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Abstract 
 

The objective of this work is to study the transient response of laminated composite plates under 

different types of dynamic loading. For this purpose, laminated composite plate is modeled using 

Reddy’s generalized layerwise plate theory (GLPT). This theory assumes layerwise linear variation 

of displacements components. Transverse displacement is constant through the thickness of the 

plate. Using the assumed displacement field, linear kinematic relations, as well as Hooke’s 

constitutive law, equations of motion are derived using Hamilton’s principle. Analytical solution for 

cross-ply laminates is derived using the Navier method. Numerical solution is obtained using FEM. 

Governing partial differential equations in both solutions are reduced to a set of ordinary 

differential equations in time using Newmark integration scheme. The equations of motion are 

solved using constant-average acceleration method. Effects of time step, mesh refinement and 

lamination scheme on accuracy of transient response are considered. Illustrative comments are 

given about the influence of shear deformation on transient response. Finally, different schemes of 

dynamic loading are investigated. Good agreement is obtained with results from the literature. 

 

Rezumat 
 

Obiectivul acestei lucrări este de a studia răspunsul tranzitoriu al plăcilor compozite laminate sub 

diferite tipuri de încărcare dinamică. În acest scop, placa compozită laminată este modelată folo-

sind teoria generalizată a plăcilor propusă de Reddy (GLPT). Această teorie presupune variația 

liniară a componentelor deplasării în raport cu straturile plăcii. Deplasarea transversală este 

constantă în grosimea plăcii. Ecuațiile de mișcare sunt derivate folosind principiul lui Hamilton, 

utilizând câmpul de deplasare asumat, relațiile liniare cinematice, precum și legea constitutivă a 

lui Hooke. Soluția analitică pentru plăci laminate din fibre din lemn încrucișate este derivată 

folosind formula lui Navier. Soluția numerică este obținută cu ajutorul metodei elementului finit. 

Ecuațiile cu derivate parțiale în ambele soluții sunt reduse la un set de ecuații diferențiale ordinare 

în timp, utilizând Metoda Newmark. Ecuațiile de mișcare sunt rezolvate folosind metoda de inte-

grare implicită Newmark β. Sunt luate în considerare efectele integrării numerice în timp, pas cu 

pas, ale rafinării discretizării și ale sistemului de laminare asupra acurateței răspunsului 

tranzitoriu. Sunt prezentate comentarii ilustrative despre influența deformării cauzate de forfecare 

asupra răspunsului tranzitoriu. În cele din urmă, sunt investigate diferite scheme de încărcare 

dinamică. Rezultatele obținute sunt în concordanță cu cele din literatura de specialitate. 
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1. Introduction 
  

Laminar composites play an important role in the design and construction of aircrafts, ships, and 

many other parts in machine industry. They attract great attention in a field of Civil Engineering, 

too, and their massive use in structural design is expected. They can be used as main load carrying 

members in the form of thick laminated and sandwich plates [1]. Suitability for different design 

purposes due to their great stiffness to weight ratios is highly valued. Laminates are often composed 

of several orthotropic layers (laminas, plies). Layer orthotropic behavior comes from the high-

strength fibers, which are oriented in predefined direction for each layer individually. In the case of 

cross-ply laminated composite plates, ply fibers are oriented alternately, with angles of 0
о
 or 90

о
. 

Different orientation of plies forms symmetric or anti-symmetric lamination schemes. Composite 

laminates are often exposed to different types of static and transient dynamic loading. They are 

characterized by significant transverse shear deformations. This all leads to the need for the 

accurate modeling of thick composite plates: displacement continuity conditions must be fulfilled at 

layer interfaces. This crucial condition is satisfied by the use of layerwise plate theory, which will 

be explained in this work.  
 

Different plate theories are derived for the analysis of composite laminates. Global behavior can be 

accurately determined by the use of relatively simple equivalent-single-layer laminate theories 

(ESL) [2], especially for thin laminates. In the case of thicker structural components, ESL theories 

are not adequate, so refined theory is needed to account for the thickness (shear) effects. 

Vuksanović investigated single layer models of higher order, which represent plate kinematics with 

improved accuracy [3]. ESL theories cannot account for discontinuities in transverse shear strains at 

the interfaces between layers of different stifnesses. Another problem is the analysis of local effects, 

such as matrix cracking, delamination or free edge effect. For these reasons there is a need for 

applying layerwise plate theories. In the layerwise approach, it is assumed that C
0
-continuity 

through thickness of the laminate is satisfied. The plate is analyzed as a multilayered in the true 

sense of word (each layer is considered separately). Cross-sectional warping is taken into account, 

which is much more kinematically correct representation of displacements. Shear deformation 

(considerable as a result of plate’s anisotropic structure) is included. 

 

In this paper, Generalized Layerwise Plate Theory of Reddy [4] is used to analyze transient 

response of laminated composite plates. It allows independent interpolation of in-plane and out-of-

plane displacement components. Piece-wise linear variation of in-plane displacement components, 

and constant transverse displacement through the thickness are imposed. Consistent mass matrix is 

employed in the dynamic analysis. In the displacement-based FE formulation, only C
0
-continuity is 

needed, so the nodal variables are translation components. The goal of this work is to present the 

both analytical and numerical solution for the transient response of laminated plate. Solutions are 

obtained using MATLAB


 and compared with existing data from the literature.  

 

 

2. Formulation of the generalized layerwise theory 
 

2.1 Assumptions 

 

We will consider a laminated plate composed of n orthotropic layers. Physical layers in the 

laminate are numbered starting from the bottom layer. Mid-plane coordinates are (x, y, z). Typical 

laminated composite plate in global coordinate system is shown in Figure 1.  
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Figure 1. Laminated composite plate (4 layers) 

 

Derivation of Generalized Laminated Plate Theory is based on following assumptions: (1) all 

laminas are perfectly bonded together (no relative displacements exist at layer inter-faces), (2) all 

layers are of uniform thickness, (3) material is linearly elastic, (4) all layers are orthotropic, (5) 

strains are small and (6) inextensibility of normal is imposed. 

 

2.1 Displacement field 

 

Displacement field (u1, u2, u3) in the point (x, y, z, t) of laminated plate can be written as: 
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In Eq. (1), (u, v, w) are displacement components in three orthogonal directions in the mid-plane of 

the plate, (u
I
, v

I
) are coefficients which will be calculated later, and I

(z) are layerwise continuous 

functions of the thickness coordinate (linear, quadratic or cubic Lagrangian interpolations of 

thickness coordinate), which can be found in [2]. In Eq. (1), t denotes arbitrary time point. For the 

purpose of this work, linear interpolation is chosen through the thickness coordinate. In the FEM 

analysis, (u
I
, v

I
) are the nodal values of (u1, u2) in the I

th
 numerical layer through the plate thickness. 

N is the number of layers through thickness of the laminate (or the number of nodes in z-direction 

in FE discretization). Generalized displacements through the plate thickness are shown in Figure 2. 

 

 
 

Figure 2. Displacement components in GLPT, for 4-layer plate 

 
2.2 Kinematic relations of lamina 

 

Linear strain – displacement relations (2) are assumed as follows: in-plane deformation components 

are continuous through the plate thickness, while the transverse strains need not to be. Constitutive 

equations of single ply are used in deriving constitutive equations of laminate. 
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2.3 Constitutive equations of lamina 

 

The stress-strain relations for k
th

 lamina can be written as: 
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In Eq. (4), Qij
(k)

 are transformed elastic coefficients of k
th

 lamina in global coordinate system.  

 

2.4 Equations of motion 

 

When deriving the dynamic equilibrium of virtual strain energy (U), virtual work of external forces 

(V) and virtual kinetic energy (K), it is assumed that loading q is acting in the middle plane of the 

plate. This loading works on virtual displacement w in the mid-plane of the plate. Homogenuous 

boundary conditions on the surface are imposed. Dynamic expressions for U, V and K are given in 

Eq. (4): 
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Dynamic version of virtual work statement can be derived using Hamilton principle: 

0

1

x y xy x y
t

I I I IN
I I I I I I I
x y xy x y

I

u v u v w w
N N N Q Q

x y y x x y
U d dt

u v u v
N N N Q u Q v

x y y x

     


   

 




       
       

       
  

                     

 



   

 
0

t

V q w d dt 


   
 (5) 

   

 

0
1

0

1 1

N
I I I I I

t
I

N N
IJ I J I J

I J

I u u v v w w I u u v v u u v v

K d dt

I u u v v

      



 





 

 
       

 
   

  
  



 


 
 

0U V K       (6) 

 

 



Miroslav S. Marjanović, Đorđe M. Vuksanović / Acta Technica Napocensis: Civil Engineering & Architecture Vol. 56 No 2 (2013) 58-71 

 

62 

 

2.5 Stress resultants 

 

As stated before, q is the uniform transverse loading – time function - acting in the mid-plane. 

Stress resultants {N} and inertia terms {I} are derived in [1, 2, 5]: 
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3. Analytical (Navier) solution for simply supported cross-ply laminates 
 

Navier solution of GLPT is derived for simply supported rectangular cross-ply laminates, with 

dimensions a  b [8]. Boundary conditions in this case are: 
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We have to choose appropriate displacement field to satisfy boundary conditions (8) on the edges of 

the simply supported laminated composite plate and Euler-Lagrange equations of motion (6):  
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Loading should be expanded in double trigonometric series in a same manner.  
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In (9, 10), m and n denote number of members in Fourier series. Xmn, Ymn, Wmn, R
I
mn, S

I
mn are 

Fourier coefficients - time functions - which are chosen only in a way such that u, v, w, u
I
 and v

I
 

satisfy Eq. (6). Second part of the expansion determines the spatial variation of the transient 
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solution. After incorporation of Eq. (9) and Eq. (10) in Eq. (6), we derive the matrix form of virtual 

work statement. If cross-ply laminates are analyzed, some elements in matrix of elastic coefficients 

are identically zero, as shown in [5], so compacted matrix form of Eq. (6) becomes: 
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Submatrices [k], [k
I
] and [k

JI
] are in detail derived in [5]. Here we will derive the submatrices of 

consistent mass matrix:     
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In Eq. (11), {} is a vector of Fourier coefficients and    is a vector of second derivations of 

Fourier coefficients. If we observe discrete time point tn, following matrix equation which satisfies 

equilibrium conditions is: 

 

       nnn FMK  
                             (13) 

 

In Eq. (13), subscripted n denotes appropriate value in discrete time point tn. Superposed dots 

denote differentiation with respect to time. Global stiffness matrix [K], as well as consistent mass 

matrix [M], remains constant in all time points. If homogenuous initial conditions (displacements 

and velocities) are assumed, Xmn, Ymn, Wmn, R
I
mn and S

I
mn and their first derivatives in time are zero. 

Distributed loading {F} acts perpendicular to the mid-plane of plate.  

 

 

4. Finite element model 
 

Layerwise finite element consist of mid-plane and N numerical layers (excepting the middle plane) 

through the thickness of the plate, as shown on Figure 3. Adopted nodal degrees of freedom are 

translations in three orthogonal directions in the mid-plane (ui, vi, wi) and relative translations (ui
I
, 

vi
I
) in I

th
 numerical layer through the plate thickness.  

 

 
 

Figure 3. Layerwise FE with n layers and m nodes 

 
Generalized displacements satisfy C

0
 continuity condition on element boundaries. Displacement 

field is interpolated using the Lagrangian interpolation functions: 
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In Eq. (14), index m denotes the number of nodes per element. For this purpose, 4-node Lagrange 

quadrilateral is chosen. Interpolation is obtained using standard 2D Lagrangian polynomials i. If 

we incorporate Eq. (14) into the virtual work principle given in Eq. (6), we will derive equilibrium 

equations of single FE in matrix form. It is possible to derive the stiffness matrix and the consistent 

mass matrix of the single layerwise FE: 
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In Eq. (15), [A], [B
I
] and [D

IJ
] are constitutive matrices of the laminate, which are derived in [5]. 

Kinematic matrices are: 
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In Eq. (16), I0, I
I
 and I

IJ
 are inertia terms previously derived in Eq. (7), and matrices of 

interpolation functions are: 

 

 
1

1

1 3 3m








 
 
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 
        

1
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
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1
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0

0
m






 
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   (18)  

 

Dynamic equilibrium equation of the single FE is given in following matrix equation: 

       M K f     (19) 

 

In Eq. (19), {} and {f} are vectors of nodal displacements and forces of the single FE, respectively. 

If we observe discrete time point tn, matrix equation which satisfies Eq. (19) is: 

 

       
n nn

M K f   
                            (20) 

 

Layerwise elements suffer from the phenomena such as spurious shear stiffness. Because of this, 

Selective integration scheme S1 is used to avoid the shear locking in calculation. In this scheme, all 

terms in the element stiffness matrix which contain the transverse shear stifnesses Q44, Q45 and Q55 
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are computed using reduced (11) integration. All remaining terms are calculated using full (22) 

integration. Integration over each FE is performed using Gauss-Legendre quadrature. 

 

5. Transient analysis 
 

In the preceding sections, we have derived the governing partial differential equations of the 

problem. In the analytical solution, spatial variation of displacements is assumed using Navier 

method, and in numerical (FE) solution displacement field is interpolated using the Lagrangian 

polynomials. In this way we have derived the set of ordinary differential equations in time (13 and 

20). These equations can be solved exactly using either the Laplace transform method or the modal 

analysis method [2]. These methods require the determination of eigenvalues and eigenfunctions. 

Analytical solutions can be found in previous works of Vuksanović, Hinton [6-7]. In this work, 

numerical solution will be adopted, using Newmark’s integration scheme for second-order 

differential equations.  

 

5.1 Time discretization 

 

In the Newmark method, accelerations and velocities are approximated using truncated Taylor’s 

expansions and only terms up to the second derivative are included [2]. Therefore solution is 

obtained only for discrete times and not as a continuous function of time. Among several well-

known Newmark integration schemes, constant-average acceleration method is chosen for this 

purpose. This stable scheme provided that introduced approximation error does not grow 

unboundedly. Detail revision of numerical time integration is given in [2]. Here the constant 

average acceleration method is explained. Approximated time functions and their derivatives are: 

         
2

11
2

1

2n n n n
t t 

 
       

  
      1

1
2

n n n
t

 
     

 

     1
1

2

1 1

2 2n n n 
    

 (21) 

 

In Eq. (21), t is the time increment, n is the current time point and n+1 is the next time point in 

which we seek the solution. After substitution, we obtain: 

       
1 1

1 1

2 2n n n n
t t 

 
        

     

 
 

        2 11

4 4
n nn n ntt 


        

  (22) 

 

Premultiplying the second Equation from (22) with [M]n+1 and using Eq. (13) or Eq. (20) in tn+1, we 

obtain (if stiffness matrix and consistent mass matrix is constant in all time points): 

 

   1
ˆ ˆ

n
K F


   
   (23) 

 
 

 2

4
K̂ K M

t
   
 

          

     
 

     21

4 4ˆ
n n n n

F F M
tt 



 
       

 
   (24) 

 

Eq. (23) represents a system of algebraic equations among the discrete values (nodal displacements 

vector in FEA or vector of Fourier coefficients in Navier solution), at time tn+1 in terms of known 

values at time tn. It is obvious that initial values of displacements, velocities and accelerations are 

needed for obtaining transient response of the structure. First two are known from homogenuous 

initial conditions. However, acceleration vector should be calculated from following expression: 
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             
1 1

0 0 00
M F K M F

 
    

    (25) 

 

6. Numerical examples and discussion 
 

Proposed methodology of obtaining the transient response through the analytical and numerical 

method was investigated on several examples presented in this chapter. Homogeneous initial 

conditions (zero displacements and velocities) were assumed in all cases. Preliminary calculations 

showed that number of members in double trigonometric series does not affect the results severely 

[8]. In the FE calculations, 10x10 mesh of 4-node quadrilaterals is chosen. All plates are simply 

supported on all sides. Whenever is possible, obtained results from the present model are compared 

with existing solutions from the literature. Some new results are presented. Nondimenzionalized 

center transverse deflection is presented in all examples:  
3

2

4

0

100E h
w w

q a


    (26) 

In all calculations it was assumed that laminated structure is composed from arbitrary number of 

layers, which have the same mechanical properties, as in examples from the works of Reddy [2]: 

E1 = 52.5  10
6
 N/cm

2
  G12 = G13 = 1.05  10

6
 N/cm

2  12 = 0.25 

E2 = 2.1  10
6
 N/cm

2  
G23 = 0.42  10

6
 N/cm

2
   = 8  10

-6
 Ns

2
/cm

4
           (27) 

 

6.1 Influence of time increment 

 

Influence of time increment was investigated with 2 thin cross-ply composite plates with 

characteristics given in (27): 2-layer plate (0/90) and 4-layer plate (0/90)2. Different time steps were 

used. Increase of time increment reduced the amplitude of oscillations, but increased the period, as 

showed on Figures 4-7. Plates were exposed to uniformly distributed step loading, and calculation 

was made using both analytical method and FEM, as explained in preceding sections. Maximum 

transient center transverse deflections in both cases are about 2 times that of the static center 

transverse deflection. Both plates are squared. Plate dimensions are: a = b = 25 cm. Overall plate 

height is h = 1 cm (a/h = 25 – thin plate). 

 

Figure 4. Analytical solution for (0/90) 

laminate for different time steps  

 

Figure 5. FEM solution for (0/90) laminate for 

different time steps 
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Figure 6. Analytical solution for (0/90)4 

laminate for different time steps 

 

Figure 7. FEM solution for (0/90)4 laminate for 

different time steps 

2-layer plate (Analytical):   
3 5025dynamicw max, .

 
1 7519staticw max, .

 wd/ws = 1.9993 

2-layer plate (FEM):    
3 5750dynamicw max, .

 
1 7556staticw max, .

 wd/ws = 2.0363 

 

4-layer plate (Analytical):   
1 6989dynamicw max, .

 
0 8936staticw max, .

 wd/ws = 1.9012 

4-layer plate (FEM):    
1 7360dynamicw max, .

 
0 8554staticw max, .

 wd/ws = 2.0295 

 

6.2 Influence of FE mesh refinement   

 

Influence of FE mesh refinement was investigated with 2 cross-ply plates made of 4 layers (0/90)2, 

with characteristics given in (27). Two side-to-thickness rations were used: a/h=5 and a/h=25. 

 

 
 

Figure 8. Normalized deflection versus time 

for (0/90) laminate with a/h = 25 

 
 

Figure 9. Normalized deflection versus time 

for (0/90) laminate with a/h = 5 
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Plates were exposed to uniformly distributed step loading. Time step of t = 50 s was chosen in all 

calculations. Convergence of solution is reached with 1010 FE mesh, so this refinement is adopted 

as fine mesh and used in all following calculations. 

 

Coarse mesh of 44 FE showed a little underestimation of amplitude and the period in thin plate 

situation (Figure 8). In the thick plate situation (Figure 9), coarse mesh overpredicted the amplitude 

of oscillations, and underpredicted the period slightly. 

 

6.3 Influence of shear deformation 

 

Calculation was performed with 2 cross-ply (0/90) composite plates with characteristics given in 

(27). Plate dimensions are: a = b = 25 cm. Two side-to-thickness rations were used: a/h=10 and 

a/h=25. Plates were exposed to uniformly distributed step loading, and calculation was made using 

both analytical method and FEM. Time step of t = 50 s was chosen. The accuracy of the present 

model is verified with existing results from the literature [2].  

 

As we can see from Figures 10 and 11, shear deformation affects the results in a following way: 

period of oscillations is increased, and the amplitude of oscillations is constant or increased. 

Slightly stronger influence is obtained by using the FEM solution. It is obvious that influence of 

shear deformation is much more pronounced in the case of thick plates, while in the thin plate 

situation it is almost neglible. 

 

 
 

Figure 10. Normalized deflection versus time 

for (0/90) laminate with a/h = 25 

 
 

Figure 11. Normalized deflection versus time 

for (0/90) laminate with a/h = 10 

 

6.4 Influence of lamination scheme 

 

The effect of the lamination scheme on the transient response of laminated structure is investigated 

using a cross ply laminates with different numbers of layers. In all cases, uniformly distributed step 

loading was used. Calculation was performed using thin laminated composite plate, with a = b = 25 

cm, and a/h = 25. Figure 12 shows that reduction in the number of layers through the plate thickness 

leaded to the more flexible plate response – it is increasing the amplitude as well as the period. By 

using more cross-ply layers through the same overall plate thickness, stiffer response is obtained. 

Very good agreement was obtained between analytical and FE solution. 
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Figure 12. Normalized deflection versus time 

for (0/90) laminate with a/h = 25 

 
 

Figure 13. Deformed FE mesh (1010) of 

(0/90) laminate with a/h = 25 

 

6.5 Results for different forcing functions 

 

Forcing functions, which describe the load change through time, are analyzed in this section. Four 

different patterns of load change through time are adopted as shown in Figure 14 and in Eq. (28): 

 

 
 

Figure 14. Different forcing functions 

Stepped Pulse  0)( FtF   

Sine Pulse  







 


T

t
FtF


sin)( 0

 

Triangular Pulse 










T

t
FtF 1)( 0

       (28) 

Blast Pulse  
teFtF  0)(  

 

In Eq. (28), F0 represents the amplitude of the 

dynamic loading, t is the current time variable, 

T is the overall time in which loading acts, and 

 is the damping parameter. For the purpose of 

this work, =0.005 and T=1000s. 

 

The effect of the applied forcing functions on the transient response of laminated plate is 

investigated using a cross ply (0/90) laminates with a/h = 10 and a = b = 25 cm. In all cases, 

uniformly distributed step loading was used. Results are obtained using FEM with 1010 mesh, for 

simply supported (SS) and clamped (CC) laminated plate. Figures 15 and 16 illustrate the results of 

the calculation. Analytical solutions using Fourier series and Convolution Integral for simply 

supported Mindlin plates are in detail explained in previous work of Hinton, Vuksanović [6]. Also, 

FE results are given in Hinton, Vuksanović [7]. As stated in [6], triangular pulse is used to simulate 

a nuclear blast loading. The exponential pulse may be used to simulate a high explosive blast 

loading. Damping parameter  is adjusted to approximate the pressure curve from the blast test. 
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Figure 15. Normalized deflection versus time 

for (0/90) SS laminate with a/h = 10 

 
 

Figure 16. Normalized deflection versus time 

for (0/90) CC laminate with a/h = 10 

 

 

7. Conclusions 
 

In this paper analytical and FE solutions are presented for linear transient analysis of laminated 

composite plates. Generalized Laminated Plate Theory is introduced using dynamic version of 

virtual work principle. Original MATLAB


 code is applied for obtaining the transient response. 

Influence of time step length on the solution accuracy was investigated and results for 2 different 

stacking sequences are presented. It is obvious that larger time step increases the period of 

oscillation, and reduces the amplitude. Before the further numerical simulations, influence of FE 

mesh refinement was investigated. Once the convergence was reached, fine mesh was chosen for all 

following calculations, as shown in examples. 

 

Using the existing examples from the literature, it is shown that using the ESL plate theories, 

especially for the thick plate problem, underpredicts the amplitudes of oscillation. Stacking 

sequence affects the plate transient response in a following manner - reduction in a number of 

laminas through the same overall plate thickness leads to a more flexible plate behavior (increasing 

the amplitude as well as the period).  

 

Finally, different forcing time functions for uniformly distributed pressure load were applied, and 

plate response was obtained. These new results are presented for simply supported and clamped 

cross-ply laminates, with a/h = 10. Authors’ further research will be aimed to the numerical analysis 

of laminar composites with the presence of delaminations (natural frequencies, transient response, 

linear and nonlinear bending and buckling loads). Some investigations are already made in the field 

of crack propagation, too. 
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