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Abstract: Model-driven forecasting, used for flood risks or big hydropower systems 14 

management, can produce results of unsatisfying accuracy even with best-calibrated 15 

hydrodynamic models. One of the biggest uncertainty sources is the inflow data, either 16 

produced by different hydrological models or obtained using unreliable rating curves. To 17 

keep the model in the up-to-date state, data assimilation techniques are used. The aim of the 18 

assimilation is to reduce the difference between simulated and observed state of selected 19 

variables by updating hydrodynamic model state variables according to observed water 20 

levels. The widely used data assimilation method applicable for nonlinear hydrodynamic 21 

models is Ensemble Kalman Filter (EnKF). However, this method can often increase the 22 

computational time due to complexity of mathematical apparatus, making it less applicable in 23 

everyday operations. This paper presents the novel, fast, tailor-made data assimilation 24 

method, suitable for 1D open channel hydraulic models, based on control theory. Using 25 

Proportional-Integrative-Derivative (PID) controllers, the difference between measured levels 26 
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and simulated levels obtained by hydrodynamic model is reduced by adding or subtracting 27 

the flows in the junctions/sections where water levels are measured. The novel PID control-28 

based data assimilation (PID-DA) is compared to EnKF. Benchmarking shows that PID-DA 29 

can be used for data assimilation, even coupled with simplified 1D hydraulic models, without 30 

significant sacrifice of stability and accuracy, and with reduction of computational time up to 31 

63 times. 32 

Keywords: PID control; control loop feedback mechanism; short-term forecasting; Ensemble 33 

Kalman filter; data assimilation speed up 34 

1. INTRODUCTION  35 

Population growth and high urbanization under ongoing climate changes have created 36 

society highly sensitive to increasingly frequent extreme hydrological events (Coumou and 37 

Rahmstorf 2012; IPCC 2012). Managing flood risks and river systems used for electrical 38 

energy production, water supply, irrigation or inland navigation, even in regular, average 39 

hydrological events, and especially during extremes, creates extra pressure in decision-40 

making. In order to optimize the water resources management on daily basis, experts require 41 

long-term and, more often, short-term forecasts. For this purpose, different numerical models 42 

and monitoring systems are used.  43 

The quality of model-driven forecast (e.g. water level forecasting) is often reduced due to 44 

numerous uncertainty sources (Bozzi et al. 2015; Vrugt et al. 2008). Inflows are susceptible 45 

to uncertainties (as analyzed by Bai et al., 2016) mostly due to high uncertainty of rating 46 

curves (Ocio et al. 2017) or inadequate hydrological model used. Additionally, model 47 

calibration is done only for selected (historical) sets of data. This results in model’s inability to 48 

produce results of satisfying accuracy when simulating current real-life conditions. In order to 49 

overcome this and improve model’s simulation accuracy, Data Assimilation (DA) techniques 50 

are widely used (Vrugt et al. 2006). 51 

DA combines results from previously calibrated model with observation (measured) data, 52 

together with model’s and observation’s uncertainties, and computes the update of model’s 53 
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state, dynamically reducing model’s uncertainty and providing better forecasts (Habert et al. 54 

2016). Different DA tools have been successfully applied in hydrological and hydrodynamic 55 

modelling. One of the most commonly used is Kalman filter (Kalman 1960) and its 56 

modifications used for highly nonlinear models (Evensen 2003), named Ensemble Kalman 57 

Filter (EnKF) (Reichle et al. 2002). Madsen et al. (2003) applied EnKF coupled with MIKE 11 58 

hydrodynamic model to improve the flood forecast in the Piedmont region in the northwestern 59 

part of Italy. Vrugt et al. (2006) used the Sacramento Soil Moisture Accounting conceptual 60 

watershed model (SAC-SMA) coupled with EnKF for operational streamflow forecasting and 61 

flood warning systems in the USA. Coupling hydrological model and EnKF algorithm was 62 

also presented in Clark et al. (2008), where streamflow observations were used in order to 63 

update states (water levels). Coupling EnKF and hydrodynamic model based on shallow 64 

water Saint-Venant’s equations increased forecast accuracy of 50-70% as presented by 65 

Neal, Atkinson and Hutton (2007). Combination of LISFLOOD-FP (Bates and Roo 2000) and 66 

EnKF was presented in Andreadis et al. (2007), Andreadis and Schumann (2014) and 67 

Munier et al. (2014). Neal et al. (2009) applied EnKF in combination with HEC-RAS model 68 

(Brunner 2010) in order to estimate river discharge on an un-gauged basin using water level 69 

data obtained by satellite images. Application of Synthetic-Aperture-Radar images for 70 

assimilation into hydraulic models was presented in several researches (García-Pintado et 71 

al. 2013; Mason et al. 2012). Recent research in the area of DA for flood forecast on big 72 

rivers was done by Barthélémy et al., (2017), using EnKF coupled with MASCARET 73 

hydraulic model (Goutal and Maurel 2002) for operational flood forecasting on the Adour 74 

Maritime river. Further analyses of observations and parameters impact and domain length 75 

for flood forecasting can be found in Cooper et al., 2018. 76 

All these researches show high applicability of EnKF in hydrologic/hydraulic modelling. Even 77 

though the EnKF is the most commonly used DA method it has some restrictions. In order to 78 

avoid those restrictions, some more complex methods are used: Particle Filters (presented 79 

by Del Moral (1997)) (Chen, Pang, and Wu 2018; Matgen et al. 2010; Moradkhani et al. 80 

2005; Xu et al. 2017), variational methods (Kabir, Appiah Assumaning, and Chang 2017; Seo 81 



4 
 

et al. 2009) or new method called Ensemble Smoother (Li, Stetler, et al. 2018; Li, Puzel, and 82 

Davis 2018).  83 

The main drawback of EnKF and all other complex methods is that they are computationally 84 

expensive. When used for hydrological/hydraulic forecast, in many cases those methods will 85 

fail to perform in reasonable time (Madsen and Skotner 2005). If there is requirement for fast 86 

evaluation and forecast of the water system state, in order to prevent or reduce flood hazards 87 

and/or increase benefit from hydropower production, then there is necessity for easy 88 

understanding and time effective modelling/assimilation tool for everyday use by water 89 

system operators. Many researchers tried to develop simplified, tailor-made, assimilation 90 

techniques suitable for solving some specific problems. For example, Madsen and Skotner 91 

(2005) developed a cost-effective filtering procedure for river model. Instead of computing 92 

Kalman gain matrix for each assimilation step, the procedure uses the predefined set of 93 

gains to update the water levels. On the other hand, Hansen et al., (2014) applied 94 

deterministic water level assimilation in urban drainage systems for better flow forecast. This 95 

approach, presented by Hansen et al. (2014), uses indirect water level update, based on 96 

adding/subtracting correction flow to the system.  97 

This paper presents DA methodology based on adding/subtracting correction flows at 98 

observation locations. In this research, correction flows are calculated using Proportional-99 

Integrative-Derivative (PID) controllers in the procedure called PID control-based data 100 

assimilation (PID-DA). The PID-DA is developed for 1D open channel hydraulic models, used 101 

for modelling river systems, where correction flows are implemented as simple lateral (fictive) 102 

inflow in continuity equation. Potential of using the PID controllers as DA tool was introduced 103 

in Rosić, Jaćimović, et al. (2017) and in Rosić, Prodanović, et al. (2017), providing just the 104 

general overview of the methodology and without comparing with the existing DA techniques. 105 

Milasinovic et al. (2018), (2019) continued developing and testing PID-DA but without 106 

benchmarking with other DA methods and without analysis of time cost efficiency. Therefore, 107 

this paper presents further insight into the novel DA methodology (PID-DA).  108 
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The aim of this paper is to present and test the novel, tailor-made, PID-DA approach. The 109 

paper will benchmark PID-DA to the EnKF, showing that this novel approach is easy to 110 

implement in 1D hydraulic models, is fast and robust. PID-DA and EnKF are applied for 111 

correction of model states (water levels) in the assimilation window (period when 112 

observations are available) on test examples. Along with water level assimilation 113 

performance assessment, computational efficiency is also compared. Different PID 114 

controllers and EnKF settings are applied to hydraulic (hydrodynamic) models of different 115 

complexity. The analysis presented in the paper shows that PID controllers as DA tool can 116 

be coupled with simplified hydraulic model, without significant sacrifice of accuracy. The main 117 

benefit of using PID-DA is substantial reduction of computational time and ease of 118 

implementation, which often limits the application of EnKF in everyday water systems 119 

operations.  120 

2. METHODS AND MATERIALS 121 

2.1. Methodology overview 122 

Formal DA procedure (EnKF, PF, variational methods, etc.) can be described using two 123 

repeating steps. In the first step, forecast, the (river) model is used in free-run mode to 124 

calculate the variables describing the system state (water levels) using several calculation 125 

time steps with known model’s driving data (inflows). Next step of data assimilation process 126 

is correction of the forecasted states (correction of levels) at the present (or current) time, 127 

when observations (level measurements with assessed uncertainty) are available, Fig. 1a. 128 

Correction of the states is conducted according to the selected assimilation algorithm (EnKF, 129 

PF) and uncertainties of both measured and forecasted levels. Since correction of present 130 

model’s state is done, it is named in this paper as Real-Time assimilation (RTa), regardless 131 

of time spent in the EnKF or PF algorithm. If observations are not available at the current 132 

time, no correction is performed.  133 

Novel DA tool in 1D open channel hydraulic model (PID-DA) requires slight modification of 134 

formal data assimilation procedure. The assimilation is not Real-Time (RTa) in a sense that 135 
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just one, current observation is used to correct present state of the model. Assimilation is 136 

done in a Near Real-Time (NRTa), for selected previous period, when measurements 137 

already exist. During that previous period, model is continuously updated in each 138 

simulation time step, using either measured or interpolated water level data in order to 139 

reduce the difference between measurements and model results (Fig. 1b). The assumption 140 

in presented procedure is that inflow data are with much higher uncertainty than measured 141 

water levels. Hence, PID controllers will add/remove flow from the model to reduce difference 142 

between modelled and measured water levels. Having this assumption extends to the 143 

assumption that main source of uncertainty are non-reliable boundary conditions (e.g. 144 

unreliable data for upstream or lateral inflows obtained by hydrological models, unreliable 145 

rating curves, etc.). The model update is controlled by several PID controllers which 146 

continuously add/remove the flows at assimilation locations (at selected observation 147 

locations, using fictive lateral inflow). Flows, added or subtracted at assimilation locations, 148 

are calculated using Proportional-Integrative part of the controller, according to water level 149 

difference between observed (measured) and calculated levels. A PID controller (Karl Astrom 150 

2002; Skogestad 2004) is a control loop feedback mechanism that adjusts the added flow, 151 

trying to reduce the water level difference in a reasonable time.  152 

Because of the continuous PID controller’s nature, forecast and correction steps are not 153 

clearly divided. The correction is conducted at each computation time step, during the 154 

selected, previous period of simulation process (Fig. 1b). Since time step for measured data 155 

is much longer than computation time step, the water level difference is computed based on 156 

the linear interpolation between measured levels (“Interpolated state used for NRTa” on Fig. 157 

1b).  158 

The explanation of PID-DA for 1D hydraulic model is presented in the following sections. 159 

General application of PID controller-based data assimilation on river model is presented in 160 

the Figure 2. 161 
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a) b) 

Figure 1. General data assimilation procedure. a) standard EnKF, b) with PID controller 162 

 163 

Figure 2. PID controller-based data assimilation procedure for water level updating in 1D 164 

hydrodynamic models (example: Danube section downstream of Iron Gate, border between 165 

Serbia and Romania) 166 

2.2. 1D hydrodynamic diffusion wave model – DiffW1D 167 

To analyze the effects of model’s complexity on both PID-DA and EnKF, diffusion wave 168 

model is used. This model for water level forecasting is based on 1D Saint-Venant equations 169 

(1) and (2) (Costabile and Macchione 2012)). Diffusion wave model is derived from the full 170 
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Saint-Venants equations by neglecting convective acceleration in momentum conservation 171 

equation (2). 172 
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Original diffusion wave model neglects inertial terms in eq. (2) (first and the second terms). 173 

Diffusion wave model implemented in this paper (DiffW1D) differs from the original form by 174 

adding local acceleration term (∂Q/∂t) including the backward wave propagation effect 175 

(Petrovic, Palmar, and Ivetic 1994). Model domain discretization is presented in Fig. 3a. 176 

Using this approach, river domain is divided by cross-sections. Numerical DiffW1D model 177 

use staggered numerical scheme where water levels and flows are calculated in alternating 178 

cross-sections (Abbot and Basco 1989) as presented in the Fig. 3b. Numerical model of the 179 

diffusion wave is given by the equations (3) and (4): 180 
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  (4) 

 

 
 

a) b) 

Figure 3. (a) Model domain discretization and (b) numerical scheme using DiffW1D model 181 
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Numerical model analyzed in this paper, together with used assimilation algorithms, is coded 182 

in MATLAB (MathWorks Inc. 2018). Computational time is measured only for the part of the 183 

code where the model equations and assimilation are performed; pre-processing and post-184 

processing phase were not included in simulation efficiency tests. 185 

 186 

2.3. Assimilation methods 187 

Well established EnKF data assimilation is used as benchmark to assess the performance of 188 

the new PID control-based algorithm. PID controller-based assimilation is developed under 189 

the assumption that the main source of uncertainty in the model is the inflow as boundary 190 

condition. 191 

2.3.1. PID control-based data assimilation – PID-DA  192 

Proportional-Derivative-Integrative controller is a control loop feedback mechanism, where 193 

input in the next step is a function of the previous output (Karl Astrom 2002). This 194 

mechanism is often used for Real-Time-Control of different process (e.g. RTC of hydraulic 195 

structures in urban drainage systems (Schütze et al. 2004)). PID controller input is named as 196 

error, which is calculated as a difference between current value of the process variable (e.g. 197 

water level) and the setpoint of the variable (e.g. desired water level). PID controller tends to 198 

reduce error using the control variable. When PID controller is applied as data assimilation 199 

tool (PID-DA), error e(t) is calculated as difference between observed water level Zobs(t) and 200 

water level obtained by 1D hydraulic model Zmodel(t). Control variable used to reduce this error 201 

is lateral inflow QPID(t) (Fig. 2, eqs. (5) and (6)).  202 

 
0

( )
( ) ( )

t

t

PID PID

t

d e
Q t Q P e t I e t dt D

dt
       (5) 

     
modobs el

e t Z t Z t   (6) 

 203 

PID parameters are: P - proportional gain factor used to multiply the current error value, I - 204 

integrative gain factor used to add the influence of previous errors and D - derivative gain 205 
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factor used to adopt control to current trends in error change. Mostly, PID controller is used 206 

as the Proportional (P) or Proportional-Integrative (PI) controller. Goal of PID control is to 207 

reach setpoint in a system in reasonable time (reach the measured water levels by adjusting 208 

the model). P gain produces an output based only on the current value of the error. High 209 

values of P gain cause big variations in controllers’ output that can make system unstable 210 

(extremely big correction flow in one time step, extremely low correction flow in the next time 211 

step). Low values (towards zero) of P gain avoid problems of unstable system, but time 212 

needed for reaching the setpoint increases and, practically, makes system unable to reach 213 

the goal. Therefore, integrative I gain is used. This gain collects previous errors and their 214 

duration, trying to minimize them over time. This gain can significantly reduce time needed 215 

for reaching the setpoint. In some cases, in highly dynamical systems with rapid changes, 216 

Derivative component is included to estimate the error trend (what will be the error in the 217 

near future). However, the D component is sensitive in systems with high measurement 218 

noise and can enhance the controller’s instability. Hence, proper tuning of the parameters 219 

depends on the problem being solved (there are no recommended values). Tuning the P, I 220 

and D gains can be done manually (by trial and error) or using some heuristic approaches 221 

(Ziegler and Nichols 1995). 222 

Original form of the error calculation (difference between value of process variable and 223 

setpoint) given by the eq. (6), assumes that observation time step Δtobs is equal to the 224 

simulation time step Δt. In most applications, the simulation time step is much shorter and, in 225 

the period between two existing observations, the “observed” state in eq. (7) is calculated 226 

using linear interpolation. It can be assumed that the accuracy of interpolated “observed” 227 

level is decreasing as the time interval from the last observation is increasing, so a form of 228 

dumping factor is introduced. In this paper, it is defined by eq. (8) and is presented on Fig. 4.   229 

*

mod( ) ( ) ( )obs el Ce t Z t Z t 
     (7) 
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 230 

In eq. (7), Z*
obs represents observed water levels obtained by linear interpolation, Zmodel is 231 

simulated water level and C is dumping factor. In eq. (8) tprev_obs is time of the previous 232 

available observation, t is current simulation time, tobs is observation time and Δtobs is 233 

observation time step.  234 

 235 

Figure 4. Error dumping factor (periodical, discontinuous, function) as measure of uncertainty 236 

(minimal value of the dumping factor depends on specific values of simulation time step Δt 237 

and observation time step Δtobs)  238 

Dumping factor in eq. (7), will gradually turn off PID controller (Fig. 4) in periods between two 239 

measurements. This means that, as model progress forward in time, in period without 240 

measurements, smaller weight is given to the errors calculated using interpolated water 241 

levels. Dumping function can be also seen as a way to include the observation uncertainty 242 

into the process of assimilation: the error function for measurements with higher uncertainty 243 

will be smaller, reducing the influence of measurement over the simulation. Using data 244 

quality evaluation algorithm in a pre-processing phase (e.g. N. Branisavljević, Prodanović, 245 

and Pavlović (2010) and Branisavljević, Kapelan, and Prodanović (2011)) the value of 246 

dumping function can be estimated. This means that if data quality, assessed through one of 247 
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the data quality algorithms, is low, smaller weights would be given to the errors calculated 248 

using this data. Another multiplier in eq. (7) would be used for implementation of this type of 249 

dumping factor. In this research, only dumping factor for reducing impact of interpolated 250 

water levels is used. Thus, in used PID-DA algorithm, only observation uncertainty is 251 

included, unlike EnKF data assimilation where both model’s and observation’s uncertainties 252 

are used.  253 

PID controllers are implemented as lateral inflow elements in hydraulic model. Therefore, eq. 254 

(3) used in DiffW1D model has the following shape: 255 

1 1

2 2

t t t
t t t i i PID
i i t t

i i

Q Q Qt t
Z Z

B x B x

   
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 (9) 

2.3.2. Ensemble Kalman filter (EnKF) with SLS inflation and localization  256 

Ensemble Kalman Filter – EnKF (Evensen 1994, 2003) is used for benchmarking the 257 

proposed PID-DA method. EnKF algorithm implemented in this paper is used for state 258 

estimation, where water levels in each discretization element (reservoir or cross-section) are 259 

considered as model state variable. In order to use EnKF algorithm for data assimilation, 260 

state vector [ ],  ( 1,2,..., )i svx i N X  has to be defined, where xi represents water levels at ith 261 

cross-section, and Nsv is the number of state variables in the model. When EnKF is used, 262 

model uncertainty estimation is conducted through ensemble statistics, where each element 263 

of the state vector X is represented by ensemble created by adding Gaussian noise to the 264 

previous values of state vector variables. In this paper, 50, 100 and 200 ensemble members 265 

are analyzed.  266 

State of the vector X after each time step is calculated using the following equation: 267 

 t t t t t t

e e

       
 X

X X K Y H X   (10) 

Where t denotes previous time and t+Δt denotes current time. Index e (in 
t t

e


X  ) indicates 268 

that this is evaluated state vector based on model only. This state vector is corrected using 269 

the Kalman gain KX, and measured data Y. H matrix represents mapping operator used for 270 
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mapping observation locations with matching variables in the state vector X. Definition of the 271 

H matrix is presented in Fig. 5. 272 

Kalman gain Kx is calculated using the following equation: 273 

 
1

T T

obs



     XK P H H P H B   (11) 

Where P is model error covariance matrix and Bobs is observation error covariance matrix. 274 

Procedure for calculation of P and Bobs can be seen in Evensen (1994) and (2003). 275 

 276 

Figure 5. Mapping operator H definition  277 

Limitation of the ensemble size can affect filter performance and create divergent filter where 278 

observed data are ignored over time. One of the reasons causing this problem is the 279 

presence of spurious correlations evaluated in model error covariance matrix. Therefore, 280 

different methods for eliminating this problem have been developed. Most common methods 281 

used for eliminating this problem are inflation methods where model error covariances are 282 

increased in order to prevent filter divergence (Anderson 2007; Anderson and Anderson 283 

1999). Wu and Zheng, 2018 presented Second-order Least Square (SLS) inflation scheme, 284 

which is applied in this paper. First step in SLS inflation scheme is to calculate forecasted 285 

residuals d by the eq. (12). 286 

t t

e


  d Y H X   (12) 

When residuals are evaluated, inflation factors λ (model error covariance inflation factor) and 287 

μ (observation error covariance inflation factor) are calculated using the following equations: 288 
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Where Tr denotes trace operator. When inflation factors are evaluated, Kalman gain Kx, eq. 289 

(11), is modified (eq. (15)): 290 
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The second method commonly used for elimination of EnKF drawbacks mentioned before is 291 

localization method (Petrie and Dance 2010). This method modifies model error covariance 292 

matrix by eliminating spurious correlations (Hamill, Whitaker, and Snyder 2001; Wang et al. 293 

2018). Model error covariance matrix is modified by correlation matrix ρ multiplication. 294 

Correlation matrix (Gaspari and Cohn 1999) is calculated by the eq. (16) 295 
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where l is Euclidean distance between either the grid points in physical space or the grid 296 

point and the observation location. Here, l represents Euclidean distance between cross-297 

sections used for water level estimation (distance between each two cross-sections used by 298 

model). c represents a length scale, such that correlation reduces from 1 when distance l is 299 

bigger than c (c can be set to different values, depending on a problem being solved). Hence, 300 

ρ is a Nsv x Nsv correlation matrix. Accordingly, Kalman gain is modified by eq. (17). 301 

   
1

loc T

obs 


       xK P H H P H B    (17) 

Operator “◦” in eq. (17) denotes Schur product of two matrices. 302 

When localization method is used in hydrodynamic modelling, spurious correlations between 303 

distant cross-sections or reservoirs (depends on elements used for model domain 304 
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discretization) are neglected or reduced, depending on the distance. Practically, this means 305 

that changes in one model element (reservoir or cross-section) cannot immediately cause 306 

changes in distant elements (these changes in distant areas can be seen after certain 307 

amount of time needed for change propagation). Therefore, length scale c is used for limiting 308 

the number of model elements affected by changes caused by assimilation process in 309 

assimilation points according eq. (17). If localization is not used, each correction step will 310 

induce changes in all model elements at the same time, which can induce model instabilities 311 

(big oscillations of water levels with high amplitude). 312 

Modification of the Kalman gain used in this paper combines both methods, inflation and 313 

localization (eqs. (15) and (17)). Hence, Kalman gain modification is given by the following 314 

equation (18). 315 

   
1

T

obs    


          XK P H H P H B  (18) 

2.4. Test cases 316 

Proposed PID-DA is compared with EnKF method on two hypothetical test cases with 317 

different complexity of cross section geometry (Figure 6). Two phases are analyzed in each 318 

test case: Phase 1, assimilation window, consisting of 24-hour period with available 319 

observation data, and Phase 2, forecast window, consisting of 4-hour model free-run. True 320 

state data (“measured” water levels) are synthetically generated using “true inflows” (black 321 

line on Fig. 7), while “wrong” inflow (dashed line in Fig. 7) is used to run the model that will 322 

be assimilated. True state data are generated using the hydraulic model with the “true 323 

inflows”. Same initial condition was applied for both assimilation methods tested. 324 

CASE 1 – Channel with rectangular cross section. 50km long and 250m wide rectangular 325 

channel with longitudinal slope of 1‰. Manning’s roughness used in this test case is uniform 326 

n = 0.03 m-1/3s. Spatial resolution is Δx=125 m and temporal resolution is Δt=5 sec according 327 

to CFL stability condition (Abbot and Basco 1989). Upstream boundary condition is given by 328 

the inflow hydrograph (Fig. 7) and normal depth is applied at downstream boundary 329 

condition. Bottom level at the upstream boundary is set to 100 m. Six observation points are 330 
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used. Three points are used for direct water level assimilation, and the other three points are 331 

used for validation (Fig. 6). In order to represent real problem, time step used for observed 332 

data collection Δtobs=60s is 12 times larger than simulation time step. Standard deviation used 333 

for observation uncertainty evaluation is set to 1 cm (this uncertainty is used to represent 334 

noise in observation data).  335 

CASE 2 – Channel with compound cross section. 100 km long compound channel with 336 

longitudinal slope of 1‰. Manning’s roughness is not uniform in cross section: the main 337 

channel is nmc=0.018 m-1/3s, left floodplain nlfp=0.025 m-1/3s and nrfp=0.03 m-1/3s for the right 338 

floodplain. Spatial resolution is Δx=250 m and temporal is Δt=10 sec according to CFL 339 

stability condition (Abbot and Basco 1989). Upstream boundary condition is given by the 340 

inflow hydrograph (Fig. 7) and normal depth is applied at downstream boundary condition. 341 

Bottom level at the upstream boundary is set to 100 m. As in CASE 1, six observation points 342 

are used, three for assimilation and three for validation (Fig. 6). Observations are generated 343 

with time step Δtobs=60 s, with standard deviation of uncertainty 1 cm. 344 

 345 

Figure 6. Test cases: a) river section used for data assimilation methods benchmarking; b) 346 

rectangular cross-section – CASE 1; c) compound channel – CASE 2  347 

In both test cases, with rectangular and compound channels, length scale c, eq. (16), used in 348 

correlation matrix ρ, is set to 250 m. This value is determined by trial and error in order to 349 

determine the minimum value that provides model stability. This shows that correction of 350 

water level at assimilation point directly affects water levels in the cross-sections 250 m 351 



17 
 

upstream and downstream. In other words, two upstream and two downstream sections are 352 

affected by water level update at assimilation point in Case 1 (rectangular channel) and one 353 

upstream and downstream cross-section in Case 2 (compound channel). 354 

  355 

Figure 7. River section inflow for true state generator and inflow for assimilation/forecast 356 

Table 1. Test cases for rectangular and compound channel (Derivative gain D=0 for all cases) 357 

Case Model 
Assimilation 

method 
P I 

Ensemble 

size 

Rectangular Compound      

R1 C1 DiffW1D PID 10 0 / 

R2 C2 DiffW1D PID 10 0.1 / 

R3 C3 DiffW1D PID 10 1 / 

R4 C4 DiffW1D EnKF / / 50 

R5 C5 DiffW1D EnKF / / 100 

R6 C6 DiffW1D EnKF / / 200 

Different test cases are analyzed regarding P and I gains (D gain was set to 0 in all cases) in 358 

PID controller and ensemble size used in EnKF assimilation method (Table 1). Each test 359 

case is named according to the following abbreviation TypeOfCh_AssimMethod (TypeOfCh – 360 

R for rectangular, C for compound; AssimMethod – 1 for PI where I=0, 2 for PI where I=0.1, 361 

3 for PI where I=1, 4 for EnKF with 50 ensemble members, 5 for EnKF with 100 ensemble 362 

members, 6 for EnKF with 200 ensemble members). 363 

2.5. Assessment methods 364 
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Root-mean-square-error (RMSE) is used for assessment of the PID-DA and EnKF data 365 

assimilation. RMSE, eq. (20), is calculated according to true state for assimilation window 366 

and forecasting window. Besides RMSE, computational time for both assimilation methods is 367 

obtained and compared. 368 

 
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, _ ,
1

N

sim i true state i
i

X X

RMSE
N








 
(20) 

In eq. (20) X can be water level or discharge obtained by model simulation. Index sim is used 369 

for model results using data assimilation and index true_state is used for true levels or 370 

discharges (black line in Fig. 7). N is the number of time steps where both simulation data 371 

and observed data are available. As the model/assimilation performance indicator, mean 372 

RMSE value for assimilation points and mean RMSE value for validation points is used. 373 

PID-DA and EnKF are also compared regarding runtime and speed up gain. Speed up gain 374 

represents the ratio between simulation runtime when EnKF is used and simulation runtime 375 

when PID-DA is used, showing how many times the PID-DA simulation is faster than EnKF. 376 

3. RESULTS AND DISCUSSION 377 

All performance indicators, for all test cases defined in Table 1. are presented in Table 2 378 

(rectangular channel) and in Table 3. (compound channel). Beside the above-mentioned 379 

tables, RMSE indicators are presented in Figure 8. (rectangular channel) and in Figure 9. 380 

(compound channel). 381 

Table 2. Statistical evaluation of the assimilation/forecast 

(RMSEassim / RMSEfcst) process – rectangular channel 

Case 

Mean RMSE - 
assimilation 

points 
 

Mean RMSE - 
validation 

points 
 

Runtime 

[sec] 

R1 0.069/0.069 0.06/0.084 14.582 

R2 0.058/0.084 0.053/0.074 14.612 

R3 0.009/0.062 0.012/0.048 14.668 

R4 0.092/0.025 0.116/0.026 272.517 

R5 0.126/0.025 0.148/0.026 482.489 

R6 0.045/0.025 0.044/0.026 920.979 
 

Table 3. Statistical evaluation of the assimilation/forecast 

(RMSEassim / RMSEfcst) process – compound channel 

Case 

Mean RMSE - 
assimilation 

points 
 

Mean RMSE - 
validation 

points 
 

Runtime 

[sec] 

C1 0.076/0.094 0.07/0.078 9.802 

C2 0.061/0.09 0.058/0.07 9.786 

C3 0.01/0.059 0.015/0.045 9.779 

C4 0.068/0.073 0.08/0.051 188.137 

C5 0.031/0.07 0.046/0.049 322.894 

C6 0.096/0.079 0.114/0.057 619.648 
 

 382 
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a) b) 

Figure 8. RMSE model/assimilation performance indicators for rectangular channel: a) mean 383 

statistics for assimilation points (A1, A2, and A3); b) mean statistics for validation points (V1, 384 

V2 and V3) 385 

 386 

 

a) b) 

Figure 9. RMSE model/assimilation performance indicators for compound channel: a) mean 387 

statistics for assimilation points (A1, A2, and A3); b) mean statistics for validation points (V1, 388 

V2 and V3) 389 

 390 

3.1. Tuning the PID controllers 391 

The P and I gains in PID controllers could be a matter of separate optimization. In this paper 392 

all controllers have the same P=10 gain, selected by trial, and I gain was tested in the range 393 

[0, 0.1 and 1] to present its influence. Figure 10. represents water levels at three assimilation 394 

points (A1, A2 and A3 in Fig. 6a) and three validation points (V1, V2 and V3 at Fig. 6a), for 395 
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cases C1, C2 and C3. Usage of P gain only in PID controller (I=0, case C1) shows the 396 

inability of the model to reach the setpoint (measured water levels) during the assimilation 397 

(Figure 10). Therefore, integrative gain in PID controllers has to be used. Improvement of 398 

assimilation process is visible in cases C2 and R2, where I gain is set to 0.1, reducing the 399 

mean RMSE value in the assimilation window from 0.069m (for assimilation points) to 400 

0.058m for rectangular channel (Figure 8a), and from 0.06m to 0.053m for validation points 401 

(Figure 8b). In cases with compound channel (C1 and C2), mean RMSE for assimilation 402 

points drops from 0.076m to 0.061m for assimilation points (Figure 9a), and from 0.07m to 403 

0.058 for validation points (Figure 9b). Increasing the I gain by an order of magnitude, to I=1 404 

(cases R3 and C3) results in further improvement of visual agreement between modelled and 405 

true state and mean RMSE value. In these cases (R3 and C3), mean RMSE value is 0.009m 406 

in assimilation window for assimilation points and 0.012m for validation points (rectangular 407 

channel, Table 2. and Figure 8), while these values are 0.01m for assimilation points and 408 

0.015m for validation points for compound channel (Table 3. and Figure 9). RMSE value for 409 

forecasting window is also reduced from 0.069m in case R1 and 0.084m in case R2 to 410 

0.061m in case R3, at assimilation points. RMSE values are also reduced at validation 411 

points, from 0.084m and 0.074m (Cases R1 and R2, respectively) to 0.048m in case R3. For 412 

compound channel RMSE values drop from 0.094m (Case C1) and 0.09m (Case C2) to 413 

0.059m (Case C3) at assimilation points, and from 0.078m (Case C1) and 0.07m (Case C2) 414 

to 0.045m (Case C3) at validation points.  415 

Further increase of I gain (10, 100) shows the increase in instability, big oscillations in 416 

correction flows with high amplitude preventing the models to obtain physically sound values 417 

for water levels (negative values are obtained; not presented here). In addition, increasing 418 

the P gain will also cause the instability (oscillations with high amplitude). Therefore, further 419 

analysis of the PID-DA will consider the minimal stable gain settings of P=10 and I=1. 420 
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 421 

Figure 10. Results of PID control-based data assimilation with different P and I gains 422 

 423 

3.2. Correction flows added/subtracted by PID controllers at assimilation points 424 

Figure 11. shows correction flows added/subtracted at assimilation points (upper flow 425 

hydrographs are for rectangular channel and lower are for compound channel). In both cases 426 

(with rectangular and compound channels) results show that PID controller used to add 427 

correction flows at assimilation point A1 provides the most part of the “missing” flows 428 

(difference between true inflow and inflow used to run the model, Fig. 7). Max value of 429 

correction flow added at A1 (for rectangular channel) is about 84 m3/s while max value of 430 

correction flow subtracted at A1 is approximately 80 m3/s (correction flow is -80 m3/s). At 431 

assimilation point A2, max value of correction flows are 36 m3/s and -25 m3/s, and at 432 

assimilation point A3 these values are 25 m3/s and -22 m3/s. 433 

When compound channel is analyzed (Fig. 11b), the correction flows slightly differs. At 434 

assimilation point A1, max values of correction flows are 82 m3/s and -65 m3/s. At 435 

assimilation points A2 these values are 25m3/s and -25m3/s. At assimilation point A3, 436 

correction flows are between 20 m3/s and -20 m3/s. 437 
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a) b) 

Figure 11. Correction flow added/subtracted at assimilation points for: a) rectangular channel 438 

b) compound channel  439 

Comparing the correction flow hydrographs, especially for assimilation point A1 (for both 440 

channel geometry types) in Figure 11. and “missing” flow hydrograph (flow hydrograph 441 

representing the difference between true inflow and inflow used to run the model, red dashed 442 

line in Fig. 7.) shows that PID controllers are capable to estimate the true inflow considering 443 

flow hydrograph shape and total volume. Correction flow hydrographs are slightly delayed 444 

and mitigated due to system dynamics (friction and minor energy losses over the channels).  445 

 446 

3.3. EnKF assimilation  447 

Figure 12. shows water levels obtained using coupled DiffW1D model and EnKF assimilation 448 

method, with different sizes of ensemble members used to represent model states. Three 449 

values for ensemble size are analyzed, 50 (R4 and C4), 100 (R5 and C5) and 200 (R6 and 450 

C6). The best results of assimilation process are obtained with 200 ensemble members 451 

(Figure 8) for rectangular channel and with 100 ensemble members when compound 452 

channel is analyzed. RMSE values for rectangular channel (Table 2.) are 0.045m in 453 

assimilation window, at assimilation points, and 0.044m for validation points (for rectangular 454 

channel).  455 

Increasing the number of ensemble members doesn’t always provide better results in 456 

assimilation window. Because there, still, hasn’t been determined universal procedure to 457 

determine optimal ensemble size in EnKF, different ensemble sizes can sometimes produce 458 
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good results. For example, Yin et al. (2015) tested different ensemble sizes in soil moisture 459 

data assimilation and showed that large ensemble size doesn’t always produce better 460 

results.  461 

 462 

Figure 12. Assimilated water levels using EnKF for different number of ensemble members 463 

 464 

3.4. PID-DA and EnKF comparison 465 

Presented tests of the PID-DA (subsections 3.1 and 3.2) and EnKF (subsection 3.3) show 466 

that both methods are able to “reach” the true state and give similar results in forecasting 467 

window. Looking into the Figure 8, when PID-DA and EnKF are compared on rectangular 468 

channel and in assimilation window, it is obvious that PID-DA (when it is properly tuned) 469 

shows significantly better results in RMSE statistics. When PID-DA is coupled with DiffW1D 470 

model, RMSE for assimilation points is 0.009m, and 0.012m for validation points. On the 471 

other hand, coupling hydraulic model with EnKF provides RMSE of 0.045m for assimilation 472 

points and 0.044m for validation points (both for rectangular channel). Comparing the results 473 

of PID-DA (when controllers are properly tuned, case R3) and EnKF data assimilation 474 
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procedure shows that RMSE statistics obtained using PID-DA approach are at least 4 times 475 

smaller than results obtained using EnKF approach. This can be seen at Figure 8. when 476 

case R3 (which assumes proper tuning of the PID controller’s gains)  is compared with case 477 

R6, when EnKF approach with 200 ensemble members are used. This ratio goes up to 12 478 

times in favor of PID-DA approach when cases R3 and R5 are compared. Similar trend can 479 

be seen when RMSE statistics for validation points are compared. Best RMSE value when 480 

PID-DA approach is used is obtained for case R3, 0.012m. When EnKF approach is used, 481 

best result is obtained using 200 ensemble members (case R6), 0.044m. Comparison of this 482 

RMSE values shows that PID-DA approach shows, again, at least 4 times smaller values of 483 

RMSE. Comparing case R3 with R5, it can be seen that this ratio, also, goes up to 12 times 484 

in favor of PID-DA. 485 

When compound channel is analyzed, PID-DA also shows better results in RMSE statistics 486 

than EnKF (Table 3. And Figure 9.). For example, the best results when EnKF is applied are 487 

in case C5, where EnKF is used. Comparing these results with the appropriate case when 488 

PID-DA is used (case C3), shows that RMSE in this case is almost three times smaller, 489 

0.007m, in the favor of PID-DA. Further looking into the Table 3., containing RMSE statistics 490 

for each case tested in this research, and, also, in Figure 9. shows that application of PID-DA 491 

methodology provides at least three time better RMSE values (comparing cases C3 and C5) 492 

in the assimilation process (assimilation window), while this ratio goes up to 10 times (e.g. 493 

when cases C3 and C6 are compared) in the favor of PID-DA. 494 

Main reason for this (for both channel types) is struggling of the EnKF method to reach true 495 

state in first couple of hours of assimilation window, as it can be seen in Fig. 13, and in 496 

higher RMSE values (Tables 2. and 3. And Figures 8. and 9.), even though the same initial 497 

condition is applied for both assimilation methods. The reason for this could be found in the 498 

nature of EnKF algorithm (and other standard assimilation methods in general) and its 499 

necessity to estimate model uncertainty, unlike PID-DA. Model uncertainty in EnKF is 500 

estimated using water levels perturbations. This can cause significant oscillations of the 501 

model in early stages of the assimilation window.  502 
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On the other hand, PID-DA algorithm skips model uncertainty estimation, which allows 503 

reaching the true state much faster than EnKF, but under the assumption that observation 504 

uncertainty is much lower than model uncertainty. Using PID-DA, modeled water level will 505 

closely follow the observed one, regardless of model nor observed uncertainties, unlike 506 

EnKF algorithm, which has the ability to avoid these problems by weighting model and 507 

observation uncertainties. In other words, if observed data is with high uncertainty, higher 508 

than model’s uncertainty, EnKF will give more trust to model than observations, and try to 509 

void the observations to a certain extent.  510 

In order to use the PID-DA, it is essential to have observed water levels with high accuracy, 511 

which is possible to achieve with contemporary measurement techniques. Additionally, 512 

reduction of level measurements of low quality requires the pre-processing phase for data 513 

quality estimation (as it is mentioned at the end of section 2.3.1.). 514 

 515 

Figure 13. Comparison of assimilated water levels using PID-DA (blue dashed line) and 516 

EnKF (red dotted line) 517 
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 518 

Figure 14. PID-DA speed up gain compared to EnKF with different ensemble size application 519 

 520 

Fig. 14 shows average speed up gains (based on the runtimes in Tables 2. and 3.) of the 521 

assimilation/forecast process when PID-DA is used as data assimilation method instead of 522 

EnKF. Average runtime of assimilations using PID-DA is compared to runtimes when EnKF 523 

is applied, with various ensemble sizes. Changing the PID controller’s parameters (P and I 524 

gains) or inclusion of error dumping doesn’t change the runtime of the assimilation process. 525 

However, used ensemble size in EnKF algorithm significantly affects the computational time. 526 

Therefore, speed up gain when PID-DA is used increases, compared to EnKF, with 527 

increasing the number of ensemble members (Fig. 14). Speed up gain when optimal 528 

configuration of PID controllers (outlined in the section 3.1) is used and compared with EnKF 529 

with 50 ensemble members is 18.64 for rectangular channel and 19.26 for compound 530 

channel. Increasing the size of the ensemble used in EnKF increases the speed up gain, 531 

which goes up to 63 for rectangular channel (EnKF with 200 ensemble members) and up to 532 

63.45 for compound channel. 533 

All these results show high potential for application of the PID-DA methodology in 1D open 534 

channel models. Nevertheless, it has to be underlined that this type of data assimilation is 535 

problem specific, narrowing the application area (only for 1D open channel models, for now). 536 

On the other hand, even though this paper shows some advantages of PID-DA (assimilation 537 
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speed up), EnKF still has wider applicability area, for different problems, with small 538 

modifications, especially when model parameters (e.g. roughness) are corrected along with 539 

model state variables (e.g. water levels and/or discharges). 540 

 541 

4. Conclusions 542 

This paper presents the novel data assimilation approach (PID-DA) based on a control loop 543 

feedback mechanism, applied to 1D hydrodynamic modelling problems. This assimilation 544 

tool, applied as a simple lateral inflow element in 1D hydrodynamic model and controlled by 545 

PID controller, is compared to widely used data assimilation EnKF method. Both methods 546 

are applied on two hypothetical test cases, rivers with rectangular and compound cross 547 

sections. Different test cases are created by analyzing the impact of various PID control 548 

parameters (Proportional and Integrative gain, without Derivative gain). Along with these test 549 

cases, few numerical cases are created and analyzed by changing number of ensemble 550 

members in EnKF application. Results are presented in the form of water level time series at 551 

several points (three used for direct assimilation, three used for validation). All results, 552 

presented for both assimilation methods on two types of channel’s geometry, show that data 553 

assimilation/forecast in 1D hydraulic modelling can be adequately solved with standard 554 

assimilation tools, such as EnKF, but also can be solved more efficiently using simplified 555 

methods as PID-DA. This is especially important for large 1D full-scale models, with more 556 

than few hundred cross sections, when there is necessity to reduce the 557 

simulation/assimilation time. On the other hand, application of the simplified data assimilation 558 

algorithms, such as PID-DA, requires additional steps in the pre-processing phase that have 559 

to be thoroughly completed before the assimilation process. Analyzing the results through 560 

RMSE statistical indicator and speed up gain obtained as a ratio between EnKF runtime and 561 

PID control runtime, the following conclusions could be derived: 562 

 Statistical indicator and simulation runtime analysis used for assessment of the 563 

assimilation/forecast process shows that, generally, PID controllers can be 564 
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adequately implemented as the data assimilation method for faster reaching of the 565 

true state of the 1D open channel hydraulic models.  566 

 Speed up gain provided in assimilation/forecast windows using PID controllers 567 

significantly rises when ensemble size used in EnKF increases. This is the main 568 

benefit of PID-DA. This speeding up is provided by avoiding (or simplification) of the 569 

model uncertainty analysis. 570 

 Performance of the PID-DA depends on parameters used in PID controllers. 571 

Therefore, pre-processing phase, used for PID controller tuning, is necessary, which 572 

is one of the major disadvantages.  573 

 Performance of the PID-DA strongly depends on observation data quality. Because 574 

model uncertainty estimation step is omitted when PID controllers are used, this 575 

method requires high confidence in observation data. Therefore, additional pre-576 

processing step is required for data quality evaluation of observations. This is also 577 

one of PID control application disadvantages. 578 

Based on the results and previous specific conclusions, some general conclusions could be 579 

derived. In situations when there is a need for relatively fast simulations and forecasts, 580 

simplified data assimilation methods coupled with 1D hydraulic models can be used without 581 

significant sacrifice of the accuracy. Hence, usage of the PID controllers as a data 582 

assimilation tool shows the potential, especially in short-term simulations and forecasts of 583 

water levels. However, some further analysis and investigations are necessary through the 584 

application of PID-DA on a real case study. Number of assimilation points (number of PID 585 

controllers) and their combined operation, optimal tuning of the PID controller’s parameters, 586 

together with impact of assimilation window duration have to be analyzed. At the end, the 587 

observation data quality assessment in pre-processing phase and inclusion of data 588 

uncertainty in PID-DA has to be implemented for full-scale application. 589 

 590 

 591 
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