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Abstract 
  

The paper deals with the 3-D stress analysis of laminated composite plates using a layerwise 
displacement model of Reddy, that assumes piece-wise linear variation of all displacement 
components and the quadratic variation of interlaminar stresses within each layer of the plate. 
Based on the assumed displacement field, kinematic relations, 3-D constitutive equations of both 
lamina and laminate and governing equations of motion have been derived. Starting from the 
strong formulation of the full layerwise theory (FLWT), family of layered finite elements has 
been developed and implemented in original object-oriented MATLAB code. GiD software is 
used for the pre- and post-processing. 

The parametric effects of plate side-to-thickness ratio, mesh refinement in- and out-of-plane 
and applied element type on total deflection and stress distribution in the considered laminate are 
shown. The accuracy of the present model is verified against the existing data from the literature 
and the commercial software. The possibilities for the further improvement and applications of 
the model are briefly presented. 
 
Key words: full layerwise theory, 3-D stress state, bending, laminate, composite, plate 
 
 
1. Introduction 
 

Laminar composites play a significant role in various engineering disciplines, motivating the 
authors to develop robust and simple computational models of laminated composite beams, plates 
and shells. However, many unique phenomena arising from the heterogeneous constitution of 
laminated composite plates (LCPs) leaded the investigators to derive complex and accurate 
computational models. The deformation of LCPs is characterized by the coupling between 
bending, extension, and shear, while at the ply level laminated composites exhibit transverse 
stress concentrations near material and geometric discontinuities, resulting in different forms of 
damage, i.e. delamination or matrix cracking. 

The global behavior of LCPs (deflections, critical buckling loads, fundamental vibration 
frequencies and mode shapes) may be accurately predicted using equivalent-single-layer (ESL) 
theories [1-3], especially for very thin laminates. However, if a highly accurate assessment of the 
stress-deformation state is needed (for example, in localized regions where damage initiation is 
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likely, or in the case of thick structural component), refined theories are recommended. In 
addition, the assessment of localized regions for potential damage initiation begins with the 
accurate determination of the 3-D state of stress/strain at the ply level. The extensive review of 
refined laminate theories can be found in [4-6], among others. 

The application of partial layerwise laminate theories has been authors’ focus in development 
of global response of previously damaged laminates [7-9], starting from the previous research of 
Ćetković and Vuksanović [10]. The displacement-based partial layerwise laminate theories 
neglect the transverse normal stress/strain (due to the fact that deflection is constant through the 
thickness). However, the incorporation of the transverse normal stress zz is important in 
modeling the localized effects such as holes, cut-outs or delamination fronts. Note that z is 
significant and usually dominant in these regions. It is also important in the prediction of damage 
initiation. 

The use of FLWT is justified due to another important fact: in all ESL theories based on the 
assumed displacement fields (the displacements are assumed to be continuous functions of 
thickness coordinate), all stresses are discontinuous at layer interfaces. More important, the 
interlaminar stresses xz, yz and z are discontinuous, which does not satisfy the continuity 
conditions between the stress fields of the adjacent layers. This error is especially dangerous for 
thick laminates. In contrast to the ESL theories, the layerwise theories allow for the possibility of 
continuous transverse stresses at layer interfaces. Moreover, they provide a much more correct 
representation of cross-sectional warping.  

In the paper, the full layerwise theory of Reddy [11] (FLWT) served as a basis for the 
development of a family of layered finite elements, accounting for the layerwise expansion of all 
three displacement components. Original procedure for post-processing of stresses is presented. 
The computational model is implemented using original object-oriented MATLAB [12] code, 
while the graphical user interface for pre- and post-processing is developed using GiD [13]. The 
presented approach is validated against the 3-D (solid) models of LCPs in ABAQUS [14], as well 
as using the available data from the literature. 

 
 

2. Development of the strong formulation of the FLWT 
 

In the paper, we consider laminated composite plates made of n orthotropic layers. The plate 
thickness is denoted as h (see Figure 1), while the thickness of the kth lamina is denoted as hk. The 
plate is supported along the portion Гu of the boundary Г and loaded with loadings qt(x,y) and 
qb(x,y) acting perpendicular to either top or the bottom surface of the plate (St or Sb). 

 
Fig. 1. Laminated composite plate with n material layers and N numerical interfaces 

Piece-wise linear variation of all three displacement components is imposed, leading to the 3-
D stress description of all material layers. The displacement field (u, v, w) of an arbitrary point 
(x,y,z) of the laminate is given as: 
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In Eq. (1), UI(x,y), VI(x,y) and WI(x,y) are the displacement components in the Ith numerical 
layer of the laminate in directions x, y and z, respectively, N is the number of interfaces between 
the layers including St and Sb. Note that the number of subdivisions (I=1,2,…N) through the 
thickness can be greater than or equal to the number of material layers through the thickness (n). 

For the sake of simplicity, ФI(z) are selected to be linear layerwise continuous functions of 
the z-coordinate: 
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The linear strain field associated with the previously shown displacement field can be found 
in [11]. It serves as the basis for the derivation of 3N governing differential equations which 
define the strong form of the FLWT. To reduce the 3-D model to the 2-D one (plate model), the z-
coordinate is eliminated by the explicit integration of stress components multiplied with the 
corresponding functions ФI(z), introducing the stress resultants which can be found in [11]. 

The stresses in the kth layer may be computed from the lamina 3-D constitutive equations: 
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where ijC are the transformed elastic coefficients in the (x,y,z) coordinates, which are related 

to the elastic coefficients in the material (1,2,3) coordinates, Cij through the transformation matrix 
T(k) for the kth layer. Matrices C(k) and T(k) can be found in [11]. The constitutive relations of the 
laminate can be derived in a usual manner by integrating the lamina constitutive equations 
through the thickness of the plate. 

The system of 3N Euler-Lagrange governing equations of motion for the FLWT are derived 
using the principle of virtual displacements, by satisfying the equilibrium of the virtual strain 
energy U and the work done by the applied forces V (note that virtual kinetic energy K = 0 for 
the static problems): 

10, 0, 0
I I I II I
xy xy yy yI I Ixx x

x y z b I t IN

N N N QN Q
Q Q Q q q

x y x y x y
 
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where , , , , ,I I I I I I
xx xy yy x y zN N N Q Q Q are stress resultants defined in [11], while I1 and IN are 
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displacement vectors at the Sb and St, respectively. The primary variables of the problem are 
displacement components UI, VI and WI. 

 
 

3. Layered FLWT-based Finite Element 
 

Based on the FLWT, the displacement finite element model (weak form) is derived by 
substituting an assumed interpolation of the displacement field (1) into the equations of motion 
(4) of the FLWT. The layered finite elements require only C0 continuity of generalized 
displacements along element boundaries, because only translational displacement components are 
adopted as the nodal degrees of freedom. It is important to highlight that the out of plane 
coordinate has been eliminated in the calculation after the explicit integration of the displacement 
field in out-of-plane direction. This allows the formulation of the family of the 2-D layered (plate) 
finite elements, allowing for the 2-D type data structure similar to the FE models of the ESL 
theories, which provide the following advantages against the conventional 3-D models: 

 the volume of input data is reduced, 
 the out of plane interpolation can be refined independently of the in-plane one, 

without the need to reconstruct the 3-D mesh, 
 Model reduction to the 2-D one results in the computational savings in the numerical 

integration while constructing the element stiffness matrix. The savings are increased 
by increasing the number of elements and number of interfaces through the plate 
thickness. 

 All displacement components are interpolated using the same level of interpolation: 
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In (5), m is the number of nodes per 2-D element, , ,I I I
j j jU V W are the nodal values of 

displacements UI, VI and WI, respectively, in the jth node of the 2-D element representing the 
behaviour of the laminated composite plate in the Ith numerical interface. Finally, j(x,y) are the 
2-D Lagrangian interpolation polynomials associated with the jth element node. The strain field is 
interpolated in the usual manner, by incorporating (5) in the kinematic relations of the FLWT. 
The matrix form of the finite element model is obtained as: 

   IJ I IK F              (6) 

In Eq. (6), [KIJ] is the element stiffness matrix, {I} is the element displacement vector and 
{FJ} is the element force vector, I=1,…,N and J=1,…,N. [KIJ] is obtained using 2-D Gauss-
Legendre quadrature for quadrilateral domains.  

In the paper, linear (Q4) and quadratic serendipity (Q8) layered quadrilateral elements have 
been considered. The reason is their easy connecting with the 3-node (T3) and 6-node (T6) 
triangular layered finite elements, which are also being developed by authors in order to represent 
complex plate geometries. To avoid shear locking, reduced integration is used (22 points for Q8 
and 11 point for Q4 element). After the derivation of the characteristic element matrices, the 
assembly procedure is done in a usual manner. After the assembly procedure of the characteristic 
element matrices and vectors, the mathematical model on the structural level is obtained as: 

Kd f          (7) 

where K, d and f are system stiffness matrix and system displacement and force vectors, 
respectively. 
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4. Post-Computation of Stresses 
 

The assumed piecewise linear interpolation of displacement field through the laminate 
thickness provide discontinuous stresses across the interface between adjacent layers. Once the 
nodal displacements are obtained, the stresses can be computed from the constitutive relations: 
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where j,x, j,x denotes differentiation of j by x, y, respectively, b=bottom and t=top. 
 
Since the interlaminar stresses calculated in this way does not satisfy continuous distribution 

through the laminate thickness, they can be computed by assuming the quadratic distribution 
within each layer for every stress component, separately: 

  2 , 1,2,..., , , or .k k k k k k k
xz yz z s s sa z b z c k N s xz yz z       τ     (9) 

  
This require 3N equations for each of interlaminar stresses, where N is the number of layers. 

These equations can be obtained from the following conditions: 
1. satisfying the traction boundary conditions at Sb and St (2 equations) 

   1 0 , N
b N tz q z h q    

 

                    (10a) 

2. providing the continuity of interlaminar stresses along interfaces (n -1 equations) 
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1 0k k
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                    (10b) 

3. assuming the interlaminar stresses from the constitutive equations to be an average 
interlaminar stresses within a layer (n equations) 
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0 2

kh k k
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kz dz h
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                    (10c) 

4. computing the jump in interlaminar stresses at each interface utilizing the 3D 
equations of equilibrium in terms of stresses (n-1 equations) 



E. V. Damnjanović, M. S. Marjanović, Three-dimensional stress analysis of laminated composite plates using… 

6 

   1 1
1 3 3

0k k k k
k D D

z h z

z z z z

    
     

  
   

 

                             (10d) 

In (10d),  3 3 3
3

TD D D
D xz yz zz  τ  is the vector of interlaminar stresses obtained from 3D 

equilibrium equations: 
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5. Numerical Examples 
 

To validate the model and illustrate its capability for an accurate prediction of 3-D stress state 
in the laminated composite plate, illustrative numerical example is provided. The analyzed 
problem deals with the bending analysis of square simply supported laminated composite plate. 
The plate consists of 3 orthotropic material layers in cross-ply symmetric stacking sequence 
(0/90/0) and it is loaded by transverse distribution of constant pressure at the top surface of the 
plate, qt(x,y)=qt. Each layer is a unidirectional reinforced composite made of material with the 
following properties: E1/E2 = 25, G12/E2 = G13/E3 = 0.5, G23/E2 = 0.2, ν12 = ν13 = ν23 = 0.25. Two 
different a/h ratios have been considered (a/h = 4 and a/h = 10), where h is the overall plate 
thickness and a is the side length of the plate. For the through-the-thickness interpolation, two 
models have been considered: (i) 3-layers (0/90/0) plate with hk=h/3, and (ii) 6-layers 
(0/0/90/90/0/0) plate with hk=h/6 (sublaminate concept).  

Boundary conditions are prescribed edge nodes: UI= WI=0 for edge parallel to x-axis and VI= 
WI=0 for edge parallel to y-axis. To account for different plate dimensions, dimensionless 
displacement and stresses have been considered: 
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22
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The convergence study of the present model is performed using both Q4 and Q8 elements 
with reduced integration, for three different mesh sizes: 44, 88 and 1212. An additional 
comparison is made against the results obtained by Carrera & Ciuffreda [15], using LD3 theory 
(layerwise classical theory with cubic expansion through the thickness). The results are elaborated 
in Tables 1-4. 

 
a/h=4, 3 layers 16Q8 64Q8 144Q8 16Q4 64Q4 144Q4 LD3 [15] 
w (a/2, b/2, 0) 
x (a/2, b/2, h/2) 
xy (a, 0, h/2) 
xz (0, b/2, 0) 

2.9499 
1.0890 
0.1008 
0.4560 

2.9451 
1.0233 
0.0984 
0.4352 

2.9452 
1.0131 
0.0972 
0.4307 

3.2192 
1.0269 
0.0786 
0.4120 

3.0037 
1.0085 
0.0873 
0.4039 

2.9691 
1.0080 
0.0904 
0.4002 

3.0446 
1.1156 
0.0973 
0.4434 

Table 1. Comparison of different mesh densities and element types to evaluate transverse displacement U  

and stresses  , andx xy xz    for 3-layers (0/90/0) thick laminated composite plate (a/h = 4) 

 
a/h=4, 6 layers 16Q8 64Q8 144Q8 16Q4 64Q4 144Q4 LD3 [15] 
w (a/2, b/2, 0) 
x (a/2, b/2, h/2) 
xy (a, 0, h/2) 
xz (0, b/2, 0) 

3.0018 
1.1786 
0.1097 
0.4613 

2.9996 
1.1059 
0.1115 
0.4448 

2.9997 
1.0949 
0.1124 
0.4422 

3.2795 
1.1119 
0.0868 
0.4005 

3.0563 
1.0867 
0.0971 
0.4035 

3.0237 
1.0875 
0.1017 
0.4061 

3.0446 
1.1156 
0.0973 
0.4434 

Table 2. Comparison of different mesh densities and element types to evaluate transverse displacement U  

and stresses  , andx xy xz    for 6-layers (0/0/90/90/0/0) thick laminated composite plate (a/h = 4) 
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a/h=10, 3 layers 16Q8 64Q8 144Q8 16Q4 64Q4 144Q4 LD3 [15] 
w (a/2, b/2, 0) 
x (a/2, b/2, h/2) 
xy (a, 0, h/2) 
xz (0, b/2, 0) 

1.1308 
0.9206 
0.0605 
0.6678 

1.1309 
0.8638 
0.0595 
0.6366 

1.1309 
0.8544 
0.0589 
0.6299 

1.2105 
0.8602 
0.0468 
0.6170 

1.1480 
0.8477 
0.0528 
0.6164 

1.1382 
0.8473 
0.0548 
0.6182 

1.1541 
0.8702 
0.0597 
0.6278 

Table 3. Comparison of different mesh densities and element types to evaluate transverse displacement U  

and stresses  , andx xy xz    for 6-layers (0/0/90/90/0/0) thick laminated composite plate (a/h = 10) 

 
a/h=10, 6 layers 16Q8 64Q8 144Q8 16Q4 64Q4 144Q4 LD3 [15] 
w (a/2, b/2, 0) 
x (a/2, b/2, h/2) 
xy (a, 0, h/2) 
xz (0, b/2, 0) 

1.1480 
0.9397 
0.0620 
0.6678 

1.1480 
0.8819 
0.0614 
0.6381 

1.1480 
0.8723 
0.0612 
0.6321 

1.2295 
0.8818 
0.0481 
0.6678 

1.1655 
0.8656 
0.0546 
0.6030 

1.1554 
0.8645 
0.0567 
0.6104 

1.1541 
0.8702 
0.0597 
0.6278 

Table 4. Comparison of different mesh densities and element types to evaluate transverse displacement U  

and stresses  , andx xy xz    for 6-layers (0/0/90/90/0/0) thick laminated composite plate (a/h=10) 

 
The results presented in Tables 1-4 indicate that the proposed model is capable to accurately 

predict the stress-deformation state of the cross-ply laminated composite plate. After omitting the 
results for coarse meshes (16Q4 and 16Q8) which showed to be inaccurate, the average relative 
differences  = (result – reference) / reference [%] are calculated and given in Table 5: 

 

 [%] 
a/h = 4 a/h = 10 

3 layers 6 layers 3 layers 6 layers 
w 
x 
xy 
xz 

2.6 
9.2 
4.7 
5.8 

1.0 
2.0 
8.7 
4.5 

1.5 
1.9 
5.4 
1.3 

0.5 
0.7 
4.7 
2.3 

Table 5. Average relative differences of considered models against [15] for different side-to-thickness 
ratios and different interpolation through the thickness 

 

 
Fig. 2. Comparison of different mesh densities of FLWT-Q4 elements to evaluate through-the-thickness 

distribution of stresses  andx xz   for thick laminated composite plate (a/h = 4) 



E. V. Damnjanović, M. S. Marjanović, Three-dimensional stress analysis of laminated composite plates using… 

8 

 
Fig. 3. Comparison of different mesh densities of FLWT-Q8 elements to evaluate through-the-thickness 

distribution of stresses  andx xz   for thick laminated composite plate (a/h = 4) 

Obviously, z-refinement plays very important role in the accuracy of the proposed models, 
where 6-layers model showed the advantage over the 3-layers one. The highest discrepancies are 
obtained for shear stresses xy and xz, where cubic expansion of the displacement components 
used in the LD3 theory [15] showed the advantage over the linear layerwise expansion in FLWT. 

The agreement is better for a/h = 10 (the average difference of all quantities is 2.3%) in 
comparison with a/h = 4 (the average difference of all quantities is 4.8%). Finally, for the 
calculation of interlaminar stress xz, the Q8 model is recommended which showed only marginal 
differences in comparison with [15] (for all quantities, =1.3% for a/h=4, =1.0% for a/h = 10). 

 
Fig. 4. Comparison of different element types and through-the-thickness interpolations to evaluate 

distribution of stresses  andx xz   vs. z-coordinate, for thick laminated composite plate (a/h = 4) 

Through-the-thickness distribution of stresses  andx xz   for thick laminated composite 
plate (a/h = 4) is plotted in Figs. 2-4, for different mesh densities, z-refinements and different 
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element types. The results are compared against the results from [15] using LM3 theory (mixed 
layerwise theory with cubic expansion). All models showed the possibility for accurate 
determination of x. However, the results for shear stress xz distribution showed the advantage of 
Q8 over Q4 elements. 

To illustrate the capability of the object-oriented software framework to visualize the stress 
distribution, GiD visualization of stresses obtained using 64Q8 and 64Q4 elements is plotted in 
Figs. 5-6 against the results of the commercial software Abaqus (64 C3D20R finite elements). 
Excellent agreement is obtained, although a considerably lower number of degrees of freedom is 
employed in the FLWT-based models in comparison with 3-D (solid) models in Abaqus. 

 

Fig. 5. Distribution of x, y and xy in simple supported laminated composite plate (a=1.2m, h=0.3m, 
E1=25GPa, E2=1GPa, G12=G13=0.5GPa, G23=0.2GPa, qt=1MPa) obtained using 64 FLWT-Q4, 64 FLWT-

Q8 and 64 C3D20R elements (Abaqus) 

 

Fig. 6. Distribution of interlaminar stresses xz, yz and z in laminated composite plate (a=1.2m, h=0.3m, 
E1=25GPa, E2=1GPa, G12=G13=0.5GPa, G23=0.2GPa, qt=1MPa) obtained using 64 FLWT-Q4, 64 FLWT-

Q8 or 64 C3D20R elements (Abaqus) 
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6. Conclusions 
 
In the paper, a family of layered quadrilateral finite elements based on the full layerwise 

theory of Reddy (FLWT) has been developed and implemented in the object-oriented MATLAB 
code in conjunction with original GiD interface for pre- and post-processing. Original procedure 
for post-processing of stresses is presented. The presented approach is validated against the 3-D 
(solid) models of LCPs in ABAQUS, as well as using the available data from the literature, 
confirming the high reliability of the presented procedure. 

Future work includes the implementation of triangular FLWT-T3 and FLWT-T6 elements in 
the presented framework. The first-ply failure analysis will be conducted using the above method. 
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