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Abstract 
  

Cracks are the most common type of structural damage in many engineering structures, 
introducing the local change in stiffness of structural elements and changing the dynamic 
properties of the structure. Therefore, it is of great importance to detect and locate the existing 
structural damage in its early phase to prevent crack propagation. 

In the paper, free vibration analysis of beams and frames with multiple cracks has been 
carried out. First, the dynamic stiffness matrix of beam element with multiple cracks based on 
Bernoulli-Euler theory has been derived. Using the developed model, extensive free vibration 
study of multiple-cracked frame structures has been conducted. Original Matlab code has 
been developed for the derivation of natural frequencies and plot of mode shapes. 

After the validation of the model against the existing data from the literature, several 
benchmark examples are provided. As expected, increasing size and number of cracks lead to 
decrease of natural frequencies due to the local stiffness degradation. 
 
Key words: dynamic stiffness method, crack, beam, frame, free vibration 
 
 
1. Introduction 
 

Cracks are the most common type of structural damage in many engineering structures. In 
order to ensure structural safety and integrity, it is of great importance to detect and locate the 
existing damage in its early phase, as well as to develop reliable experimental and numerical 
methods for damage detection. Generally, cracks introduce local change in stiffness of 
structural elements resulting in the change of dynamic characteristics of the structure in terms 
of natural frequencies and associated mode shapes. Consequently, most of the methods for 
damage detection are based on the evaluation and comparison of dynamic characteristics of 
damaged and undamaged structure [1-3].  

Numerical modeling and computation of the free vibration characteristics of cracked 
structures is most frequently performed using the finite element method (FEM) [4]. 
Alternatively, vibration analysis of cracked beams and frames can be efficiently carried out 
using the dynamic stiffness method, [5, 6]. In this approach, beam parts between cracks are 
represented by the dynamic stiffness elements based on Bernoulli-Euler [7] or Timoshenko 
beam theory [8]. Shape functions of the dynamic stiffness elements represent exact analytical 
solutions of the corresponding equations of motion defined in the frequency domain. 
Consequently, the dynamic stiffness matrix is exact and frequency dependent. In addition, the 



M. D. Milojević, M. T. Nefovska-Danilović, M. S. Marjanović. Free vibration analysis of multiple cracked 
frames… 

2 

number of dynamic stiffness elements necessary for structural discretization is frequency 
independent and influenced only by the change of the geometrical and/or material properties 
of the structure. For crack modeling, a crack element of zero length consisting of rotational 
and translational springs is used. Compliance properties of crack element are defined using 
fracture mechanics theory [9]. In that manner, by modeling beam as a complex structure 
consisting of multiple elements whose number depends on the number of cracks, the dynamic 
stiffness matrix of cracked beam element can be formed. Moreover, using the same assembly 
procedure as in the FEM, the global dynamic stiffness matrix of the structure can be formed.  

In the paper, free vibration study of beams and frames with multiple cracks has been 
presented. The dynamic stiffness matrix of beam element with multiple cracks based on 
Bernoulli-Euler theory has been derived using condensation procedure. Afterwards, free 
vibration study of frame structures with multiple cracks have been performed in order to 
reveal the effect of crack size and location as well as number of cracks on the free vibration 
characteristics of the analyzed frames. 

  
 

2. Multiple Cracked Beam Element 
 

2.1 Crack modeling 
 

Crack introduces local stiffness reduction of beam element. Furthermore, the change in 
stiffness causes the change of the free vibration characteristics of beam. Crack itself can be 
modelled using the equivalent rotational spring model [10-11], where the open crack is 
represented by rotational spring of stiffness k*. This model accounts for change in the bending 
stiffness, while the axial and shear stiffness remain unchanged.  Zheng and Kessissoglou [9] 
formulated a crack model taking into account bending, axial and shear stiffness reduction. 
Using the fracture mechanics theory, the elements of the compliance matrix of the crack have 
been derived explicitly for both rectangular and circular cross-sections. For the rectangular 
cross sections, expressions are presented in terms of width b, depth h and the crack length a 
through the beam depth, as follows: 

 
 

 

2

2

1,1 0 0
1

= 0 2, 2 0

1
0 0 3,3

F

F
Eb
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C  (1) 

where  is the Poisson’s ratio and E is the Young’s modulus. Expressions for dimensionless 
functions F(1,1), F(2,2) and F(3,3) are given in the Appendix. 

 
2.2 Dynamic stiffness matrix for multiple crack beam element 
 

Beam element with a single crack represented with two Bernoulli-Euler dynamic stiffness 
elements a and b and a zero length crack element c is shown in Fig. 1. Lengths of the 
elements a, b and c are denoted as La, Lb and Lc1, respectively. Consequently, a single crack 
beam element has four nodes and twelve degrees of freedom (DOF). Dynamic stiffness 
matrices of elements a and b are given as: 

   ,

a a b b
ii ij ii ij

a ba a b b
ji jj ji jj

 
   
    
   
   

k k k k
K K

k k k k
 (2) 

where subscripts i and j denote end nodes of the dynamic stiffness elements a and b. Elements 
of the dynamic stiffness matrices Ka and Kb are given in [7]. Applying the assembly 
procedure, the global dynamic stiffness matrix of a single crack beam element is obtained in 
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the following form: 
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 (3) 

where kc = C-1 is the nodal stiffness matrix of the crack element. 

 
Fig. 1. Single crack dynamic stiffness beam element with adopted nodes and nodal displacements 

 
In the same manner, dynamic stiffness matrix of beam element with n cracks can be 

formed as follows:  
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 (4) 

Decomposing the dynamic stiffness matrix given by Eq. (4) to the master (m) and slave 
(s) DOFs and using the condensation procedure, the slave DOFs that correspond to the 
internal nodes 3, 4, …., (2n+2) of the multiple crack beam element can be eliminated and the 
condensed dynamic stiffness matrix is obtained in the following form:  

1e
c mm ms ss sm

K = K - K K K  (5) 

 
 

3. Free Vibration of Cracked Frames 
 

The global dynamic stiffness matrix of a frame structure is obtained using the well-known 
transformation and assembling techniques as in the FEM. Based on the theoretical 
considerations presented in previous sections, the Matlab program [12] has been extended 
enabling the computation of natural frequencies and mode shapes of 2D cracked frames. 
Natural frequencies of frame structure are obtained from the following equation:  

0D
ff fK q =  (6) 

where D
ffK is the global dynamic stiffness matrix of frame structure corresponding to the 

unknown displacement components qf. When the natural frequencies have been determined, 
the mode shapes are computed from Eq. (6) by setting one of the nodal displacement 
components to an arbitrary value.  
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4. Numerical Study 
 
4.1. Free vibration analysis of cracked cantilever beam 
 

To illustrate and validate the method described in previous sections, cantilever cracked 
beam has been considered. Geometry and material properties are taken from [7] and [11]: 
Young’s modulus E = 216 GPa, Poisson’s ratio ν = 0.28, density ρ = 7850 kg/m3, beam 
length L = 20 cm, cross-sectional dimensions b = 2.5 cm, h = 0.78 cm. Single crack is located 
at x = 8 cm, as shown in Fig. 2. The first three natural frequencies for undamaged and 
damaged beam with crack to depth ratio a/h = 0.6 are computed and given in Table 1 along 
with results taken from [7] and [11]. 

As shown in Table 1, the agreement between results is very good. Associated mode 
shapes for the first 3 natural frequencies are plotted in Fig. 3. 

 
Fig. 2. Considered cantilever beam (left) and three springs to represent crack (right) 

 

 
Undamaged Damaged 

 Mode Present model [7] [11] Present model [7] [11] 
1 1038.2 1038.2 1038.2 950.1 949.8 985.0 
2 6506.4 6506.4 6506.3 5774.9 5768.5 6036.0 
3 18218 18218 18218 17078 17015 17447 

Table 1. Natural frequencies ω [rad/s] of the undamaged and damaged beam 
 

 
Fig. 3. Mode shapes for the first three natural frequencies of the cantilever beam, obtained using 

the presented model (black lines – undamaged beam, red lines – damaged beam) 
4.2. Free vibration analysis of two-bay damaged frame 
 

The second validation example deals with the free vibration analysis of 2-bay, single 
storey frame with five discrete cracks, as shown in Fig. 4. Geometrical and material properties 
of beams and columns are: E = 206 GPa, ν = 0.28, ρ = 7675 kg/m3, b/h = 0.198/0.122 m. 
Crack to depth ratio is a/h = 0.9. The results obtained using the presented theory are 
compared with the results given in [11] and are presented in Table 2. The first three mode 
shapes of the undamaged and damaged frame are shown in Fig. 5.  

Note that in [11] only rotational spring crack model has been used, which introduces the 
differences in the results, especially for higher modes. As shown in Table 2, the agreement for 
the intact frame is excellent. 
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Fig. 4. Two-bay single-storey frame with discrete cracks 

 

 
Undamaged Damaged  

 Mode Presented theory  [11] [%] Presented theory  [11] [%] 
1 0.599 0.5987 0.050 0.578 0.5919 2.348 
2 2.466 2.4662 0.008 1.232 1.7167 28.234 
3 3.108 3.1080 0.000 1.824 2.2836 20.126 

Table 2. Natural frequencies ω [Hz] of the undamaged and damaged frame 
 

 
Fig. 5. Mode shapes for the first three natural frequencies of a two-bay single-storey frame, 

obtained using the presented model (black lines – intact frame, red lines – damaged frame) 
 
4.3. Free vibration analysis of simple-supported beam with multiple cracks 
 

In order to compare the effect of the crack size and number of cracks on the dynamic 
characteristics of the beam, free vibration of the simple supported beam has been analyzed. 
The beam is 3 m long, with rectangular cross section b/h = 0.2/0.3 m (Fig. 6). Material 
properties are E = 30 GPa, ν = 0.2, ρ = 2500 kg/m3. Several different cases are investigated, 
starting from undamaged beam. Then, the number of cracks was gradually increasing as 
shown in Fig. 6. Three different crack-to-depth ratios were used: a/h = 0.1; 0.2; 0.4.  

Fig. 7 shows decrease in the first three natural frequencies as the number of cracks 
increases, where i0 denotes the ith natural frequency of the undamaged beam. It is noticeable 
that the crack size has greater impact on the natural frequency reduction than the number of 
cracks. However, even greater influence has the crack location. As it can be seen in Fig. 7, 
there is nearly no change in the second natural frequency when the 8th and 9th cracks are 
introduced. This is because the cracks occur near the middle of the beam span (Fig. 6), where 
the curvature of the second mode is zero. On the other hand, the highest effect on the 
frequency reduction has the crack that occurred near the location of the maximum curvature 
of the corresponding mode shape. 
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Fig. 6. Considered cases of cracked simple-supported beam 

 

 
Fig. 7. Frequency reduction curves for the first three mode shapes of damaged simple-supported 

beam 
 

First three mode shapes of the undamaged and damaged beams are shown in Fig. 8. As 
previously concluded, the free vibration characteristics of beam are more affected by one deep 
crack, than by many small cracks.  Crack in the middle of the span induces the peak in the 
first and the third mode shape, but it has no influence on the second mode. 

 
Fig. 8. First three mode shapes of both damaged and undamaged simple-supported beam 

(multiple cracks = case 6, see Fig. 6) 
4.4. Free vibration analysis of frame with multiple cracks 
 

In this example, a single storey frame shown in Fig. 9 has been examined. Material 
properties are the same as in the previous example, beam cross – section is rectangular with 
b/h = 0.2/0.3 m and columns are of the square cross – section with h = 0.2 m. Three different 
cases of damaged frame have been analyzed with four different crack-to-depth ratios: a/h = 
0.1, 0.2, 0.4, and 0.6.  



M. D. Milojević, M. T. Nefovska-Danilović, M. S. Marjanović. Free vibration analysis of multiple cracked 
frames… 

7 

 
Fig. 9. Single storey frame with different layout of multiple cracks 

 
Natural frequencies for all cases are elaborated in Table 3, while the normalized 

frequencies are graphically interpreted in Fig. 10 (i0 denotes the ith natural frequency of the 
undamaged frame). 
It is noticeable that the first four natural frequencies remain almost unchanged for crack to 
depth ratio 0.1. Slightly greater effect is shown for crack to depth ratio 0.2. Finally, crack to 
depth ratio 0.6 induces much greater frequency drop – about 45% in the first mode shape and 
more than 30% in the third and fourth mode shapes. The first four mode shapes for both 
undamaged and damaged frames (case 3, a/h = 0.6) are presented in Fig. 11. It can be seen 
that additional cross sectional rotation appeared at the crack location due to the decrease of 
the bending stiffness of the beam element. 
 

 
Fig. 10. Normalized natural frequencies of frames with different crack layouts and depths 

 
 

Table 3. Natural frequencies ω [Hz] of the undamaged and damaged single storey frame 
 

 
Intact 

a/h=0.1 a/h=0.2 a/h=0.4 a/h=0.6 

Mode 
Case 

1 
Case 

2 
Case 

3 
Case 

1 
Case 

2 
Case 

3 
Case 

1 
Case 

2 
Case 

3 
Case 

1 
Case 

2 
Case 

3 
1 10.9 10.9 10.8 10.7 10.8 10.6 10.2 10.5 9.7 8.5 9.7 8.4 6.1 
2 52.5 52.4 52.4 52.2 52.4 52.4 51.6 52.4 52.1 49.4 52.2 51.3 45.5 
3 79.2 78.9 78.6 77.9 78.3 76.8 74.5 75.5 71.8 64.8 70.1 65.3 54.1 
4 84.6 84.3 83.6 83.1 83.5 81.1 79.4 80.3 73.6 68.9 74.0 66.1 58.2 
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Fig. 11. First four mode shapes of damaged and undamaged frame for a/h = 0.6 (black lines – 

intact frame, red lines – damaged frame) 
 
 
4.5. Free vibration analysis of two-storey frame with multiple cracks 
 

Two storey frame having the same material and geometrical properties as in the previous 
example has been analyzed. Cracks are located in the columns as shown in Fig. 12. Four 
different crack-to-depth ratios have been analyzed: a/h = 0.1, 0.2, 0.4 and 0.6. As previously 
concluded, natural frequencies are not significantly affected by the crack size of 10% or 20% 
of the beam and column height (Table 4). However, when crack to depth ratio is increased to 
0.4 and 0.6, differences between the natural frequencies of the undamaged and damaged 
frames are not negligible. First two mode shapes are dominantly affected by cracks located in 
the columns. 

 

Fig. 12. Two storey frame with discrete cracks 
 
First four mode shapes for damaged frame with cracks having rack to depth ratio a/h = 

0.6 are graphically presented in Fig. 13. Once again, the difference between the cross – 
sectional rotations of the beam parts separated by the crack can be noticed. 

 

ω  Undamaged Damaged а/h=0.1 Damaged а/h=0.2 Damaged а/h=0.4 Damaged а/h=0.6 
Mode [Hz] [Hz] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

1 5.710 5.610 1.750 5.410 3.566 4.710 17.513 3.510 38.529 
2 16.810 16.510 1.785 15.910 3.633 13.610 19.036 10.110 39.857 
3 46.210 46.110 0.216 45.910 0.434 45.010 2.597 43.510 5.843 
4 57.910 57.610 0.518 56.710 1.562 53.294 7.971 47.410 18.132 

Table 4. Natural frequencies of the undamaged and damaged two storey frame 
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Fig. 13. First four mode shapes for damaged frame for a/h = 0.6 (black lines – intact frame, red 

lines – damaged frame) 
 

 
5. Conclusions 

 
In order to determine the effect of crack presence in beam and frame structures on the 

natural frequencies and mode shapes, free vibration of beams and frames with multiple cracks 
has been analysed. Crack model takes into account bending, axial and shear stiffness 
reduction of the beam element. Dynamic stiffness matrix of beam element with multiple 
cracks has been derived. Several numerical examples have been investigated. The results 
obtained in the first two examples have shown good agreement with the existing data [7, 11]. 

As expected, increasing the size and number of cracks leads to decrease of natural 
frequencies associated with the stiffness degradation. In addition, the decrease due to deeper 
single crack or two cracks is greater than due to multiple smaller ones. The influence of small 
cracks with length of 10% of cross-sectional height or less on the free vibration is almost 
imperceptible.  

Cracks located at the zero curvature point show no influence on the corresponding natural 
frequency and mode shape of the beam. Finally, mode shapes can be used in detecting the 
crack location in frames. Due to bending stiffness decrease, the difference between cross-
sectional rotation on the left and the right side of the crack is noticeable.  
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Appendix 
 
Dimensionless functions F (1,1), F (2,2) and F (3,3) are: 

1
5 2 3 4 51

6 7 8 9 10

(1,1) ( 0.326584 10 1.455190 0.984690 4.895396 6.501832

12.792091 26.723556 35.073593 34.954632 9.054062 )

F e      

    

       

   

 

1
6 2 3 4 51

6 7 8 9 10

1
4 2 3 41

(2,2) ( 0.326018 10 1.454954 1.455784 0.421981 0.279522

0.455399 2.432830 5.427219 6.643057 4.466758 )

(3,3) ( 0.219628 10 52.379034 130.248317 308.442769 602.

F e

F e





    

    

   





       

   

       5

6 7 8 9 10

445544

939.044538 1310.950293 1406.523682 1067.49982 391.536356 )



    



   
  
    
where /a h   is non – dimensional crack length.  
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