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ABSTRACT 16 

 17 

A method for generating combined hydrologic and weather time series at multiple locations is presented. The 18 

procedure is based on three steps: first, the Monte Carlo method generation of data with statistical properties 19 

as close as possible to the observed series; second, the rearrangement of the order of simulated data in the 20 

series to achieve target correlations; and third, the permutation of series for correlation adjustment between 21 

consecutive years. The method is non-parametric and retains, to a satisfactory degree the properties of the 22 

observed time series at the selected simulation time scale and at coarser time scales. The new approach is 23 

tested on two case studies, where it is applied to the log-transformed streamflows and precipitation, using 24 

weekly and monthly data. Special attention is given to the extrapolation of nonparametric cumulative 25 

frequency distributions in their tail zones. The results show a good agreement of stochastic properties 26 

between the simulated and the observed data. For example, for one of the case studies the average relative 27 

errors of the observed and simulated weekly precipitation and streamflow statistics (up to skewness 28 

coefficient) are in the range of 0.1–9.2%, and 0–5.4%, respectively.  29 

 30 
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 33 

INTRODUCTION  34 

 35 

Long hydrologic time series are required for effective water resources system planning, design and 36 

operation. However, those are often too short, unreliable or non-existent. In these situations, various methods 37 

can be used for generating synthetic time series of sufficient length with richer regimes (e.g., containing 38 

more extreme values compared to those found in short observed series), while keeping the existing statistical 39 

properties of the original series intact. Majority of these methods have been used to generate a single type 40 

time series, e.g., streamflow, precipitation, temperature. More recently, there are examples of novel 41 

stochastic simulation methods capable of dealing with multivariate stationary or cyclo-stationary processes 42 

of any time scale with any marginal distribution and correlation structure. Some of these methods are based 43 

on non-parametric approach (Ilich 2014; Srivastav et al. 2015) and some are based on the parametric 44 

approach (Tsoukalas et al. 2018a, 2018b; Kossieris et al. 2019). 45 

 46 

Hazen (1914) was probably the first one to use the notion of synthetic time series in hydrology. He generated 47 

a 300-year long synthetic hydrologic series combining data from 14 watercourses. Since then, many other 48 

approaches emerged for a hydrologic series generation. 49 

 50 

Generating time-dependent hydrologic series, is much more complex than generating independent series 51 

since its goal is to preserve not only the statistical distribution function of the original sample but also its 52 

auto-correlation function for all significant lags. The well-known model by Thomas and Fiering (1962) with 53 

serially correlated flows was the first model of this kind used for monthly flow generation at a single site. 54 

This type of model reproduces the essential statistical characteristics of the series, but may lead to unrealistic 55 

dependence patterns when combined with non-Gaussian white noise (Tsoukalas et al. 2018c). The problem 56 

becomes more difficult for the multi-variate and/or multi-site generation (e.g., streamflows at multiple 57 

gauging stations or streamflows and precipitation) where the interstation dependence (i.e., cross-correlation) 58 

also has to be preserved in the generated series. The first multi-site stochastic flow generation model was 59 

developed by Fiering (1964).  60 

 61 

A number of models for stochastic hydrological time series generation are based on a stochastic processes 62 

approach, such as the ARMA models (Box and Jenkins 1970). Despite advantages of the autoregressive (AR) 63 

and the moving average (MA) group of models (including ARMA and ARIMA), they suffer from the “short 64 

memory” problems, meaning that the serial correlation function quickly diminishes with the time lag 65 

(Koutsoyiannis 2000). This approach involves the simultaneous fitting of a large number of parameters related 66 

to the joint marginal probability distribution functions in order to comply with the spatial and temporal 67 
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covariance structure of the shorter historic time series. A detailed review of application of the Box-Jenkins 68 

approach in hydrology is presented by Salas et al. (1980). However, recent papers (Tsoukalas et al. 2018a, 69 

2018b) introduce methods that can be used for simulation of non-Gaussian univariate and multivariate 70 

stationary processes, able to preserve any correlation structure and marginal distribution at any scale. The 71 

method was also applied for simulating non-phisical process (water demand) at fine scales from 1 hour up to 1 72 

minute (Kossieris et al. 2019). 73 

 74 

In the last twenty years, many authors have developed non-parametric methods for simulating hydrologic 75 

processes. This became possible by the emergence of new mathematical procedures and methods, and the 76 

advances in computational power and software tools. The methods mostly used are the moving block 77 

bootstrap (Srinivas & Srinivasan 2005), K-nearest neighbour (K-NN; Sharif & Burn 2006, 2007), or kernel-78 

based methods (Sharma et al. 1997). The main advantage of these methods is that they do not rely on the 79 

parameter estimates, while they suffer from the inability to extrapolate the probability distribution beyond 80 

the observed data.  81 

 82 

Multi-site streamflow series generation requires a stochastic model capable of reproducing the relevant 83 

statistical characteristics of the observed data series. Ideally, the model should be capable of working with 84 

selected time discretization (e.g., day, week or month), and also preserve the key statistical characteristics at 85 

coarser time scales (e.g., annual). Furthermore, it should be able to extrapolate sensibly the distribution tails 86 

for a particular time discretization. Finally, the model also needs to preserve the serial and cross-correlation 87 

structure for each time scale, as well as the intra-annual cycle. All these requirements were discussed in 88 

detail by Moran (1970), Salas et al. (1980), Koutsoyiannis (2005), Srinivas & Srinivasan (2005). 89 

 90 

Stochastic methods are also used for generating precipitation time series. As precipitation is generally 91 

modelled as an intermittent stochastic process, the models need to simulate both precipitation occurrence and 92 

intensities/depths in time. Compared to streamflow generation methods, they have to reproduce additional 93 

observed data characteristics, such as precipitation occurrence, duration, or distribution of consecutive wet 94 

and dry days. Modelling intensities/depths in stochastic precipitation models is identical to modelling 95 

streamflow distributions. For the occurrence of dry and wet spells, two types of models are commonly used: 96 

Markov chain or renewal process based (Wilks & Wilby 1999). Those based on the Markov chains are often 97 

used to specify the state of each spell as wet or dry. These models have been applied to data from various 98 

climatic regions and series lengths; however, the structure of the model has to be adjusted to the local 99 

conditions for each case study. In addition to the above- mentioned two-part models, resampling models, 100 

transition probability matrix models and modifications of ARMA type models (e.g., using normalization 101 

transformations or non-Gaussian white noise) are  also used for generating rainfall (Srikanthan & McMahon, 102 

2001). A good review of the topic is given by Srikanthan & McMahon (2001), Haberlandt et al. (2011), and 103 

Serinaldi & Kilsby (2014). 104 
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 105 

Harrold et al. (2003a, 2003b) used non-parametric approach for modelling single site daily rainfall 106 

occurrences and rainfall amounts, for a 140-year long rainfall record at Sydney, Australia. Their rainfall 107 

simulation model is based on the K-NN resampling method where the Markov model was used to generate 108 

sequences of dry and wet states (Harrold et al. 2003a). The model preserves short and long-term time series 109 

characteristics, i.e., seasonal, annual and multi-annual properties of observed data series. Mehrotra et al. 110 

(2006) also applied multi-site K-NN model for precipitation generation at 30 stations in Australia, along with 111 

other two parametric generators, while Basinger et al. (2010) used non-parametric procedure based on 112 

bootstrapped Markov chains for precipitation occurrence and resampling from observed data for 113 

precipitation amounts. 114 

 115 

In addition to the methods for generating single-variate hydro-meteorological series, there is a need to 116 

develop approaches for a multi-variate series generation. Such a stochastic model is developed by Srivastav 117 

& Simonovic (2014, 2015); this model uses the maximum entropy principle and the bootstrap method to 118 

generate multiple variables at multiple sites. It reproduces data statistics, keeping the spatial and temporal 119 

structure of data interdependence. The bootstrap method is implemented through the K-NN approach for data 120 

generation. The model is tested on daily data (precipitation, maximum and minimum air temperature) from 121 

22 gauging stations in the Thames River catchment (Ontario, Canada). However, the method does not 122 

preserve the serial correlation between two consecutive years. 123 

 124 

Unlike in some water resources areas related to modelling, such as for example river hydraulics, where there 125 

are universally accepted modelling tools such as HEC-RAS, there is no similar tool in stochastic hydrology, 126 

i.e. there is no universally accepted time series multi-variate generation model for simultaneous modelling of 127 

flows and precipitation that is widely used by hydrologists around the world. In the recent work by Ilich and 128 

Despotovic (2008), Ilich (2014) and Marković et al. (2015), a different approach to the generation of stochastic 129 

streamflow series is developed that presents an essential departure from the previously established methods. 130 

The proposed method consists of three steps: (1) independent data sets for the given time step are generated 131 

using the Monte Carlo method, in which the statistical distribution functions of the observed series are fully 132 

maintained; (2) data from the individual data sets are then rearranged to induce serial and cross-correlation 133 

coefficients of the observed series, and (3) annual streamflows are rearranged to adjust their serial correlation 134 

for time intervals that cross-connect two consecutive years. Such an approach has not been proposed by other 135 

studies. Moreover, up to our best knowledge, other approaches do not deal explicitly with correlation between 136 

data in the transition from one year to another, which is in our methodology done in step 3 by re-ordering 137 

whole years in the generated weekly/monthly series. Ilich and Despotovic (2008) have applied this 138 

methodology to weekly streamflows. Ilich (2014) has introduced the intermittent precipitation series along with 139 

the continuous weekly streamflow series in the simulation procedure. Marković et al. (2015) made further 140 

improvements in order to enhance the method’s performance by employing the logarithmic transformation to 141 
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data in order to reduce skewness coefficient and the effect of outliers, and by including additional control to 142 

simulate persistence of extremely low summer and autumn flows in dry years. 143 

 144 

This paper builds on the previous work of Ilich and Despotovic (2008), Ilich (2014) and Marković et al. (2015) 145 

by expanding the methodology for combined hydrologic and weather generation of time series. The 146 

improvement of the methodology lies in introducing a new method for extrapolation of distribution tails, which 147 

is different to the use of parametric distributions in Ilich and Despotovic (2008) and Ilich (2014). The main 148 

advantages of the proposed methodology are: (1) starting from the shortest time step considered, the 149 

methodology ensures that statistics are preserved for all larger steps, (2) the method preserves the serial 150 

correlation between two consecutive years, (3) both continuous and intermittent hydrologic time series can be 151 

generated, and (4) the procedure is completely automated with a set of default agreement criteria. The 152 

application of the methodology in this paper includes streamflow and precipitation data in Canada and in 153 

Serbia. While Markovic et al. (2015) generated streamflow data for both Canada and Serbia, in this paper 154 

streamflow and precipitation data are jointly generated. By comparing these two sets of results, the efficiency 155 

of the generating algorithm is evaluated in terms of multi-variate applications. 156 

 157 

The next section gives an overview of the proposed methodology. It is followed by its application to two 158 

datasets of weekly flows, one from Serbia (3 hydrologic stations and 1 meteorological station) and one from 159 

Canada (7 hydrologic stations and 4 meteorological stations). The last section provides discussion and 160 

conclusions with recommendations for further improvements.  161 

 162 

METHODOLOGY 163 

 164 

Hydrologic time series represent continuous natural processes and are defined in practical applications in a 165 

discrete form of average flows or total precipitation for a selected time step, such as day, week, or month. They 166 

are modelled as stochastic processes characterized by probability distributions and low-order summary statistics 167 

(i.e., mean, variance, and skewness coefficient), and correlation structures.  168 

 169 

The non-parametric stochastic generation method used in this study is formulated so to respect the principle 170 

that the generated synthetic series should have distribution functions and the correlation structure very similar 171 

to those of the observed series. In order to achieve this, statistics such as the mean, standard deviation, and skew 172 

at each time step should be preserved in the generated series, and the serial and cross-correlations should match 173 

the observed for any significant lag. Annual statistics of the simulated series, such as the annual mean, standard 174 

deviation, and serial and cross-correlations should also match the annual statistics of the observed series. 175 

 176 
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The procedure of stochastic streamflow generation relies on the assumptions that observed data represent the 177 

natural hydrologic regime. This means it should be free from any effects of regulation, such as an upstream 178 

reservoir operation or diversion structures, and that the observed process at each time step has a unique 179 

statistical distribution that should be matched in the simulated series. This distribution function can be 180 

represented either by a theoretical parametric distribution that fits the data well or by using an empirical 181 

distribution, such as the non-parametric kernel-based distributions. The reason for using the non-parametric 182 

probability distributions is to avoid specifying any particular parametric distribution in the data generation 183 

process. A possible probability distribution model can be based on combining a non-parametric approach 184 

within the range of the observed data with a parametric distribution at tails, with smoothed inter-range 185 

transitions (Ilich 2014). 186 

 187 

The observed data, that represent the input for the generation procedure, are organized in a matrix X, as 188 

shown in Figure SM1 in the supplementary material. The number of rows in the matrix is equal to the 189 

number of years n in the record. This matrix consists of K blocks of columns for each of the K stations 190 

considered. If, for example, weekly data are considered, each column in a block contains streamflow series 191 

for one week. For K stations, the total number of variables, i.e., columns in matrix X, is M = 52K for weekly 192 

data or M = 12K for monthly data. Thus, the matrix X is given with: 193 

𝐗 = [𝑥𝑖𝑗],   𝑖 = 1,2, … , 𝑛,   𝑗 = 1,2, … , 𝑀 (1) 194 

The columns 𝑋𝑗 (𝑗 = 1,2, … , 𝑀) of matrix 𝐗 represent the series for each selected time step:  195 

𝑋𝑗 = [𝑥𝑖𝑗],   𝑖 = 1,2, … , 𝑛 (2) 196 

 197 

For the given input matrix X, the correlation matrix C of size M x M contains correlation coefficients 𝜌𝑖𝑗 198 

between two columns Xi and Xj (see Figure SM2 in the supplementary material): 199 

𝜌𝑖𝑗 = 𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗),    𝑖, 𝑗 = 1,2, … , 𝑀 (3) 200 

Diagonal elements ij, when i = j, are equal to 1. Non-diagonal elements of matrix C represent either serial 201 

correlation coefficients (for a single station) or cross-correlation coefficients (inter-station dependence). For 202 

example, for weekly data 𝜌1,20 is the serial correlation between flows in 1st and 20th week at station 1, while 203 

𝜌2,72 is the cross-correlation between the 2nd week flow at station 1 and the 20th week flow at station 2.  204 

 205 

The three steps of the proposed procedure for data generation are described in the sequel providing basic 206 

theoretical background for each step (the full details are presented in Marković et al. (2015)) and using the 207 

pseudo codes with the aim of clarifying the method. The procedure is described for weekly flows, but it is 208 

equally valid for other temporal discretization 209 

 210 
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Step 1 – Generation of independent data sets 211 

The first step is to generate N years of random weekly data having the statistical distributions for each time 212 

step as close as possible to the target statistics of the historical series represented in the matrix X of size n x 213 

M, where n is number of years of the observed data and M is the total number of columns (i.e. M = 52K for K 214 

stations). This step includes compiling the observed series and their log-transformation (to mitigate the 215 

skewness intrinsic in the data), defining the target statistics (observed mean value, standard deviation and 216 

coefficient of skewness) in the log-space for each week at every station, and then running the Monte Carlo 217 

procedure for generating data from the observed distributions. In order to avoid the logarithm of zero, log-218 

transformation of zero precipitation is increased by a constant of 1 mm. For basins exhibiting zero flows, the 219 

same would be applied. Generated data from this step are stored in the resulting matrix G of the generated 220 

independent data sets, which has M columns and N rows (in our study, N = 1000), but in general N can be as 221 

large as necessary. 222 

 223 

The probability distributions of the observed data for each week are defined using the non-parametric kernel 224 

approach combined with an extrapolation algorithm for the distribution tails. The advantage of the non-225 

parametric approach is that it lends itself to a completely automatic procedure, which is a desirable feature. 226 

However, the nonparametric kernel distributions perform poorly outside the range of the observed data. The 227 

idea for distribution function extrapolation in the tail sections in this article originates from the work of 228 

Scholz (1995). This extrapolation method linearizes distribution tails by utilizing linear dependence of a 229 

variate (e.g., streamflow) on the standard variate of a theoretical distribution when plotted on a probability 230 

paper. However, depending on the sample data and existence of outliers, extrapolating the lower tail could 231 

produce negative values while extrapolating the upper tail could yield generated values much greater than the 232 

maximum observed value. Both cases are undesirable. 233 

 234 

To overcome the drawbacks of Scholz’s approach, a different heuristic algorithm is applied here for 235 

extrapolating distribution tails. The linear extrapolation is applied to the log-transformed variate Y = ln X 236 

plotted against the standard normal variate z (Figure 1). The developed algorithm assumes that the upper and 237 

lower tail extrapolating lines must lie within the confidence interval of the observed distribution. However, 238 

the confidence interval of a non-parametric distribution function cannot be constructed outside of the 239 

observed data range. For this reason, the confidence interval limits outside of the observed range are 240 

estimated by assuming the General Extreme Value (GEV) distribution. The GEV parameters are estimated 241 

by the method of L-moments for each observed weekly series according to formulae given by Rao & Hamed 242 

(2000). Each extrapolation line is determined by two points (Figure 1). At the lower tail, the first point is 243 

defined by the log-transformed minimum observed value Ymin, and the second point is a randomly selected 244 

value Y1 from the 90% confidence interval of the 0.1% GEV quantile (i.e., for cumulative distribution 245 

function or CDF value of 0.1% or standard normal variate z = –3.09). Similarly, at the upper tail, the first 246 
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point is the log-transformed maximum observed value Ymax and the second point is a randomly selected value 247 

Y2 from the 90% confidence interval of the 99.9% GEV quantile (with z = 3.09). The “randomness” of the 248 

choice of the points Y1 and Y2 from the 90% confidence interval (Il, Iu) is restricted by the logical conditions: 249 

Y1 cannot be greater than Ymin and Y2 cannot be smaller than Ymax. These constraints can be formalized as: 250 

 251 

𝐼𝑙(0.001) < 𝑌1 < min{𝑌min, 𝐼𝑢(0.001)} (4) 252 

 253 

max{𝑌max, 𝐼𝑙(0.999)} < 𝑌2 < 𝐼𝑢(0.999) (5) 254 

 255 
Figure 1 – Extrapolation of distribution tails applied in the model; the observed Ymin and Ymax are connected 256 

to randomly selected points (crosses) from the 90% confidence interval of 0.1% and 99.9% GEV quantiles  257 

 258 

The random values Y1 and Y2 are obtained from the restricted ranges given in Eqs. 4 and 5 by multiplying the 259 

range span by the uniformly distributed random number from the [0,1] interval and by adding the product to 260 

the lower range limit 𝐼𝑙(0.999) at the upper tail, or subtracting it from the upper limit 𝐼𝑢(0.001)  at the lower 261 

tail. The outermost points (i.e. selected GEV quantiles) are linearly connected to the log-transformed 262 

minimum and maximum observed values Ymin and Ymax. These linear dependencies on the log-normal 263 

probability plot are used for random sampling outside the observed data range (as shown in Figure 1).  264 

 265 

The Algorithm for Step 1 is presented by the pseudo-code for Step 1, which generates M data vectors by 266 

random sampling from the non-parametric distributions of the observed vectors using the pre-set criteria for 267 

agreement of the observed and simulated data statistics (mean, variance and skewness). The generation 268 

process ends when the generated statistics are close enough to the observed ones, as defined by specified 269 

criteria for each statistic. We have chosen to restrain the error in mean logarithmic flows to 0.001 270 
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(corresponding to an error of 0.1% in the original data space) for generating the first 10,000 data. In the case 271 

that desired mean value is not obtained from the first 10,000 data, the tolerance limit is relaxed to 0.003. 272 

Similarly, the tolerance limit in the skew of the logarithmic flows is 0.03 or 0.05 after 10,000 simulations. 273 

 274 

Algorithm 1: Pseudo-code for Step 1 – generating random data vectors  
1: Load n years of historical data in matrix X  (size n x M) 
2: Pre-process X (perform logarithmic transformation and sort each column independently) and 

store in matrix XLS 
3: Initialize output matrix G (size N x M)  for N  years of generated uncorrelated data (gij = 0) 
4: for j = 1 to M        // for each column vector j in XLS  
5:     calculate the observed ratio of zero values p0 in column j 
6:     calculate target statistics for non-zero values 
7:     define target CDF by calculating observed non-parametric CDF and extrapolating the tails 

from data in column j 
8:     for i = 1 to N     // for each year i to be generated 
9:        generate random number u from the range (0, 1) 
10:        if (u < p0) then gij = 0  

       else gij = inverse of target CDF for u  
11:     end for (next i)   // generated data vector Gj created 
12:     calculate statistics for non-zero values in the generated vector Gj  
13:     if  statistics for Gj match target statistics then continue to line 23 (next j); 
14:     else  
15:         set new count k = 1; set maximum number of iterations 
16:         while statistics do not match target statistics or maximum number of iterations is reached 
17:             generate new data value gg (like in lines 9-11) 
18:             create trial data vector Gj by replacing gkj by gg   
19:             calculate new statistics for non-zero values in trial data vector Gj 
20:             if  new statistics are better than old statistics then approve a replacement on kth position 

and set the new statistics is target statistics 
21:         else continue generation process with k = k + 1 (go to line 16) 
22:     end while  
23: end for (next j) 
24: post-process data in G from log-transformed to original data space  
 275 

If the generated series does not fulfill specified criteria after the first N simulations, the algorithm would 276 

continue to generate (N+1)st data value and to evaluate statistics of the series in the range [2, N+1] by 277 

comparing it to those of the series in the range [1, N]. The process of generating one additional data value 278 

and sequential comparison of updated generated statistics with the observed ones is continued for each data 279 

vector until the specified criterion is met. At the end of the process, N years of log-transformed data are 280 

generated for each data vector, having the marginal distribution that corresponds to that of the observed 281 

vector. The generated series are then transformed back from the log space to the original data space and stored 282 

in matrix G.  283 

 284 

Generating precipitation data takes into account that precipitation is an intermittent process and that the CDF 285 

F(x) of a precipitation depth vector consists of two parts: probability p0 of zero precipitation in one time 286 
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interval (i.e., dry interval occurrence), and the conditional CDF of precipitation depth during wet interval 287 

F1(x) weighted by the wet interval probability (1 – p0):   288 

 289 

𝐹(𝑥) = 𝑝0 + (1 −  𝑝0) ∙ 𝐹1(𝑥) (6) 290 

 291 

Generating precipitation data, therefore, has two stages): (1) assessing the dry interval probability 𝑝0 and the 292 

distribution of precipitation depths in wet intervals F1(x) from the observed data, and (2) random sampling of 293 

precipitation depths by sampling a random number u from the uniform [0,1] distribution, evaluating F1 that 294 

satisfies eq. (6) for F(x) = u, and finally estimating the corresponding precipitation depth quantile as 𝑥𝑢 =295 

𝐹1
−1[(𝑢 −  𝑝0)/(1 −  𝑝0)]. The remaining procedure is identical to generating streamflow data.  296 

 297 

Step 2 – Adjusting the correlation structure of the generated series 298 

 299 

The data vectors generated in Step 1 for each week or month represent uncorrelated streamflow or 300 

precipitation series, but they should also have the appropriate correlation structure of the observed series in 301 

order to describe realistically the natural hydrologic or precipitation regime at given locations. The 302 

correlation structure includes serial correlation between weekly or monthly data at each site and cross-303 

correlation between the sites. In the case of streamflows, it is also important that the persistence of low flows 304 

within an extremely dry year is maintained in the generated time series, leading to the occurrence of 305 

extremely low annual flow.  306 

 307 

The algorithm for Step 2 is divided into two parts. The first part deals with data rearrangement to match the 308 

correlation of the observed weekly data (Algorithm 2.1), while the second part serves two purposes: it 309 

improves the fit between the distributions of the observed and generated annual minima, and allows user to 310 

control the fraction of extremely dry years in the generated data set (Algorithm 2.2).  311 

 312 

Algorithm 2.1: Pseudo-code for the first part of Step 2 – adjusting correlation structure 
25: load matrices X and G from Step 1 
26: for M column vectors in matrix X, calculate correlation matrix C (of size M x M) end for 
27: if C is not positive definite matrix, then calculate the closest positive definite matrix and 

store it in C 
28: apply the Iman-Conover method to rearrange elements in G with correlation matrix closest 

to C 
  
Algorithm 2.2: Pseudo-code for the second part of Step 2 – adjusting extremely dry years 
29: set the number nd of extremely dry years in generated data 
30: for each station  
31:   create vector AO of annual sums of observed weekly data in X for n years  
32:   create vector AG of annual sums of generated weekly data in G for N years 
33:   find the smallest value AOmin in AO 
34:   find the smallest nd values in AG and their positions IAG 
35:     for  i = 1 to nd   // perform a loop with respect to indices IAG in G 
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36:     while  AG(IAGi) > AOmin // while generated annual sum in row IAGi is greater than the 
minimum observed annual sum 

37:       find column j with the maximum value in row IAGi of G and store data cell position  
pos1 

38:       find row k with the minimum value in column j of G and store data cell position  pos2 
39:       swap the values between positions pos1 and pos2 
40:       recalculate AG(IAGi) 
41:      end  while   
42:   end  for  (next i)    
43: end  for  (next station) 
 313 

In the first part of Step 2, the algorithm of Iman and Conover (ICA) (Iman and Conover 1982) is used for data 314 

permutations within the generated vectors to achieve target correlation structure. The matrix G resulting from 315 

Step 1 is the input for the algorithm, and its columns are the series to be rearranged. The observed data matrix 316 

X is here used to calculate the observed correlation matrix C, which is set as a target correlation matrix for 317 

ICA. The ICA application was presented in detail in Marković et al. (2015).  318 

 319 

Considering that the purpose of the proposed stochastic method is to provide an input for the optimal design of 320 

reservoir storage and/or optimal reservoir operation, it is important that the generated series cover a wide range 321 

of input data and include events, such as long droughts, that could be critical for reservoir operation. These 322 

events from the lower or the upper tail of flow distributions are not present in the observed series but are 323 

expected to emerge within N years, which is usually much greater than the number of years with observations. 324 

The critical events are very wet or dry years. The dry years with the total annual runoff below the observed 325 

minimum are more critical for water allocation. Although the methodology generally yields the minimum 326 

generated streamflow lower than the minimum weekly observed ones, the previously described rearrangement 327 

for achieving the target correlation structure may not produce an extremely dry years in which low flows persist 328 

over longer durations.  329 

 330 

For this reason, the algorithm of Ilich (2014) is upgraded for additional rearrangement of the simulated data set 331 

so that it contains a number of extremely dry years. This is achieved by additional swaps of the smallest weekly 332 

flows while keeping previously achieved correlation structure, as explained by Markovic et al. (2015) and 333 

shown in Algorithm 2.2 (code lines 35 to 42). One additional rearrangement yields one extremely dry year, but 334 

the procedure can be repeated for an arbitrary number nd of extremely dry years with nd smallest annual flows. 335 

The same procedure of additional rearrangement can be applied for the extreme wet years if they are of interest 336 

for the reservoir operation management. 337 

 338 

Step 3 – Adjusting the correlation of weekly flows from one year to another and of mean annual flows 339 

 340 

Serial correlation of weekly or monthly hydrologic time series for different lags should not only be preserved 341 

within one year but also from one year to another. For example, flows in weeks 1, 2, etc. in a year are 342 
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dependent on flows in weeks 50, 51 and 52 from the previous year. Such correlations in the observed data 343 

should, therefore, be reflected in the generated data. Also, annual streamflows also exhibit correlations that 344 

should be maintained in the generated series. These two requirements can be achieved by rearranging 345 

complete years (i.e., rows in matrix G) with already arranged weekly streamflows (Ilich & Despotovic, 346 

2008). By doing so in Step 3 of the methodology, the generated random variates are effectively converted 347 

into time series with the required correlation structure.  348 

 349 

Algorithm 3 shows the pseudo-code for rearranging generated data to adjust the serial correlation of weekly 350 

data in the transition from one year to another and to adjust the serial correlation of the aggregated annual 351 

data. If s represents the index of the last time interval in a year (s = 52 for weekly data), then for any station 352 

from the given data set 𝜌𝑠,1 is the observed serial correlation coefficient between the 52nd week of the current 353 

year and the 1st week of the next year. Similarly, 𝜌𝑠−1,1 describes the correlation between week 51 in the 354 

current year and week 1 in the next year, etc. Performing additional rearrangement to adjust serial correlation 355 

over the time index range [s – 1, 2] accounts for 2 time lags. The rearrangement criteria for station k is to 356 

minimise the statistic Dk representing the sum of squared differences between observed and simulated 357 

transitional correlations up to lag 2 (Ilich & Despotovic 2008): 358 

 359 

𝐷𝑘 =  (𝜌𝑠−1,1
𝐺 − 𝜌𝑠−1,1)

2
+ (𝜌𝑠,1

𝐺 − 𝜌𝑠,1)
2

+ (𝜌𝑠,2
𝐺 − 𝜌𝑠,2)

2 (7) 360 

 361 

where superscript G denotes correlation coefficients in the generated data. The above statistic can be 362 

expanded to include correlations for any number L of weeks at the end and the beginning of year.  363 

 364 

The correlation structure of the observed annual flows or precipitation also has to be preserved in the 365 

simulated series. Similarly, if RAOl and RAGl denote annual serial correlation coefficients for lag l for the 366 

observed and generated data sets, respectively, the criteria Dk can be expanded by the term which measures 367 

the goodness of fit of the annual serial correlations up to lag m:  368 

 369 

𝐷𝑘 =  ∑ ∑ (𝜌𝑞,𝑝
𝑘𝐺 − 𝜌𝑞,𝑝

𝑘 )
2𝑠

𝑞=𝑠−𝐿+𝑝
𝐿
𝑝=1 + ∑ (𝑅𝐴𝑂𝑙

𝑘 − 𝑅𝐴𝐺𝑙
𝑘)

2𝑚
𝑙=1  (8) 370 

 371 

where q and p are indices of weeks in the transition from one year to another and s is the number of weeks in 372 

a year. The serial correlation of weekly data can generally be adjusted up to an arbitrary lag L, while the 373 

annual serial correlation is adjusted up to the lag m = N / 4, where N is the number of data years in the 374 

observed series, as recommended by Box and Jenkins (1970). For all gauging stations, composite criteria 375 

statistic can be introduced as the sum of all Dk values, where K is the number of stations: 376 

 377 

𝐷 =  ∑ 𝐷𝑘
𝐾
𝑘=1  (9) 378 
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 379 

The rearrangement of rows in matrix G is performed until D is sufficiently small, i.e., smaller than a pre-set 380 

value D0.  To find an appropriate order of years (i.e., rows in matrix G) that satisfies the transitional weekly 381 

and annual correlations, the algorithm in this step combines forward and backward searches for substitute 382 

rows, starting from the first and the last row of G simultaneously. The algorithm stops at the first encounter 383 

of satisfied criteria for statistic D. 384 

 385 

Algorithm 3: Pseudo-code for Step 3 – adjusting transitional weekly correlation and annual correlation 
44: load matrices X and G from Step 2 
45: set the value for the number L of ending/starting weeks in a year to be included in the adjustment 
46: set the value for the number m of lags in annual serial correlation function to be included in the adjustment  
47: set the value for the tolerance limit D0 for the criteria statistic D 
48: for each station k of K 
49:    find transitional weekly correlations: 
50:       from X extract L last columns with rows from 1 to n – 1 and L first columns with rows from 2 to n 
51:       from G extract L last columns with rows from 1 to N – 1 and L last columns with rows from 2 to N 
52:       calculate L(L+1)/2 correlation coefficients rho_qp between the extracted columns in each: X and G 
53:    calculate D1(k) as the sum of differences between observed and generated rho_qp for all lags  
54:    find annual correlations:  
55:       create vector AO of annual sums of observed weekly data in X for n years  
56:       create vector AG of annual sums of generated weekly data in G for N years 
57:       calculate autocorrelation functions RAO and RAG of observed/generated annual data up to lag m  
58:    calculate D2(k) as the square sum of differences between RAO and RAG for all lags  
59: end for (next station) 
60: calculate statistic D = D1 + D2 
61: start rearrangement algorithm on matrix G: set initial best statistic DB = D 
62:    for i_asc = first year to last year with increment +1 
63:       for i_desc = last year to first year with increment -1 
64:          if i_asc <> i_desc 
65:             trial swap of data values between rows i_asc and i_desc 
66:             re-calculate correlation coefficients and statistic D  
67:             if D < DB then accept trial swap and set DB = D 
68:             if DB < D0  then break 
69:          end if // i_asc <> i_desc 
70:       end for (next i_desc)  
71:    end for (next i_asc) 
 386 

APPLICATION 387 

 388 

Models and Data Sets 389 

The presented method for multi-variate, multi-site and multi-temporal stochastic hydrologic generation is 390 

applied to two data sets, one from Serbia and one from Canada, consisting of streamflow and precipitation 391 

data series from a different number of stations. For both data sets, two models are applied: (1) model for 392 

generation of streamflow series, denoted here MG-Q, and (2) model for generation of streamflow and 393 

precipitation series, denoted MG-QP. Both models are applied for two time discretization: weekly and 394 
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monthly (symbolized by letters w and m respectively; e.g., MG-Q(w) is the model for generating streamflows 395 

on a weekly scale.  396 

 397 
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Figure 2 – The map of the study area in Serbia (top) and Canada (bottom) – short codes and full names for 399 

the stations used in the model application 400 

 401 

The Serbian data set comprises daily data from three hydrologic stations (Devići, Mlanča, and Ušće) on the 402 

Studenica River and meteorological station Kraljevo with the precipitation data (upper part of Figure 2). The 403 

streamflow data represent natural flows because there are no water control facilities on the Studenica River. 404 

Prior to the application, data were subjected to quality control procedures. Minor gaps were filled using the 405 

regression analysis with other stations. The record is 49 years long, from 1964 to 2012. 406 

 407 

The Canadian study region is the Oldman River in Southern Alberta with two of its tributaries, Waterton 408 

River and St. Mary River (lower part of Figure 2). Naturalized weekly flows were obtained from Alberta 409 

Environment’s natural flow database, with an available record from 1912 to 2001, and for precipitation from 410 

1928 to 2001. Ilich (2014) used this data set as an example for his original procedure. Table SM1 in the 411 

supplementary material summarizes information for all stations. 412 

 413 

The presented method for stochastic streamflow generation is coded in the MATLAB environment according 414 

to the Algorithms 1, 2 and 3 and executed on various computing machines from laptop to desktop PCs. Our 415 

experience is that the execution is substantially dependant on the number of variables that are of interest 416 

(streamflows, precipitation, temperatures, etc.), the number of gauging stations and the length of the 417 

simulation time step. In the case of application of MG-QP model to the Canadian data set (7 streamflow and 418 

4 precipitation stations) at weekly time scale, the computational time is as follows: 1h for Step 1, 3 min for 419 

Step 2, and 20 h for Step 3. Faster execution would be possible if the code was implemented in computer 420 

languages that can be compiled. 421 

 422 

 The paper of Markovic et al. (2015) presented the results of simulations involving only the MG-Q model 423 

(streamflow data generation only) for Canadian and Serbian data sets. This paper presents the results for 424 

MG-QP model that includes both streamflow and precipitation data from Canada and Serbia. These two sets 425 

of results enable comparing the efficiency of the algorithm in generating streamflows by taking into account 426 

either streamflow dependence structure only, or streamflow-precipitation dependence structure. 427 

 428 

Results 429 

 430 

Results for Step 1 – generation of random series. The distributions of the generated weekly vectors obtained 431 

by the MG-QP model are almost identical to the observed ones. Figure 3(a) shows the empirical distributions 432 

of the observed and simulated 10th-week precipitation for the Serbian precipitation station SP1. For 433 

comparison reasons, some of the most commonly used parametric distribution functions (Gumbel, Pearson 3, 434 

log-Pearson 3, two-parameter gamma) are also applied to the data in Figure 3(a). It can be seen that in this 435 
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example the employed parametric distributions do not have necessary flexibility to describe the data at 436 

distribution tails, while the non-parametric distributions provide that the generated data have almost the same 437 

empirical distribution as the observed data. Also, the non-parametric distributions are more appropriate at the 438 

lower tail, where some parametric distributions would yield negative values. The same results for stations 439 

CP1 and S2 are given in Figures SM3 and SM4, leading to the same conclusions. 440 

 441 

The good fit of the distributions of the observed and generated vectors also lead to a good fit in the vector 442 

statistics. The means, standard deviations and skew coefficients of weekly precipitation are almost identical 443 

for the observed and simulated series, as shown in plots (b), (c) and (d) of Figure 3. For example, the relative 444 

errors in mean weekly flows/precipitation data are in the range of 0.2–6.4% for station S1 (mean 2.1%), 0.1–445 

6.2% for station S2 (mean 2.2%), 0–5.9% for station S3 (mean 2.3%) and 0.1–7.9% for station SP1 (mean 446 

2.7%). Complete results on errors in means are given in Table SM2, showing that the errors for the shorter 447 

Serbian data set are comparable with those for the longer Canadian data set.   448 

 449 

The generated data sets have greater maxima than the observed ones, as expected in the longer series (Figure 450 

SM6). Similarly, simulated minimum flows are smaller than the observed, as shown by Markovic et al. 451 

(2015). With zero being the most frequent minimum value in the observed precipitation series, the same is 452 

the case in the simulated series. Also, the percentages of zero values in the observed and the generated 453 

precipitation series are very similar (panel (c) in Figure SM6).  454 

 455 
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 456 
Figure 3 – Model MG-QP(w), precipitation station SP1: (a) empirical distributions of the observed and 457 

simulated precipitation for week 10 compared to four commonly used distributions fitted to the observed 458 

data; (b)-(d) observed and simulated means, standard deviations and skew coefficients of data vectors for 459 

each week. 460 

 461 

 462 

Figure 4 – Model MG-QP(m), Box-and-whiskers plot of the observed (white) and simulated (grey) monthly 463 

precipitation at meteorological station SP1 464 

 465 
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The same conclusions can be made about good reproduction of the distributions of observed monthly 466 

vectors. Figure 4 compares these distributions using the box plots. The errors in mean monthly data are in the 467 

range of 0.1–4.8% for Serbian stations and 0.0–4.4% for Canadian stations (Table SM3).  468 

 469 

Results for Step 2 – Serial and cross-correlation. The data rearrangement resulting from the application of 470 

the ICA results in a good fit between the observed and generated correlation structure. Lag 1 and lag 2 serial 471 

correlations for stations SP1 and S2 are compared in Figure SM7. Equally good results are obtained for 472 

higher lags and for all stations. It is important to notice that the algorithm reproduces not only high 473 

correlations but also the small ones, which are below the significance level. The average and maximum 474 

differences of the observed and simulated correlation coefficients for weekly data (derived from the 475 

correlation matrices for corresponding data) are 0.035 and 0.273 for Serbian stations, respectively, and 0.033 476 

and 0.308 for Canadian stations, respectively.  477 

 478 

For the monthly data reproduction of autocorrelation is also good (Figures SM8). The average and maximum 479 

differences of the observed and simulated correlation coefficients for monthly data are 0.021 and 0.118 for 480 

Serbian data, and 0.022 and 0.169 for Canadian data. 481 

 482 

Results for Step 3 – transitional weekly correlation and annual correlation. The data rearrangements in step 483 

3 lead to adjustment of the correlation coefficients in the year-to-year transition and therefore at the end of 484 

this step the generated data represent the time series with the completely reproduced autocorrelation function 485 

(ACF) of the observed time series. The simulation results show that the transitional year-to-year correlations 486 

for weekly data are well simulated (Table SM4). The differences between the observed and generated 487 

transitional correlations are generally very small (in average 0.036), but the greatest differences (up to 0.383) 488 

are attributed to Serbian hydrologic stations. As a result, the ACFs of the observed and generated data are in 489 

good agreement. The examples of the ACFs for weekly precipitation are given in Figure 5, showing that the 490 

correlation structure is preserved even for small correlations close to zero. Similarly, comparison of the 491 

cross-correlation functions for weekly data at selected stations (Figures SM9 and SM10) also shows good 492 

agreement.  493 

 494 
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 495 
Figure 5 – Model MG-QP(w), comparison of serial correlation functions of the observed and simulated 496 

weekly precipitation at station SP1 (top) and CP1 (bottom) 497 

 498 

When aggregated on a coarser temporal scale, the generated data are comparable to the aggregated observed 499 

data in terms of the annual statistics, distributions and correlation structure. This is shown by aggregating 500 

generated weekly data to 4-weeks scale and to annual scale. An example of the observed and simulated 501 

annual precipitation distribution functions is shown in Figure SM11. This figure also illustrates the effect of 502 

additional treatment at the end of Step 2 over the years with low annual precipitation, which results in a 503 

better agreement of the lower distribution tail. 504 

 505 

The main statistics for the weekly streamflow data aggregated to the 4-weeks scale for one station are 506 

presented in Figure SM12, also showing good agreement. The comparison of the statistics of the annual 507 

streamflows and precipitation aggregated from weekly data is given in Table SM5, showing remarkable 508 

agreement. Differences in the means do not exceed 2.3% and 2.9% for Serbian and Canadian stations 509 

respectively, while the differences in standard deviations are almost negligible for flows and somewhat 510 

greater for precipitation due to its more random nature.  511 

 512 
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Serial correlation is also preserved in the aggregated series. Annual ACF of weekly precipitation aggregated 513 

to annual scale for two stations are shown in Figure 6. Statistically insignificant correlations are here well 514 

reproduced in the simulated series for up to 12 lags. The cross-correlation of the annually aggregated weekly 515 

data is also preserved (Table SM6). The average and maximum deviations of the observed and simulated 516 

cross-correlations are 0.008 and 0.048 for Serbian data respectively, while the corresponding values for the 517 

Canadian data are 0.016 and 0.08 (these are slightly greater because more precipitation stations were 518 

included in imposing the correlation structure). Figure SM13 presents ACFs of weekly data aggregated to 4-519 

weeks scale. 520 

 521 

 522 

Figure 6 – Model MG-QP(w), ACFs of annually aggregated weekly data for stations SP1 (left) and CP1 523 

(right)  524 

 525 

In the 1000-year long generated series, the annual extreme values should exceed those found in the observed 526 

series. The generated and the observed annual minima or maxima should generally be evaluated in terms of 527 

their distributions. To avoid deciding on the goodness-of-fit of the theoretical distributions to the observed 528 

and generated data, we compare the ranges of theoretical quantiles obtained by fitting some of the commonly 529 

used theoretical distributions to both observed and simulated annual data (we used log-normal, Gumbel, 530 

Pearson 3, log-Pearson 3, two-parameter gamma distributions). The ranges of theoretical quantiles of the 531 

minimum and maximum annual weekly streamflows for station C1 are compared in Figure SM14. The 532 

ranges of theoretical quantiles of generated maxima mostly overlap with those for the observed maxima, 533 

although are somewhat wider. The ranges of theoretical quantiles of generated minima also mostly overlap 534 

with those for the observed minima and can be lower than their observed counterparts for greater 535 

probabilities. This indicates the direction for future improvement of the model.  536 

 537 

The effects of the rearrangement algorithms in Steps 2 and 3 can also be seen through marginal 538 

improvements in achieving dependence structure of the generated data after Step 1, Step 2 and Step 3. This is 539 
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illustrated for weekly ACFs, transitional weekly correlations and serial correlation of weekly streamflows 540 

aggregated to annual scale in Figures SM15, SM16 and SM17. 541 

 542 

The results for monthly data show equally good agreement of transitional year-to-year correlations (Table 543 

SM7) and of complete ACFs (Figure SM18). Comparison of the statistics of the annually aggregated 544 

monthly data is shown in Tables SM8 and SM9.  545 

 546 

Comparison of MG-QP and MG-Q models. By comparing the results for the streamflows simulated by the 547 

MG-QP model presented in this paper with the results of the simulations with the MG-Q model presented in 548 

Markovic et al. (2015), no significant differences in the model performance can be seen. For example, 549 

empirical distributions of observed and simulated series, observed and simulated weekly flow means, 550 

standard deviations and skew coefficients are almost the same for both models (Figures SM4 and SM5). 551 

Also, the relative errors in the means of weekly streamflows by the MG-Q model range from 0.0% to 3.65%, 552 

which is virtually the same as with the MG-QP model. Additional comparisons of the results of two models 553 

are given in the supplementary material (Figures SM19, SM20, and SM21) showing that the model 554 

performance is not deteriorated with the introduction of a greater number of variables and more complicated 555 

dependence structure of the multi-variate setup.   556 

 557 

CONCLUSIONS  558 

 559 

This paper presents the development and application of the stochastic model for generating simultaneous 560 

multi-variate hydrological time series for weekly or monthly temporal scale. The following are the main 561 

characteristics of the proposed methodology: 562 

- It uses non-parametric distributions coupled with the extrapolation algorithm for data generation and 563 

non-parametric rearrangement algorithms to achieve the target correlation structure. 564 

- The heuristic extrapolation algorithm provides robust solution for extrapolating tails and allows fully 565 

automated execution of the algorithm. 566 

- The methodology ensures that the empirical statistic properties of the processes are preserved to a 567 

satisfactory degree  at the simulation time scale as well as at coarser time scales (e.g. by aggregating 568 

from weekly to monthly or annual scale). 569 

- The method preserves the serial correlation on the transition from one year to another. 570 

- Both continuous and intermittent hydrologic time series can be generated. 571 

- The generation process is based on the log-transformed data in order to reduce the effect of outliers 572 

and avoid negative generated values. 573 

- The procedure is completely automated with a set of default agreement criteria. 574 

 575 
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The results derived from the two independent data sets (from Serbia and Canada) show that the model can 576 

satisfactorily reproduce probability distributions of multi-variate observed series. This is evident from the 577 

good match between the main statistics (mean, variance and skewness coefficient) of the generated and the 578 

observed data series. For example, the average relative errors of the observed and simulated weekly 579 

precipitation and streamflow series are in the range of 0.1–9.2%, and 0–5.4%, respectively (Table SM2), for 580 

the Canadian case study. The agreement is achieved by a careful application of nonparametric probability 581 

distributions on log-transformed observed data and by using the developed algorithm for the extrapolation of 582 

the nonparametric probability distribution. 583 

 584 

The logarithmic transformation of the observed data mitigates the influence of outliers and/or skew in data 585 

on the resulting long synthetic data series. The algorithm for the extrapolation of the nonparametric 586 

probability distribution uses the linear extrapolation of the cumulative distribution functions using the log-587 

normal probability plot. The extrapolation is performed in the range of the 90% confidence interval of the 588 

GEV probability distribution for the 1000-year quantiles. This algorithm enables equally successful 589 

simultaneous generation of long streamflow and precipitation series in a hydrologically homogeneous region. 590 

 591 

Two model setups that are considered, one based solely on streamflow data (presented in Marković et al., 592 

2015) and another based on streamflow and precipitation data (presented in this paper), generate series of 593 

almost identical stochastic and marginal characteristics to those observed. 594 

 595 

Further research should go in the direction of algorithm refinement regarding computational efficiency for a 596 

large number of gauging sites with long records and short time steps (e.g., daily time step). Another 597 

improvement can be found in development of a more efficient method for the optimization algorithm in step 598 

3.  599 

 600 
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