed degradation-batch experiments: sterile soils were assumed to experience
sorption only, while regular samples were assumed to experience a combination of
sorption and degradation. Fluorescein concentration dropped in all the soils during the
entire experiment (~21 days). As anticipated, the decrease in concentration was lower
for the sterile-soils when compared with regular ones, with the least decrease in sterile

sand deep soil (~10% reduction). Figure 5-24 presents estimation of a degradation rate
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from the trend in fluorescein concentration change: the concentrations from the
experiments were first adjusted, so to show net-degradation (without sorption). The
change was assumed to follow first-order kinetics. The numerical values are shown in
Table 5-3. From these results, it is evident that the degradation process was having a
much slower pace than the sorption kinetics. However, degradation cannot be neglected,
especially during the dry weather periods that occur between storm events, as some of
these periods can be up to 500 hours (more details in Zhang et al., 2014). As can be seen
in Figure 5-23, the drop in fluorescein concentration for long dry periods (> 500 h) due
to degradation only can be up to 30% for the deep loamy sand or sand soils. Slightly
higher biodegradation rates were found in the sand media (3.0 x10°° h™ for surface and
2.9x10° h™ for deep) compared to the loamy sand media (2.5x10° h™ for surface and
1.5x10 h™ for deep).

Estimation of degradation rate in different biofilter soils
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Figure 5-24 Batch test results analysis: estimation of degradation rate of fluorescein in
different biofilter soils

Figure 5-25 shows how the model fits the measured outflow rates during the fluorescein
field test. While the model was quite successful for Cell 2 (E = 0.709), it was not as
much with Cell 1 (E = 0.284). The major difference occurred on day when both KCI
and fluorescein were introduced at the same time. It is hypothesized that KCI interacted
with the clay in the filter media, and actually changed the apparent soil structure,
influencing the hydraulic conductivity to change as well (decrease) (as seen in other
studies e.g. Shainberg et al., 1981, Yilmaz et al., 2008). Unfortunately, this discrepancy
influences the pollutant modelling substantially, so conclusions made on Cell 1 should

be taken with reservations.
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The model parameters estimated from the batch experiments were used in a predictive
mode against the field fluorescein data, and results showed good agreement with Cell 2
(E = 0.67) and poor agreement with Cell 1 (E = -1.27) (Figure 5-26).
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Figure 5-25 Measured and modelled flow at the outflow pipe for fluorescein test: Cell 1
(top), E = 0.284 and Cell 2 (bottom), E = 0.709

The model struggled to predict well the starting concentrations of flushing part of the
test, when presumably desorption wass occurring (this holds for both cells). The high
starting concentration of the flushing event could also be attributed to underestimated
degradation rate. Once the initial phase of desorption occured, the model was quite
successful in replicating the measured concentrations for Cell 2. As for the Cell 1, the
model struggled even during events when hydraulics was well modelled (first spiking,
first flushing, Figure 5-26). Since the model was overestimating outflow concentrations
in all events, it is concluded that analysis of results of batch studies underestimates both

sorption and degradation parameters (applicable to field conditions).
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Figure 5-26 Batch test results application: measured and modelled fluorescein outflow
concentration for in-situ test for Cell 1 (top), E = -1.27, and Cell 2 (bottom), E = 0.67.
Field model parameters estimated from batch test results

The model was also calibrated with field data for both cells and the results are shown in
Figure 5-27 and Table 5-3. High values of Nash-Sutcliffe are evidence of good fit
(E=0.69 for Cell 1, E = 0.90 for Cell 2). The field calibrated sorption parameters
indicate a more kinetic sorption with higher soil-water partitioning coefficient when
compared to estimates with batch experiments. The degradation rate is also higher,

eventually producing lower starting concentrations for flushing events.
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Figure 5-27 Measured and modelled fluorescein outflow concentration for in-situ test
for Cell 1 (top), E = 0.69, and Cell 2 (bottom), E= 0.90. Field model parameters
calibrated on field data

5.3.2.2 Pollutant transport module parameters estimation from column tests

As explained in Chapter 3.6.2, three replicates of columns were set up. The samples
were taken simultaneously and the average concentration was reported. Figure 5-28
presents results from tracer test along with modelled values assuming conservative
transport (no sorption, no degradation). A high value of the Nash-Sutcliffe coefficient
(E=0.97) indicates a very good agreement between measured and modelled
concentrations, and therefore high reliability in estimated transport parameter for the
conservative transport. The dispersivity (used for calculation of dispersion coefficient)
was found to be quite low (e = 0.007 m), indicating that the flow in the columns was
predominantly advective. It is hypothesized that this might be due to the uniform
packing that was accomplished while setting up the columns, as well as the rinse-out of

the smallest particles (see Chapter 3.6.2 for column establishment procedure).
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Figure 5-28 Measured and modelled outflow concentrations of KCI during column test
normalized to initial concentration C/Cy
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Figure 5-29 Measured and modelled outflow concentrations of glyphosate (left) and
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Figure 5-30 Measured and modelled outflow concentrations of simazine (left) and
prometryn (right) normalized to initial concentration C/Cy

For the second step, the model was calibrated against outflow concentrations for column

tests with herbicides. Figure 5-29 and Figure 5-30 show measured and modelled

outflow concentrations for glyphosate, atrazine, simazine, and prometryn, as well as the

performance measure (Nash-Sutcliffe). The values of E are quite high, having a range
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from 0.89 (simazine) up to 0.98 (glyphosate), indicating very good estimates of sorption

parameters made with column study’s results.

Once the dispersivity and sorption model parameters have been estimated (Table 5-4),
the model was used in predictive mode against the field data (Chapter 3.5.4). Since the
degradation process was not studied in the column tests, half-life for model predictions
was taken as field-calibrated values from Table 5-2. Figure 5-31 to Figure 5-34 show
model predictions against field measured pollutant concentrations and fluxes for all
tested herbicides. In addition to the column test estimated parameters, Table 5-4
includes E values for the column test (calibration) as well as E values for field data for
both 2011 and 2012.

Table 5-4 Values of sorption model parameters calibrated on column test for herbicides;
E values for column test (calibrated) and field tests (prediction)

E value — field Calibrated parameters Field*
E value -
Herbicides column Log Kqc f. a T
test 2011 2012 4

[log L/kg] [-] [s7] [day]
Glyphosate 0.98 0.205 -1.410 4.31 0.193 6.53E-06 51
Atrazine 0.90 0.929 0.478 2.60 1.000 5.95E-05 23
Simazine 0.89 0.193 0.502 2.74 1.000 1.15E-05 37
Prometryn 0.97 0.736 0.452 3.26 0.476 1.28E-05 27

*Degradation half-life is taken from the field calibration

Model outputs for glyphosate show overestimates for both years, with especially high
values obtained for 2012 (Figure 5-31, bottom). Therefore, one can assume that the
column testing analysis appears to underestimate the sorption parameter values.
Triazines outflow concentrations, however, were not substantially overestimated by the
model for neither 2011 nor 2012. Atrazine and prometryn concentrations were modelled
reasonably well, with E values being lower than field-calibrated but still around and
above 0.5 (Figure 5-32, Figure 5-33). Simazine outflow concentrations were slightly
overestimated, but are comparable to the field-calibrated results: E values were as
follows for the two testing periods: 2011 — 0.193 for column compared to 0.285 for field
and 2012 — 0.502 compared to 0.511 (Figure 5-34).
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Table 5-5 Comparison of field and column calibrated sorption parameters’ values

Field calibrated parameters Column calibrated parameters

Herbicides log Koc f, a log Koc f, a
[log L/kg] -] [s] [log L/kg] -] [s]
Glyphosate 4.39 0.326 0.18E-05 4.31 0.193 0.65E-05
Atrazine 2.83 0.095 5.66E-05 2.60 1.000 5.95E-05
Simazine 2.87 0.378 6.99E-05 2.74 1.000 1.15E-05
Prometryn 3.34 0.201 3.79E-05 3.26 0.476 1.28E-05

Once the column calibrated sorption parameter values were compared to the ones from
the calibration against field data (Table 5-5), it was concluded that the kinetic sorption
parameters (fe, ax) can be extremely different and still give similar results. That is, in the
column tests, atrazine and simazine were found to be completely prone to instantaneous
sorption, while field calibrated values point to substantial kinetic behaviour (most

evident in fe: 1.0 compared to 0.1 for atrazine, and 1.0 to 0.4 for simazine, Table 5-5).
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Figure 5-31 Inflow and outflow concentration and pollutant flux time series for
glyphosate at Cell 2 using column test parameters: 2011, E = 0.205 (top), 2012, and

E =-1.410 (bottom)
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Figure 5-32 Inflow and outflow concentration and pollutant flux time series for atrazine
at Cell 2 using column test parameters: 2011, E =0.929 (top), 2012, and E =0.478
(bottom)
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Figure 5-33 Inflow and outflow concentration and pollutant flux time series for
prometryn at Cell 2 using column test parameters: 2011, E =0.736 (top), 2012, and
E = 0.452 (bottom)
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Figure 5-34 Inflow and outflow concentration and pollutant flux time series for
simazine at Cell 2 using column test parameters: 2011, E =0.193 (top), 2012, and
E =0.502 (bottom)

This is indication of the model’s “equifinality” (Beven, 1993; Beven, 2006), or the
absence of a unique parameter set, but rather several equally possible parameter sets. As
noted by Dotto (PhD thesis, 2013) there are several possible reasons for this effect, and
the mostly probable in this case are: (1) parameter space has several local minima
regions and (2) parameters can exhibit a high degree of correlation. Since the effect of
equifinality can substantially reduce confidence in the modelled results (Kuczera and
Parent, 1998), it will be of outmost importance to perform a through uncertainty

analysis of the model. Chapter 6 is, therefore, completely devoted to this subject.

5.4 Conclusions

Water flow was very well simulated for the well-designed Cell 2, but was not
completely verified for Cell 1. This was attributed to profound cracking after dry
periods of the Cell 1 media (which had high clay content). Most pollutants were well
modelled in both cells, with the exception of simazine and prometryn for low inflow
events after prolonged dry periods. Pollutants were found to sorb well in both cells, and

exhibiting a more kinetic behaviour in Cell 1. Degradation was found to be more
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dominant in Cell 2, and this is believed to be due to the presence of the submerged zone
that sustains microbial activity during dry periods.

The model was run with laboratory data from batch studies (fluorescein as referent
pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A
procedure was developed for the estimation of parameters from batch studies, and a
regular calibration method was used for parameter estimation from column tests.
Parameters for both sorption and degradation were found to be underestimated from
batch studies. This is hypothesized to be due to differences in the water to soil ratio in
batch studies, when compared to the field. The sorption parameters estimated from
columns were also somewhat underestimated, and when used with the model produced
higher outflow pollutant concentrations. This is especially the case with glyphosate, and
only slightly with the triazines. Column studies also indicate less-kinetic-sorption
behaviour when compared with the field data. It is hypothesized that kinetic sorption
behaviour on the field may be apparent, and a consequence of the assumption that the
flow is one dimensional, when in reality it is not, leading to conclusion that the kinetic
behaviour is due to structural heterogeneity of the biofiltration material, rather than
chemical. It is possible that the sorption process in the field is accounting for both
micropollutant sorption to sorption and to the vegetation. This, however, can only be
checked with additional laboratory column studies with undisturbed samples and
vegetation.

The calibrated model parameters were in agreement with the available literature values,

which makes the use of this model promising for the tested groups of organic pollutants.
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6 MODEL UNCERTAINTY ANALYSIS

6.1 Introduction

Uncertainty is inherent to every modelling process and has multiple sources. By
mapping and analysing sources of the uncertainty, especially their impact on modelling,
one can make model predictions more reliable i.e. less uncertain. This chapter deals
with the following: (1) Calibration data selection, and (2) General uncertainty.

The MPiRe model was applied to atrazine, simazine, prometryn, glyphosate and
chloroform with data from Monash Car Park biofilter (field data). The uncertainty due
to calibration data selection was assessed by choosing different parts of dataset for
calibration, and comparing different optimal parameter sets. The general uncertainty
assessment was performed using (1) GLUE (Beven and Binley, 1992) to create
parameter probability distributions (PDs) and (2) to create 95" percentile confidence

intervals for modelling results.

6.2 Materials and methods
6.2.1 Calibration data selection uncertainty procedure

To assess the influence of used calibration dataset on model uncertainty, the available
dataset of measurements was divided into several smaller datasets of different sizes.
These smaller datasets were used for event-based model calibration. Calibration was
done automatically using PEST (Doherty, 2013) against measured outflow rates and
pollutant concentrations (as in Chapter 5.2.2). The Nash-Sutcliffe coefficient is used as
model efficiency criteria. It should be noted that calibration uncertainty procedure was
quite limited by the amount of data (number of events) available, and is just shown as a
method. Additionally, calibration of separate events was done under constant

degradation rate (calibrated), as the major impact of degradation is between events.

6.2.2 General uncertainty procedure

Sensitivity analysis (creation of probability density (PDs) histograms of model
parameters) was done using Generalized Likelihood Uncertainty Estimation method

(GLUE, by Beven and Binley, 1992), similar to other urban drainage water modelling
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studies (e.g. Dotto et al, 2012, Mannina and Viviani, 2010, Vezzaro et al, 2012). GLUE
is based on Monte-Carlo simulations, where parameters are sampled randomly from
assumed prior PDs. Parameter sets are evaluated for their ability to reproduce measured
data using a likelihood function - Nash-Sutcliffe coefficient for (1) flow measurements
for hydraulic module and (2) pollutant concentrations for pollutant module. The
accepted parameter sets — the ones with likelihood function above a certain threshold,
are used to construct the density distribution histograms for each of the calibration

parameters, as well as to examine their cross correlations.

Prior parameter PDs were assumed to be uniform on intervals. The ranges for
parameters of the hydraulic module were: hydraulic conductivity, K¢ 10 — 250 mm/h,
porosity, n 0.15 — 0.55 and starting filter pore saturation s 0.0 — 1.0. The range for each
parameter of the pollutant module was estimated using manual calibration and is shown
in Table 6-1 with respective likelihood function thresholds. A total of 100 000
parameter sets is created for hydraulic module and each of the micropollutants using

Latin Hypercube sampling (McKay et al., 1979).

Table 6-1 Parameter range for uniform prior PDs with the E - threshold

Parameter Atrazine Prometryn Simazine Glyphosate
logKoc -1.6-3.6 -1.6-3.6 -1.6-3.6 0.4-5.0
fe [-] 0-1 0-1 0-1 0-1

ay [s7] le-7-1e-5 le-7—1e-5 le-7—1e-5 le-7-1e-5
Ty, [day] 5-300 5-300 5-300 5-300
E-threshold 0.4 0.6 0.4 0.6

Posterior PDs of parameter sets were then used to run the model and produce 95"
percentile confidence intervals for micropollutant concentration in order to assess its
robustness. It should be noted that the confidence interval is inversely proportional to
the likelihood function threshold value: larger values produce narrower confidence

intervals.
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6.3.1 Calibration data selection

Chapter 6: Model Uncertainty Analysis

Table 6-2 shows hydraulic module parameter values estimated for each of the test days

alongside parameters estimated for the complete continuous series. The parameters of

Cell 2 are found not to vary substantially when calibration is event-based for singular

test days or when run as a continuous simulation, suggesting that the model could be

successfully calibrated for Cell 2.

Table 6-2 Model parameter and Nash-Sutcliffe values for different periods for hydraulic
module on Cell 2

Test 1 Test 2 Test 3 Continuous series
K¢ [mm/h] 141.8 151.9 160.0 155.5
n[-] 0.400 0.422 0.450 0.400
s [-] 0.498 0.843 0.283 0.406
E[-] 0.909 0.953 0.877 0.893

* Test 1 (19-11-2012), Test 2 (20-11-2012), Test 3 (11-12-2012)

Table 6-3 Model parameter and Nash-Sutcliffe values for different calibration periods
for atrazine on Cell 2

Test 1 Test 2 Test 3 Continuous series*
logK,. [logL/kg] 5.44 2.72 3.04 2.83
fe [-] 0.431 0.113 0.029 0.095
ok [s7] 2.46e-05 1.35e-06 7.85e-05 5.66e-05
Nash-Sutcliffe (E) 0.721 0.899 0.857 0.776

Test 4 Test 5 Test 6 Continuous series*
logK,. [logL/kg] 3.45 1.74 2.12 1.81
fe [-] 0.431 0.113 0.029 0.375
o [s] 4.46e-06 5.43e-06 2.73e-05 1.02e-05
Nash-Sutcliffe (E)  0.897 0.698 0.887 0.876

* Continuous series are joined single events
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Table 6-3 shows these pollutant module parameter values estimated for each of the test
days and for the complete continuous test series for atrazine at Cell 2. The most
sensitive parameter is found to be the soil-water partitioning coefficient normalized to
organic carbon content, K, which differs over 2 orders of magnitude (in logarithmic
scale) between different calibration periods. The least sensitive is the kinetic sorption
rate, ak, with at most 3 times difference. Interestingly, Nash-Sutcliffe is increased when
the calibration period is short (only one event), and is around 0.7 and above for all
periods. Similar is found for all the other micropollutants (see Appendix): Kqc is the
most sensitive, and ok the least sensitive. However, it should have in mind that

biodegradation rate is not evaluated in this study.

6.3.2 General uncertainty

Figure 6-1 shows matrix plot of cross-correlation scatter plots (off diagonal) between
model parameters and model parameters and likelihood function (top row). Diagonal

plots on Figure 6-1 are posterior parameter PDs.
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Figure 6-1 Matrix plot of cross-correlation scatter plots (off-diagonal) and posterior
parameter probability density functions (diagonal) for flows at Cell 2 using GLUE and
likelihood E > 0.6 (Prodanovic et al., 2014)

It is clear that there is only one sensitive parameter in the hydraulic module: the
filtration coefficient (Ks), which has a clear peak value as seen in Figure 6-1. The model
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Is insensitive to changes in the value of parameters porosity (n) and saturation of the
filtration layer (s). Cross-correlation scattered plots in Figure 6-1 also show that there is
no apparent correlation between the parameters, additionally confirmed by correlation
coefficient values in Table 6-4.

Table 6-4 Matrix of parameter cross-correlation coefficients for flows at Cell 2, using

GLUE,E>0.6
Hydraulics E Ks n s
E 1 0.361 -0.037 0.019
Ks 1 0.105 0.014
n 1 -0.048
S 1

Parameter mutual independence is highly valued in modelling, as the contrary signals an
ill-posed model. (Dotto et al., 2012) From the above, it is concluded that the hydraulic
module is well-posed.
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Figure 6-2 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency
density(upper left corner) and posterior parameter probability density functions
(diagonal) for atrazine concentrations at Cell 2 using GLUE and likelihood E > 0.4
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Figure 6-2 shows the parameter sensitivity for atrazine at Cell 2 using GLUE with the
likelihood function cut-off E > 0.4. The posterior parameter PDs show that the soil-
water partitioning coefficient, Ko, and fraction of instantaneous sorption sites, fe, have
clear peaks, indicating that their optimal values are easily identified. Posterior PDs for
Kinetic sorption rate, ax, and degradation half-life, Ty, do not have clear peaks (they
may be considered multi-modal, or almost uniform); therefore, their calibrated values

have a high uncertainty.

Table 6-5, that includes parameter cross-correlation coefficients for atrazine at Cell 2,
using GLUE with a cut-off E > 0.4, shows that parameters logK,. and f. are
substantially correlated, with R = -0.711. This means that the two compensate for each
other: combination of high logK,. and low f. produces similar sorption results to low
logK,c and high f.. This is expected, as the sorption model includes their mutual
product. However, although they are correlated, it is not difficult to find their optimal
values. The correlation and high peaks indicate that calibration would probably be better
performed (with less uncertainty) for two unrelated parameters formed from the
combination of K, and f, such as (1) their product and (2) another relation derived from

Kinetic sorption model (Doherty, 2013).

Table 6-5 Matrix of parameter cross-correlation coefficients for atrazine at Cell 2, using

GLUE,E>04
Atrazine E LogKoc fe ol Tip
E 1 0.176 -0.377 0.099 -0.032
LogKoc 1 -0.711 -0.044 0.277
fe 1 0.084 -0.357
Ol 1 0.031
Ti 1

The likelihood function is most sensitive to logK,. and f., indicated by the narrowest
distribution function, with a clear peak (Figure 6-2, top row) and high R values in Table
6-5. Insensitivity of the likelihood function to values of degradation half-life are
anticipated to be consequences of (1) assumptions regarding degradation being relevant
in dissolved micropollutant phase only (water pollutant concentration) and (2) low data

for determination of this value. As it was previously concluded, degradation is a process
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relevant between events (Chapter 5.3). Inter-event data is very scarce: there are only a

few soil samples (usually not showing any detected concentration) and the major weight

of the degradation rate estimation is held by two outflow concentration points (ending

of one event, and start of the next event). It is hypothesized that longer continuous series

of measured outflow pollutant concentrations (with more events) would decrease

uncertainty regarding this parameter, and show that it is a well-chosen model parameter.
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Figure 6-3 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency
density(upper left corner) and posterior parameter probability density functions
(diagonal) for simazine concentrations at Cell 2 using GLUE and likelihood E > 0.4

Table 6-6 Matrix of parameter cross-correlation coef. for simazine at Cell 2, using

GLUE,E>04
Simazine E LogKoc fe Ol Ti
E 1 -0.178 -0.170 -0.026 -0.131
LogKoc 1 -0.638 -0.359 0.121
fe 1 0.268 -0.083
o 1 -0.119
T 1
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Figure 6-4 and Figure 6-5 shows the parameter sensitivity for simazine and prometryn
at Cell 2 using GLUE with the likelihood function cut-off E > 0.4 and E>O0.6,
respectively. Parameter cross-correlation scatter plots and parameter probability density
functions for simazine and prometryn are very similar to atrazine. Similarity can be seen
in correlation values, as well (Table 6-6, Table 6-7): logK.,. and f. are strongly
correlated, but due to the narrowness of their probability distributions, it is easy to
determine their optimal values. The kinetic sorption rate, a, and degradation half-life,
Ti, do not have a clear peak in PDs. (Figure 6-4, Figure 6-5) The Nash-Suttcliffe
coefficient is mostly influenced by logK,. for both simazine and prometryn.
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Figure 6-4 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency
density(upper left corner) and posterior parameter probability density functions
(diagonal) for prometryn concentrations at Cell 2 using GLUE and likelihood E > 0.6

Table 6-7 Matrix of parameter cross-correlation coef. for prometryn at Cell 2, using

GLUE,E>0.6
Prometryn E LogKoc fe ol Ti2
E 1 0.390 -0.307 0.224 -0.014
LogKoc 1 -0.403 -0.215 0.162
fe 1 0.232 -0.130
o 1 -0.009
Ti 1
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Figure 6-5 Matrix plot of cross-correlation scatter plots (off-diagonal), efficiency
density(upper left corner) and posterior parameter probability density functions
(diagonal) for glyphosate concentrations at Cell 2 using GLUE and likelihood E > 0.6

Table 6-8 Matrix of parameter cross-correlation coef. for glyphosate at Cell 2, using

GLUE,E>0.6
Glyphosate E LogKoc fe o Ti2
E 1 0.399 -0.240 -0.309 0.008
logKoc 1 -0.789 -0.273 0.073
fe 1 0.149 -0.099
o 1 -0.037
T 1

Figure 6-5 shows the parameter sensitivity for glyphosate at Cell 2 using GLUE with
the likelihood function cut-off E > 0.6. The posterior parameter PDs show that the soil-
water partitioning coefficient, Ko, and fraction of instantaneous sorption sites, fe, have
clear peaks, indicating that their optimal values are easily identified. But unlike the rest
of micropollutants, kinetic sorption rate, ax, shows a clear peak in posterior PD,
meaning that the calibrated value is with low uncertainty. There is a slight correlation

between sorption parameters f, and ok, and again a strong correlation between logKqc
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and f.. (Table 6-8) The degradation half-life exhibits the same behaviour as with the
other pollutants and the same is hypothesized about the need for longer continuous

series of measured outflow pollutant concentrations (with more events).
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Figure 6-6 Atrazine, simazine, prometryn and glyphosate (top-bottom) pollutographs at
biofilter outflow pipe with measured and modelled concentrations including a 95%
confidence interval from GLUE analysis
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Figure 6-6 shows pollutographs at biofilter outflow pipe with measured and modelled
concentrations and a 95% confidence interval for atrazine, simazine, prometryn and
glyphosate at Cell 2. Most of measurements fall well between the confidence intervals
that suggests that the model is well-posed: 76% for atrazine, 66% for simazine, 90% for
prometryn and 97% for glyphosate. It can be observed that ending and starting event
concentrations have the widest confidence interval, meaning they have the highest
uncertainty (which further confirms the hypothesis about degradation half-life posterior
PD).

6.4 Conclusions

The MPiRe model was checked with micropollutant data at Monash Car Park biofilter.
The model was successfully calibrated, and then model uncertainty analysed. The

following is concluded:

o Different calibration datasets produce different optimal model parameters, with
soil-water partitioning coefficient (normalized to organic carbon content) being
the most sensitive to this procedure.

e The longest dataset gives the most average values of parameters, and the lowest
value of likelihood function.

e Uncertainty analysis performed with GLUE confirmed that the soil-water
partitioning coefficient (normalized to organic carbon content) is the most
sensitive model parameter, but also found correlation between sorption
parameters, and high uncertainty in the degradation rate estimation. It is
suggested that these procedure needs to be redone with longer continuous series
of measured outflow pollutant concentrations (with more events).

e Additionally, the predictive uncertainty is assessed by making 95% confidence

intervals for model predictions, and it suggests that the model is sound.
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7 CONCLUSIONS AND FURTHER RESEARCH

7.1 Summary of conclusions

This main aim of this research was to develop a process based model that is capable of
simulating water and micropollutant transport though stormwater biofilters. To get
insight into the dimensionality of the flow, conservative tracer tests and ERT were
performed on-site with two different biofiltration units. ERT data visually confirmed
that the transition from two-dimensional to one-dimensional flow is fast when water is
introduced into a variably saturated biofiltration system, and that transport is one
dimensional. The tracer test measurement data was successfully simulated with the

proposed one-dimensional model with conservative advective-dispersive transport.

The MPiRe model’s final form included three key processes that govern behaviour of
micropollutants in these systems: (1) sorption, (2) degradation and (3) volatilisation.
The water flow contained at-least one calibration parameter (hydraulic conductivity)
while the pollution transport required calibration of additional four or five parameters.
The model was used to simulate the fate of five organic micropollutants (glyphosate,
atrazine, simazine, prometryn, and chloroform) in two different biofiltration cells; one
cell was designed according to the best Australian design practice (Cell 2) and the other
cell has a high organic and clay content (Cell 1). The cells were tested under variable
and challenging operational conditions. The model was calibrated and independently

validated on two separate data series.

The water flow was very well simulated for the well-designed Cell 2, but was not
completely verified for Cell 1. This was attributed to pronounced cracking after dry
periods of the Cell 1 media (which had a high clay content). The model was successful
in capturing pollutograph trends and peaks for most micropollutants. The exceptions
were simazine and prometryn during low inflow events after prolonged dry periods,
where outflow concentrations were underestimated. The pollutants were found to sorb
better in Cell 1 (lower outflow concentrations), and exhibited a more sorption kinetic
behaviour in Cell 2 (higher sorption rate for most pollutants). Degradation was also
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found to be more dominant in Cell 2, and this is believed to be due to the existence of a
submerged zone that sustains microbial activity during dry periods.

The model was run with laboratory data from batch studies (fluorescein as referent
pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A
procedure was developed for the estimation of parameters from batch studies, and a
regular calibration method was used for parameter estimation from column tests.
Parameters for both sorption and degradation were found to be underestimated from
batch studies. This is hypothesized to be due to differences in the water to soil ratio in
batch studies, when compared to the field. The sorption parameters estimated from
columns were also somewhat underestimated, and when used with the model produced
higher outflow pollutant concentrations. This was especially the case with glyphosate,
and only slightly with the triazines. Column studies also indicated less-kinetic-sorption
behaviour when compared with the field data. It is hypothesized that kinetic sorption
behaviour on the field may be apparent, and a consequence of the assumption that the
flow is one dimensional, when in reality it is not. This leads to a conclusion that the
Kinetic behaviour is due to the structural heterogeneity of the biofiltration material,
rather than chemical heterogeneity. It is also possible that the sorption process in the
field accounts for both micropollutant sorption to soil and to vegetation. This, however,
can only be checked with additional laboratory column studies with undisturbed
samples and vegetation.

The calibrated model parameters were in agreement with the available literature values,
which makes the use of this model promising for the tested groups of organic pollutants.
Sensitivity and uncertainty analysis indicated that the most sensitive parameter of the
water module is the hydraulic conductivity, while for the pollutant module it is the soil-
water partitioning coefficient. The degradation rate was found to be an uncertainty
parameter, and it is suggested that uncertainty analysis needs to be redone with longer
continuous series of measured outflow pollutant concentrations (with more events)
when data becomes available. The model’s predictive uncertainty is not high, and most

measurements fell well between the 95" percentile confidence intervals.
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7.2 Research aim evaluation

Goal 1: To develop a transport and fate model for organic micropollutants in stormwater

biofilters.

1.

It was hypothesized that micropollutants can be grouped according to their
chemical structure and nature into a few groups, and that a good “representative”
can be selected from each group, whose transport and fate models can be
“transferred” to each member of the group.

Atrazine, prometryn and simazine were considered to belong to the same group
of pollutants as they share a similar structure (triazines). Modelling results from
this research suggest that a similar model can be applied to all of them, giving
satisfactory results (Chapter 5). Unfortunately, many of the micropollutants that
were introduced into the biofiltration system were detected in the outflow
(Chapter 3) so the conclusion made for triazines cannot be confirmed with other
micropollutant groups. It is suggested that this hypothesis needs to be further
confirmed when new data becomes available.

It was hypothesized that the complex hydrodynamic behaviour of urban
stormwater in WSUD systems can be conceptualized by a multiple reservoir
approach (one-dimensional model with dominant vertical flows).

In order to check this hypothesis, and eventually develop a model based on it, a
group of tests was performed on a biofiltration system (field site): tracer tests
with conservative and non-conservative tracers and the ERT. A tracer test was
successfully simulated using a proposed one-dimensional model with dominant
vertical flows and the advective-dispersive equation (Chapter 5.2.4). ERT results
gave visual evidence of a short transition from two-dimensional to one-
dimensional flow when water is introduced in a variably saturated biofiltration
system (Chapter 3.4.4).

It was hypothesized that the transport of micropollutants in the biofilter can be
predicted by a linear advective dispersive transport equation (vertical), while
conceptual 1% and 2" order decay models could be used to assess the removal

processes that may be physical/chemical/biological in nature (settling, straining,
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volatilization, photodegradation, hydrolysis, aerobic/anaerobic biodegradation,
adsorption, and desorption).

To check this hypothesis, and develop a model, a series of tests were performed
with fluorescein — as a reference micropollutant that included: conservative
tracer test, field fluorescein test, and laboratory batch and column studies. A
model based on a one-dimensional bucket hydraulical module and advective-
dispersive transport equation with processes modelled as two-site sorption
model, and first order degradation (basis of the developed MPiRe model) as the
water quality module, was successfully applied to measured data (Chapter
5.3.2), confirming this hypothesis.

Goal 2: To conduct controlled lab and field tests to refine the model component that

simulates the micropollutant treatment in biofilters;

4.

It was hypothesized that a large amount of data should be collected to ensure
accurate testing and verification of the newly developed model.

This hypothesis was confirmed with successful modelling results presented in
Chapter 5, which included: (1) successful simulation of measured outflow
concentrations in field conditions at two different biofiltration systems, and (2)
successful simulation of measured outflow concentration in laboratory
conditions (column studies), with parameters that can be transferred to the field.
However, this hypothesis confirmation will benefit from results with additional

measurement data.

Goal 3: To calibrate, validate, and assess uncertainties in the model using field data

from two stormwater systems (biofilters with different designs).

5.

It was hypothesized that uncertainty analysis (using two different field data sets)
will point to sensitive parameters and provide insightful information about the
processes.

This was confirmed in Chapter 6 that presents the model parameter uncertainty
analysis conducted using GLUE methodology. The most sensitive parameters

are identified to be sorption parameters, in particular the soil-water partitioning
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coefficient. Large uncertainty related to the degradation rate is evaluated to be
due to scarce inter-event data.

7.3 Discussion on model development

The pollutant removal processes emphasised in the model development are sorption,
biodegradation and volatilisation. These are most certainly important processes but why
were other presumably relevant processes such as sedimentation and vegetative filtering

excluded?

When the model was in its initial development stage, many other processes were
included (such as stripping, sedimentation etc.). But attempts to calibrate the model
were not very successful: (1) it was difficult to source the parameter values from the
literature and (2) the model was overparametrized since there were more parameters
than measured data points. Additionally, it was very encouraging to see that even with
relatively small number of processes (parameters) the model was able to predicting the
removal. Therefore, it is author’s belief that it is not necessary (at this point) to add
complexity to the model.

This is why all but the most dominant processes were taken out (sorption, degradation
and volatilization). Sedimentation was neglected, as it was found that most of these
pollutants are mostly dissolved rather than particulate (Zgheib et al., 2012) while in the
water column, meaning they would sorb to the filter media rather than settle. As for the
vegetative filtering (sorption to plants) it is hypothesized that due to relatively short
contact time (only during ponding), this process has a low impact on the overall
removal. This was further encouraged by the fact that stormwater biofilters are vertical
flow systems, and very little if any water movement is horizontal, therefore the filtering

is mostly through the soil media.

However, the author is completely aware that the neglected processes are compensated
by the calibration coefficients e.g. sorption to grass (plants) and straining are fused with

sorption to soil particles.
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The usability of the model is very important for practical applications (both system
sizing and validation monitoring), and there comes the tendency to keep it as simple as

possible and still get meaningful results.

7.3.1 Model’s usability in practical applications

The MPiRe model was developed as a tool to ease the management of stormwater
biofiltration systems when they are used for water harvesting or to control the polluted
urban runoff to water receiving bodies. The model can be used to predict biofilter’s
long-term performance in removal of some of the key stormwater micropollutants
(glyphosate, triazines, chloroform). The model is an alternative to STUMP (Vezzaro et
al., 2010, the only other available model in literature that can predict micropollutant
behaviour in biofilters), but it allows a more accurate water flow modelling and can be
used even when there is no information on suspended solids data. The model parameters
for the tested herbicides and chloroform agree with the literature, suggesting that the
model is physically sound. It was therefore hypothesized that the model can be easily
extended for other types of micropollutants (PAHSs, phenols, phthalates, etc.) by

adjusting model parameters to their properties directly sourced from literature.

The way the MPiRe model is set up enables it to be implemented for exploration of (1)
different biofilter designs (geometry, material composition etc.) and (2) testing of
biofilters performance under different scenarios (e.g. variable wetting and drying
periods, different inflow pollutant concentrations, etc.). These model traits would

eventually lead to optimal designs and operational regimes of these systems.

The MPiRe model can also facilitate the validation monitoring of biofilter systems.
Since full scale tests are usually expensive, and in most cases impractical for large
stormwater biofilters, the alternative is to use the MPiRe model to complement the
measured data and assess the biofilter performance. The MPiRe model has already been
adopted and tested for this purpose, as discussed in Zhang et al. (2016); this work shows
that the model can be used to optimize the monitoring procedure (that is necessary to
demonstrate that the treatment processes are capable of achieving the required water
quality objectives) by selecting only the most valuable data points to be collected,

thereby minimizing the total expenses (number of measurements).
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7.4 Future research

Although the research aims have been, for the most part, achieved, inevitably new

research questions are opened, and are anticipated to be part of future research.

1. Testing the model on longer continuous series of measured outflow

concentrations with extensive inter-event data

The major weakness of the model is found to be in the high uncertainty related to
degradation process. This was identified to be due to scarce data on which this
particular process is developed and modelled. It would be valuable to perform

uncertainty analysis on longer measurement data series.
2. Calibration of the model using additional micropollutants

It would be valuable to truly check the 1% hypothesis regarding group — representative
micropollutants. This would, inevitably, require more data on biofilter outflow
concentrations. The model would also profit if the micropollutants are prone to other

fate processes, such as photodegradation, straining, etc.
3. Re-evaluation of the sorption model

The model for sorption used in the model is found to give mostly good results, based on
micropollutant behaviour in both laboratory and field conditions. Since, the aim was to
develop a practically usable model, it was an imperative to make model that is easily
transferred from laboratory to the field. However, due to differences in kinetic rates
determined for pollutants in laboratory vs. field, it is hypothesized that the model would
profit from another set of laboratory experiments involving undisturbed soil columns
with vegetation. The model would also benefit from experiments with variable input
concentrations to test whether competitive sorption plays a role in the process (a
micropollutant being able to cause desorption of another pollutant due to its higher

sorption ability).
4. Biofiltration system aging modelling

It would be interesting to see how the model parameter (both flow and pollutant) change

over time, and whether it is possible to easily model such changes.
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5. Further uncertainty analysis

A thorough uncertainty analysis should be conducted for the new micropollutant model,
focusing on determining the impact of uncertainties in (1) input data (2) measurement
data, and (3) model structural uncertainty. The first two questions can be addressed with
additional data, while the third requires development of structurally different models for

micropollutants in biofiltration systems.
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37010 ,Cucremun 3a oaBoheme KHITHHUX BOJAa Kao JAeo ypbane u caoOpahajHe
uHdpactpykrype”. JlabopaTopujcke u TepeHCKE eKcrepuMeHTe je ypamwia 2012./13.
TOJMHE TOKOM jeIHOTOIMIIELET CTYIUjCKOr OopaBka Ha YHmBep3utery Monash, y
MenbypHy, y capaamu ca HCTpaXuBaukoM rpymnom mpo¢. Axe [eneruh y okBHpy
nenrpa ,,Water Sensitive Cities”. Ayrop u koaytop je yetupu pana Ha SCI nuctu, Kao u
Beher Opoja pamoBa y pomahum wyaconucuma, Ha MelhyHaponHuM u jgomahum
KOH(epeHIjama.
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Mpunor 1.

o U3jaBa o ayTopcTBY

MoTtnncaHu-a Anwsa PaHhenoBuh

6poj nHoekca 928/07

UsjaBrbyjem
Aa je AOKTOpCKa AncepTaumja nog HacnoBoMm

Modelling transport of micropollutants in biofiltration systems for stormwater treatment

(Mogenupatbe TpaHcnopTa MyKpornonyTaHaTa y Guoguntepckum cucteMmmma 3a
TpPeTMaH KULWHMX BoAa)

e pesynTaT CONCTBEHOr NCTPaXMBaYKor paga,

e [a npegnoXxeHa guceptauumja y LenvHM HU y genosmMa Huje 6muna npeanoxeHa
3a gobujarbe 6uo koje gunnomMe npema CTyamjckum nporpammma apyrux
BMCOKOLLIKOJICKMX YCTaHOBa,

e [a Cy pesynTati KOPeKTHO HaBeaeHU U

e [la HMCaM KpLUMO/Na ayTopcka npaea U KOPUCTUO UHTENEKTYarnHy CBOjUHY
ApYyrvx nuua.

MoTnuc gokropaHaa

Y Beorpaay, 13. anpun 2016. ’ N
‘ Cﬁ/\ﬂﬂ]d‘w’ c
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Mpunor 2.

° U3jaBa 0 MICTOBETHOCTU WITaMMNaHe U efIeKTPOHCKe
Bep3nje OOKTOPCKOr paaa

Vme n npesume aytopa Arsa PaHhenosuh

bpoj nHaekca 928/07

CTtyamjcku nporpam paheBnHapcTBO

Hacnos paga Modelling transport of micropollutants in

biofiltration systems for stormwater treatment

MeHTOp pou. ap HeHnag Jahumosuh, amnn. rpaf. nHx.
MoTtnucanw/a Ana PaHhenosuh

M3jaBrbyjem Oa je witamnaHa Bepsvja MOr OOKTOPCKOr paja UCTOBETHA eneKTPOHCKO)
BEp3nju Kojy cam npepgao/na 3a objaBrbuMBawe Ha noptany [OurutanHor
peno3utopujyma YHuBep3uTteTa y beorpany.

[osBorbaBam ga ce objaBe Moju nMYHM nojauM Be3aHn 3a gobujate akagemckor
3Bakba JOKTOpA Hayka, kao LUTO Cy MMe U npesume, rognHa n Mecto pohewa n gatym
onbpaHe papa.

OBu nuyHM nogaum Mory ce o06jaButm Ha MpeXHUM CcTpaHuuama aurntanHe
OmbnunoTeke, y enekTPoHCKOM KaTanory uy nyénukauvjama YHmsepauteta y beorpagy.

MoTtnuc gokropaHaa

YB 13 2016. Ny
eorpaay anpwn %{Aﬂ}?é/{ﬁm c .
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Mpunor 3.

) UsjaBa o kopuwhemwy

Oenawhyjem YHuBepauTeTcky 6ubnunoteky ,CseTtozap MapkoBuh® ga y [Ourntanuu
penosuTtopujym YHusepauTeTa y beorpagy yHece Mojy OOKTOpPCKY AucepTauujy nopg
HaCcnoBoM:

Modelling transport of micropollutants in biofiltration systems for stormwater treatment

(Mogenupare TpaHcnopTa MUKpononyTaHata y bnoguntepckum cucteMmma 3a
TpeTMaH KULHKX BoAa)

Koja je Moje ayTopcKo geno.

OucepTaumjy ca cBuM npunosmma npegao/na cam y enekTpoHCKoM oopmaty norogHoMm
3a TpajHO apxuBMpar-E.

Mojy OOKTOpCKY AncepTtauujy noxparweHy y QurutanHu penosvtopujym YHuBepauTeTa
y beorpagy mory ga kopucte CBW KOju NowTyjy ogpende cagpxaHe y ogabpaHom Tuny
nunueHue KpeaTtusHe 3ajegHuue (Creative Commons) 3a Kojy cam ce oany4yvo/na.

1. AyTopcTBO

2. AyTOpCTBO - HEKOMepLujanHo

3. AyTopcTBO — HEKOMepuujanHo — 6e3 npepaae

4. AyTOpCTBO — HEKOMEpPLUjanHo — AennUTy nog UCTUM yCroBnmMa
5. AytopctBo — 6e3 npepage
6. AyTOpCTBO — AENUTM NoA UCTUM ycrioBMMaA

(MonMmo pga 3aoKpyXuTe camMo jedHy OA LecT NOoHyheHux nuueHuW, Kkpatak onuc
NUUeHUM gart je Ha nonehuHun nucra).

MoTtnuc pokropaHaa

~

Y Beorpagay, 13. anpun 2016. 4
' Cb\_;z%x”l[m” ¢
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1. AytopcTtBo - [lo3BOrbaBaTe YMHOXaBakbe, OUCTPMOYUMjy M jaBHO caomniluTaBawe
Jena, u npepage, ako ce HaBeJe UMe ayTopa Ha HaduH ogpeheH of cTpaHe ayTopa
N gaesaoua nuueHue, Yak 1 y komepumjanHe cepxe. OBO je HajcrnobogHuja og CBUX
NULEHLMN.

2. AyTOpCTBO — HekomepuujanHo. [Jo3BorbaBate YMHOXaBakwe, UCTpubyuunjy 1 jaBHO
caonwTtaBawe Aena, v npepage, ako ce HaBede Mme aytopa Ha HauuH ogpeheH of
CTpaHe ayTtopa wunu gasaoua nuueHue. OBa nuueHua He 003BOSfbaBa KOMepuujanHy
ynotpeby gena.

3. AyTopcTBO - HekomepuujanHo — 6e3 npepage. [lo3sBorbaBaTe yMHOXaBawe,
AnCTpnbyumjy 1 jaBHO caonwTaBawe Aena, 6e3 npomeHa, npeobnukoBawa uNU
ynoTpebe gena y CBOM [Jeny, ako ce HaBede MMe ayTtopa Ha HauvH oapeheH o
CTpaHe ayTopa wunu Aasaoua nuueHue. OBa nuueHua He [03BOSbaBa KoMepuujanHy
ynoTpeby gena. Y ogHoOCy Ha cBe ocTarne nuvueHue, OBOM NULEHLOM Ce orpaHvuyaBsa
Hajsehn 0buMm npasa Kopuwherwa gena.

4. AyTOpCTBO - HeEKOMepuwujanHo — OenuTu nog UctuMm ycrioBuma. [ossorbaBarte
YMHOXaBahe, ANCTpnbyunjy 1 jaBHO caornwiTasBawe Aena, U npepage, ako ce HaBeae
nve aytopa Ha HauvH ogpefeH oA cTpaHe ayTopa unu gasaoua fnuueHue 1M ako ce
npepaga avctpubympa noa WMCTOM WM CAMMHOM nuueHuoMm. OBa nuueHua He
Ao3BorbaBsa komepuwujanHy ynotpeby fena n npepaja.

5. AytopctBo — 6e3 npepage. [os3BorbaBate yMHOXaBake, OUCTPUOYLMjy U jaBHO
caonwTaBake aena, 6e3 npomeHa, npeobnukoBara nnu ynotpebe genay cBom aeny,
ako ce HaBege MMe ayTopa Ha HaudvH ogpefeH of cTpaHe ayTopa wunu gaeaoua
nuueHue. OBa nuueHua 4o3BoSbaBa kKoMepLmjanHy ynotpeby aena.

6. AyTtopcTBO - pgenutu nog wuctum ycnosuma. [lo3BorbaBaTe YMHOXaBamwe,
ANCTpubyuujy 1 jaBHO caonwiTaBawe Aena, u npepage, ako ce HaBege ume ayTopa Ha
HauMH oapeheH oA cTpaHe ayTopa WM [aBaoua IvueHue M ako ce npepaja
anctpubympa nog UCTOM unM crivdHOM  nuueHuom. OBa nuueHua [Ao03BoSbaBa
KomepuujanHy ynotpeby gena u npepaga. CnnyHa je COPTBEPCKMM IMLUEHLaMma,
OLHOCHO NuueHuama OTBOPEHOr koaa.
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