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Abstract: High urbanization puts many groundwater resources at risk of quality 8 

deterioration. Analysing all viable potential groundwater contamination scenarios for good 9 

decision making requires reliable tool. Coupling several complex models in integrated 10 

modelling can often fail to perform in reasonable time. Possible solution in that case could 11 

be usage of simplified models in order to speed up long-term continuous calculations and 12 

simulations. The paper presents the application of the Cellular automata (CA) approach in 13 

modelling of the contaminant transport in unsteady groundwater conditions. It compares 14 

the results obtained using coupled CA models with well-known analytical solutions and 15 

standard methods used for pollution transport modelling in groundwater conditions, such 16 

as coupled MODFLOW and MT3DMS. Results obtained in this paper show that CA 17 

approach can be satisfactorily used for simulations of unsteady groundwater conditions, 18 

caused by surface-groundwater interaction, and pollution transport, especially in diffusion 19 

dominant cases.  20 
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 22 
NOTATIONS 23 
Table 1. Groundwater flow and pollutant transport model parameters and variables  

Groundwater flow model parameters and 
variables 

Pollutant transport model parameters and 
variables 

ΔHij [L] Hydraulic gradient mi
t
 [M] 

current pollutant mass in central 
cell i 

Hi
t
 [L] current central cell i state (head) mj

t
 [M] 

current pollutant mass in 
adjacent cell j 

Hj
t
 [L] current adjacent cell i state (j=1,2,3,4) Ci

t
 [ML

-3
] current pollutant concentration in 
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central cell i 

ΔVij [L
3
] 

potential intercellular volume that can 
leave central cell i to the adjacent cell j 

Cj
t
 [ML

-3
] 

current pollutant concentration in 
central cell j 

Ai [L
2
] cell basis area Δmij

adv*
 [MLT

-1
] 

pollutant mass gradient in 
intercellular interaction by the 
advection process (can have all 
real values; positive value when 
mass leaves the central cell) 

ΔVmin [L
3
] 

minimum value of the potential 
intercellular volume 

vij
t
 [LT

-1
] Darcy’s velocity at time t 

ΔVmax [L
3
] 

maximum value of the potential 
intercellular volume 

Δs [L] spatial resolution 

wj [-] 
cell j weight in the process of 
intercellular volume exchange 

Δmij
adv,pot

 [MLT
-1
] 

Indicator of potential pollutant 
mass that leaves the central cell i 
and enters the adjacent cell j 

vM [LT
-1
] 

max allowed velocity (M is the index of 
max weighted cell) 

Δmmin
adv

 [M] 
Minimum gradient of pollutant 
mass that leaves central cell i 
during one time step 

Ki [LT
-1
] 

hydraulic conductivity of the central 
cell 

wj
adv

 [-] 

cellular weight of the adjacent 
cell j in pollutant mass delivering 
from central cell i through 
advection mechanism 

KM [LT
-1
] 

hydraulic conductivity of an adjacent 
cell with max weight 

ΔmiM
adv,pot

 [MLT
-1
] 

Gradient of the potential pollutant 
mass delivered from central cell i 
to the max weighted cell 

HM
t
 [L] 

water level (head) in the max weighted 
adjacent cell 

wM
adv

 [-] 
Max cellular weight in advection 
process 

diM [L] boundary length between two cells Δmtot
adv

 [M] 
total pollutant mass delivered 
from the central cell in one time 
step through advection process 

ΔVM [L
3
] max allowed intercellular volume Δmij

adv
 [M] 

amount of the contaminant 
(mass) delivered from central cell 
to each adjacent cell 

Δt [T] time step Dj [L
2
T

-1
] 

hydrodynamic dispersion 
coefficient 

ΔVtot [L
3
] total intercellular volume αl  [L] dispersivity 

ΔVj
real

 [L
3
] 

real intercellular volume that leaves 
central cell i to the each adjacent cell j 
(j=1,2,3,4) 

Dmol [L
2
T

-1
] molecular diffusion (Bear 1972) 

Hi
t+Δt

 [L] updated cell state (head) Δmij
disp*

 [M] 

pollutant mass gradient between 
central cell i and the adjacent cell 
j (it can all real values; positive 
value when mass leaves the 
central cell) 

Sy [-] specific yield of the cell Δmij
disp,pot

 [M] 
gradient of the potential pollutant 
mass that leaves the central cell 
towards the adjacent cell only 

n [-] porosity Δmmin
disp

 [M] 
Minimum gradient of the pollutant 
mass delivered from central cell 
in dispersion process 

Vout [L
3
] 

cellular volume that leaves the central 
cell i (e.g. pumping rate) 

wj
disp

 [-] 

cellular weight of the adjacent 
cell j in pollutant mass delivering 
from central cell i through 
dispersion mechanism 

Vinp [L
3
] 

volume that enters the central cell I 
(e.g. infiltration) 

ΔmiM
disp,pot

 [M] 
Gradient of the potential pollutant 
mass delivered from central cell i 
to the max weighted cell 

Qij [L
3
T

-1
] intercellular discharge wM

disp
 [-] 

Max cellular weight in dispersion 
process 

Ti [L
2
T

-1
] transmissivity of the central cell Δmtot

disp
 [M] 

total pollutant mass delivered 
from the central cell in one time 
step through dispersion process 

Tj [L
2
T

-1
] transmissivity of the adjacent cell Δmij

disp
 [M] 

amount of the contaminant 
(mass) delivered from central cell 
to each adjacent cell by the 
dispersion process 

Qout [L
3
T

-1
] discharge that leaves the central cell i 

(e.g. pumping)  

mi
t+Δt

 [M] 
pollutant mass in the central cell i 
at the next time 

Qinp [L
3
T

-1
] 

flow (discharge) that enters the central 
cell i (e.g. infiltration) 

Δminp [M] 
external pollutant mass input to 
the central cell (e. g. from some 
other cells) 

   Δmout [M] 
represents external output of the 
pollutant mass from the cell (e. g. 
pollutant mass extracted from the 
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cell by pumping rate) 

   Ci
t+Δt

 [ML
-3
] 

pollutant concentration at next 
time 

 24 
1. INTRODUCTION 25 

Water quality in urban catchments is one of the crucial problems that need to be addressed 26 

to assure high quality of life in cities. Particularly vulnerable to quality deterioration is the 27 

groundwater, especially if the aquifer lies near or beneath the city (>50% global population 28 

uses groundwater as potable water, WWAP 2015). This type of catchments is not 29 

uncommon, and put additional pressure on decision makers to find a fine balance between 30 

city expansion and groundwater catchment protection (e.g. Dimkić et al. 2013; Petrović 31 

Pantić, Mandić, and Samolov 2016). Contaminants affecting groundwater resources belong 32 

to a wide group of biological, chemical, inorganic and organic pollutants. Sources of the 33 

groundwater pollution also cover a wide range of locations, such as on-site sanitations 34 

system (septic systems), effluent from wastewater treatment plants, gas and petrol filling 35 

stations, landfills which are defined as point sources and can be well identified on the field. 36 

Beside point sources there are, also, nonpoint sources that cover larger area than point 37 

sources, which makes them more difficult to identify.  38 

Urban stormwater runoff is being categorized as one of the major pollution sources to 39 

receiving waters, especially for containing significant amount of sediments and heavy metals 40 

(Deletic and Orr 2005; Djukić et al. 2016; Duong and Lee 2011; Revitt et al. 2014). Although 41 

build-up and wash-off mechanisms of pollution in highly urbanized areas have been subjects 42 

of numerous studies (Barbé, Cruise, and Mo 1996; Deletic, Maksimovic, and Ivetic 1997), 43 

interaction between groundwater and sewer systems should be further investigated. Old 44 

combined sewer systems (and even inadequately constructed separate ones) may leak 45 

underground. Sewer leakage combined with absence of a wastewater treatment system 46 

(Belgrade being such an extreme example), puts groundwater resources at a high risk of 47 

contamination. To assess various “what if” scenarios, particularly when there are water 48 

quality monitoring points, it is of outmost importance to develop a usable integrated model 49 

that provides a sound basis for decision making.   50 
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Due to the complexity of the commonly used physically based models, computation cost 51 

occurs as one of the main problems, especially in long-term simulations. Combination of 52 

several numerical models in order to solve physically based models for interactions in a 53 

chain of models can, often, create an unsolvable problem. Hence, simplified models, such as 54 

the Cellular Automata (CA) (Wolfram 1998) based ones have been a topic for many 55 

researchers in the last two decades, especially since they can speed up the computation by 56 

exploiting the explicit nature of CA. Additionally, with the development of parallel computing, 57 

CA models became highly exploited methods in different areas (Bandini, Mauri, and Serra 58 

2001), including the water cycle modelling. 59 

CA found its application in different areas of research, such as simulation of wildfire spreads 60 

(Ghisu et al. 2015), lava motion during volcano eruptions (Vicari et al. 2007), urban growth 61 

and land-use change (Barredo and Kasanko 2003; Feng and Tong 2018).  62 

Dottori and Todini (2010, 2011) developed flood inundation models (diffusion dominated 63 

problem) based on the CA approach. The authors employ the Manning’s equation for 64 

computation of interaction/discharge between computational cells, and therefore solving a 65 

two-dimensional problem as four one-dimensional problems. Ghimire et al., 2013 analysed 66 

Manning’s formula-based CA model proposed by Dottori & Todini, 2010 and found that 67 

exponential nature of Manning’s equation creates a time and computational expensive 68 

problem. In order to reduce this problem, they proposed a CA-based methodology with cell 69 

ranking to determine the direction of flow between cells. It should be noted that cell ranking 70 

also creates a somewhat computational time expensive problem. Hence, Guidolin et al., 71 

2016 developed weighted cellular automata model for rapid flood inundation analysis. 72 

Guidolin et al. model calculates weights between cells based on water level differences in 73 

order to calculate discharge between them. However, Guidolin’s model lacks the ability to be 74 

used for inertial dominated problems.  75 

Efficiency of the CA models combined with parallel computing are demonstrated in Gibson, 76 

Keedwell, & Savić, 2015. In addition to flood inundation modelling, CA approach has been 77 

successfully applied in surface runoff problems (Shao et al. 2015, Cai et al. 2014), and in 78 
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rainfall simulation, water evaporation and groundwater flow in three-dimensional satellite 79 

images (Espínola et al. 2016). Some researchers improved surface runoff CA model outputs 80 

by setting it as a data-driven model (Li et al., 2015). Ravazzani, Rametta, & Mancini, 2011 81 

used CA for transient groundwater state modelling caused by constant pumping rate from a 82 

well, showing good results. Transient groundwater state is modelled using a simple Darcy’s 83 

law for intercellular discharge calculation, combined with a water balance equation for cell 84 

state updating.  85 

In addition to water quantity, CA approach is used to model pollution (contaminant) and other 86 

transport processes in atmosphere, surface water and groundwater. However, CA based 87 

models for pollution transport have been mostly used in steady state conditions: air pollution 88 

(Guariso & Maniezzo, 1992, Mar  n et al., 2000, Lauret et al. 2016), river pollution transport 89 

(Rui et al. 2013), probabilistic two dimensional contaminant transport in groundwater 90 

(Palanichamy, Schüttrumpf, & Palani, 2008), etc.  91 

Researchers who have used CA approach with contaminant transport modelling in the air 92 

(e.g. Guariso and Maniezzo 1992; Guariso, Maniezzo, and Salomoni 1996), or water (e.g. 93 

Gług and Wąs 2018; Lin and Yao 2018) have not coupled the transport part with airflow or 94 

hydrodynamic modelling, limiting the type of problems that can be solved using the proposed 95 

methodology. Additionaly, these types of CA algorithms mostly use linear, empirical, 96 

functions for intercellular interaction rules that introduce new transport parameters. These 97 

new transport parameters are sometimes not easily related to physical phenomena, and their 98 

estimation is therefore difficult. On the other hand, Lauret et al. (2016) used artificial neural 99 

networks (ANNs) approach to model air pollution transport. However, due to lack of physics, 100 

ANNs may encounter problems when the input data differs substantially from the training set, 101 

producing poor results.  102 

If there is a requirement for fast evaluation of “what-if” scenarios in integrated models, such 103 

as the problem of pollution transport in both urban surface and groundwater catchment, than 104 

there is a necessity for development of a modelling strategy able to cope with: (1) physically 105 

based pollution transport, (2) hydrodynamic modelling and (3) unsteady boundary conditions.  106 
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This paper presents a further development of a weighted CA approach for pollutant transport 107 

that complies with all three previously stated requirements, firstly presented by Milasinovic et 108 

al. (2019). Further testing of the initial methodology showed its inability to satisfy pollutant 109 

mass conservation, therefore requiring some structural modifications, mainly in the cell state 110 

variables, along with additional physical constraints. Here presented is a research that 111 

analyses and compares the behaviour of the two CA-based hydrodynamic models coupled 112 

with CA-based transport model for contaminant transport by an advection-dispersion 113 

mechanism. The methodology is tested against steady analytical 1D and 2D solutions, and a 114 

linear pollutant source under unsteady groundwater conditions.  115 

 116 

2. MATERIALS AND METHODS 117 

2.1 Overview of the methodology 118 

Cellular Automata based methodology used for groundwater flow/contaminant transport 119 

phenomena simulation is developed as a two-layer (two-stage) model (Figure 1). First layer 120 

(Layer 1) is used for hydrodynamic modelling of the unsteady groundwater conditions. 121 

Therefore, the following values are defined as cell’s static parameters (constant during 122 

simulation period): porosity n (dimensionless), Darcy’s coefficient of permeability K 123 

(Lenght/Time), specific yield Sy (dimensionless) and spatial resolution (Δs). Cell’s dynamic 124 

parameters are: water level (head) H (L) , intercellular discharge Qj (L
3/T) (j=1,2,3,4) and 125 

intercellular Darcy’s velocity Vj (L/T) (j=1,2,3,4). Von Neumann’s approach is used for 126 

neighbourhood representation (Wolfram 1998). Intercellular interaction rules are based on 127 

the Darcy’s law and a water balance equation.  128 

Layer 1 uses two CA approaches: a modification of WCA2D, proposed by Guidolin et al., 129 

2016, and a simple Darcy’s law – method, MACCA-GW proposed by Ravazzani et al., 2011 130 

(Section 2.3) Since WCA2D model is developed for urban flood modelling, it is modified here 131 

to include physical constraints suitable for groundwater conditions forming a new model 132 

named WCAGW (Section 2.2). MACCA-GW is used in its original format. 133 
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Layer 2 is used for modelling of pollution transport using the velocity-field and head-field from 134 

Layer 1 (hydrodynamic layer). The velocity – field and head - field, therefore, are the link 135 

between the two simulated physical processes, groundwater flow and mass transport. Layer 136 

2 also has static and dynamic parameters, cell neighbourhood and set of intercellular 137 

interaction rules. The following set of values is defined as static parameters significant for 138 

pollutant transport simulation: porosity n (/), dispersivity αL (L), molecular diffusion Dmol 139 

(L2/T). Values defined as dynamic parameters are: pollutant concentration C (Mass/L3) 140 

averaged over the entire cell, pollutant mass in a cell m (M) and mass exchange rate 141 

between cells Δmj (M). Cell neighbourhood in Layer 2 is also Von Neumann’s type. 142 

Intercellular interaction rules in Layer 2 are originally developed in this research by using 143 

simplified advection-dispersion equation (Section 2.4). 144 

 145 

 146 
Figure 1. Schematic view of the CA two-layer model: Layer 1 is computed either by WCAGW or by MACCA-GW 147 
and Layer 2 by CAPT model  148 
 149 
2.2 Weighted Cellular Automata for Unsteady Groundwater Flow Modelling – WCAGW  

Weighted Cellular Automata (WCAGW) approach implemented in this paper (fig. 2a), for 150 

Layer 1 simulations, uses the same principle of cellular weights calculation as the original 151 

WCA2D method (Guidolin et al., 2016). However, differences exist in physical limitations that 152 

are used for maximum intercellular velocity (eq. 6), and the update step for cell state (water 153 

level) (eq. 10), both accounting for intrinsic nature of the porous media.   154 
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Generally, process of the hydrodynamic simulations using Cellular Automata can be 155 

described with the following operations which are applied to each cell representing the 156 

domain: 157 

a. Obtain current cells state value, both the central cell (cell being currently 158 

considered) and adjacent cells (cells representing the neighbourhood) 159 

b. Calculate the cellular weights – eqs. 1, 2, 3, 4 and 5 from table 2 160 

c. Calculate the intercellular volume according to the cellular weights – eqs. 6, 7, 8 161 

and 9 from table 2 162 

d. Update the cell state; calculate next cell state – eq. 10 from table 2 163 

e. If the simulation time reaches the limit, stop simulation, otherwise repeat steps a., 164 

b., c. and d. 165 

For better display all equation related to Cellular Automata algorithms are grouped in 166 

appropriate tables. 167 

Table 2. Groundwater flow equations - WCAGW hydrodynamic model 

Groundwater flow equation Eq. No. 
Hydraulic gradient  

t t

ij i jH H H    (1) 

Potential intercellular water volume exchange  

 max 0,ij i ijV A H     (2) 

min min( )ijV V    (3) 

max max( )ijV V    (4) 

Weightening the cells in the water volume 
exchange process 

 

4

min

1

ij

j

ij

j

V
w

V V





  
 

(5) 

Embeding the physicall limitation in water flow 
equation 

 

 
 

 
2

2

i M

i M

i M

i M

t t

i M t t

M t t

t t

i M iM

K H K H
v H H

H H
K H K H d

   
 


    

 
(6) 

t

M M i iMV v H d t      (7) 

Total water volume transfer  

 min / ; t

tot M M i iV V w H A n      (8) 

Real intercellular water volume transfer   
real

j j totV w V    (9) 

Cell state (head) update  
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4

11

real

j out inp

jt t t

i i

y i

V V V

H H
S A



  

  


 (10) 

 168 

2.3 Darcy’s law-based Cellular Automata for Unsteady Groundwater Flow Modelling –

MACCA-GW  

Darcy’s law-based Cellular Automata for Unsteady Groundwater Modelling (Ravazzani et al. 169 

2011), originally named as MACroscopic Cellular Automata for GroundWater modelling 170 

(MACCA - GW) (fig. 2b), is developed for simulation of unsteady groundwater conditions by 171 

using same dynamic and static parameters defined in section 2.1 for Layer 1. Similarly with 172 

WCAGW, the two dimensional problem is solved as a set of four one-dimensional problems, 173 

using a simplified Darcy’s law to calculate intercellular discharges. MACCA-GW model 174 

implementation has one step less than process described with WCAGW model. The 175 

following set of operations shows general algorithm that’s being applied to each cell of the 176 

domain: 177 

a. Obtain current cells state value, both the central cell (cell being currently considered) 178 

and adjacent cells (cells representing the neighbourhood) 179 

b. Calculate the rate of intercellular interaction – eqs. 11 and 12 from table 3 180 

c. Update each cell state – eq. 13 from table 3 181 

d. If the simulation time reaches the limit stop the simulation, otherwise repeat steps a., 182 

b. and c. 183 

 184 

Table 3. Groundwater flow equations – MACCA-GW hydrodynamic model 

Intercellular discharge Eq.no. 

 
2 t t

i i j j t t

ij j it t

i i j j

K H K H
Q H H

K H K H

   
 

  
 (11) 

 
2 i j t t

ij j i

i j

T T
Q H H

T T

 
 


 (12) 

Cell state (head) update  
4

11
ij out inp

jt t t

i i

y i

Q Q Q

H H t
S A



 

    


 (13) 

   185 
2.4 Weighted Cellular Automata for Pollution Transport Modelling – CAPT  
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Initial methodology (Milasinovic et al. 2019) used pollutant concentration as a primary cell 186 

state variable, with intercellular interaction rules implemented by four 1D transport equations. 187 

Further testing of the initial methodology encountered problems with pollutant mass 188 

conservation. Hence, the methodology is improved by using mass of the pollutant as a 189 

primary cell state variable (pollutant concentration can be derived from pollutant mass). 190 

Additionally, weighted CA approach is used to keep the mass conserved. Using this 191 

approach, CA algorithm transfers only the available pollutant mass between adjacent cells, 192 

following the appropriate physical constraints. This combination of CA weighting algorithm 193 

with embedded physical constraints based on simplified transport equation (instead of 194 

empirical relations) accounts for the nature of the actual transport mechanisms.   195 

Pollution transport model (CAPT) (fig. 2c) uses velocity and head fields calculated either by 196 

WCAGW or MACCA-GW models as input. Contaminant transport is represented by two 197 

transport mechanisms, advection and dispersion, with reasonable simplifications. Therefore, 198 

whole algorithm is divided in two parts, one for the advection mechanism and the other for 199 

the dispersion mechanism. Pseudo code which describes this methodology can be written 200 

as: 201 

a. Obtain cell state values, pollutant concentration C and pollutant mass m – eqs. 14 202 

and 15 203 

b. Calculate intercellular pollutant mass exchange by advection 204 

i. Calculate cellular weights in advection process based on the velocity and 205 

head field and pollutant mass gradient – eqs. 16, 17, 18 and 19 from table 4a 206 

ii. Calculate advection forced intercellular pollutant mass exchange using the 207 

obtained cellular weights – eqs. 20, 21 and 22 from table 4a 208 

c. Calculate intercellular pollutant mass exchange by dispersion 209 

i. Calculate cellular weights in dispersion process – eqs. 23, 24, 25, 26, 27 from 210 

table 4b 211 

ii. Calculate dispersion forced intercellular pollutant mass exchange using the 212 

obtained cellular weights – eqs. 28, 29 and 30 from table 4b 213 
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d. Calculate total intercellular mass exchange, advection + dispersion 214 

e. Update cell state, pollutant mass and concentration in cell – eqs. 31 and 32 from 215 

table 4b 216 

f. If the simulation time reaches the limit stop the simulation, otherwise repeat steps a., 217 

b., c., d. and e. 218 

 219 
 220 
 221 
 222 
Table 4a. Contaminant transport equations – CAPT transport model (advection transport) 

Cell pollutant mass   Eq. no. 
t t t

i i i i im C H A n     (14) 

t t t

j j j j jm C H A n     (15) 

Advection process  
Pollutant mass gradient in advection mechanism  

*

t

ijadv t t

ij i j

v
m m m

n
     (16) 

 , ,*max 0;adv pot adv

ij ijm m    (17) 

 ,

min minadv adv pot

ijm m    (18) 

Weightening the cells in mass transfer through 
advection process 

 

,

4
,

min

1

adv pot

ijadv

j
adv pot adv

ij

j

m
w

m m





 
 

(19) 

Embeding the physical limitation in pollutant mass 
transfer – advection mechanism 

 

,

t tt
i Madv pot iM

iM

m mv
m t

n s


   


 (20) 

Total pollutant mass transfer – advection mechanism  
,

min ;
2

t adv pot
adv i iM
tot adv

M

m m
m

w

 
   

 
 (21) 

Real intercellular pollutant mass transfer – advection 
mechanism 

 

adv adv adv

ij j totm w m    (22) 

 223 
Table 4b. Contaminant transport equations – CAPT transport model (dispersion transport + cellular 
pollutant mass update) 

Dispersion process Eq. no. 
Pollutant mass gradient in dispersion mechanism  

t

ij

j l mol

v
D D

n
    (23) 

 *disp t t

ij j i jm D m m     (24) 
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 , *max 0;disp pot disp

ij ijm m    (25) 

 ,

min mindisp disp pot

ijm m    (26) 

Weightening the cells in mass transfer through 
dispersion process 

 

,

4
,

min

1

disp pot

ijdisp

j
disp pot disp

ij

j

m
w

m m





 
 

(27) 

Embeding the physical limitation in pollutant mass 
transfer – dispersion mechanism 

 

,

2

t t
disp pot i M
iM M

m m
m D t

s


   


 (28) 

Total pollutant mass transfer – dispersion 
mechanism 

 

,

min ;
2

t disp pot
disp i iM
tot disp

M

m m
m

w

 
   

 
 (29) 

Real intercellular pollutant mass transfer – 
dispersion mechanism 

 

disp disp disp

ij j totm w m    (30) 

Cell state (pollutant mass) update – advection + 
dispersion 

 

 
4

1

t t t adv disp

i i ij ij inp out

j

m m m m m m



       (31) 

t t
t t i
i t t

i i

m
C

H A n







 
 (32) 

 224 
Considering the explicit nature of MACCA-GW, WCAGW and CAPT models, time step limit 225 

has to be determined in order to provide numerical stability. Time step limit can be 226 

determined by using the eq. 33. derived by unifying different time step limitations (Ravazzani 227 

et al. 2011; Zheng and Wang 1999). 228 

 229 

 

2 2

2max max

2
min ; ; ;

4 2

y j

ij j ij

s S Ds s
t

T v D v

      
 
 

 (33) 

 230 
Where Δs is spatial resolution in meters, Sy specific yield of the cell, T transmisivity of the 231 

cell, vij
max max real intercellular velocity, Dj hydrodynamic dispersion and Δt time step. 232 

 233 
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a) b) c) 

Figure 2. CA Von Neumann’s neighbourhood and cell state variables and variables 234 
representing intercellular interaction for: a) WCAGW; b) MACCA-GW; c) CAPT 235 
 236 
2.5 ANALYTICAL SOLUTIONS 237 

The CA based pollution transport model, CAPT, is tested with two analytical solutions to 238 

transport problems: (1) two-dimensional analytical solution for point source contaminants 239 

transport in a semi-infinite homogeneous porous medium (Bear 1972) (eq 34) and (2) one-240 

dimensional transport equation with continuous constant pollution source (Ogata and Banks 241 

1961) (eq. 35). 242 

 243 

 
   

22

00/
, , exp

4 44

yx

x yx y

y y v tx x v tM h
C x y t

D t D tt D D

     
   
  
 

 (34) 

 244 

 
0( )

0 0 0,
2 2 2

x

x

v x x

Dx x
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C x t erfc e erfc

D t D t

          
       

         
 (35) 

 245 
Eq. 34 shows contaminant concentration at the point with coordinates (x,y) at time t, when 246 

mass over depth M/h of the contaminant was injected instantly at t=t0 at the point (x0,y0). This 247 

analytical solution considers steady hydrodynamic conditions, represented by two velocity 248 

components vx and vy in directions x and y, respectively. Dx and Dy are hydrodynamic 249 

dispersion coefficients in x and y direction, respectively. 250 

Eq. 35 shoes contaminant concentration in 1D problem, at the point with coordinates (x,y) at 251 

time t, when constant pollution concentration C0 is given at the pollution source with 252 

coordinates (x0,y0). 253 

 254 
2.6 MODFLOW & MT3DMS 255 
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Additionally, WCAGW/CAPT and MACCA-GW/CAPT models are compared to 256 

MODFLOW/MT3DMS modules incorporated in ModelMuse 3.9.0.0 (Winston 2009). 257 

MODFLOW (Langevin et al. 2017) is a widely used code for simulating groundwater flow 258 

using control-volume finite difference method (Panday et al. 2013) to solve a three 259 

dimensional groundwater equation. MT3DMS (Zheng and Wang 1999) is a three – 260 

dimensional transport model for simulation of advection, dispersion and chemical reactions of 261 

contaminants in groundwater systems. Depending on the problem solved, it can use multiple 262 

numerical solvers such as the standard finite-difference method and the third-order TVD 263 

method (Niswonger, Panday, and Ibaraki 2011; Panday et al. 2013). 264 

 265 

2.7 Numerical test cases – problem description  266 

Numerical test case 1, POINT-1D, represents a comparison between 1D CA solution and 267 

1D analytical solution (Ogata and Banks 1961) for continuous, constant source. This test is 268 

conducted on a domain with the following characteristics: length L=500 m, spatial resolution 269 

Δx=10 m, temporal resolution Δt=4 h, seepage velocity in x direction v=10-6 m/s, longitudinal 270 

dispersivity αL=1000 m and solute concentration at the source C(0,t)=C0=5mg/l. Water levels 271 

doesn’t have any significance in 1D analytical solution (eq. 35), but uniform head field (15 m) 272 

is applied in order to calculate pollutant mass which is necessary in CAPT model. 273 

Numerical test case 2, POINT-2D, compares 2D CA model and 2D analytical solution in eq. 274 

36 (Bear 1972). The domain has the following characteristics: dimensions 500x500 m, with 275 

spatial resolution set at 10x10 m, time step Δt=4 h, hydrodynamic dispersion in longitudinal 276 

direction Dx=3*10-4 m2/s, hydrodynamic dispersion in transversal direction Dy=3*10-5 m2/s and 277 

without seepage velocity, so that dispersion is the only transport mechanism considered. The 278 

plume point source is presented with an initial pollutant mass released into the aquifer. The 279 

amount of the pollutant mass is M0=7.5*106 mg, and it is released over the 15 m of water 280 

depth, h=15 m. Thus, the initial pollutant concentration at the source equals to C0=50 mg/l. 281 

Same as 1D analytical solution, 2D solution (eq. 34) doesn’t require head field. Uniform (15 282 

m) head field is applied in this situation in order to calculate pollutant mass in CAPT model. 283 
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Dispersion parameters are selected in order to prevent pollution from reaching the 284 

boundaries of the domain. In that case semi-infinite domain assumption used for analytical 285 

solution deriving can be partially applied in CA model. 286 

Numerical test case 3, LINEAR, is a linear pollution source in transient conditions caused 287 

by a constant infiltration rate (fig. 3). It is set in a hypothetical square domain which 288 

represents an unconfined aquifer. Boundary conditions include constant head H=15 m on 289 

western and northern boundaries, zero flow and zero mass flux on eastern and southern 290 

boundaries and pollution concentration 0 mg/l on northern and western boundaries. The 291 

domain is assumed to be homogeneous with the following set of static parameters of the CA 292 

hydrodynamic layer (Layer 1 in Fig.1): hydraulic conductivity K=1.25*10-5 m/s and effective 293 

porosity neff = 0.26. Specific yield Sy is assumed equal to the effective porosity. Static 294 

parameters of the CA pollution transport layer (Layer 2 in Fig.1) have the following values: 295 

porosity n=neff=0.26, and transversal dispersivity αT= 0 m. Since longitudinal dispersivity 296 

takes a wide range of values, depending on the scale of the problem in question eg. 0.01 – 297 

14 970 m (Schulze-Makuch 2005), a range of longitudinal dispersivities is tested: αL={10, 298 

100, 1000, 5000} m, to assess its impact on the CA based transport model. Molecular 299 

diffusion coefficient is tested over a range of values: Dmol={10-4,10-5,10-7} m2/s. The domain is 300 

discretized in a 10x10 m cellular grid. Pollution is set as a linear source pollution in order to 301 

represent potential groundwater quality deterioration when sewage system leakage is 302 

present. Transient groundwater conditions are forced by a constant infiltration rate of i=0.1 303 

mm/h spread homogeneously over the entire domain, during 1000 time steps using time 304 

steps Δt=4 h and Δt=6 h. The initial conditions include a constant head of H=15 m with no 305 

flow and a concentration of C=0 mg/l over the entire domain. Test case specifications are 306 

given in Table 5. 307 

 308 
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Table 5. Test cases specifications 

Case 
αL  
[m] 

Dmol  
[m

2
 / s] 

Δt 
 [h] 

Duration of 
pollution injection 

at the source 

1 10 10
-7
 6 1000 Δt 

2 100 10
-7
 6 1000 Δt 

3 1000 10
-7
 4 1000 Δt 

4 5000 10
-7
 4 1000 Δt 

5 1000 10
-4
 4 1000 Δt 

6 1000 10
-5
 4 1000 Δt 

7 10 10
-7
 6 1 Δt 

8 100 10
-7
 6 1 Δt 

9 1000 10
-7
 4 1 Δt 

10 5000 10
-7
 4 1 Δt 

11 1000 10
-4
 4 1 Δt 

12 1000 10
-5
 4 1 Δt 

 

Figure 3. Schematic overview of the numerical 
case 1. Blue dots represent water level 
observation point (OP) and red squares represent 
pollutant concentration observation points 

 

 309 
First six test cases (cases 1 - 6) from table 5 are conducted in order to analyse transport 310 

parameters impact on CA-based transport model in scenarios when pollution source is given 311 

as a constant pollution concentration during the simulation. In other words, it is assumed that 312 

pollutant is constantly loaded from the source in order to maintain constant concentration. 313 

Other six cases (7 - 12) are conducted in order to represent scenarios when pollutant is 314 

injected into the aquifer from the source over one time step (e.g. potential hazard situations 315 

caused by sewage system or oil pipeline failure). 316 

 317 

2.8 Model assessment methodology  318 

For the assessment of the CA transport modelling, three statistical indicators are calculated: 319 

(1) coefficient of determination R2 (eqs. 36 and 39), (2) root mean square error RMSE 320 

(eqs.37 and 40) and (3) normalised root mean square error NRMSE (eqs. 38 and 41). These 321 

indicators are calculated as both spatial and temporal measures, to assess agreement 322 

between CA based and MODFLOW/MT3DMS model results for both water levels and 323 

pollution concentrations.  324 

Table 6. Statistical parameters used for consistency assessment 

Statistical paramaters for spatial consistency at the end of the simulation 
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(38) 

 

Statistical parameters for time series (temporal) consistency at observation points 
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(41) 

Total pollutant mass in the aquifer at specific time t 

1 1

CA CAN N
t t t t

i i i i

i i

TotalMass C H n A m
 

        (42) 

Normalised discrepancy in pollution concentration spatial distribution 

 
, ,

0

100  1,...,

t t

CA j analytical jt

j CA

X X
NDD j N

X


     (43) 

In table 6. XCA,i represents head H or pollutant concentration C obtained by CA-based 325 

models, XMF,i represents head H or pollutant concentration C obtained by 326 

MODFLOW/MT3DMS model. NCA is the number of cells used for domain spatial 327 

discretization and NΔt is number of time steps. X0 in eq. 41 represent initial value of the water 328 

level H0 or contaminant concentration C0. Eqs. 39, 40 and 41 are also used for total pollutant 329 

mass discrepancy assessment. On that case XCA,i represents total pollutant mass in the 330 

aquifer at specific time obtained by CA-based models and XMF,i represents total pollutant 331 

mass in the aquifer at specific time obtained by MODFLOW/MT3DMS model. Total pollutant 332 

mass in the aquifer at specific time is calculated by eq. 42, which uses cellular pollutant mass 333 

obtained by eq. 14. Eq. 43 is used for model consistency assessment when CAPT transport 334 

model is compared to analytical solution. NDDj
t represent normalised discrepancy between 335 

pollutant concentration (or pollutant mass) in cell indexed with j, at time t, and pollutant 336 

concentration (pollutant mass) at the point with same coordinates as center of the cell j, at 337 

the same time.  338 
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 339 

3. RESULTS and DISCUSSION 340 

3.1 Test Cases 1 and 2: Comparison with 1D and 2D analytical solution for 341 

point source contaminants transport  342 

When CA-based pollution transport model CAPT is compared with one-dimensional 343 

and two-dimensional analytical solution, relatively good consistency is achieved, 344 

especially in one-dimensional case where total mass discrepancy (eq. 38) is less 345 

than 1%, 0.7% to be more precise. Fig. 4 shows a comparison of the pollutant 346 

transport model results across the domain at simulation half-time (fig. 4a) and at the 347 

end of the simulation (fig. 4b). When two-dimensional problem is considered, figure 5 348 

shows pollutant concentration spatial distribution at the end of the simulation for 349 

CAPT model (fig. 5a), analytical solution (fig. 5b) and normalised discrepancy 350 

between these two solutions calculated by eq. 43 (fig. 5c). Total mass discrepancy 351 

(eqs. 42 and 43) between CAPT model and analytical solution is bigger, with 1% 352 

approximately, but this discrepancy can be caused by inability to create adequate 353 

test case for Cellular Automata modelling which will consider all of the assumptions 354 

used when analytical solution was derived.  355 

 
a) b) 
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Figure 4. Comparison of the 1D transport results: a) After 500 time steps; b) After 1000 time steps 356 
 357 

 
               a) b)             c) 

 358 
Figure 5. Comparison of the results for 2D test; spatial distribution of the pollution concentration at the 359 
end of the simulation (1000 time steps): a) Cellular Automata; b) Analytical solution; c) Normalised 360 
discrepancy distribution (Discrepancy is normalised to initial value of the pollutant concentration at the 361 
source by eq. 43) 362 
3.2 Test case 3: Linear pollution source in transient groundwater conditions 363 

caused by constant infiltration rate 364 

Water quantity model results for MACCA-GW, WCAGW, and MODFLOW are presented in 365 

Figure 6 as water level spatial distribution over the entire domain (end of simulation) and 366 

water level time series at four observation points. Location of these observation points can 367 

be seen in fig. 3.  Figure 6 shows visually good agreement between results of all three 368 

models, with WCAGW somewhat struggling at Observation point 2 (RMSE = 0.037 m). It is 369 

hypothesized, that these slight disagreements in the time series are caused by weighting 370 

process in WCAGW model (eq. 5). This process in WCAGW model always leaves small 371 

amount of water in the cell (ΔVmin in eqs. 3 and 5) in order to prevent potential numerical 372 

instabilities. This was suggested by the original WCA2D model authors (Guidolin et al. 2016). 373 

MACCA-GW doesn’t have that limitation. This could be a reason for slight differences in 374 

intercellular water volume exchanged by MACCA-GW and WCAGW models. Hydrodynamic 375 

conditions shown in fig. 5 are the same for all transport scenarios described in table 5. 376 
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Figure 6. Water level H spatial distribution (X,Y) over the domain at the end of the simulation (top row) 
and water level time series at four observation points (bottom row) for MACCA-GW, WCAGW, 
MODFLOW models 

 377 
Spatial distributions of pollutant concentration for cases 3, 4 and 5, are presented in the fig. 378 

7. Fig. 8 shows spatial distribution of the pollutant concentration for cases 9, 10 and 11. Both 379 

figures show visually good agreements between MACCA-GW/CAPT, WCAGW/CAPT and 380 

MODFLOW/MT3DMS model results. These good agreements are quantified by RMSE and 381 

NRMSE values shown in table 9. For scenarios with constant pollutant concentration at the 382 

source during the simulation (cases 1-6), RMSE values for spatial distribution vary from 0.03 383 

(case 3) mg to 0.17 mg (case 1) and NRMSE from 0.6 to 3.39 % when MACCA-GW/CAPT 384 

model is applied. When WCAGW/CAPT coupled model is applied, these values vary in the 385 

range 0.07 – 0.17 mg for RMSE and in the range 1.49 – 3.31 % for NRMSE. For the 386 

scenarios when pollution is injected into the aquifer over one time step (cases 7-12) RMSE 387 

values vary in the following ranges: 0.004 mg (case 12) to 0.09 mg (case 7) when MACCA-388 

GW/CAPT model is applied, 0.004 mg (case 10) to 0.09 mg (case 7) when WCAGW/CAPT 389 

model is applied. Generally, discrepancy between MACCA-GW/CAPT and WCAGW/CAPT 390 

models results from seepage velocity differences. This difference is propagated from 391 

hydrodynamic modelling results which are then used as the input for transport modelling. In 392 

some cases (1 and 7) statistical parameters show better consistency between 393 

WCAGW/CAPT and MODFLOW/MT3DMS models than consistency between MACCA-394 

GW/CAPT and MODFLOW/MT3DMS. It is assumed that this is the result of the longitudinal 395 

dispersivity and molecular diffusion relatively low values, 10 m and 10-7 m2/s, respectively. 396 

When these low values of transport parameters are used, pollutant mass that is transferred 397 

by some of the defined transport mechanisms is also low, which can lead to the better 398 

consistency  between WCAGW/CAPT and MODFLOW/MT3DMS models.  399 
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 400 
Table 7.  Statistical indicators of consistency between CA-based models and MODFLOW– 

comparison of the water level time series in observation points 

 R
2
 [-] RMSE [m] NRMSE [%] 

 MACCA-
GW 

WCAGW MACCA-
GW 

WCAGW MACCA-
GW 

WCAGW 

Obs. Point 1 0.99 0.99 0.0015 0.019 0.01 0.125 
Obs. Point 2 0.99 0.99 0.0011 0.037 0.008 0.244 
Obs. Point 3 0.99 0.99 0.0015 0.012 0.01 0.080 
Obs. Point 4 0.99 0.99 0.0015 0.022 0.01 0.149 

  401 

 
Figure 7. Spatial distribution (X,Y) of the pollutant concentration at the end of the simulation for case 3 
(top row), case 4 (middle row) and case 5 (bottom row) for MACCA-GW/CAPT, WCAGW/CAPT and 
MODFLOW/MT3DMS– constant pollutant concentration at the source 

 402 
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Figure 8. Spatial distribution of the pollutant concentration at the end of the simulation for case 9 (top 
row), case 10 (middle row) and case 11 (bottom row) – pollutant instantaneously injected at the source 

 403 
Figs. 9 and 10 represent pollutant concentration time series in four observation points. Fig. 9 404 

represent pollutant concentration time series for cases 3, 4 and 5, when pollution source is 405 

given as constant pollution concentration during the simulation. Fig. 10 represents pollutant 406 

concentration time series for cases 9, 10 and 11, when pollution is injected into the aquifer 407 

over one time step. Pollutant concentration time series at observation points (figs. 9 and 10) 408 

show, visually, good agreement between all applied models, except in observation point 4. In 409 

obs. point 4 CA-based models struggle to achieve max concentration values obtained by 410 

MODFLOW/MT3DMS model in cases 9, 10 and 11.  It is hypothesized that this is caused by 411 

the proximity (see OP4 coordinates in fig. 3) of the impervious boundary condition to the obs. 412 

point 4. It is assumed that slight differences in boundary conditions setting between CA-413 

based models and MODFLOW/MTDMS can cause slight disagreements in pollutant 414 

concentration time series. CA based transport model uses zero pollutant mass gradient to 415 

implement impervious boundary, while ModelMuse 3.9.0.0 doesn’t have that option (no mass 416 

flux boundary is set by using zero flow boundary by default, without further explanation). 417 
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Statistical indicators of model results agreement for time series for four observation points 418 

are given in table 8. Considering RMSE and NRMSE as more suitable parameters than R2 419 

for model consistency assessment, it can be seen that these values are mostly well below 10 420 

mg (2.5 % for NRMSE), except for obs. point 4, where highest RMSE/NRMSE is 421 

0.3mg/5.97% (MACCA-GW/CAPT) and 0.27mg/5.42% (WCAGW/CAPT) in case 5. 422 

 423 

 
Figure 9. Time series of the pollutant concentration at four observation points for case 3 (top row), 
case 4 (middle row) and case 5 (bottom row) – pollutant constantly injected at the source (constant 
concentration) 
 424 

 
Figure 10. Time series of the pollutant concentration at four observation points for case 9 (top row), 
case 10 (middle row) and case 11 (bottom row) – pollutant instantaneously injected at the source  
 425 
Figures 11 and 12 represent total pollutant mass in the aquifer during the simulation. Fig. 11 426 

shows total pollutant mass time series for scenarios with constant concentration at the 427 
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pollution source (cases 1 - 6). Total pollutant mass in the aquifer is growing (cases 1-6) 428 

because pollutant mass is constantly loaded at the source in order to keep constant pollutant 429 

concentration. Fig. 12 shows total pollutant mass time series for scenarios with pollutant 430 

injected over one time step (cases 7 - 12). Total pollutant mass for cases 7-12 decreases 431 

during the simulation due to mass leakage through the western and northern boundary. Figs. 432 

11 and 12 show both visually and statistically good agreement between MACCA-GW/CAPT, 433 

WCAGW/CAPT and MODFLOW/MT3DMS results. Using NRMSE as best indicator for 434 

quantification of the models consistency, it can be seen that NRMSE for total pollutant mass 435 

has lower values than 0.82 %, which is the max NRMSE value in case 5 when MACCA-436 

GW/CAPT model is used. When WCAGW/CAPT model is used, max NRMSE value is 1.56 437 

%.  438 

 
Figure 11. Total pollutant mass in the aquifer during the simulation – cases 1 – 6 (constant pollution 
concentration at the source) 
  439 
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Figure 12. Total pollutant mass in the aquifer during the simulation – cases 7 – 12 (instantaneously 
injected pollution at the source) 
 
 
Table 8. Statistical indicators of consistency between CA-based models and MODFLOW/MT3DMS – 
comparison of the pollutant concentration time series in observation points 

 Obs. Point 1 - R2 / RMSE / 
NRMSE 

Obs. Point 2 - R2 / RMSE / 
NRMSE 

Obs. Point 3 - R2 / RMSE / 
NRMSE 

Obs. Point 4 - R2 / RMSE / 
NRMSE 

Case MACCA-
GW/CAPT 

WCAGW/CAPT MACCA-
GW/CAPT 

WCAGW/CAPT MACCA-
GW/CAPT 

WCAGW/CAPT MACCA-
GW/CAPT 

WCAGW/CAPT 

1 0.99 / 
0.002 / 

0.04 

0.99 / 0.001 / 
0.03 

0.99 / 10-4 
/ 0.002 

0.99 / 10-4 / 
0.002 

0.99 / 
3*10-6 / 
7*10-5 

0.99 / 5*10-6 / 
10-4 

0.98 / 
5*10-6 / 

10-4 

0.99 / 2*10-6 / 
5*10-5 

2 0.99 / 0.03 
/ 0.61 

0.99 / 0.007 / 
0.13 

0.99 / 0.03 
/ 0.63 

0.99 / 0.02 / 
0.31 

0.99 / 
0.004 / 

0.09 

0.99 / 0.01 / 
0.20 

0.99 / 
0.05 / 
0.92 

0.99 / 0.03 / 
0.65 

3 0.99 / 0.02 
/ 0.34 

0.99 / 0.05 / 
1.09 

0.99 / 0.02 
/ 0.45 

0.99 / 0.04 / 
0.82 

0.99 / 
0.004 / 

0.08 

0.99 / 0.05 / 
1.07 

0.99 / 0.2 
/ 3.95 

0.99 / 0.12 / 
2.45 

4 0.99 / 0.03 
/ 0.53 

0.99 / 0.07 / 
1.43 

0.99 / 0.02 
/ 0.47 

0.99 / 0.08 / 
1.52 

0.99 / 
0.01 / 
0.28 

0.99 / 0.1 / 
1.96 

0.99 / 
0.22 / 
4.37 

0.99 / 0.12 / 
2.34 

5 0.99 / 0.01 
/ 0.29 

0.99 / 0.01 / 
0.26 

0.99 / 0.02 
/ 0.4 

0.99 / 0.02 / 
0.42 

0.99 / 
0.01 / 
0.23 

0.99 / 0.02 / 
0.45 

0.99 / 0.3 
/ 5.97 

0.99 / 0.27 / 
5.42 

6 0.99 / 0.02 
/ 0.36 

0.99 / 0.03 / 
0.61 

0.99 / 0.02 
/ 0.46 

0.99 / 0.03 / 
0.67 

0.99 / 
0.006 / 

0.12 

0.99 / 0.05 / 
1.03 

0.99 / 
0.23 / 
4.59 

0.99 / 0.16 / 
3.19 

7 0.99 / 
0.002 / 

0.03 

0.99 / 0.001 / 
0.02 

0.99 / 10-4 
/ 0.002 

0.99 / 8.5*10-4 
/ 0.002 

0.99 / 
2.8*10-6 / 
5.7*10-5 

0.99 / 4.1*10-6 
/ 8.3*10-5 

0.98 / 
3.7*10-6 / 
7.4*10-5 

0.99 / 1.5*10-6 / 
3*10-5 

8 0.99 / 0.02 
/ 0.32 

0.99 / 0.007 / 
0.15 

0.99 / 0.01 
/ 0.26 

0.99 / 0.008 / 
0.16 

0.99 / 
0.002 / 

0.05 

0.99 / 0.005 / 
0.09 

0.98 / 
0.01 / 
0.27 

0.99 / 0.01 / 
0.20 

9 0.99 / 
0.005 / 

0.10 

0.99 / 0.01 / 
0.24 

0.99 / 
0.004 / 

0.07 

0.99 / 0.006 / 
0.12 

0.99 / 
0.002 / 

0.03 

0.99 / 0.009 / 
0.18 

0.98 / 
0.03 / 
0.64 

0.99 / 0.03 / 
0.52 

10 0.99 / 
0.004 / 

0.09 

0.99 / 0.01 / 
0.3 

0.99 / 
0.003 / 

0.06 

0.99 / 0.006 / 
0.13 

0.99 / 
0.001 / 

0.03 

0.99 / 0.007 / 
0.15 

0.98 / 
0.03 / 
0.55 

0.99 / 0.02 / 
0.48 

11 0.99 / 0.02 
/ 0.34 

0.99 / 0.02 / 
0.36 

0.99 / 0.01 
/ 0.19 

0.99 / 0.009 / 
0.19 

0.99 / 
0.01 / 
0.23 

0.99 / 0.01 / 
0.23 

0.8 / 0.04 
/ 0.89 

0.81 / 0.04 / 
0.88 

12 0.99 / 
0.005 / 

0.09 

0.99 / 0.005 / 
0.1 

0.99 / 
0.004 / 

0.07 

0.99 / 0.003 / 
0.067 

0.99 / 
0.001 / 

0.03 

0.99 / 0.006 / 
0.11 

0.98 / 
0.04 / 
0.78 

0.98 / 0.03 / 
0.68 
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 440 
Table 9. Statistical indicators of consistency between CA-based models and MODFLOW/MT3DMS – 
comparison of the pollutant concentration spatial distribution at the end of the simulation 

Case 

Pollution concentration spatial R
2
 / RMSE / NRMSE Total pollution mass R

2
 / RMSE / NRMSE 

MACCA-GW / CAPT WCAGW / CAPT MACCA-GW / CAPT WCAGW / CAPT 

1 0.95 / 0.17 / 3.39 0.95 / 0.17 / 3.31 0.98  /  3792.45  /  0.19 0.98 / 3466.08 / 0.18 

2 0.99 / 0.08 / 1.50 0.99 / 0.08 / 1.63 0.99 / 6056.19 / 0.31 0.99 / 13662.36 / 0.7 

3 0.99 / 0.03 / 0.6 0.99 / 0.07 / 1.49 0.99 / 4438.73 / 0.23 0.99 / 22501.6 / 1.16 

4 0.99 / 0.04 / 0.89 0.99 / 0.08 / 1.51 0.99 / 5571.98 / 0.29 0.99 / 30515.5 / 1.56 

5 0.99 / 0.05 / 1.02 0.99 / 0.08 / 1.55 0.99 / 15899.5 / 0.82 0.99 / 5857.96 / 0.3 

6 0.86 / 0.04 / 0.83 0.86 / 0.08 / 1.54 0.99 / 820.54 / 0.04 0.99 / 15729.1 / 0.81 

7 0.94 / 0.09 / 1.87 0.95 / 0.09 / 1.79 0.99 / 79.53 / 0.004 0.99 / 68.87 / 0.004 

8 0.99 / 0.02 / 0.39 0.98 / 0.02 / 0.47 0.99 / 304.54 / 0.02 0.98 / 682.58 / 0.04 

9 0.99 / 0.008 / 0.16 0.99 / 0.007 / 0.15  0.99 / 152.11 / 0.008 0.99 / 481.74 / 0.02 

10 0.99 / 0.007 / 0.14 0.99 / 0.004 / 0.08  0.99 / 354.4 / 0.02 0.99 / 371.66 / 0.02 

11 0.99 / 0.005 / 0.10 0.93 /0.007 / 0.14 0.99 / 5062.90 / 0.26 0.99 / 3890.31 / 0.2 

12 0.72 / 0.004 / 0.09 0.73 / 0.006 / 0.13 0.99 / 686.62 / 0.04 0.99 / 419.86 / 0.02 

 441 
CONCLUSIONS  442 

This paper presents a novel approach in modelling groundwater pollution transport by 443 

cellular automata based model CAPT, coupled with hydrodynamic cellular automata models 444 

MACCA-GW (Ravazzani et al. 2011) and modified weighted cellular automata WCAGW, 445 

derived by modifying WCA2D (Guidolin et al. 2016) model for groundwater problems. This 446 

modelling tool is compared with analytical solutions for one-dimensional (Ogata and Banks 447 

1961) and two-dimensional (Bear 1972) problems , showing excellent results: NRMSE for 448 

total mass is in the order of 1%, both for 1D and 2D tests. These good results were guidance 449 

for additional comparison of the proposed CA-based methodology to widely used numerical 450 

model MODFLOW/MT3DMS. Accordingly, hypothetical test case was created on rectangular 451 

domain, with constant infiltration rate causing unsteady hydrodynamic conditions. Different 452 

test cases were created by analysing the impact of different transport parameters 453 

(longitudinal dispersivity and molecular diffusion coefficient) values and different type of 454 

pollution source. Results (Water level and pollution concentration) are presented in the way 455 

of spatial distribution at the end of the simulation and time series at selected points. 456 
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Analysing the results through the statistical indicators the following conclusions can be 457 

derived: 458 

 Both hydrodynamic Cellular Automata models, MACCA-GW and WCAGW, show very 459 

good agreement with MODFLOW obtained results, considering MACCA-GW being 460 

better model based on statistical and visual indicators.  461 

 Consistency in pollution concentration and pollutant mass is lower than consistency in 462 

hydrodynamic modelling, which is expected. Seepage velocity field and head field, 463 

obtained by CA-based hydrodynamic models, are propagated in the CA transport 464 

model. That causes bigger discrepancies between CA-based transport model CAPT 465 

and MODFLOW/MT3DMS model. 466 

 Boundary conditions setting can affect bigger discrepancy in some regions of the 467 

domain. Thus, boundary conditions impact should be further investigated. 468 

 Statistical indicators show good agreement between CA-based coupled 469 

hydrodynamic/transport models (MACCA-GW/CAPT and WCAGW/CAPT) and 470 

MODFLOW/MT3DMS model. In most cases, coupled MACCA-GW/CAPT model 471 

shows better agreement with coupled MODFLOW/MT3DMS model. In some cases, 472 

especially when longitudinal dispersivity is low (and seepage velocity impact 473 

accordingly), coupled WCAGW/CAPT shows better agreement with 474 

MODFLOW/MT3DMS model.  475 

 CAPT model, compared to 1D and 2D analytical solutions, shows excellent results, 476 

considering 2D analytical solution being dispersion dominant (advection transport 477 

mechanism is neglected by setting the zero seepage velocity). Thus, it can be said 478 

that CA-based models show good results for dispersion dominant cases (dispersion 479 

is dominant transport mechanism). 480 

 When total pollutant mass is analysed, CA based models are mass conservative due 481 

to the limitation implemented in eqs. 21 and 29. These equations limit the mass being 482 

transferred by advection and dispersion from a cell to the value of the cell pollutant 483 
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mass in previous step. In other words, pollutant mass available for transport cannot 484 

be greater than current mass in the cell. By applying these limitations, potential 485 

instabilities are avoided. 486 

Based on the results analysis and previous specific conclusions, general conclusion can be 487 

derived. Simplified method for solving transport problems in groundwater, based on 488 

significant equations complexity reduction, shows high usage potential, without significant 489 

sacrifice of the accuracy, when compared to standard methods. Hence, CA-based models for 490 

groundwater and pollution transport modelling show usage justification, especially in 491 

integrated hydrological models where model simplifications are inevitable when long-term 492 

simulations are performed. Therefore, further analysis and investigations are necessary. 493 

Following future research steps should be investigated: 494 

 Cell grid shape impact analysis (e.g. hexagonal cell grid instead of the rectangular 495 

cell grid) 496 

 Implementing the CA model simulations on multi-core CPU (Central Processing Unit) 497 

or GPU (Graphics Processing Unit) in order to speed up Cellular Automata 498 

simulations by exploiting full CA potential through parallel computing 499 

 Testing the proposed methodology in different test cases, especially on real 500 

scenarios with field collected hydrodynamic and pollution data 501 

 Upgrade current CA model for pollution transport modelling by implementing 502 

additional transport mechanisms, such as sorption, volatilisation, biodegradation and 503 

radioactive decay 504 

 Model uncertainty analysis. 505 
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