
          
E-proceedings of the 38th IAHR World Congress 

                          September 1-6, 2019, Panama City, Panama 

  

 

 
IMAGE PROCESSING FOR HYDRAULIC JUMP FREE-SURFACE DETECTION 

 
 

ROBERT LJUBIČIĆ(1), IVANA VIĆANOVIĆ(2), BUDO ZINDOVIĆ(3), RADOMIR KAPOR(4) & LJUBODRAG 
SAVIĆ(5) 

 
(1,2,3,4,5) Civil Engineering Faculty, University of Belgrade, Serbia 

e-mail: rljubicic@grf.bg.ac.rs; vicanovicka@gmail.com; bzindovic@grf.bg.ac.rs; rkapor@grf.bg.ac.rs; ljdsavic@grf.bg.ac.rs 

  
 

ABSTRACT 
 
Hydraulic jumps exhibit a high degree of free-surface oscillations, triggered by intense turbulence and aeration. 
These processes are difficult to model numerically and are frequently investigated on a scale model. However, 
measuring the oscillatory characteristics of the hydraulic jump is not without issues, as the majority of available 
methods are not intended for tracking instantaneous depth profile or free-surface interface (FSI). Some methods 
are limited to a selected set of few predetermined points, and are sensitive to variations of secondary 
characteristics of the hydraulic jump: point gauges are sensitive to aeration rate and rate of the free-surface 
changes, electroconductive and optical probes require direct contact with the air-water mixture (disrupting the 
free surface), while the ultrasonic distance measurement accuracy is severely impacted by the shape of the 
free surface and aeration rate. To alleviate these issues, we propose the application of the non-intrusive method 
based on image processing techniques to detect the instantaneous FSI. The first step is to record the free-
surface region in a series of images, with a predefined constant time shift. Subsequently, the FSI along the 
hydraulic jump is detected in every image. Presented method was used to reconstruct temporal evolution of the 
depth profile from the FSI position in the recorded images. The obtained dominant FSI oscillation frequencies 
along the hydraulic jump show good agreement with previous research. Results also show that the proposed 
approach is more robust than previously available methods – minor sensitivity to camera shooting angle, rate 
of the free-surface change, surface aeration variability, etc. Method is also very simple, with only a few tunable 
parameters, and affordable, as the only required equipment is a camera. The preprocessing and calibration 
steps needed to obtain reliable data for further processing are also described. Using method presented in this 
paper, one can gain a better understanding of the characteristics of the hydraulic jump: instantaneous and time-
averaged FSI profile, as well as the frequency spectrum of FSI variations along the hydraulic jump. This can be 
useful for the design of hydraulic structures, in particular – the hydraulic jump stilling basins. 
 
Keywords: image processing; hydraulic jump; depth measurement; hydraulic model 
 
 

1 INTRODUCTION 
 Reliable information on depths and their temporal evolution is crucial for any hydraulic analysis, as it 
provides basic information about the water flow. Water depth detection and tracking, a seemingly simple 
hydraulic research task, has proven to be rather challenging. For flow in the hydraulic jump, depth measurement 
presents an even greater challenge due to high frequency oscillations and intense surface aeration. These 
unfavorable conditions can be present in both field and laboratory settings. 
 Traditional depth measuring equipment can display intrinsic unreliability and measurement uncertainty. 
Point gauges are unable to track free-surface oscillations. Ultrasonic (US) sensors are sensitive to free-surface 
aeration, surface angle relative to the sensor, and the ejection of droplets from the air-water mixture (Bung, 
2013; Kucukali & Chanson, 2008; Murzyn & Chanson, 2009). LIDAR scanning can provide a detailed spatial 
description of the free-surface, but the required equipment is expensive and difficult to operate (Montano, Li, & 
Felder, 2018). Depth measurement using electroconductivity probes is intrusive, can be time-consuming, and 
can only provide an average depth estimate. Over the course of the last two decades, techniques based on 
image-processing have become a popular alternative to traditional methods for monitoring hydraulic parameters 
such as depth, surface velocity, air-concentrations, etc. The appeal of image-based methods lies within their 
non-intrusive approach, relatively simple setup procedure, and low equipment cost. In general, several different 
image-based applications have been considered by researchers: (1) depth measurement/free-surface detection 
and tracking, (2) velocity measurements, (3) air-concentration estimation, etc. 
 For free-surface interface (FSI) detection and tracking from a camera recordings, several approaches are 
predominantly used: (1) global thresholding based on contrast, brightness and/or color, (2) adaptive (local) 
thresholding, (3) edge detection, (4) temporal analysis of frame sequences, (5) machine learning-based 
detection. Global thresholding methods, while usually simpler, require higher control over environmental 
variables such as lighting, and in some cases can involve tracers or dyes in order to accentuate water in 
captured images. Adaptive thresholding and edge detection-based methods are more robust in terms of 
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environmental factors but can often provide false detections in an image (outliers) that can be difficult to filter. 
Temporal analysis can be used to detect the water level based on differences in sequential images but requires 
distinct features with sharp interfaces in every image. Machine learning techniques are relatively new but 
developed at a fairly fast pace, and, while they offer possibility to address the issues of previous methods, their 
applicability for hydraulic measurements is still to be investigated. 
 One of the first attempts at image-based investigation of the open channel flow was presented by Mossa 
and Tolve (1998) for aerated hydraulic jumps in laboratory conditions. They successfully applied image 
processing to investigate the distribution of air-concentration in the entire hydraulic jump region. Leandro et al. 
(2012) furthered the idea about the estimation of the amount of entrained air in air-water mixtures from pixel 
densities in acquired images. While innovative and non-intrusive, the authors concluded that the biggest issue 
of the method is the need for calibration and that results are representative only in the vicinity of the flume wall. 
Lennon and Hill (2006) used a simple thresholding method for FSI level detection and Particle Image 
Velocimetry (PIV) to study the streamwise velocity distribution in an undular hydraulic jump. They used a laser 
light sheet to illuminate the centerline of the flume and accentuate the tracer particles. Bung (2013) used a high-
speed camera at 1220 frames per second (fps) in order to investigate the free-surface roughness in strongly 
aerated chute flow by using image contrast enhancement and subsequent edge detection. He attempted to 
verify his results using an US sensor. However, because of the penetration of the acoustic signal in the air-
water mixture, large discrepancy was found from EC-based measurements. Nevertheless, he managed to 
conclude that surface roughness increases for stepped chutes, when compared to the smooth chutes. Nóbrega, 
Schulz and Zhu (2014) attempted an approach with a high-speed camera and a laser light sheet setup, while 
the free surface interface was detected by global thresholding on a grayscale image. However, they wrongly 
presumed that the US sensor, used for verification, would provide accurate estimate for depths in a hydraulic 
jump, as proven by previous research (Bung, 2013; Kucukali & Chanson, 2008; Murzyn & Chanson, 2009). 
 Misra et al. (2006) used a more advanced free surface detection method based on texture segmentation 
by gray level co-occurrence matrices and additional post processing using active contours minimizing energy 
functionals. They have also used a laser light sheet to illuminate the target area. Yu and Hahn (2010) developed 
an image-based method for water level monitoring based on the gradient detection using Sobel-Feldman 
operator, but their experiment had a noticeably small area covered by ground control points that are used for 
image transformations, and they were positioned far from the region of interest (ROI). Parasuraman et al. (2012) 
applied their image-based water level detection algorithm to provide real-time monitoring in a small channel in 
Singapore. The algorithm was based on edge detection in a high contrast target area on the channel wall, with 
a subsequent application of Hough transformation to detect the straight line which represents the water level. 
Their results were successfully verified by radar measurements. A similar approach (Hasan et al., 2016) was 
later implemented for an in-situ flood warning system, improved by using an infrared projector and dedicated 
day and night cameras. Viriyakijja and Chinnarasri (2015) used Canny edge detection for laboratory flume wave 
depth measurements. Although the method was applied to a relatively small target area, they concluded that 
recordings from a camera could potentially replace wave gauge measurements with adequate accuracy, with 
an important quality of non-intrusiveness. While most depth/level detection methods used a fixed camera setup 
and assumed that no camera movement or vibrations were present during the recording period, Lin, Lin and 
Han (2018) developed a more robust approach that could alleviate for camera movement through least-square 
matching and normalized cross-correlation procedures. 
 Our paper presents a simple method for hydraulic jump FSI detection and tracking, based on the analysis 
of image gradients. Results of this method were compared to the results obtained with contrast-based method 
used in a majority of previous research. Gradient analysis, as opposed to simple thresholding techniques, can 
easily be tuned to capture the boundary between the water and the background, even in the presence of strong 
image noise, spatial and temporal changes in surface aeration, lighting conditions, etc. This, in turn, significantly 
improves the quality of the FSI detection. Described approach can allow for easier and better spatio-temporal 
analysis of hydraulic jumps – estimation of depth distribution: maximum, minimum and average depths along 
the jump profile, frequency analysis using Fast Fourier Transform (FFT) to obtain the spectral properties of the 
hydraulic jump. 
 Along with the FSI detection methodology, special attention was paid to the analysis of the impact of data 
preprocessing, experiment preparation, and postprocessing procedures, in order to improve the accuracy of 
both methods. 
 In Section 2, both methods for FSI detection are described: first the contrast-based, and then a gradient 
method. In Section 3, presented methods have been applied to the camera recordings of hydraulic jumps in a 
laboratory flume for two cases: (a) high surface aeration, and (b) moderate to low surface aeration. Results from 
both methods were compared and discussed. It was demonstrated that the gradient-based method outperforms 
the simpler contrast-based thresholding approach, especially in conditions of low and/or varying surface 
aeration, where the latter method fails completely. With the proposed image-based approach, one can obtain a 
greater insight into the behavior of hydraulic jumps than with traditional measurement methods. 

 



          

 
E-proceedings of the 38th IAHR World Congress 

                          September 1-6, 2019, Panama City, Panama  
 

 

3 
 

2 MATERIALS AND METHODS 
 In this section, algorithms of two image-based methods for FSI detection in hydraulic jumps are presented: 
contrast- and gradient-based. The outline of both presented algorithms can be summarized into four steps: 

(a) Data preparation: splitting the video into frames and elimination of distortion (rectification) caused by 
the imperfections of the specific camera, 

(b) Detection of Control Points, mapping of real-world to pixel-space coordinates, and orthorectification 
of images using CPs, 

(c) Filtering to reduce noise and accentuate the specific features in images, color-space transformation, 
and parameter calibration to improve the detection accuracy, 

(d) Detection of the free-surface interface with optional postprocessing to reduce the false positives. 
 Steps (a) and (b) are method-invariant and are described in Section 2.1. Steps (c) and (d) are dependent 
on the choice of the FSI detection method and, as such, are described separately for contrast-based and 
gradient-based approaches. 
 
2.1 Calibration and preprocessing 
 In order to obtain adequate results from the image data, intrinsic (internal), extrinsic (position and 
orientation) and lens distortion camera parameters must be determined prior to image processing. Intrinsic 
parameters include focal length, principal point, skewness coefficient. Additionally, radial and tangential 
distortion of the camera lens have to be determined as they have a significant impact on quality of the results. 
Extrinsic parameters, that relate the real-world 3D points (Control Points) with previously determined locations 
to their pixel coordinates, depend on the actual experimental setup and can be a major source of errors 
(MathWorks, 2019b). 
 With respect to the position of the camera relative to the surface, two approaches can be used: 

(a) Recording of the wall surface closer to the camera, and 
(b) Recording of the opposing wall surface. 

 While the first approach is somewhat easier to set up, three things need to be considered. First, the 
thickness of the flume wall can cause light refraction in the flume wall and distort the detected FSI inside the 
flume, while the amount of refraction-induced error depends on the wall material and its thickness. Also, the 
distance between the CPs and the actual ROI plane is a source of errors on its own. Second, since the aeration 
in the jump varies with depth, additional noise can appear in the image which requires filtering. Third, the camera 
must always be positioned in such a way that it records only the FSI on the flume wall closest to the camera to 
avoid false detections from the image background. 
 In the experiments described in this paper, CP markers were positioned on the acrylic wall surface of the 
flume. In order to allow an easy detection of the CPs, they were chosen to be of different color from the other 
features in the image. If possible, all CPs should be positioned in such a way that they always remain outside 
of the ROI. This way, the transformation of real-world to pixel coordinates for the ROI relies solely on the 
interpolation between CPs and not on the extrapolation outside the CP-covered area. This can ensure better 
accuracy of the orthorectification procedure because the distortion between CPs can be assumed linear, while 
this cannot be guaranteed for the region outside this area. Although the minimal number of required CPs for 
homographic coordinate system transformation is four, due to tangential field distortion, using at least 6-8 CPs 
is recommended. 
 Detection of CPs can be done in two ways: (1) manually, based on a sample image, or (2) automatically 
for every frame. Manual selection of CPs is fairly straightforward but assumes that the camera position and 
orientation remain unchanged during the experiment, and that the effect of vibrations is neglectable for both the 
camera and the ROI. This is safe to assume for shorter experiments, but the relative camera position can change 
during long recordings in such a way that it produces biased results. 
 Captured images usually contain sharp local variations in pixel intensity and color, i.e. “salt-and-pepper” 
noise. To reduce this noise, i.e. increase the signal-to-noise ratio in the image, median blur filter can be used, 
which takes the median of all pixels in the defined kernel area (pixel neighborhood) and replaces the central 
pixel with the kernel’s median. Unlike Gaussian blur, median filter is an edge-preserving method which generally 
retains sharp features in the image, such as the FSI. In cases of significant noise, additional edge-preserving 
bilateral filtering method is recommended (Tomasi & Manduchi, 1998). 
 
2.2 Contrast-based FSI detection 
 In this chapter, a simple contrast-based method for detecting water surface in a hydraulic jump is 
presented. As shown in Section 3, this method is best suited for hydraulic jumps with high surface aeration. The 
presented method is similar to the one presented by Nóbrega, Schulz and Zhu (2014), but more robust in the 
presence of noise due to the advanced calibration, pre- and postprocessing procedures. The outline of the 
method is presented in Figure 1. 
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Figure 1. Outline of the contrast-based FSI detection procedure 

 
 Once the image has been orthorectified using CPs and the ROI has been selected, image color-space can 
be converted from RGB (red, green, blue) to grayscale color-space using the transformation function (IEC, 
1999): 

 ( ) ( ) ( ) ( ), 0.2126 , 0.7152 , 0.0722 ,Y x y R x y G x y B x y= + +   [1] 

where Y(x, y) is the grayscale value for the pixel at the (x, y) position in the image, while R, G, and B are red, 
blue and green channel values for pixel (x, y) in the original image, represented in floating point [0,1] range. 
 Global thresholding on a grayscale color-space separates regions in the image based on their pixel value 

Y(x, y). This produces a so-called binary image (pixels can have only two values, Figure 2-left): 
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where Th is the threshold value. Threshold value should be chosen so that the boundary between regions where 
YG_th = 1 and YG_th = 0 represents the FSI. Determining the threshold parameter that can adequately separate the 
water surface from the flume wall is crucial for the algorithm. Although this can be performed manually based 
on a sample image, a more adaptive approach is recommended. One such approach is to manually determine 
the threshold parameter for a small subset of images (i.e. keyframes, every Nth frame), and then apply a search 
across a range of threshold parameters to determine the value which best fits the keyframe data. Criteria for 
estimating the impact of selected threshold parameters on the quality of reconstruction of the FSI is the root 
mean square difference (RMSD) between manually and automatically detected FSI levels. 

  

Figure 2. Left – Binarized image using global thresholding; Right – Original image with the FSI from contrast 
thresholding. 

 
 In order to detect the edges in the binary image, an adaptive thresholding procedure is performed. The 
adaptive threshold approach uses the same core method as the global threshold function, with the only 
difference being that the algorithm obtains the threshold value as the mean of a kernel, T(x,y), around each pixel 
(Figure 2-right): 
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2.3 Gradient-based FSI detection 
 The main shortcoming of the previous method is the parameter calibration process and parameter 
sensitivity. High parameter sensitivity in conditions with significant contrast variability and noise makes the 
performance of the contrast-based method inherently case-specific (as shown in Figures 5 and 8). In order to 
alleviate those issues and provide a more robust approach, a gradient analysis-based method is proposed in 
this research. This approach aims to identify the boundary between the water surface and the flume wall based 
on the local variability of the color intensity. Additionally, since the direction of the FSI in the image is 
predominantly horizontal, accuracy of the method is improved significantly when vertical gradients are 
considered only. 
 Vertical gradient of any pixel neighborhood can be determined using the Sobel-Feldman operator (Sobel, 
2015) which convolves a specific square kernel of size n, Kyn, with any single-channel representation of the 
original image: 

 ,yn ynG K Y=    [4] 

where Y is a single-channel representation of the original image (e.g. grayscale, red, blue, green, etc.). Although 
the Sobel-Feldman operator originally uses a 3x3 kernel, the same principles can be used to obtain an arbitrary-
sized kernel (Sobel, 2015). The result of this discrete linear convolution presents an approximation of the first 
derivative of the image pixel intensity in vertical direction – the vertical gradient map (Figure 3). 

 

Figure 3. Example of a vertical gradient map obtained using Sobel-Feldman operator; Ridge spanning in the 
X direction indicates a probable FSI. 

 
 Selection of the appropriate image channel for gradient mapping is very important as some channels can 
have higher signal-to-noise ratio (SNR). Optimal choice should be based on the visual analysis of the colors 
available in the image or can be determined on a sample image. Instead of Gyn, the absolute value of the 
gradient map, |Gyn|, is often preferred, which treats both directions of the intensity change equally (high→low, 
low→high). From the |Gyn|, the approximation of the FSI can be obtained by searching for the maximal value in 
each column, C, of the gradient map: 

 ( )( )
| |

( ) arg max ,
ynC G

W x C x


=  [5] 

where W(x) is the vector that contains the pixel-space coordinates of the FSI, C(x) is the image column at position 
x, containing pixel gradients in vertical direction. Additional filtering can be performed at this point, to reduce the 
number of false positive detections. While many rough errors can be detected by using distance or gradient 
limiting filters (to eliminate large discontinuities in the W(x)), additional SNR improvements based on median 
filter and/or Savitzky-Golay filter are highly recommended for data smoothing. The outline of the gradient-based 
method is presented in Figure 4. From the position of the CPs (both real-world and in-image), the relationship 
between the pixel-space and the real-world coordinates can easily be determined, which can then be used to 
transform the W(x) into the depth profile along the hydraulic jump. 
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Figure 4. Outline of the proposed gradient-based FSI detection procedure 

 
2.4 Experimental setup 
 In order to examine the viability of the proposed methods, an experimental setup was created in the 
Hydraulic laboratory of the Civil Engineering Faculty at the University of Belgrade. The setup consisted of a 
scale model of a stepped spillway with a stilling basin, both 0.46 m in width. Discharge was measured using a 
twin V-notch weir and verified with an ultrasonic flow meter. Downstream depth was controlled using a sluice 
gate. More detailed description of the laboratory flume is presented in Ljubicic et al. (2018). Video was obtained 
using a tripod-mounted Sony RX10II camera at 4K resolution (3840 by 2160 pixels) at 29.97 frames per second. 
Camera intrinsic and lens distortion parameters were determined using MATLAB® Camera Calibrator App 
(MathWorks, 2019a). 
 
3 RESULTS AND DISCUSSION 

In this section, results from two experiments with different flow conditions are presented: 
(a) High free-surface aeration, at 38.3 L/s (inflow Froude number of 8.3), 
(b) Moderate to low free-surface aeration, at 20.7 L/s (inflow Froude number of 9.4). 

 In both experiments, A-type hydraulic jump was established. Due to restrictions in laboratory space, only 
opposing wall recording was performed. Both experiments used a black backboard for contrast enhancement. 
In total, 16 CPs mounted on the opposing wall were used for both experiments (green markers in Figures 5 and 
8). Three additional check points were used to assess the quality of the orthorectification (yellow markers). 
Orthorectification was performed using CPs that were visible in every frame during each experiment. For each 
of the experiments, a single video of approximately 30 seconds was recorded and processed. For both methods, 
grayscale map was used as a single-channel representation of the original image. Same preprocessing filters 
and filter parameters were used by each of the methods, to provide a fair comparison of performance. 
 For highly aerated jumps, both contrast- and gradient-based methods provided good agreement with the 
experimental observation across the entire ROI. Results for three sample frames are presented in Figure 5, for 
both methods. While the superiority of the gradient approach over contrast approach diminishes in high surface 
aeration conditions with low aeration variability along the jump, the former is significantly easier to calibrate, and 
produces fewer false positives (Figure 5). It is important to note that the contrast-based approach yields 
somewhat higher average depths in the central region of the hydraulic jump, with an average difference of 4 mm. 
 Statistics for the depth profile in the ROI (Figure 6) show that the time averaged depth increases approx. 
2.5 times in the downstream direction, while the standard deviation of depth oscillations decreases by approx. 
20%. Results also show that the envelopes of maximal and minimal depth for both methods are in good 
agreement. Fast Fourier Transform (FFT) spectrums for results from both methods show a strong agreement, 
and the dominant frequency of depth oscillations in the ROI is approx. 2.1 Hz (Figure 7). This value is in 
agreement with findings of Montano, Li, and Felder (2018) for hydraulic jumps with similar inflow Froude number. 
 By reducing the discharge, regions with lower free-surface aeration begin to appear, initially in the 
downstream part of the hydraulic jump. This hinders the ability of the contrast-based method to adequately 
capture the FSI in those regions (Figure 8). Additional difficulty is the slight change in scene lighting in the 
righthand side of the image. To alleviate these issues, one approach can be to separate the regions in the 
image, based on the surface aeration intensity and apply different parameters to each region, as in Nóbrega, 
Schulz and Zhu (2014). However, this conflicts with the main intention of the image-processing approach – to 
provide a simple and robust mean of instantaneous depth tracking. The gradient method was able to capture 
the features of the free-surface with very little false detections, regardless of the surface aeration variability. 
Identical set of parameters were used for the gradient method in both experiments, which provided an additional 
validation of its simplicity and robustness. 
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Figure 5. FSI detection for high surface aeration conditions at 38.3 L/s at different time instances. 
 

 

Figure 6. Statistics of the FSI profile along the hydraulic jump for both methods in high surface aeration 
conditions: averages, maximums, minimums along the hydraulic jump. 
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Figure 7. FFT spectrums for depths in the ROI for both methods in high surface aeration conditions. 
 

 For the contrast-based method, all statistical indicators demonstrate its failure to consistently capture the 
FSI in the low surface aeration conditions (Figure 9). On the other hand, gradient method had significant false 
detections in only 6 out of 1005 frames. These false positives resulted in somewhat underestimated minimal 
depths (Figure 9), but since the number of frames with such issues was below 0.6% of total, their effect on the 
average depth profile estimate is neglectable. Statistics for the gradient approach show that the time averaged 
depth increases approx. 2.6 times in the downstream direction. This ratio is somewhat larger when compared 
to the first experiment, due to a slight increase in the Froude number of the incoming flow (9.4 compared to the 
8.3). Frequency spectrums are significantly different for the two methods (Figure 10). Spectrum of the contrast-
based method shows an unusually high frequency content around 8 and 12 Hz, and higher amplitudes than 
gradient method across the entire spectrum. This can be attributed to the higher content of false positives which 
appear almost randomly in space and time along the jump. However, both methods still show the dominant 
oscillating frequency just above 2 Hz. 

 

Figure 8. FSI detection for moderate to low surface aeration conditions at 20.7 L/s at different time instances. 



          

 
E-proceedings of the 38th IAHR World Congress 

                          September 1-6, 2019, Panama City, Panama  
 

 

9 
 

 

Figure 9. Statistics of the FSI profile along the hydraulic jump: averages, maximums, minimums along the 
hydraulic jump for both methods in moderate to low surface aeration conditions (1 pixel = 1 mm). Envelope of 

minimal depths for the contrast method is severely impacted by the gradient limiting filter. 

 

Figure 10. FFT spectrums for depths in the ROI for both methods in moderate to low surface aeration 
conditions. 

 
 Kernel size n in the Sobel-Feldman operator directly affects the accuracy of the FSI detection. Small kernel 
size (3x3, 5x5) will likely produce bias towards smaller image features including image noise, while if the kernel 
is too large it will potentially fail to notice the features of the FSI. Kernel should be of such size to detect only 
the main features in the image and should typically cover the real-world distance of a few centimeters. However, 
we have found that this parameter is far less case-specific than parameters of the contrast-based method and 
depends mostly on the pixel scale. A good estimate of the appropriate kernel size (for laboratory settings) should 
correspond to the real-world distance of 1 to 3 cm (e.g. if the pixel size corresponds to 1 mm in real-world 
setting, the first estimate of the kernel width can be between 11 and 31 pixels; kernel width/height must be an 
odd number). 
 However, it was found that both methods are sensitive to the flow transition at the toe of the hydraulic jump 
due to high degree of splashing and high flow velocity. Similarly, both algorithms tend to ignore sudden local 
depth increases due to splashing and droplets ejection, which can, at least partly, be attributed to the effects of 
used filters. 
 
4 CONCLUSIONS 
 In this paper, an image processing method based on the gradient analysis using large kernel Sobel-
Feldman operator, is presented for investigation of hydraulic jumps. This approach was compared to the 
contrast-based approach, used in majority of previous studies. Results show that the gradient method is more 
robust and accurate when compared to the contrast-based method. The proposed method was able to 
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reconstruct the free-surface interface without major artifacts, even in the presence of significant noise. The 
gradient detection method shows significantly better performance in the case of jumps with moderate and low 
surface aeration and/or if surface aeration changes drastically along the jump. However, the contrast-based 
approach has proven to be adequate for jumps with high surface aeration and when the surface aeration 
variability is low. 
 Future research should focus on the impact of different parameters on the quality of the FSI detection and 
subsequent depth estimation: camera framerate, camera recording angle, surface aeration intensity, flow 
velocity, etc. Additionally, different sizes and types of gradient detecting kernels, including non-square sized 
kernels, may improve the quality of detections. Further improvements to the proposed gradient method, based 
on deep-neural-networks, are being developed. 
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