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Abstract 10 

Hydrologic models are important for effective water resources management. They vary in complexity 11 

from parsimonious, spatially lumped, to physically-based, fully distributed models, which are generally 12 

expected to outperform the former. Wide applications of complex models are limited due to high data 13 

and computational demands. Therefore, a new approach based on well-balanced model complexity is 14 

needed to obtain reasonable simulation results with low data requirements. This paper presents a novel 15 

3DNet-Catch hydrologic model, developed to represent key processes in sloped catchments under a 16 

temperate climate with modest data requirements. 3DNet-Catch includes runoff simulations within 17 

computational units by employing the interception, snow and soil routines, as well as runoff and channel 18 

routing. The soil routine, which is the key model feature, combines the SCS-CN method, an analytically 19 

integrated nonlinear outflow equation and the Brooks-Corey relation for unsaturated conductivity in an 20 

innovative manner. To advance runoff routing in 3DNet-Catch, an approach for analytical integration 21 

of the linear and nonlinear outflow equations is implemented. Most model parameters are physically 22 

meaningful, thus facilitating model calibration. The model structure can be adjusted according to soil 23 

and groundwater flow data, and it can include hydraulic structures, thereby providing adaptability to 24 

local conditions. A comprehensive hydrologic evaluation framework is established and conducted to 25 

examine whether 3DNet-Catch is adequately parameterised and can accurately reproduce catchment 26 

hydrologic response. The model parameterisation is evaluated by sensitivity, identifiability and 27 

correlation analyses. Model efficiency is quantified in terms of performance measures, hydrologic 28 

signatures and plausibility of the simulated hydrological processes. The results show high sensitivity of 29 
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the hydrologic variables and performance measures to the model parameters, particularly to those of the 30 

soil routine. The parameters are uncorrelated and generally well identifiable. The model performs 31 

equally well in the calibration and evaluation periods. High efficiency in the hydrological signatures 32 

related to the soil routine indicates its robustness. The results, therefore, suggest that 3DNet-Catch is a 33 

comprehensively parameterised, versatile hydrologic model. It realistically reproduces observed 34 

hydrographs with modest data requirements, thus being appropriate for both engineering applications 35 

and investigative catchment dynamics studies.  36 

 37 

Keywords 38 

3DNet-Catch; conceptual hydrologic models; continuous hydrologic simulations; model 39 

parameterisation; robust model evaluation framework; soil routine. 40 

 41 

Nomenclature 42 

α – precipitation gradient with elevation  43 

A – drainage area 44 

Ab – baseflow drainage area  45 

alpha – ratio between standard deviation of the 46 
simulated and observed series 47 

B – maximum baseflow rate 48 

bmelt – melt (degree-day) factor 49 

bmelt,6 – melt factor on 21st of June 50 

bmelt – melt factor on 21st December 51 

c – nonlinearity coefficient of the groundwater 52 

reservoir 53 

CAN – capacity of the canopy reservoir 54 

CN – surve number 55 

covsoil – soil cover index 56 

CU – computational unit 57 

D – thickness of a soil layer 58 

Δt – time step  59 

Ecan – evaporation from canopy 60 

Esoil – bare soil evaporation 61 

Esub – snowpack sublimation  62 

Et – transpiration 63 

FC – soil layer storage at field capacity 64 

Ia – initial abstraction  65 

K – vertical hydraulic conductivity  66 

Kd – coefficient of the surface runoff linear 67 

reservoir  68 

KGE – Kling-Gupta efficiency  69 

KGElogQ – Kling-Gupta efficiency for log-70 

transformed flows  71 

Kgw-fast – coefficient of the linear reservoir for 72 
fast groundwater discharge routing 73 

KS – Kolmogorov-Smirnov test  74 

λ – snowpack temperature lag factor 75 

LAI – Leaf Area Index 76 

M – snowmelt (water equivalent) 77 

n – pore-size distribution index 78 

NL – number of soil layers  79 

NLGW – nonlinear groundwater reservoir 80 

NSE – Nash-Sutcliffe efficiency  81 

p – effective soil porosity  82 

P – precipitation 83 

Pˈ – precipitation and/or throughfall 84 

PET – potential evapotranspiration 85 

PS – snowfall 86 
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PWP – soil layer storage at permanent wilting 87 

point 88 

Q – flow 89 

Qb – baseflow 90 

qd – maximum specific baseflow yield  91 

Qd – direct runoff 92 

Qgw_fast – fast groundwater discharge 93 

qsurf – surface runoff per unit area 94 

Qsurf – surface runoff from entire drainage area 95 

r – Pearson correlation coefficient  96 

R – throughfall 97 

R2 – coefficient of determination 98 

s – share of a soil layer in the active soil zone 99 

Sb – storage of the NLGW reservoir  100 

Scan – canopy reservoir storage 101 

Sd – storage of the surface runoff linear reservoir 102 

Smax – threshold of the NLGW reservoir  103 

smax – the value of Smax per unit area  104 

Ss,max – potential soil retention at permanent 105 

wilting point 106 

Ss,max – potential soil retention at field capacity 107 

Sr – effective soil saturation  108 

Ssnow – snowpack storage 109 

Ssnow,100 – threshold snowpack storage at which 110 

the entire computational unit is covered in snow 111 

STO – capacity of the soil layer, which is a 112 

product of soil porosity and the layer thickness 113 

SW –storage of a soil layer 114 

SWC – soil water content 115 

θFC – soil water content at field capacity 116 

θPWP – soil water content at permanent wilting 117 
point 118 

T – air temperature 119 

Tlapse – temperature lapse rate 120 

Tmelt – snowmelt temperature 121 

TR-S – discrimination temperature between 122 

rainfall and snowfall 123 

Ts – temperature of the snowpack 124 

Vb – baseflow volume over a time step 125 

VE – volumetric efficiency 126 

Vperc – percolation volume over a time step 127 

wperc – percolation for a soil layer  128 

 129 

 130 

1. Introduction 131 

Hydrologic (rainfall-runoff) models are widely applied for estimation of design flows, flow forecasting, 132 

assessment of climate change impacts or various water management scenarios (Beven, 2001a). Being 133 

so important for water resources management, these models are required to provide accurate simulation 134 

results under various hydrologic conditions, preferably with low data and computational requirements. 135 

Presently, there are numerous hydrologic models that vary in complexity from parsimonious ones, like 136 

GR2M (Perrin et al., 2001), abcd (Thomas, 1981) or HYMOD (Boyle et al., 2001), to complex, fully 137 

distributed models, such as PIHM (Qu and Duffy, 2007), tRIBS (Ivanov et al., 2004) or MIKE-SHE 138 

(Refsgaard and Storm, 1995). The former, so-called conceptual models provide an abstract 139 

representation of runoff generation, which involves storage elements and simplified relations that 140 

describe water transfers among them (e.g., Mendoza et al., 2014). There is a wide variety of conceptual 141 
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models and some of them have quite elaborate structures with numerous components. Physically-based 142 

models rely on explicit descriptions of hydrological processes with differential equations grounded in 143 

the conservation laws that have to be solved numerically (Hrachowitz and Clark, 2017). Unlike these 144 

two modelling approaches, data-driven (black-box) models, such as those based on neural networks, do 145 

not consider runoff generation processes (Pechlivanidis et al., 2011). Regardless of their complexity, 146 

hydrologic models are always simplified representations of catchment processes. 147 

Model complexity can be analysed with respect to: (1) model structure, (2) methods employed or (3) 148 

spatial resolution. In terms of model structure, many hydrologic models omit a snow routine (Kauffeldt 149 

et al., 2016). The original version of the HBV model (Bergström and Frosman, 1973) did not comprise 150 

an interception routine, which was incorporated in subsequent model versions to obtain more realistic 151 

model (Lindström et al., 1997). This enhancement improved performance of the HBV model in some 152 

catchments, as demonstrated by Fenicia et al. (2008). The interception routine is also left out in some 153 

complex physically-based models, such as CATHY (Sulis et al., 2012) or HYDRUS (Šimůnek et al., 154 

2009). Most hydrologic models do not simulate groundwater-surface interactions; hence, they cannot 155 

accurately reproduce unsaturated zone dynamics in lowland catchments (Brauer et al., 2014). In spatially 156 

lumped models runoff routing is based on arbitrary transfer functions, such as a triangular weighting 157 

function included in the HBV-type models (Schaefli et al., 2014).  158 

Some hydrological processes can be described in a simple manner, even in complex models. For 159 

example, KINEROS (Woolhiser et al., 1990), MIKE-SHE, PREVAH (Viviroli et al., 2009), SWAT 160 

(Neitsch et al., 2011) and VIC (Liang et al., 1994) use simple canopy methods. Snow routines in many 161 

complex models (e.g., PIHM) are based on the simple degree-day method. Few other models, such as 162 

ARNO (Todini, 1996), PRMS (Markstrom et al., 2015) or VIC include robust energy budget-based 163 

methods. Soil water content (SWC) in conceptual models is usually simulated by employing simple 164 

methods. For example, some models assume a constant percolation rate (e.g., HBV), while in others, 165 

such as ARNO, GR4J (Perrin et al., 2003), LISFLOOD (Van Der Knijff et al., 2010), SEHR-ECHO 166 

(Schaefli et al., 2014), SIMHYD (Chiew et al., 2010) or WetSpa (Shafii and Smedt, 2009) percolation 167 

is expressed as a function of the SWC.  168 

Greater model complexity usually implies an increase in the number of free parameters. Parameters of 169 
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the physically-based models generally have a physical meaning and can be inferred from data on land-170 

use, soil, vegetation and geology. However, some parameter adjustment is still required to achieve the 171 

best fit to the observations (Beven, 2001b). This is a challenging task because many parameters have to 172 

be estimated against few observed variables. Specifically, model calibration is usually performed against 173 

observed flows only, and information contained in the observed flows series allows identification of up 174 

to four parameters (Jakeman and Hornberger, 1993). Therefore, calibration of complex models is an ill-175 

posed optimisation problem (Ebel and Loague, 2006), which leads to low parameter identifiability and 176 

equifinality that amplifies with the number of parameters (Beven and Binly, 1992).  177 

Distributed models can capture spatial variability of catchment properties, meteorological and 178 

hydrologic variables, and can simulate various spatial runoff components (Schuurmans and Bierkens, 179 

2007). These models generally provide higher efficiency than the lumped ones (Chang and Chao, 2014), 180 

but they are computationally and data demanding (i.e., they require high-quality input data). 181 

A general assumption is that complex models yield realistic simulation results, i.e., that they provide 182 

“right answers for the right reasons” (Kirchner, 2006). These models are, therefore, expected to 183 

outperform parsimonious ones (Wagener et al., 2003), especially under conditions different from those 184 

encountered in the calibration period (Kuczera and Parent, 1998). However, examples of the opposite 185 

behaviour can be found in the literature: for example, simple models can result in lower decrease in 186 

model performance over evaluation periods than complex models, probably due to the over-187 

parametrisation of the latter (e.g., Perrin et al., 2001; Orth et al., 2015). Furthermore, Orth et al. (2015) 188 

reported that a simple model outperformed two models with more complex structures during dry periods. 189 

Therefore, complex, fully distributed models are not necessarily the best choice. Moreover, model 190 

selection depends on data availability and specific application needs (Hrachowitz and Clark, 2017). For 191 

example, parsimonious models can be suitable for simulations in large catchments with long (e.g., 192 

monthly) time steps (van Esse et al., 2013). 193 

To obtain realistic simulation results with low data and computational requirements, a model with well-194 

balanced structural complexity is needed. The model structure should be sufficiently complex to 195 

replicate the key runoff generation processes, and thereby capture nonlinear and nonadditive catchment 196 

behaviour (Kirchner, 2006). Preferably, the model should be easily adaptable to local conditions 197 



  

6 

(Mendoza et al., 2014). This is in line with recommendations made by Seibert and McDonnell (2002), 198 

who suggested the use of “soft data” on catchment behaviour (i.e., qualitative knowledge). Additionally, 199 

a model should be able to represent various river engineering interventions (e.g., reservoirs, diversions) 200 

and changing land use. Presently, few models, such as HEC-HMS (Feldman, 2000), HYPE (Lindström 201 

et al., 2010), MIKE-SHE or TOPKAPI (Ciarapica and Todini, 2002), can integrate hydraulic structures. 202 

Urbanised areas, which are usually regarded as impervious zones (e.g., ARNO, HEC-HMS, 203 

LISFLOOD, PRMS), are also often disregarded. 204 

To ensure suitability to local conditions, some models were specifically developed to reflect prevailing 205 

runoff processes in particular regions. For example, WaSiM-ETH (Schulla, 2017), SEHR-ECHO or 206 

PREVAH were developed for Alpine catchments with extensive snow cover and glaciers. The 207 

WALRUS model (Brauer et al., 2014) was developed principally for lowlands with the dominant 208 

influence of high groundwater levels. In order to provide adaptability, some models enable users to 209 

create their own structure (e.g., HEC-HMS) or to select among several methods offered for e.g., 210 

infiltration modelling, runoff and channel routing (e.g., MIKE-SHE). To obtain the optimal structure for 211 

a considered catchment, Fenicia et al. (2011) proposed a framework for model development from 212 

generic elements (reservoirs, lag functions). Similarly, the FUSE framework (Framework for 213 

Understanding Structural Errors) enables model development by combining components of various 214 

existing hydrologic models (Clark et al., 2008).  215 

This paper presents a novel 3DNet-Catch hydrologic model developed at the Faculty of Civil 216 

Engineering of the University of Belgrade. The model is intended for simulations of the key hydrological 217 

processes in sloped catchments under a temperate climate. The 3DNet-Catch model has been developed 218 

aiming at maximising model adequacy but keeping the model structure as parsimonious as possible. The 219 

model development has principally been focused to provide (1) well-balanced structural complexity; 220 

and (2) a maximal adaptability/suitability to local conditions in a catchment, both of which are crucial 221 

issues in hydrological modelling. Specifically, well-balanced structural complexity is needed to provide 222 

realistic simulation results with modest data requirements and thereby enables model applicability even 223 

to regions with sparse observation networks. Model adaptability further enhances representation of 224 

hydrological processes in a considered catchment. Special attention during the development of 3DNet-225 
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Catch is given to the soil routine because soil moisture dynamics is the primary source of nonlinearity 226 

in the response of this type of catchments (Todini, 1996). The soil routine of 3DNet-Catch combines 227 

simplicity of the SCS-CN method for runoff volume calculation with explicit simulation of SWC. It 228 

represents an innovative combination of the SCS method, water balance and analytically integrated 229 

nonlinear outflow equations, and the Brooks-Corey (1964) relation for unsaturated hydraulic 230 

conductivity. This approach avoids common problems in applying the SCS-CN method for continuous 231 

simulations, such as water volume conservation, runoff overestimation in-between rain events, or 232 

sudden jumps in the curve number (CN) values (e.g. Mishra and Singh, 2004; Cho and Engel, 2018). 233 

Another novel component of 3DNet-Catch is analytical integration of nonlinear outflow equations that 234 

describe percolation and baseflow routing. In addition, most model parameters have a physical meaning, 235 

which is an important model feature since parameter (initial) values can be inferred from soil, land use 236 

and vegetation data. The 3DNet-Catch model can be easily adapted to the conditions in a specific 237 

catchment, i.e., structure to be adjusted according to local soil and groundwater flow-related data. It also 238 

allows inclusion of various hydraulic structures, such as reservoir or diversions. The model spatial 239 

resolution can range from lumped to fully distributed. Therefore, the model can be easily adapted to fit 240 

specific application requirements, ranging from operational engineering practice to sophisticated 241 

research studies.  242 

The focus of this paper is on a comprehensive hydrologic evaluation of the model. The proposed robust 243 

evaluation framework is intended to examine whether a hydrologic model comprising relatively simple 244 

methods for simulation of different runoff components can reasonably reproduce behaviour of 245 

catchments under a temperate climate. The evaluation framework compiles a number of methods to 246 

examine thoroughly whether the 3DNet-Catch model is: (1) comprehensively parameterised, and 247 

(2) able to reproduce reasonably a catchment hydrologic response. Model parameterisation is evaluated 248 

by conducting sensitivity, identifiability and correlation analyses. Performance metrics calculated from 249 

flows and flow-related hydrological signatures are considered to quantify model effectiveness. Further, 250 

it is assessed whether the model realistically reproduces different runoff components. For example, 251 

simulated snow cover is compared to the snow observations. Simulations of other hydrological 252 

components are assessed qualitatively, by visual inspection of the simulated series considering the 253 
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presumed patterns. For the evaluation purposes, a basic, semi-lumped setup of the model is applied for 254 

simulations in the Mlava catchment in Serbia. Considerations of the model flexibility in spatial 255 

resolution or structure are beyond the scope of this paper.  256 

 257 

2. The 3DNet-Catch Hydrologic Model  258 

2.1. Spatial Discretisation and Catchment Computational Structure  259 

The 3DNet-Catch model was originally developed as a component of the 3DNet Platform, which is a 260 

comprehensive GIS-oriented tool for water management. Hydroinformatic aspects of the 3DNet 261 

Platform are elaborated by Stanić et al. (2017), while this paper focuses on the 3DNet-Catch hydrologic 262 

model. 263 

The early version of the 3DNet-Catch model was fully distributed, i.e., runoff is simulated within 264 

irregularly shaped computational units (CUs). Each unit is assigned a unique meteorological forcing and 265 

parameter set. These computational units are represented by Voronoi polygons generated over the 266 

triangles of the TIN terrain model (Triangulated Irregular Network) and according to the stream network 267 

and water divide. This type of discretisation provides a balance between computational accuracy and 268 

spatial resolution, i.e., simulation time (Dehotin and Braud, 2008). However, this approach is seldom 269 

applied in hydrological modelling (an example is the tRIBS model; Ivanov et al., 2004). Further model 270 

development provided spatial flexibility by enabling the CU aggregation to subcatchment or catchment 271 

level to obtain a semi-distributed or a lumped setup. Since 3DNet-Catch is implemented as Dynamic 272 

Link Library (.dll) it can be used independently of the 3DNet platform with externally created CUs, such 273 

as elevation zones or digitised subcatchments. Such implementation of the model also warrants 274 

computational efficiency (Stanić et al., 2017). 275 

The model application via the 3DNet platform provides flexibility to a catchment computational 276 

structure. The catchment computational structure can easily include hydraulic structures (e.g., reservoirs, 277 

diversions). Additionally, groundwater flow can be routed to drainage point different from the 278 

topographical outlet that surface runoff is routed to.  279 

 280 



  

9 

2.2. Model Basic Description and Assumptions  281 

Hydrological modelling with 3DNet-Catch consists of runoff volume simulation, and runoff and channel 282 

routing (Fig. 1). Runoff volume is simulated by employing three routines that represent the key 283 

hydrological processes and components: canopy interception, snow cover and soil moisture dynamics 284 

(e.g. Rakovec et al., 2016). Runoff is simulated in each CU and routed to the drainage point. Flow at a 285 

drainage point comprises direct runoff, fast groundwater (shallow aquifer) response and baseflow. All 286 

model routines are interconnected in such way that water volume conservation is preserved. 287 

The 3DNet-Catch model is based on the following assumptions: 288 

 No spatial heterogeneity within a computational unit: meteorological forcing, soil properties, land 289 

use and vegetation types are uniform within a CU.  290 

 Precipitation is considered snowfall at the air temperatures below the rainfall-snowfall 291 

discrimination temperature TR-S, and rainfall otherwise.  292 

 Snowfall interception by canopy is not simulated. Snow refreezing, water holding capacity of the 293 

snowpack, heat exchange with the ground and temperature variation along the snowpack depth are 294 

neglected.  295 

 Surface water retention (surface depression storage) is not simulated. 296 

 Soil is represented by a surface and (optionally several) subsurface layers, comprising up to few 297 

meters in total. The deep groundwater system is not included in the model. Soil properties are 298 

uniform along the layer depth, but can differ across the layers.  299 

 Water in the unsaturated soil is gravity driven and flows vertically downwards. Capillary uprise is 300 

not simulated.  301 

 Evaporation and transpiration are modelled as distinct processes: water is assumed to evaporate 302 

from the canopy and bare surface soil, and transpires from the subsurface layer(s). The snowpack 303 

sublimation is also accounted for. 304 

 Neither saturated nor unsaturated lateral flow among CUs is simulated; runoff is routed from a unit 305 

to the drainage point.  306 

 No flow exchange between a watercourse and the riparian zone. Evaporation and seepage from a 307 
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river section are assumed negligible.  308 

Some of the aforementioned assumptions are generally accepted in hydrological modelling: for example, 309 

runoff is usually routed from a CU to a drainage point directly (e.g. Gupta et al., 2012), and properties 310 

of a CU are commonly considered spatially uniform (an exception is the VIC model). Snow routines of 311 

most hydrologic models are simplified: for example, a simple routine based on the degree-day method 312 

without simulating snowfall interception by canopy is also implemented in PIHM model. A sharp 313 

distinction between rainfall and snowfall is assumed in e.g. ARNO and the original version of the HBV 314 

model. Water holding capacity of the snowpack and refreezing is disregarded in many models (few 315 

exceptions are e.g. HBV, PRMS, WaSiM-ETH). Surface water retention in depressions is also 316 

frequently omitted (e.g. in ARNO and HBV), as well as capillary uprise (few exceptions to this 317 

assumption among conceptual models are e.g. HBV, WALRUS or WetSpa). Differentiation between 318 

bare soil evaporation and transpiration is made in few models, such as LISFLOOD, MIKE-SHE or 319 

tRIBS. Advanced groundwater flow simulations and channel routing cannot be performed by hydrologic 320 

models and require application of hydraulic models.  321 

 322 

[Fig. 1. is placed here.] 323 

 324 

2.3. Interception Routine  325 

Rainfall interception by canopy depends on the vegetation type, and it varies throughout the growing 326 

season in deciduous vegetation. In 3DNet-Catch, vegetation is represented by a canopy reservoir with 327 

capacity CAN(t) proportional to the Leaf Area Index LAI(t): 328 

    max

max

CAN
CAN t LAI t

LAI
    (1) 329 

where CANmax and LAImax represent maximum values of the reservoir capacity and LAI, respectively. 330 

The LAI(t) can be introduced either as an input time series or calculated for each day of the growing 331 

season according to a sine curve. 332 

The water balance of the canopy reservoir includes rainfall P(t), throughfall R(t) and evaporation Ecan(t):  333 
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     can
can

d

d

S
P t R t E t

t
            (2) 334 

where Scan denotes the reservoir storage (volume of water per unit area). 335 

Canopy throughfall depends on the reservoir storage after the interception, and its current capacity: 336 

          canmin max 0; ;R t S t t P t CAN t P t       
   `   (3) 337 

where Scan(t-Δt) is the storage at the end of the previous time step.  338 

Evaporation from canopy is limited by the reservoir storage and potential evapotranspiration PET(t):  339 

          can canmin ;E t S t t P t R t PET t             (4) 340 

 341 

2.4. Snow Routine  342 

Snowpack water balance includes snowfall Ps(t), snowmelt M(t) and sublimation Esub(t), all of which 343 

are expressed in millimetres of water equivalent: 344 

     snow
sub

d

d
s

S
P t M t E t

t
             (5) 345 

where Ssnow denotes the snowpack storage. 346 

Sleet is not recognised in the model, so precipitation at temperatures below the threshold TR-S is 347 

considered snowfall. Since snowfall interception by canopy is not accounted for, total snowfall is added 348 

to the snowpack (the same assumption is adopted in, e.g., the PIHM model; Qu and Duffy, 2007). 349 

Snowfall interception depends on the canopy and meteorological conditions. Consequently, its 350 

computation requires vast meteorological observations (e.g., precipitation, temperature, wind direction 351 

and velocity, relative humidity) and canopy data, such as LAI, canopy coverage and height (Hedstrom 352 

and Pomeroy, 1998). Coniferous vegetation can retain over 30% of snowfall (Kozii et al., 2017), but 353 

less than 5% of total snowfall is intercepted at low LAI values, as in deciduous vegetation during winters 354 

(Pomeroy et al., 2002). Since simulation of snowfall interception would considerably increase data 355 

requirements without substantial enhancement of simulation accuracy in catchments with prevailing 356 

deciduous vegetation in a temperate climate, considering small snowfall amount that can be intercepted 357 

during the dormant season (Pomeroy et al., 2002), this model component is omitted. However, this 358 
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simplification might restrict 3DNet-Catch applicability to catchments with prevalent coniferous 359 

vegetation in cold climates.  360 

Snowmelt M(t) is computed from the air (T), snowpack (Tsnow) and snowmelt (Tmelt) temperatures 361 

(Neitsch et al., 2011):  362 

     
   

    snow
melt cov melt snowmin max 0; ;

2
s

T t T t
M t b t snow t T S t t P t

   
        

     

  (6) 363 

where bmelt(t) is the melt factor (in mm°C-1day-1), snowcov(t) represents the share of the CU area covered 364 

with snow and Ssnow(t-Δt) is the snowpack storage at the end of the previous time step. As snowfall 365 

occurs at temperatures above Tmelt , it generally holds TR-S>Tmelt (e.g., Schaefli et al., 2014).  366 

The melt factor bmelt(t) varies during the year according to a sine curve that reaches a minimum on the 367 

21st December (bmelt, 12)  and a maximum on the 21st June (bmelt, 6) (Neitsch et al., 2011): 368 

    melt,6 melt,12 melt,6 melt,12
melt

2
sin 81

2 2 365
n

b b b b
b t D t

   
   

   

    (7) 369 

where Dn stands for the day of a year. To avoid model overparameterisation, dependencies of bmelt on 370 

e.g., elevation, wind velocity, albedo, insolation, vapour pressure, land use or aspect (Anderson, 2006; 371 

He et al., 2014) and increase during rainy days (Melloh, 1999) are neglected.  372 

The current snowcov value is calculated from the snowpack storage and the minimum storage at which 373 

the entire CU area is covered with snow Ssnow,100 (Neitsch et al., 2011): 374 

 
   snow

cov
snow,100

min ; 1
sS t t P t

snow t
S

  
  

    

        (8) 375 

Snowpack temperature Tsnow(t) is obtained by weighting the snowpack temperature in the previous time 376 

step Tsnow(t-Δt) and the current air temperature T(t): 377 

       snow snow1T t T t t T t               (9) 378 

where λ is the snowpack temperature lag factor, which takes a value between 0 and 1, and is inversely 379 

proportional to the snowpack thickness (Zhang et al., 2009).  380 

Snowpack sublimation Esub (t) depends on the current snowpack storage and PET (t): 381 

          sub snowmin ;sE t S t t P t M t PET t             (10) 382 

 383 
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2.5. Soil Routine  384 

This routine is intended for simulations of water content in the unsaturated soil zone. In 3DNet-Catch, 385 

the soil is represented by one surface layer and an arbitrary number (NL-1) of subsurface ones. Each 386 

layer is characterised by its thickness D and following soil properties/model parameters: effective 387 

porosity p, vertical saturated hydraulic conductivity Ksat, volumetric water content at permanent wilting 388 

point θPWP and at field capacity θFC, and pore-size distribution index n.  389 

Surface soil layer on the top of a soil column in 3DNet-Catch is imposed to enable differentiation 390 

between processes occurring at the soil surface and within underlying soil layer(s), such as bare soil 391 

evaporation and transpiration. This layer is considerably thinner that the subsurface ones; namely, the 392 

surface layer is few centimetres thick (e.g., Vasilić et al. (2012) assumed thickness of 10 cm), while 393 

subsurface layers can be an order of magnitude thicker.  394 

The water balance of the surface soil layer includes throughfall and / or snowmelt Pˈ, surface runoff 395 

qsurf
*, percolation to the subsurface layer wperc,1 and bare soil evaporation Esoil: 396 

       *surf
surf perc,1 soil

d
'

d

S
P t q t w t E t

t
   

 
       (11) 397 

The initial surface runoff amount qsurf
*(t) is simulated employing the SCS-CN method, but it can be 398 

further augmented by excess water from the subsurface layers (saturation excess water). The SCS-CN 399 

method is selected because of its simplicity, reliable results (Mishra and Singh, 2004) and available 400 

parameter estimates due to vast field investigations (Yu, 1998): 401 

 
    

     
   

2

a
* a

surf a

'
if  '

'

0 otherwise   

P t I t
P t I t

q t P t I t S t

 
 

  



       (12) 402 

where Ia is the initial abstraction, which is obtained by subtracting canopy interception from the assumed 403 

initial abstraction Ia_rel (dimensionless free parameter): 404 

        a a_relmax 0;I t I S t P t R t               (13) 405 

The relation above enables continuous estimation of the initial abstraction according to the canopy and 406 

soil storages, which is important for accurate runoff simulations (Cho and Engel, 2018). The term S(t) 407 

denotes the current potential soil retention capacity calculated from the SWC in the active soil zone that 408 
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controls surface runoff generation and can comprise surface and subsurface layers. In this way, surface 409 

runoff is computed with respect to the actual SWC of the active zone, which is continuously simulated 410 

by applying the water balance equation, while the CN value is used for estimation of the maximal 411 

potential retention. A share of the Lth soil layer in the active zone sL is calculated as follows:  412 

 
 

L

L

s,max L PWP,

1
s,max 1 1 PWP,1

L

min 1; if

0 otherwise

N

j j

L

S D p

S D p
s D





  
    

        
 
  






     (14) 413 

Ss,max denotes the maximal potential retention that corresponds to the water content at permanent wilting 414 

point (antecedent moisture condition I), and it is calculated from the corresponding CN value (CN1). The 415 

value of CN1 is obtained from the CN that is corrected to account for actual terrain slope (see 416 

Supplementary material).  417 

The current potential soil retention S(t) is:  418 

    L

1

L L

1

LN

L

S t s STO SW t t




             (15) 419 

where SWL(t–Δt) is the Lth soil layer storage at the end of the previous time step and STOL denotes 420 

capacity of the Lth layer calculated by multiplying its thickness by the effective porosity.  421 

Water from a soil layer percolates under gravity into subsurface at the SWC above the residual one, 422 

which is assumed to be equal to the water content at permanent wilting point θPWP. Percolation is 423 

simulated by using an analytically integrated nonlinear outflow equation, with the Brooks-Corey relation 424 

(1964) for unsaturated hydraulic conductivity:  425 

   

           
11

perc,1 sat,1 sat

1

11 sat,1
1 1 ,1 1 unsatr,1

1 1

1
nn

r

w t K t t

K
STO PWP S t S t n t t

STO PWP



  

 
  

           
 

     (16) 426 

where Δtsat and Δtunsat denote the time of percolation in saturated and unsaturated conditions, respectively 427 

(Fig. 2). The former is calculated from Eq. (17), while Δtunsat is its complement to the full time step.  428 

 

429 
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 
 

 
*

1 1 *
1 1

sat sat,1

min ; if

0 otherwise

SW t STO
t SW t STO

t t K

  
   

    



       (17) 430 

PWP1 in Eq. (16) denotes the surface layer storage at θPWP and Sr,1 is effective soil saturation (Brutsaert, 431 

2005): 432 

 
 *

1 1
r,1

1 1

min ; 1
SW t PWP

S t
STO PWP

 
  

  

          (18) 433 

where is the storage obtained by adding throughfall and/or snowmelt to the storage at the end of 434 

previous time step, and by subtracting initially estimated surface runoff qsurf
*: 435 

       * *
1 1 surf'SW t SW t t P t q t             (19) 436 

 437 

[Fig. 2. is placed here.] 438 

 439 

If SW1
*(t) exceeds the layer capacity STO1, the storage is set to STO1 and the excess water amount is 440 

added to the initially estimated surface runoff q*
surf (t), representing saturation excess runoff: 441 

 
      * *

1 1 perc,1 1**
1

1

if

otherwise

SW t SW t w t STO
SW t

STO

  



       (20) 442 

 
      
      

* *
surf 1 perc,1 1

**
surf

* *
surf 1 perc,1 1

if

otherwise

q t SW t w t STO
q t

q t SW t w t STO

  



  



   (21) 443 

Bare soil evaporation Esoil
*(t) is initially calculated as follows: 444 

          *
can sub soilsoil

covE t PET t E t E t t            (22) 445 

where covsoil is the soil cover index representing the share of bare soil in a CU. It is calculated from the 446 

LAI(t) (Supplementary material). Soil evaporation declines with soil drying, so the Esoil
*(t) value is 447 

corrected accordingly (Supplementary material). The surface layer storage at the end of a time step is 448 

calculated by subtracting value of the actual bare soil evaporation from SW**(t).  449 

 450 

The water balance of the Lth subsurface soil layer comprises percolation from the overlying layer wperc,(L-451 

*
1SW



  

16 

1), percolation into the deeper layer/groundwater reservoir wperc,L and actual transpiration, i.e., water 452 

uptake by plants Et,L (Fig. 1): 453 

     L
perc,L ,perc, L-1

d

d
t L

S
w t w E t

t
  

 
        (23)

 
454 

Percolation from the Lth layer is calculated using Eq. (16), but with the parameters specified for this 455 

layer. If the Lth layer storage after receiving percolation from the overlying layer and percolation into 456 

the deeper one/groundwater reservoir SWL
*(t) exceeds its capacity, the excess water amount is added to 457 

surface runoff and the layer storage is set to STOL: 458 

 
   

    

**
Lsurf

surf
** *

L Lsurf

if

otherwise

Lq t SW t STO
q t

q t SW t STO

 



 



      (24) 459 

 460 

Potential transpiration (Et,pot) from the subsurface layers is calculated by subtracting actual sublimation, 461 

and actual canopy and bare soil evaporation from PET(t). The Et,pot value is distributed among the 462 

subsurface layers according to their thicknesses. Actual transpiration is calculated with respect to the 463 

current water content of these layers (Supplementary material). Storage of the Lth subsurface layer at the 464 

end of a time step is obtained by subtracting actual transpiration from SWL
**(t), which represents smaller 465 

of SWL
*(t) and STOL. 466 

The 3DNet-Catch soil routine requires estimation of numerous parameters, but the number of free 467 

parameters can be reduced by assigning the same parameter values to several/all layers. Further, the 468 

initial estimates of most parameters can be inferred from data on land-use and soil types and vegetation. 469 

To avoid overparameterisation, the basic model setup (i.e., one surface and one subsurface layer) should 470 

be used in absence of soil data that would suggest a complex structure with several different layers. 471 

 472 

2.6. Runoff Routing  473 

According to the basic model assumptions (Section 2.2), runoff is routed from a CU to the drainage 474 

point. This approach is frequently adopted in hydrological modelling since it is computationally efficient 475 

(Gupta et al., 2012). Surface runoff and percolation from the deepest soil layer are routed to the drainage 476 

point by applying linear and nonlinear outflow equations. Surface runoff is routed through an arbitrary 477 
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number of linear reservoirs, yielding direct runoff Qd (Fig. 3). The percolation volume inflows to a 478 

nonlinear groundwater (NLGW) reservoir with the threshold Smax. Water volume below Smax is 479 

transformed by applying the nonlinear outflow equation, resulting in baseflow Qb. The nonlinear outflow 480 

equation is adopted to improve model performance over prolonged dry periods (Wittenberg, 1999). 481 

Water volume exceeding Smax is routed through a linear reservoir, and it constitutes fast groundwater 482 

discharge Qgw_fast. Total flow at a drainage point is the sum of these three components:  483 

       d b gw_fastQ t Q t Q t Q t             (25) 484 

Optionally, the integration of the 3DNet-Catch model with the 3DNet platform allows routing of fast 485 

groundwater discharge and baseflow to a different point from the surface runoff. In this way, soft data 486 

on groundwater flow, obtained from hydrogeological surveys, can be included in the model. This option 487 

is primarily intended for karstic catchments (Vasilić et al., 2012).  488 

Each term in Eq. (25) represents mean flow rate over a time step and it is obtained by dividing the 489 

outflow volume in the time step by the time step length Δt. The outflow volumes are calculated by 490 

combining the balance and outflow equations, yielding ODEs that are analytically integrated over a 491 

computational time step (see Supplementary material). The analytical integration is preferred over 492 

numerical schemes that cause non-smoothness of the response surface, which hinder model calibration 493 

(Kavetski and Clark, 2010).  494 

[Fig. 3. is placed here.] 495 

 496 

The water balance of the linear reservoir for surface runoff routing consists of surface runoff from the 497 

drainage area Qsurf and direct runoff Qd(t): 498 

 
   d

surf d

d

d

S t
Q t Q t

t
             (26) 499 

Surface runoff Qsurf is calculated assuming that surface runoff per unit area qsurf(t) from the drainage area 500 

A is constant over a time step:  501 

 
 surf

surf

q t A
Q t

t





           (27) 502 

The reservoir coefficient Kd may be either optimised or estimated from the time of concentration 503 
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(Supplementary material). Optionally, surface runoff can be routed through several reservoirs with the 504 

same coefficient value.  505 

Baseflow Qb is obtained by routing of the percolation volume through the NLGW reservoir with the 506 

nonlinearity coefficient c and the threshold Smax (Fig. 3).  507 

Combining the nonlinear outflow and water balance equations results in a nonhomogeneous, nonlinear 508 

first-order ODE. Assuming that the inflow to the NLGW (Vperc) occurs instantaneously at the beginning 509 

of a time step yields a homogenous ODE, which is further integrated over the time step following the 510 

approach presented by Todini (1996) to obtain baseflow volume Vb: 511 

 
 

1

1
b,0

b b,0
b,0

1
1 1

cc Q t
V t S

S


 

    
      

  
 

         (28) 512 

where Sb,0 and Qb,0 denote the reservoir storage and baseflow at the beginning of the time step, 513 

respectively. The former is the sum of the reservoir storage at the end of the previous time step and the 514 

percolation volume in the current step Vperc(t): 515 

    b,0 b perc maxmin ;S S t t V t S   
 

         (29) 516 

Vperc(t) is a product of wperc(t) and the baseflow drainage area Ab, which optionally may differ from the 517 

topographic drainage area A. 518 

The threshold Smax is calculated from smax, which represents volume per unit area and it is a free model 519 

parameter: 520 

max max bS s A              (30) 521 

Baseflow at the beginning of a time step Qb,0 depends on the storage Sb,0: 522 

b,0
b,0

max

c
S

Q B
S

 
  

 
           (31) 523 

Coefficient B denotes the highest baseflow rate and it is obtained by multiplying Ab by the maximum 524 

specific baseflow yield, i.e., baseflow rate per unit area qd (free parameter). 525 

Water volume exceeding Smax is instantaneously added to the fast groundwater reservoir with the 526 

coefficient Kgw_fast (Fig. 3). Optionally, this component can be disabled by imposing a high value of smax. 527 

 528 



  

19 

2.7. Channel Routing  529 

Channel routing is based on linear outflow equations, i.e., river sections are represented by linear 530 

reservoirs. This method enables peak delay and attenuation, but backwater effects cannot be simulated 531 

(Beven, 2005). The water balance of a river reach includes inflow from the upstream section and outflow 532 

at the downstream one. Other terms, such as evaporation, seepage or lateral exchange with riparian zone 533 

are neglected. Outflow volume from a reach is estimated from an analytically integrated ODE, which is 534 

obtained by combining the linear outflow and balance equations. Outflow rate is the ratio of the volume 535 

to Δt. This routine can be enhanced to include hydraulic structures and retention basins. These 536 

enhancements are presented in detail by Stanić et al. (2017). 537 

 538 

2.8. Input Data for Simulations with 3DNet-Catch 539 

Geo-spatial data are needed for catchment computational structure, while hydrologic simulations require 540 

hydro-meteorological data. To create catchment computational structure through the 3DNet platform, a 541 

digital terrain model (DTM) and stream network are required. Properties of the CUs necessary for 542 

simulations (area, slope and mean elevation) are automatically computed within 3DNet and forwarded 543 

to the 3DNet-Catch model. Elevation-discharge and elevation-volume curves should be provided for 544 

each reservoir in the model. If 3DNet-Catch is applied independently of the 3DNet platform, the 545 

computational structure has to be created externally using other GIS tools and all required CU properties 546 

should be supplied to the model. Data on land use, soil types and vegetative cover are not necessary for 547 

the model runs but may facilitate estimation of some model parameters. 548 

Precipitation, maximum and mean temperatures and PET rates at locations of the meteorological stations 549 

are compulsory. Optionally, PET computation with the Hargreaves method embedded in the model 550 

requires minimum temperatures. Precipitation and temperatures can be adjusted to account for changes 551 

with elevation. Both gradients are free parameters: α represents precipitation increase (in %/100 m) and 552 

Tlapse is the temperature lapse rate (°C/100 m). Although precipitation gradient declines with elevation 553 

(Bardossy and Das, 2008), it is assumed constant to avoid model overparameterisation. Observed flows 554 

are necessary for model calibration. The temporal resolution of these input series should agree with 555 

computational time step.  556 
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 557 

3. Model Application 558 

3.1. Catchment and Data 559 

The 3DNet-Catch model is applied to the Mlava catchment upstream of Veliko Selo (Fig. 4), which is 560 

46 km upstream of the confluence of the Mlava and Danube Rivers. The catchment covers the area of 561 

1,277 km2 and ranges in elevation from 100 to 1,037 m a.s.l. (mean elevation 346.9 m a.s.l.). Deciduous 562 

forests and arable cultivated land prevail, approximately 2.5 % of the catchment area is urbanised and 563 

the share of coniferous vegetation is negligible. Brown forest and acid, brown and podzolic soils are 564 

dominant soil types, while alluvial deposit and smonitza are present to a lesser extent (Fig.S2).  565 

The Mlava River exhibits a mixed rainfall-snowmelt water regime: high flows occur from March to May 566 

due to combined rainfall and snowmelt, and the lowest flows are in September and October. High flows 567 

triggered by convective rainfall also occur during summers (June and July). The mean flow at Veliko 568 

Selo in the record period (1987-2013) amounts to 7.5 m3/s (185.3 mm/year), with mean precipitation of 569 

661.5 mm/year in the catchment over the same period. There are no operating reservoirs in the 570 

catchment.  571 

Observations at the Veliko Selo stream gauge and at the three meteorological stations are used for 572 

hydrologic simulations in this paper (Fig. 4, Table 1). A stage is continuously observed at the Veliko 573 

Selo stream gauge, at which an automatic level recorder is installed. Flow rates are gauged by using 574 

either an ADCP device (Acoustic Doppler Current Profiler) or propeller-type current meters, depending 575 

on the river stage. The flow measurement campaigns are conducted several times a year to update 576 

continuously rating curves for Veliko Selo. Standard rain gauges are installed at RC Petrovac and 577 

Žagubica and daily precipitation and mean daily temperatures are observed at these stations. The Crni 578 

Vrh station is equipped with a storage rain gauge and a tipping bucket rain gauge that provides 579 

precipitation data with 10-minute temporal resolution. There are also six other gauges in the catchment 580 

at which daily precipitation and temperatures are observed; however, these observations are disregarded 581 

in this paper due to numerous gaps.  582 

 583 

[Fig. 4. is placed here.] 584 
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[Table 1 is placed here.] 585 

 586 

3.2. Model Setup  587 

The model structure with one subsurface soil layer and one reservoir for surface runoff routing is 588 

employed for hydrologic simulations. Soil-related parameters are set common to both layers, except for 589 

the thickness and the saturated hydraulic conductivity. As explained in section 2.5, the surface soil layer 590 

is a few centimetres thick, while the subsurface layer thickness is significantly greater. Similarly, 591 

saturated hydraulic conductivity decreases with the soil depth (e.g., Beven, 1982). This relationship is 592 

imposed by representing subsurface layer conductivity as a common logarithm of the ratio to the surface 593 

layer conductivity (table S5). Other parameters, such as porosity and water content at field capacity and 594 

at permanent wilting point, are represented in a similar manner (table S5). Since hydraulic conductivity 595 

takes rather small values, it is presented by the common logarithm to prevent under-sampling (Marino 596 

et al., 2008). Prior parameter ranges are set for soil, land use and vegetation types inferred from local 597 

maps, and according to the related recommendations in the literature. For example, ranges of vegetation-598 

related parameters are adopted from Breuer et al. (2003), and snow-related parameters are accepted from 599 

Anderson (2006) and Zhang et al. (2009). The CN prior range is inferred from land use and soil types, 600 

according to recommendations by Djorković (1984). Prior ranges of the soil-related parameters are set 601 

following Schaap et al. (2001), Ogée and Brunet (2002), Diallo and Mariko (2013) and Mathias et al. 602 

(2015). This model version comprises 25 free parameters in total, all of which are assigned a uniform 603 

prior distribution (table S5). Leaf area index LAI and the melt factor bmelt series are represented by sine 604 

curves (table S6). 605 

The Mlava catchment is delineated into ten 100 m-wide elevation zones that are considered CUs 606 

(following Seibert and Vis, 2012). The average zone area amounts to 127.8 km2. Model parameters are 607 

common to all zones, but the meteorological forcing is adjusted for each zone to account for change 608 

with elevation (semi-lumped model setup). Mean catchment values, estimated by applying the nearest 609 

neighbour method, are corrected following the approach presented by Panagoulia (1995): 610 

 

611 
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where zMS denote reference altitude of the meteorological stations, zj is mean elevation of the jth zone, 614 

PMS and TMS are mean catchment precipitation and temperature, and jP  and jT  are mean precipitation 615 

and temperature in the zone, respectively. The precipitation gradient and lapse rate ranges are assessed 616 

from the long-term observations at the three stations (Table 1). The PET rates are calculated for each 617 

zone from the adjusted temperatures using the Hargreaves method (Hargreaves and Samani, 1982), with 618 

the exponent value estimated for the Western Balkans (Trajkovic, 2007):  619 

   
0.424

max min a0.408 0.0023 17.8PET T T T R              (34) 620 

where T, Tmax and Tmin denote the mean, the maximum and the minimum daily temperature, respectively, 621 

and Ra is the extra-terrestrial radiation (in MJ m-2 day-1). The Hargreaves method is selected because of 622 

low data requirements and reliable results in hydrological modelling (Oudin et al., 2005). The 623 

simulations are carried out with a daily time step, so daily data are used.  624 

 625 

3.3. Hydrologic Evaluation of the 3DNet-Catch Model  626 

A comprehensive evaluation framework is established to assess whether the 3DNet-Catch model is: 627 

(1) adequately parameterised and (2) able to reproduce catchment response. The evaluation of the basic 628 

model setup, which is presented in section 3.2, is carried out, while flexibility of the model spatial 629 

resolution, catchment computational structure and the soil routine is not considered in this paper. 630 

The evaluation framework includes: 631 

A. Parameterisation analysis: 632 

(1) Sensitivity analysis, 633 

(2) Parameter identifiability analysis, 634 

(3) Correlations among the parameters. 635 

B. Performance analysis: 636 
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(1) Performance metrics over the calibration (1993-2003) and evaluation (2003-2013) periods,  637 

(2) Flow-related hydrological signatures. 638 

C. Analysis of simulated hydrological components and catchment water balance. 639 

The model can generally be calibrated by applying an optimisation method, i.e., by coupling the 3DNet-640 

Catch to an optimisation algorithm; however, this approach is not used here. For purpose of the model 641 

evaluation in this paper, 100,000 parameter sets are sampled from their uniform prior distributions by 642 

applying the Latin hypercube sampling. One hundred best performing sets in terms of the Kling-Gupta 643 

efficiency KGE (Gupta et al., 2009) in the calibration period are selected from 100,000 sampled ones. 644 

The model evaluation is based on the one hundred selected sets. All simulations are run over water years, 645 

with one preceding water year for model warm-up.  646 

 647 

 Model Parameterisation Analysis 648 

The sensitivity analysis (SA) is conducted to detect the most influential parameters and potentially 649 

insensitive/redundant ones. The regression based SA is employed in this paper. This method relies on 650 

the multiple regression (metamodel) between the parameters and a considered model output, such as 651 

flow or a performance measure (Christiaens and Feyen, 2002). Parameter sensitivity is represented by 652 

standardised regression coefficients (SRCs), which are obtained by multiplying the regression 653 

coefficients to the ratio between standard deviations of the sampled parameters and the considered 654 

variable. High SRCs’ absolute values indicate influential parameters. Metamodel validity is quantified 655 

in terms of the coefficient of determination (R2) and variance inflation (VIFMAX). The former represents 656 

goodness-of-fit, whereas the latter indicates multicollinearity among the predictors. A metamodel should 657 

be discarded in case of R2 below 0.7 (Pan et al., 2011) and VIFMAX above 10 (Christiaens and Feyen, 658 

2002).  659 

Parameter sensitivity of the following variables in the calibration period is analysed:  660 

 Fluxes: flow, direct runoff and baseflow. Flow and baseflow are represented by mean values, 661 

while direct runoff is represented by its standard deviation to indicate parameters that affect runoff 662 

variability.  663 

 Storage: SWC, canopy and snowpack storage. These variables are averaged over all elevation 664 
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zones.  665 

 Performance measures. Several performance measures calculated from daily flows are considered 666 

to identify influential parameters important for reproduction of runoff volume and dynamics. 667 

Sensitivities of KGE calculated for the high- and low-flow segment of the flow duration curves 668 

(FDC, Table 2) are computed to detect parameters important for reproduction of extreme flows. 669 

Posterior distributions of well-identified parameters significantly differ from the corresponding prior 670 

(uniform) ones. The Kolmogorov-Smirnov (KS) test is applied to compare empirical cumulative 671 

posterior distribution obtained from 100 selected sets to the uniform prior for each model parameter 672 

(following Sarrazin et al., 2016). Parameter identifiability is represented by the p-values of the KS test 673 

statistic.  674 

Correlations among parameters cause ridges in the response surface that hinder parameter optimisation 675 

(Schoups et al., 2010). Therefore, weak correlations suggest proper model parameterisation (Shafii and 676 

Smedt, 2009). Parameter correlations in this analysis are quantified in terms of the Spearman rank 677 

correlation coefficients.  678 

 679 

 Model Performance Analysis 680 

The model performance is assessed from flows in the calibration (1993-2003) and evaluation (2003-681 

2013) periods (Table 1). It is represented by KGE together with the ratio between the standard deviations 682 

of simulated and observed flows (alpha) and the correlation coefficient (r). Relative bias and volumetric 683 

efficiency VE (Criss and Winston, 2008) expose the model ability to simulate runoff volume. Equations 684 

of these performance measures, calculated from daily flows, are given in Table S7. Model ability to 685 

reproduce flow seasonality is represented by two metrics: (1) KGEm calculated from monthly flows, and 686 

(2) KGEia calculated as daily values obtained by averaging flows for each particular day over the entire 687 

simulation period (following Schaefli et al., 2014). Ensemble performance is quantified in terms of p-688 

factor and r-factor. The former denotes the percentage of observations within the 95% prediction band 689 

bounded by the 2.5th and 97.5th ensemble percentiles (95PPU). The latter is mean 95PPU width divided 690 

by the standard deviation of the observed flows (Sun et al., 2016). Small values of r-factor are preferred, 691 

while p-factor should tend to 1.  692 
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Additionally, model efficiency is estimated with respect to flow-related hydrological signatures. The 693 

signatures considered in this paper are selected to expose different aspects of model performance and 694 

accuracy in simulating various hydrological processes. Specifically, signatures related to FDC indicate 695 

model ability to simulate soil water redistribution and baseflow (Yilmaz et al., 2008). Therefore, 696 

performance in soil moisture dynamics is represented by KGE calculated from the entire FDC and its 697 

high and mid-flow segments (McMillan et al., 2017). KGE calculated from the low-flow FDC segment 698 

indicates the level of accuracy in the baseflow simulations. Autocorrelation and coefficient of variation 699 

expose efficiency in flow dynamics, while high and low percentiles show model ability to reproduce 700 

extreme flows. Selected signatures are briefly outlined in Table 2 and further detail can be found in the 701 

literature (Yilmaz et al., 2008; Westerberg and McMillan, 2015; Westerberg et al., 2016).  702 

 703 

[Table 2 is placed here.] 704 

 705 

 Hydrological Components and Water Balance of the Catchment 706 

This part of the evaluation framework implies analysis of individual hydrological components. To this 707 

end, observations of various hydrologic variables such as snow cover, soil moisture or groundwater 708 

should be considered (e.g. Rakovec et al., 2016). In the Mlava catchment, only data on snow cover are 709 

available. However, assessment of snow simulation accuracy is rather challenging in this catchment, 710 

since snowpack thickness observations at the Žagubica station (1993-2000) are only available. These 711 

observations are compared to the simulated snow water equivalent in the third elevation zone, since 712 

Žagubica is located within this zone. Agreement between these series is represented by Spearman rank 713 

correlation coefficients. In this analysis, it is assumed that the higher snowpack thickness implies higher 714 

total water content. Agreement between simulated and observed snowpack represents an effective model 715 

evaluation measure, considering that snowpack observations are not used to constrain model parameters 716 

in this case study. Efficiency in flow simulations during the snow season (January through April) is also 717 

an indicator of snow simulation accuracy. 718 

Additionally, key simulated variables are inspected visually considering the expected patterns. Although 719 

such a comparison provides a mere qualitative model evaluation, it is very important as it indicates 720 
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whether the model provides “right answers for the right reasons” (Kirchner, 2006). The following 721 

simulated variables are presented: flow, direct runoff and baseflow at Veliko Selo. Furthermore, SWC, 722 

canopy and snowpack storage and actual ET (AET) within the third elevation zone are also shown. This 723 

particular zone is selected since its mean elevation corresponds to the mean catchment elevation.  724 

 725 

4. RESULTS AND DISCUSSION 726 

4.1. The Evaluation Results: Model Parameterisation 727 

Parameter sensitivity (SA), identifiability and correlations among the parameters are analysed to 728 

evaluate the effectiveness of 3DNet-Catch parameterisation. The first step of the SA is the metamodels’ 729 

validity assessment. Most regression metamodels yield coefficients of determination (R2) between 0.72 730 

(KGE of the low-flow FDC segment) and 0.99 (canopy storage). However, four metamodels resulted in 731 

somewhat lower R2: the Nash-Sutcliffe efficiency NSE (0.60), bias and total flows (0.64), and KGE of 732 

the high-flow FDC segment (0.66). Since these R2 are only slightly below the recommended threshold 733 

of 0.7, these metamodels are accepted as valid and retained in the SA. Bias and NSE yield the highest 734 

R2 out of several considered performance measures, and, therefore, are selected to identify parameters 735 

important for reproducing runoff volume and dynamics (Krause et al., 2005). The maximum VIF 736 

amounts to 3.1 (NSE), indicating valid metamodels.  737 

The absolute SRC values are presented in Fig. 5. Fig. 5A shows parameter sensitivity of flows, direct 738 

runoff and baseflow. Flow is largely influenced by the precipitation gradient α, parameters of the soil 739 

routine (porosity, the thickness of the subsurface layer, pore size distribution index, saturated 740 

conductivities) and LAImax. The precipitation gradient affects total precipitation and consequently runoff 741 

volume. High sensitivity to α variations suggests the significance of precipitation data, while sensitivity 742 

to the soil-related parameters indicates the importance of soil moisture dynamics for flow simulations. 743 

Direct runoff is mainly influenced by the soil conductivities and the reservoir coefficient, Kd (in control 744 

of surface to direct runoff transformation), while sensitivity to α is lower than in flows. Mean baseflow 745 

is sensitive to the hydraulic conductivities, as well as percolation to the NLGW reservoir (not shown 746 

here). Low sensitivity to the baseflow-related parameters suggests that baseflow rates are governed by 747 

percolation from the unsaturated soil rather than its routing. To analyse the impact of maximum baseflow 748 
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yield qd and coefficient c on baseflow dynamics, a temporal SA is conducted with a daily time step 749 

(following Sieber and Uhlenbrook, 2005). The SRC values of these parameters are generally low (Fig. 750 

S4), but clearly correlated to baseflow rates. For example, the sensitivity to parameter c variations 751 

increases during prolonged dry periods, i.e., it becomes “more active” during these periods thereby 752 

implying plausible parameterisation (Pfannerstill et al., 2015). Additionally, parameter qd is engaged in 753 

the analytical integration of the nonlinear outflow equation, and facilitates model calibration. Fast 754 

groundwater discharge is not considered here since the corresponding metamodel yields low R2.  755 

Fig. 5B presents parameter sensitivity of three types of storage. Soil water content is influenced by the 756 

porosity and subsurface layer thickness (their product comprises almost total soil capacity). Canopy 757 

storage is primarily affected by CANmax. Snowpack storage is sensitive to TR-S and Tmelt, with lower 758 

sensitivity to other snow-related parameters. Temporal SA to these snow-related parameters reveals an 759 

increased sensitivity to Ssnow,100 and λ during snow ablation periods (Fig. S5). The sensitivity of the 760 

snowpack storage to the melt factors is low, especially to bmelt,12, suggesting that snowmelt simulated 761 

with a daily time step is influenced mainly by the air temperature and the available snow storage in the 762 

Mlava catchment. Seasonality in bmelt is not pronounced, possibly due to a relatively short snow season 763 

in this catchment; hence, the bmelt(t) could be represented by a constant value.  764 

The accuracy of flow volume simulation results is mainly affected by α, some soil-related parameters 765 

and LAImax. The model ability to reproduce runoff dynamics is influenced by the hydraulic conductivities 766 

and the reservoir coefficient Kd, all of which affect direct runoff. The precipitation gradient, Kd and the 767 

most soil-related parameters are important for high-flow simulations. Model performance in low-flows 768 

is sensitive to the threshold Smax, and to a lesser extent to a subset of soil-related parameters.  769 

 770 

[Fig. 5. is placed here.] 771 

The results indicate insensitivity to CN and initial abstraction Ia_rel, so a temporal SA with respect to 772 

these parameters is conducted (Fig. 6). Increased SRCs are identified during rain events, which is 773 

consistent with their role in surface runoff simulations since these parameters define partitioning 774 

between infiltration and excess precipitation. These results suggest the importance of those parameters 775 

for surface runoff simulations, and consequently flows and model efficiency. 776 
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 777 

[Fig. 6. is placed here.] 778 

Fig. 7 shows one hundred best parameter realisations relative to their prior ranges. Empirical posterior 779 

distributions of these sets are compared to the corresponding prior uniform distributions using the KS 780 

test. Parameters that result in the KS test null hypothesis rejection at the 5% significance level are 781 

considered to be well-identified (i.e., statistically significant, denoted by green circles in Fig. 7A). The 782 

parameters yielding the hypothesis rejection at 25% significance level (i.e., potentially significant, 783 

denoted by yellow triangles in Fig. 7A) are also considered well-identified (Plavsic et al., 2016). Most 784 

parameters for this application of the 3DNet-Catch model are well-identified. Few parameters, such as 785 

CANmax, the melt factors, few soil- and baseflow-related parameters are not properly identified (p-values 786 

exceed 25%, red diamonds in Fig. 7A). Since low identifiability might be attributed to the performance 787 

measure used for parameter selection, the KS test is repeated with 100 best performing sets according 788 

to KGE calculated from log-transformed flows (KGElogQ). These results (Fig. 7B) show that Ia_rel, θFC, n 789 

and baseflow-related parameters are well-identified. Regardless of the performance measure, few 790 

parameters exhibit low identifiability: CANmax, Tmelt, the melt factors and θPWP. Low identifiability of 791 

these parameters could be explained by the fact that they presented as functions of other parameters 792 

(Table S5), which should be avoided if possible. Parameter identifiability could also be discussed 793 

considering the width of the prior ranges. In this study, the prior ranges are set quite narrow (including 794 

CANmax, Tmelt and θPWP), and wider prior ranges could result in lower p-values of the KS test. This 795 

assumption, however, should be tested in further research.  796 

The matrix of Spearman rank correlation among the selected parameters is shown in Fig. 8. The median 797 

value of the correlation coefficients amounts to -0.01, with 2.5th and 97.5th percentiles of -0.25 and 0.23, 798 

respectively. As none of the coefficients exceeds 0.6 (the largest coefficient is 0.58), the parameters are 799 

considered uncorrelated (Blasone et al., 2007).  800 

Altogether, results of the sensitivity, identifiability and correlation analyses in this case study suggest 801 

that 3DNet-Catch is adequately parameterised notwithstanding the large number of parameters. Most 802 

parameters affect the simulated variables and/or model performance, which is evident either over the 803 

entire simulation period or sporadically. They are also well identifiable and uncorrelated. The snow 804 
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routine might be simplified by neglecting the melt factor seasonality (for this catchment). 805 

 806 

[Fig. 7. is placed here.] 807 

[Fig. 8. is placed here.] 808 

 809 

4.2. The Evaluation Results: Model Performance  810 

Performance of 100 selected parameter sets in the calibration and evaluation periods is shown in Fig. 9. 811 

The ensemble performance is represented by the Kling-Gupta efficiency coefficients calculated from 812 

daily (KGE) and monthly flows (KGEm), and from daily flows averaged for a particular day over the 813 

entire simulation period (KGEia). Additionally, the ratio between standard deviations of the observed 814 

and simulated flows (alpha) and their correlation coefficient (r), volumetric efficiency (VE) and bias are 815 

shown. To provide a frame of reference, these performance measures are compared to those obtained of 816 

the HBV-light model (Seibert and Vis, 2012) ensemble, presented by Todorović and Plavšić (2015). 817 

Median KGE in both periods amounts to 0.67, indicating satisfactory performance of 3DNet-Catch 818 

(Pechlivanidis et al., 2014). The HBV-light ensemble resulted in the median KGE of 0.55 and 0.68 in 819 

the calibration and evaluation periods, respectively. Since the models are forced with observations from 820 

only three meteorological stations in the catchment, improved input data quality (i.e., wide observation 821 

network coverage) may well yield higher efficiency. Sensitivity of efficiency to input data quality, 822 

however, requires model application to catchments with an extensive observation network coverage. 823 

Furthermore, some ensemble members perform better in the evaluation period, which corroborates the 824 

results obtained by Todorović and Plavšić (2015). Such results could be attributed to generally higher 825 

flows in the evaluation period (Table 1), since increased accuracy in higher flow rates can be expected 826 

with the performance measure used for parameter selection (Pechlivanidis et al., 2014). However, the 827 

3DNet-Catch ensemble of one hundred best performing sets selected according to KGElogQ behaves in a 828 

similar manner, i.e., it yields the median KGE values of 0.50 and 0.65 over the calibration and evaluation 829 

periods, respectively (not shown here). These results might indicate higher data quality in the evaluation 830 

period. The correlation coefficient values are satisfactory (Moriasi et al., 2007), and exceed those 831 

obtained by the HBV-light model (0.65 and 0.75 in the calibration and evaluation, respectively). 832 
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However, the standard deviation is slightly overestimated in the evaluation period by the 3DNet-Catch 833 

model, as opposed to the HBV-light ensemble. The values of KGEm and KGEia, and monthly flows at 834 

Veliko Selo, which are generally contained within the 95PPU during both periods (Fig. 10), suggest that 835 

the model accurately reproduces flow seasonality. The monthly flows are overestimated during the late 836 

summers and autumns by the 95PPU, and slightly underestimated in early spring (combination of 837 

rainfall and snowmelt). Similar results were obtained with the HBV-light model, which overestimated 838 

flows from April through August. The bias values obtained with 3DNet-Catch are rather low: the median 839 

value amounts to -1.8% for the calibration, and 6.5% for the evaluation period, demonstrating model 840 

ability to reproduce runoff volume. The HBV-light model resulted in the bias values of 12.8% and 2.7%, 841 

and the median VE values of 0.87 and 0.94 over the calibration and evaluation, respectively. Ensemble 842 

performance is represented by p-factor, which amounts to 0.76 and 0.77 in the calibration and evaluation 843 

periods, respectively, and by r-factor of 0.77 in both periods. These results denote relatively narrow 844 

95PPU that encompasses a large percentage of the observed flows. The 3DNet-Catch ensemble is 845 

slightly wider than the HBV-light ensemble, but encompasses higher per cent of the observed flows: 846 

HBV-light resulted in the p-factor values of 0.6 and 0.65, and r-factor of 0.69 and 0.75 during the 847 

calibration and evaluation periods, respectively. 848 

 849 

[Fig. 9. is placed here.] 850 

[Fig. 10. is placed here.] 851 

 852 

The evaluation of the model performance also involves hydrologic signatures (Table 3). Comparison of 853 

mean flows confirms model ability to reproduce runoff volume. The coefficients of variation indicate 854 

overestimated flow variance in the evaluation period. One-day autocorrelation is marginally 855 

overestimated: for example, simulated low flows are aligned along recession curves, as opposed to the 856 

noisy observations. High values of KGEFDC suggest that the entire FDC is well reproduced by the 857 

ensemble (supported by high p-factors in both periods, Fig. 11). KGEs of the FDC segments further 858 

reflect performance in high-, mid- and low-flows. Performance in the high-flow FDC segment (0-0.05 859 

exceedance probability) is good, especially during the evaluation period. FDCs in Fig. 11 show that the 860 
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observations are contained within the ensemble range during the evaluation period, but underestimated 861 

during the calibration. The 3DNet-Catch model properly reproduces the mid-flow FDC segment; 862 

however, there is a considerable dispersion across the ensemble (indicated by low 2.5th percentile of 863 

KGEMF). Performance of the 3DNet-Catch model in low flows is somewhat lower than in other FDC 864 

segments, although some ensemble members reproduce this FDC segment well (indicated by high 97.5th 865 

percentile of KGELF). Extreme flow percentiles in Table 3 are generally within 95PPU bounds: high 866 

percentiles of the observed and simulated flows are comparable, although extreme low flows are 867 

underestimated by most ensemble members.  868 

 869 

[Table 3 is placed here.] 870 

[Fig. 11. is placed here.] 871 

 872 

4.3. The Evaluation Results: Hydrological Components and Water Balance of the Catchment 873 

Simulated hydrological components are analysed to assess whether their dynamics corresponds to 874 

expected patterns. Fig. 12 presents simulated variables by the best performing parameter set in the 875 

evaluation period with KGE and bias of 0.77 and 7.5%, respectively. A good agreement between 876 

simulated and observed flows is apparent: simulated hydrograph corresponds to the observed one in 877 

terms of rising and recession limbs, and in peak timings. The log-transformed hydrographs further 878 

illustrate the agreement in hydrograph recession limbs and low flows in general. Surface and direct 879 

runoff values are generated occasionally, after rain events or snowmelt, while the increase in baseflow 880 

is delayed. Direct runoff is considerably larger than baseflow, resulting in overall flow variability. 881 

Baseflow rates in Fig. 12 do not exceed 3 m3/s, and are consistent with the long-term average flows at 882 

Veliko Selo during dry periods (Prohaska et al., 2009). Fast groundwater response is not generated due 883 

to high smax value of this particular set. Runoff coefficient estimated from the simulated flows amount 884 

to 0.34, which is equal to the long-term estimate for this catchment made by Prohaska et al. (2009).  885 

Percolation rates correlate well with SWC, with the highest values during winters and early springs. 886 

Percolation rates are almost two order of magnitude smaller than surface runoff rates, which corresponds 887 

to the ratio between direct runoff and baseflow. Canopy storage is up to 2.5 mm (CANmax is 5.7 mm), 888 
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which is a reasonable estimate for deciduous vegetation in a temperate climate (Breuer et al., 2003). The 889 

Spearman rank correlation coefficient, which is calculated between observed snowpack thickness at 890 

Žagubica and simulated snow storage, is 0.71 (1993-2000). The AET values (e.g., 502 mm/year in the 891 

evaluation period) are consistent the with the long-term water balance that suggests 473 mm/year 892 

(Prohaska et al., 2009). Since the simulated hydrological components strongly concur with the expected 893 

patterns in the Mlava catchment, indicating realistic representation of processes in the 3DNet-Catch 894 

model.  895 

 896 

[Fig. 12. is placed here.] 897 

 898 

4.4. Summary of the Results of the 3DNet-Catch Model Evaluation 899 

The model evaluation suggests that the 3DNet-Catch model accurately reproduces runoff volume and 900 

FDCs although it is forced with observations from a sparse observation network. Bias in runoff volume 901 

in both simulation periods is below the margin of error considering rating curve uncertainties (Di 902 

Baldassarre and Montanari, 2009). Values of KGE and 1-day AC signature indicate that runoff dynamics 903 

is satisfactorily reproduced. Most importantly, model efficiency in both periods is broadly similar, 904 

demonstrating its transferability. 905 

High performance is obtained in the mid- and high-flow FDC segments, which can be attributed to 906 

accuracy in soil moisture simulations (Yilmaz et al., 2008). High efficiency together with the high 907 

sensitivity to the soil-related parameters indicates plausible parameterisation of the soil routine. 908 

Additionally, simulated SWC values correspond to the expected pattern in a catchment located in a 909 

temperate climate (high content in early springs and low in late summers). Adaptability to local 910 

conditions and physically meaningful parameters represent additional advantages of this routine.  911 

Good model performance in high flows and runoff dynamics also depends on runoff routing accuracy. 912 

Satisfactory performance, high SRC and identifiability of the linear reservoir coefficient Kd indicate a 913 

proper parametrisation of this routing component. These results also suggest that the spatial lumping of 914 

runoff routing yields reliable results with a daily computational step. 915 

Variability of low-flow performance across the ensemble suggests that parameters are not sufficiently 916 
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conditioned with respect to this flow component in these analyses, rather than model structure 917 

inadequacies. The use of performance measures that put emphasis on low flows (e.g., logarithmic or 918 

square root transformations, Oudin et al., 2006) could potentially improve efficiency in this regard. To 919 

test this assumption, additional simulations are carried out with 100 best parameter sets selected 920 

according to KGElogQ. These sets resulted in higher KGELF values than those in Table 3: namely, the 921 

2.5th, 50th and 97.5th percentiles amount to 0.11, 0.46 and 0.81, respectively. Furthermore, observed 922 

monthly flows in June through December are within the 95PPU, except for November flows, which is 923 

still slightly overestimated (not shown here). Therefore, model performance in low-flows requires 924 

further research aimed at identifying a proper calibration strategy. Underestimation of extremely low 925 

flows is related to the accuracy of low-flow observations: namely, observed flows over prolonged dry 926 

periods take constant values, while simulated recessions lead to flow decrease in time.  927 

High flows in this catchment are often triggered by snowmelt, thus model performance in high-flows is 928 

also conditioned on the accuracy of snow simulations. The model satisfactorily reproduces high flows, 929 

although many ensemble members underestimated early spring flows (caused by combined rain events 930 

and snowmelt). These results, along with low sensitivity and identifiability of some snow-related 931 

parameters reveal a scope for improvement of this routine. Enclosure of the snowpack observations in 932 

the calibration procedure should be considered as well.  933 

A visual inspection of hydrographs reveals that some rainfall events during summers and autumns are 934 

not accompanied by an increase in the observed hydrographs, as opposed to the simulated flows. These 935 

discrepancies can be attributed to the spatial rainfall representation in this modelling setup and sparse 936 

raingauge network that cannot capture the spatial heterogeneity of summer convective rainfall events. 937 

A fully distributed setup and finer spatial resolution of rainfall observations could potentially improve 938 

simulation accuracy during these events, as well as the overall model performance.  939 

Although the evaluation results suggest proper parameterisation of 3DNet-Catch, it should be noted that 940 

the evaluation presented in this paper is based on a single catchment. The model application in other 941 

catchments with different hydrologic regime, as well as model comparison to the other models, requires 942 

further research.  943 

 944 
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5. CONCLUSIONS AND FUTURE RESEARCH 945 

The 3DNet-Catch hydrologic model and a comprehensive evaluation of the basic model setup are 946 

presented in this paper. The model is conceived as a trade-off between oversimplified, parsimonious 947 

models and demanding, complex ones, enabling plausible simulation results with modest data and 948 

computational requirements. The central point of the model is its soil routine, which combines the SCS-949 

CN method for estimation of maximum soil retention, the nonlinear outflow equation and the Brooks-950 

Corey relation for unsaturated hydraulic conductivity. This routine can be adapted according to soil data, 951 

which is a distinct feature of 3DNet-Catch. The soil routine and runoff routing include analytically 952 

integrated nonlinear outflow equations, thereby preventing issues caused by the application of numerical 953 

methods.  954 

To assess parametrisation and performance of 3DNet-Catch, a comprehensive evaluation framework is 955 

established and used with a semi-lumped model setup of the Mlava catchment. The evaluation results 956 

suggest the following: 957 

 The basic structure of 3DNet-Catch (i.e., semi-lumped model setup, structure with one surface and 958 

one subsurface soil layer, and surface routing through a single linear reservoir) provides 959 

satisfactory, reasonable simulation results even with forcing from a sparse observation network.  960 

 The soil routine parametrisation results in a good representation of soil water dynamics, and 961 

consequently in good model performance for mid- and high-range flows. The use of physically 962 

meaningful parameters represents an appealing feature of this routine.  963 

 A simple degree-day based method provides realistic simulation results for the snowpack and flows 964 

during melt seasons, although there is a scope for improvement. The results obtained in the Mlava 965 

catchment suggest that seasonality in the melt factor can be neglected.  966 

 The linear outflow equation for surface runoff routing enables proper reproduction of high flows in 967 

terms of both flow rates and peak timing.  968 

 A nonlinear groundwater reservoir with a threshold enables a reasonable representation of 969 

groundwater response, but the estimation of the baseflow-related parameters requires performance 970 

measures that emphasise this flow component.  971 

The presented features and evaluation results suggest that the 3DNet-Cacth model is suitable for runoff 972 
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simulations in mesoscale sloped catchments under a temperate climate. Good performance with modest 973 

data requirements enables 3DNet-Catch applicability in operational practice. Specifically, it can be used 974 

for addressing various issues related to water resources management. For example, values of most model 975 

parameters can generally be inferred from soil, land use and vegetation data. Stanić et al. (2017) relied 976 

on this model feature to reconstruct an extreme flood in Serbia in May 2014, since a conventional model 977 

calibration could have not be performed due to pronounced uncertainties in the observed flows. This 978 

model was used afterwards by the water authorities for evaluation of various flood mitigation measures 979 

(Babić Mladenović and Divac, 2015). The 3DNet-Catch model includes the SCS-CN method, thus it 980 

can be readily applied for e.g. assessment of various scenarios of land use change, particularly if a 981 

distributed setup is employed. Being implemented as a Dynamical Link Library (.dll), the model is 982 

computationally efficient, and thus particularly convenient for climate change impact studies that are 983 

usually computationally intensive. Realistic simulation results across different flow ranges pose an 984 

additional model advantage in such applications. In addition, flexibility in model structure or spatial 985 

resolution makes it a particularly appealing tool for hydrologic research studies. 986 

For future considerations, the snow routine can be enhanced by introducing a smooth transition between 987 

snowfall and rainfall, or an increase in the melt factor during rain-on-snow events. The model 988 

performance during snow melt season could be improved by including snow cover data into the model 989 

calibration. The enclosure of groundwater-surface interactions (capillary rise) in the model might 990 

enhance model performance in catchments with high groundwater table. The first-order explicit Euler 991 

method implemented in the routines for runoff volume simulations can be replaced by a more robust 992 

explicit numerical method (e.g., the Runge-Kutta scheme). Furthermore, storage-dependant flow 993 

exchange among CUs rather than routing to a catchment outlet can be implemented. The channel routing 994 

component can be improved by either embedding robust routing methods, or by coupling to a hydraulic 995 

model, as suggested by Stanić et al. (2017). The 3DNet-Catch model can also be coupled with a 996 

groundwater model, such as UGROW (Pokrajac and Stanić, 2010). An integration of 3DNet-Catch with 997 

other models and the storage-dependant runoff routing is generally not intended for the engineering 998 

practice due to increased computational demands, but this would be a promising avenue of research. 999 

 1000 
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Table 1 Stations in the Mlava catchment and data in two simulation periods. 1288 

(Q – mean annual flow, P –annual precipitation and T – mean annual temperature) 1289 

Station Variable 

Elevation 

(m a.s.l.) 

Latitude / 

Longitude 

Available 

record 

Calibration (1993-2003) Evaluation (2003-2013) 

min mean max min mean max 

Veliko Selo Q [m3/s] 92.55* 

44 º 30 ’ 

21 º 18 ’ 

1987-2013 3.4 7.2 11.3 5 9.3 16.7 

RC Petrovac 

P [mm] 

T [°C] 

282 

44 º 20 ’ 

21 º 20 ’ 

1972-2013  

530 707.4 928.5 526.4 693.9 984.7 

10.2 11.8 13.1 11.2 12.1 13.8 

Žagubica 

P [mm] 

T [°C] 

314 

44 º 12 ’ 

21 º 47 ’ 

1972-2013 

423.8 576 696.9 466.4 683.8 924.8 

8.3 10.1 14.9 10 10.9 12 

Crni Vrh 

P [mm] 

T [°C] 

1037 

44 º 08 ’ 

21 º 58 ’ 

1966-2013 

635.9 750.1 816.1 661.6 877.2 1134 

5 6.9 8 6.4 7.2 9 

* Zero datum of the staff gauge. 1290 
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Table 2 Flow-related hydrological signatures considered for the model evaluation.  1291 

Label  Signature Description  

QMEAN Mean flow (m3/s) 

Mean flow in the simulation period (m3/s); indicates model ability to 

reproduce long-term water balance. 

CV Flow variability 

The coefficient of variation of daily flows; reflects agreement in flow 

dynamics. 

AC 

Autocorrelation 

coefficient 

1-day autocorrelation coefficient of daily flows. Related to flow 

dynamics/flashiness: large catchments show high autocorrelation, while 

autocorrelation is small in flashy catchments.  

KGEFDC KGE of the entire FDC KGE calculated from the entire FDC.  

KGEHF 
KGE of the high-flow 

FDC segment  

KGE calculated from the high flows (exceedance probabilities from 0 to 

0.05). Related to soil moisture redistribution. 

KGEMF 

KGE of the mid-flow 

FDC segment 

KGE calculated from the log-transformed flows (exceedance probabilities 

between 0.2 and 0.7). Related to soil moisture redistribution. 

KGELF 

KGE of the low-flow 

FDC segment 

KGE calculated from the log-transformed flows (exceedance probabilities 

between 0.7 and 1). Indicates model ability to reproduce baseflow. 

Q1%, Q5%, 

Q95%, Q99% 

Flow percentiles (m3/s)  

Characteristic percentiles of daily flows representing extremely high (Q1%, 

Q5%) and low flows (Q95%, Q99%). Indicate model ability to reproduce 

extreme flows.  

 1292 



  

48 

Table 3 Hydrological signatures of the observed and simulated flows. The signatures calculated from 1293 

the ensemble are represented by the 2.5th, 50th and 97.5th percentiles.  1294 

Hydrologic 

signature  

Calibration (1993-2003) Evaluation (2003-2013) 

Observed 

Simulated 

Observed 

Simulated 

2.5 50 97.5 2.5 50 97.5 

QMEAN 7.22 6.25 7.08 8.06 9.03 8.10 9.62 10.73 

CV 1.46 1.18 1.41 1.62 1.44 1.26 1.52 1.70 

AC 0.863 0.852 0.920 0.955 0.92 0.881 0.940 0.967 

KGEFDC / 0.82 0.90 0.97 / 0.72 0.84 0.97 

KGEHF / 0.43 0.59 0.85 / 0.57 0.81 0.94 

KGEMF / 0.40 0.72 0.93 / 0.19 0.69 0.96 

KGELF / -0.01 0.41 0.81 / -0.01 0.48 0.80 

Q1% 1.1 0.01 0.33 1.07 1.07 0.04 0.33 1.11 

Q5% 1.2 0.08 0.52 1.45 1.3 0.11 0.64 1.60 

Q95% 22.29 22.91 27.35 31.59 33.1 31.42 37.60 43.63 

Q99% 55.1 42.43 49.82 56.90 67.56 57.39 72.00 81.62 

 1295 

  1296 
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