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TRANSIENT RESPONSE OF CROSS-PLY 

LAMINATED COMPOSITE PLATES 

Abstract: This paper describes the transient response of cross-ply laminated composite plates. Possibility 

of achieving the transient response of cross-ply composites by the use of Reddy‟s generalized laminated 

plate theory (GLPT) is evaluated in this work. Layerwise linear variation of displacements components, 

as well as linear kinematic relations and Hook‟s law are assumed. Navier solution is applied for 

expansion of generalized displacements in double trigonometric series. The governing partial differential 

equations are reduced to a set of ordinary differential equations in time. The equations of motion are 

solved using Newmark‟s integration schemes. Transient response is calculated with an example of simply 

supported (0/90) laminate. Different number of layers and variants of stacking sequences are taken into 

consideration by parametric study. Transient response is investigated using different schemes of dynamic 

loading (forcing functions). For all loading types, results taking into account the influence of time step 

are presented. Results are compared with those of other theories existing from the literature. Variety of 

new results is presented. 

 

Key words: composite plate, transient analysis, layerwise theory, Navier solution 

  

DINAMIĈKI ODGOVOR CROSS-PLY 

LAMINATNIH KOMPOZITNIH PLOĈA 

Rezime: U ovom radu opisan je dinamički odgovor cross-ply laminatnih kompozitnih ploča. Razmatrana 

je mogućnost odreĎivanja dinamičkog odgovora cross-ply kompozita korišćenjem Reddy-eve Opšte 

laminatne teorije ploča (GLPT). Pretpostavljena je slojevita linearna varijacija komponenata pomeranja, 

kao i linearne kinematičke relacije i Hook-ov zakon. Navier-ovo rešenje je primenjeno za razvoj 

generalisanih pomeranja u dvostruke trigonometrijske redove. Uslovne parcijalne diferencijalne 

jednačine su redukovane na sistem običnih diferencijalnih jednačina po vremenu. Jednačine kretanja su 

rešene primenom Newmark-ovih integracionih šema. Dinamički odgovor je sračunat na primeru 

slobodno oslonjene cross-ply (0/90) laminatne ploče. U parametarskoj analizi su razmatrani uticaji broja 

slojeva u laminatu, kao i različite varijante šema laminacije. Dinamički odgovor je sračunat za različite 

šeme dinamičkog opterećenja (forcing functions). Za sve tipove opterećenja prezentovani su rezultati koji 

uzimaju u obzir uticaj vremenskog inkrementa. Rezultati su uporeĎeni sa nekim rezultatima po drugim 

teorijama koji postoje u literaturi. Prikazano je i mnoštvo novih rezultata. 

 

Ključne reči: kompozitna ploča, dinamička analiza, laminatna teorija, Navier-ovo rešenje 
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1. INTRODUCTION 

A wide range of mechanical properties, suitable for different design purposes, can be achieved by the 

use of laminar composites [1]. Since the fiber direction can be altered arbitrarily, laminated composite 

plates are attractive in design stage. Development of refined mathematical models of laminar composites 

is obviously of a great importance. Two main approaches arise in a field of laminated composite plates: 

 Theories based on a single equivalent layer (ESL) – CLPT, FSDT, HSDT theories etc., 

 Layerwise theories (LWT) – the modern approach in the analysis of thick and composite plates. 

For the study of laminated composite plates, orthotropic materials are of the greatest importance. They 

mainly appear in the form of thin plies (lamina). Each ply is composed from fibers, oriented in a certain 

direction. In engineering practice, it is necessary to form a material that will be able to remain stable 

under loads from multiple directions. This is achieved by composing multiple laminas in a laminate. 

2. GENERALIZED LAMINATED PLATE THEORY (GLPT) 

Generalized Laminated Plate Theory [2] is a significant step in stress/strain analysis of the laminated 

composite plates. The plate is analyzed as a multilayered in the true sense of word. GLPT allows 

independent displacement fields interpolation (as well as of stresses/strains). It is based on the piece-wise 

linear variation of in-plane displacement components, and constant transverse displacement through the 

thickness. Considerable computer time cost, which was one of the main disadvantages of 3D-elasticity 

theory, is significantly reduced in GLPT [3]. Shear deformation due to anisotropic structure is included. 

2.1. Basic assumptions and displacement field in GLPT 

Material follows Hook‘s law, and each ply (of constant thickness) is made of orthotropic material, 

with fibers oriented in arbitrary directions. Kinematic relations are linear, and inextensibility of normal is 

imposed. Displacement and stress distributions over thickness coordinate are determined using linear 

Lagrangian interpolations. Displacement field (u1, u2, u3) in the point (x, y, z, t) of laminate is written as: 

),,,(),,(),,,(1 tzyxUtyxutzyxu     ),,,(),,(),,,(2 tzyxVtyxvtzyxu   

),,(),,,(3 tyxwtzyxu                               (1) 

In previous expressions, (u, v, w) are the displacement components in three orthogonal directions in 

the middle plane of the laminate. U and V are functions which vanish in the middle plane of the plate. 

Following expansions are used to reduce functions U and V to 2D format: 





N

I

II ztyxUtzyxU
1

)(),,(),,,(    



N

I

II ztyxVtzyxV
1

)(),,(),,,(            (2) 

U
I
 and V

I
 are coefficients to be derived, )(zI  are layerwise continuous functions of the thickness 

coordinate (linear, quadratic or cubic Lagrangian interpolations). Linear interpolation is chosen through 

the thickness coordinate. These functions are presented in detail in [3, 4, 5]. Using assumed displacement 

field, cross section warping is taken into account. More information about GLPT can be found in [3, 4]. 

2.2. Kinematic relations of single ply in GLPT 

Linear strain – displacement relations are given as follows:  
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Obviously, in-plane deformation components are continuous through the plate thickness, while the 

transverse strains need not to be. Lamina constitutive equations should be used to derive stress-strain 

relations of the laminated plate. These relations are linear and they are given in detail in [4, 5, 6]. 
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2.3. Equations of motion  

Dynamic version of virtual work principle is: 

 
0

0

T

U V K     ,                      (4) 

U , V  and K are virtual strain energy, virtual work of external forces and virtual kinetic energy, 

respectively. Loading is acting in the middle plane of the plate. There are no tractions on the boundary 

surface of the plate – homogeneous boundary conditions. 

V   q wdxdy


                              (5) 

U   
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      are elements of consistent mass matrix. 

We will incorporate following stress resultants: 
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2.4. Laminate constitutive equations and Euler-Lagrange equations 

Stress resultants will be incorporated as follows, according to matrix equations [5]: 

       

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IJIII DBN
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Introducing Eq. (9) in (4-7), we derive Euler-Lagrange (equilibrium) equations:  

0
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0 0
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I w q

x y
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3. NAVIER SOLUTION 

By derivation of (10), we have obtained 2N+3 partial differential equations, with 2N+3 unknown 

displacements components. Navier solution for simply supported rectangular plate under transient loading 

will be presented. Assumed displacement fields are chosen to satisfy equilibrium conditions on boundary 

edges. Loading should be expanded in double trigonometric series, too. System of ordinary differential 

equations in time is then derived and solved. Solution for static loading is given in detail  in [5]. 

Cross-ply is a special type of laminar composites, in which fibers are oriented alternately, with angles 

of 0
о
 or 90

о
. Some elements of elastic coefficients matrix are identically zero: 

0
)(

45

)(

23

)(

13 
kkk

QQQ    and  0452313452313452313  DDDBBBAAA      (11) 

3.1. Equilibrium equations, boundary conditions and assumed displacement field 

After incorporation of (11) and constitutive equations of lamina from [4], system (10) is compacted. 

After that, displacement components and loading function are expanded in the following manner: 
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Loading expansion:  









1 1

sinsin)(),,(
m n

mn yxtqtyxq               (13) 

m and n denote number of members in Fourier series, while
b

n

a

m 



  , .  

Xmn, Ymn, Wmn, R
I
mn, S

I
mn are Fourier coefficients – time functions.  

Assumed displacement field satisfies the following boundary conditions for simply supported 

laminated composite plate: 

:,0 ax   0 I

xxxx

I NNUwu   NI ,...,2,1  1 nN  

:,0 bx   0 I
yyyy

I NNVwv     Tt 0                       (14) 

After incorporation of (11) in (10) and re-arranging of expressions, we derive the matrix form of 

differential equations in time: 
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 K  is the global stiffness matrix,    denotes vector of unknown Fourier coefficients,  M  is 

consistent mass matrix, and    is a vector of second derivations of Fourier coefficients. Above matrix 

equations must be satisfied in all time points Tt 0 . Global stiffness, as well as consistent mass 

matrix, remains constant in all time points. In the time point tn, we have following matrix equation: 

       nnn FMK                    (16) 

4. TRANSIENT ANALYSIS 

Different forcing functions which act on laminated composite plate are analyzed. Other types of 

dynamic loading can be incorporated easily. Transient response deals with two steps in solution process: 

assumption of the spatial variation of displacements and then reduction of governing partial differential 

equations to ordinary differential equations in time, and solving of system of equations in time using 

analytical or numerical methods. 

4.1. Equations of motion and numerical time integration 
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Figure 1 – Different forcing functions 

System (15) has to be solved in all time points tn. Superposed dots denote differentiation with respect 

to time. In the following discussion we will assume homogenuous initial conditions (initial displacements 

and their first derivatives – velocities, are zero). Then, the Fourier coefficients Xmn, Ymn, Wmn, R
I
mn, S

I
mn, 

and their first derivatives in time are equal to zero. It is assumed that loading F0 acts perpendicular to the 

mid-plane of plate. Load change through time is done according to these loading schemes: 

The system of differential equations in time for any fixed m and n can be solved exactly using Laplace 

transform method or the modal analysis. Alternatively, it can be solved numerically, using the Newmark 

integration schemes for second-order differential equations. Truncated Taylor series are applied, so the 

solution is not continuous time function. Terms up to the second derivative are included: 

            nnnn tt  2

1
2

1
         nnn t 

1            (17) 

       11   nnn
                 



 

-350- 

 

nn ttt  1  is the time increment, nt  is the current and 1nt  is the next time point in which we seek 

the solution. Incorporation of first equation into second two gives: 

         1211   nnnn aa              nnnnn aaa  


54131          (18) 

In above expressions,   ta  11 , ta 2 , 
 2

3

2

t
a





, taa  34   and 





1
5a . 

Parameters  and   are selected to be 0.5, which correspond to constant-average acceleration method 

(unconditionally stable) [3]. Stability conditions, as well as more information on this topic, are given in 

detail in [3, 7]. System of differential equations (17) is solved in the following manner. First, we solve: 

    FK n
ˆˆ

1                      (19) 

where         131
ˆ

  nn MaKK    and               nnnnn aaaMFF  


54311
ˆ            

From (19) it is obvious that initial conditions 0 ,  0  and  0  are needed for obtaining transient 

response.  0  and  0  are known from initial conditions which may or may not be zero. However, 

acceleration vector  0  is unknown from initial conditions, and should be calculated from: 

          0

1

0 


KFM                    (20) 

5. NUMERICAL EXAMPLES 

Several examples of application of proposed methodology are presented here. In all of the numerical 

examples, zero initial conditions were assumed. Following lamina properties was used in all calculations: 

h = 1 cm     = 8  10
-6

 Ns
2
/cm

4
  12 = 0.25 

E1 = 52.5  10
6
 N/cm

2
  E2 = 2.1  10

6
 N/cm

2
  G12 = G13 = 0.5E2         (21) 

Normalized center transverse deflection is presented in all examples:  43
2 /100 qahEww   

5.1. Influence of number of elements in Fourier series 

In the preliminary calculation, influence of number of members in Fourier series on normalized 

transverse deflection is analyzed. Composite 2-layer laminate (0/90), with a = b = 25 cm, was examined. 

 

Table 10 –Normalized center transverse deflection at selective times, for different values of mn 

mn t=100s 200 300 400 500 600 700 800 900 1000 

11 0.4697 1.6270 2.8513 3.4860 3.1907 2.1239 0.8576 0.0708 0.1856 1.1403 

33 0.4127 1.5855 2.8477 3.4173 3.1681 2.1080 0.7849 0.0667 0.1485 1.0777 

55 0.4185 1.5864 2.8520 3.4202 3.1701 2.1130 0.7853 0.0727 0.1487 1.0823 

 

Table 1 clearly shows that the number of members in double trigonometric series does not affect 

severely the transient response of laminated composite plate. According to this, in all following 

calculations it is assumed that m = n = 1. 

5.2. Influence of time increment 

Influence of time increment was investigated with 2 composite plates with characteristics (21): 2-layer 

(0/90) and 8-layer plate (0/90)4. Different time steps were used: t = 25, 50, 75, 100, 125 and 150 s. It is 

obvious that larger time step increases the period of oscillation, and reduces the amplitude. Note that the 

maximum transient deflections of both plates are about 2 times that of the static deflection.  

2-layer:  5009.3max, dynamicw   7519.1max, staticw   998.1/ max,max, sd ww  

8-layer:  5824.1max, dynamicw   7912.0max, staticw   000.2/ max,max, sd ww  
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Figure 2 - Simply supported 2-layer cross-ply (0/90) laminate 

subjected to uniformly distributed step loading 
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Figure 3 - Simply supported 8-layer cross-ply (0/90)4 laminate 

subjected to uniformly distributed step loading 

-0.40

0.10

0.60

1.10

0 250 500 750 1000

N
o

rm
a

li
ze

d
 D

ef
le

ct
io

n

Time [s]

50

75

100

150

 

Figure 4 - Simply supported 8-layer cross-ply (0/90) 

laminate subjected to uniformly distributed triangular loading 
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Figure 5 - Simply supported 8-layer cross-ply (0/90) 

laminate subjected to uniformly distributed blast loading 

5.3. Influence of lamination scheme 

 
Figure 6 - Simply supported cross-ply laminates subjected 

to uniformly distributed step loading (t = 25s) 
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Figure 7 - Simply supported cross-ply laminates subjected 

to uniformly distributed sine loading (t = 25s) 
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5.4. Response of plate under different schemes of dynamic loading 

The influence of the dynamic loading type is investigated using a simply supported 2-layer (0/90) 

laminate under uniformly distributed loading. For this purpose, exponential blast loading is chosen as: 

teFtF 002.0
0)(   
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Figure 8 - Simply supported 2-layer cross-ply (0/90) laminate subjected to different schemes of 

uniformly distributed transient loading (t = 50s, T = 1500s) 

6. CONCLUSIONS 

Dynamic version of GLPT is introduced. Using the derived system of differential equations in time, 

Navier-type solution, as well as Newmark integration scheme, was applied for calculating the transient 

response, using MATLAB code. It is obviously that the number of elements in double trigonometric 

series does not affect severely the results of calculation. Using different time steps, influence of time 

increment on the accuracy of the solution was studied, and it is obvious that larger time step increases the 

period of oscillation, and reduces the amplitude. Lamination scheme affects the results in a way that 

reduction in a number of layers leads to a more flexible response of plate – it is increasing the amplitude 

as well as the period. Using more cross-ply layers in a same plate thickness, we get much stiffer response. 
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