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Abstract 
  
 In this paper a finite element model for thermal buckling of imperfect plates using Layer 
Wise (LW) plate mode [1] is presented. The model assumes layerwise variation of in-plane 
displacements and constant transverse displacement through the thickness of the plate, non-linear 
strain-displacement relations (in von Karman sense) and linear thermo mechanical material 
properties. The Koiter model for imperfection is adopted. The Principle of virtual displacements 
(PVD) is used to derive the weak form of linearized buckling problem. The weak form is 
discretized using Lagrangian nine-node isoparametric finite element. The original MATLAB 
program is coded for finite element solution. The effects of imperfection amplitude, imperfection 
form and plate aspect ratio a/h on critical temperature are analyzed. The accuracy of the 
numerical model is verified by comparison with the available results from the literature. 
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1. Introduction  
 

Plates are finding wide engineering applications in aerospace, automotive, marine and civil 
engineering structures. During manufacturing process or in service life many defects may arise 
which may influence the overall load bearing capacity of the structure. These defects or 
imperfections can be classified into two broad categories: initial geometrical imperfections and 
material or constructional imperfections. The initial geometrical imperfections include 
imperfections in structural configuration, such as small initial curvature in a flat plate as well as 
imperfections in the loading mechanisms, such as eccentricities. The material or constructional 
imperfections consist of cracks in general and are important for safe design of structures.  

The initial geometric imperfections are in most cases randomly distributed in real structures. 
Therefore, introducing the geometric imperfections into the mathematical model is not an easy 
task, since their real shape is not known in advance. Even more it is not possible to determine the 
most unfavorable shape of imperfection, as concluded by Schneider et al. [2], since there is a 
dependency between the structural response (such as deflections, stresses, natural frequency or 
buckling loads) and the imperfection form and amplitude. Most of the studies, reported up to date 
were based on simplified assumption that the initial geometric imperfection has a similar form to 
the deformed shape of the plate. However, the limited number of investigations was dealing with 
general form of imperfections, the reason why in this paper a general geometric imperfection is 
studied.   
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Mathematical models of plate structures with geometric imperfections were mostly 
formulated for bending, buckling, post buckling, linear or nonlinear vibrations of plate and shell 
structures in both mechanical and thermal environment. The models are based on Classical Plate 
Theory (CPT), First-order Shear Deformation Theory (FSDT) or Higher-order Shear Deformation 
Theory (HSDT), implemented on both isotropic, laminated composite or Functionally Graded 
Plates (FGP) plates and shells. All these models may be divided into two broad categories, in 
which the first are able to include only sinusoidal mode of imperfection and the second, which are 
able to include the general form of imperfection into a mathematical model.  

The sinusoidal form of imperfection was analyzed by Yamaki [3] and Timoshenko and Gere 
[4]. They developed analytical solutions for bending and post buckling of plates with symmetric 
initial imperfection. The effect of geometric imperfections on the post-buckling behavior of 
imperfect thin laminated plates under axial compression was studied by Hui [5]. The initial 
geometric imperfection was taken to be of the same form as the buckling mode. Chen at all. [6, 7] 
analyzed nonlinear vibration of isotropic and FGM plates having initial sinusoidal imperfection 
using CLPT. Girish and Ramachandra [8] analyzed thermal post buckling of composite plates 
with sinusoidal form of imperfections using HSDT and Galerkin procedure for the solution of 
governing equations. Mossavarali at all. [9, 10] used CLPT and HSDT to analyze thermal 
buckling of plates with sinusoidal imperfection. Shariat and Eslami [11, 12] also analyzed thermal 
buckling of FGMP plates using FSDT and HSDT utilizing only sinusoidal imperfection form. 
Tung and Duc [13, 14] investigated buckling of GFP plates with sinusoidal form of imperfection 
under in-plane compressive, thermal and combined loads using HSDT and Galerkin method of 
solution.   

The general form of imperfection was analyzed by Nanda and Pradyumna [15]. They studied 
nonlinear free vibration and transient response of laminated shells, while using imperfection 
function capable of modeling variety of sine type, global type and localized type of imperfection. 
Kitipornchai at all. [16] Showed that vibration frequencies are very much dependent on the 
imperfection mode and its magnitude. Yang and Kitipornchai [17] investigated the sensitivity of 
post-buckling behavior of FGM plates to initial geometrical imperfections in general form. Yang 
and Huang [18] studied nonlinear transient response of simply supported imperfect FGP plates in 
thermal environment. An imperfection function is used to model general initial geometric 
imperfections including sin type, global type and localized type. Rafiee and Liew [19] analyzed 
nonlinear dynamic stability of initially imperfect piezoelectric FGM nanotube under combined 
thermal and electrical loadings with general form of imperfection. Gupta and Talha [20] 
investigated nonlinear flexural and vibration response of FGP plates with initial geometrical 
imperfections. The initial geometric imperfection has been incorporated using generic 
imperfection function. 
 From the previously cited references it may be concluded that there have not been reported 
any papers in which thermal buckling of plates with general form of imperfection have been 
studied using layer wise concept or Layer-Wise (LW) Theory of Reddy [1]. Moreover, most of 
the mentioned studies present the analytical solutions for imperfect plates, the reason why in this 
paper a finite element solution is presented. After establishing the accuracy of the present layer-
wise model for linear and geometrically nonlinear bending, vibration and buckling analysis of 
laminated composite and sandwich plates subjected to mechanical load in the authors previous 
papers [24, 25, 26] as well as for thermal bending and buckling of laminated composite and 
sandwich plates [21, 22, 23], in this paper a thermal buckling analysis of imperfect plates is 
further investigated. The mathematical model assumes layer-wise variation of in-plane 
displacements and constant transverse displacement through the thickness of the plate, non-linear 
strain-displacement relations (in von Karman sense) and linear thermo mechanical material 
properties.  The Koiter's model for imperfection is adopted. The Principle of virtual displacements 
(PVD) is used to derive the weak form of linearized buckling problem. The weak form is 
discretized using Lagrangian nine-node isoparametric finite element. The original MATLAB 
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program is coded for finite element solution. The effects of imperfection amplitude, imperfection 
form, temperature distribution, side to thickness ratio and aspect ratio on critical temperature are 
analyzed. The accuracy of the numerical model is verified by comparison with the results from 
the author’s previous papers and available results from the literature. 
 
2. Theoretical Formulation 
 

 
 
 
 
 
 
 
 
 

Fig. 1 Plate model and displacement field 
 
A plate model is composed of n  orthotropic layers. It is assumed that 1) layers are perfectly 

bonded together, 2) material of each layer is linearly elastic and has three planes of material 
symmetry  (i.e., orthotropic), 3) strains are small, 4) each layer is of uniform thickness, 5) 
inextensibility of normal is imposed. 
 
2.1 Displacement field 
 

The displacements components  321 ,, uuu  at a point  zyx ,,  of plate are expressed as: 
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where  wvu ,,  are displacements of a point  0,, yx  on the reference plane of the laminate, 

functions  zI  are one-dimensional linear Lagrange interpolation functions of thickness 

coordinates and  II VU ,  are the values of  21,uu  at the I-th plane, Figure 1. 
 
2.2 Strain-displacement relations 
 

The strains associated with the displacement field (1) are computed using von Karman's non-
linear strain-displacement relation and Koiter imperfection model:  
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where ow  is initial imperfection function, assumed in the following form: 
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where   represents the amplitude of imperfection and varies between 0 and 1, 1  and 2  are the 

constants defining the localization degree of the imperfection symmetric about  1a/x   and 

2b/y  ,  1  and 2  are the half-wave numbers of the imperfection in the x  and y  axis, 
respectively, while  h  is plate thickness. A variety of imperfection modes such as  the sine type,  
the global type, and  the localized type, can be described by this expression by varying different 
coefficients, listed in table 1. Figure 1 shows some typical imperfection shapes considered in this 
article for the analysis. 
 

 
 

Fig. 2. Geometric imperfection modes 
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Types        Imperfection parameters 
Sine type  5.0,1,0 212121    

Global type G1 5.0,3,0 212121    

G2 5.0,5,0 212121    

G3 5.0,7,0 212121    

Local type L1 5.0,25.0,1,2,0,15 212121    

L2 5.0,5.0,1,2,0,15 212121    

L3 5.0,5.0,3,2,0,15 212121    

L4 5.0,5.0,5,2,0,15 212121    

L5 5.0,5.0,7,2,0,15 212121    

 
Table 1. Geometric imperfection modes  

 
2.3 Constitutive equations 
 

An orthotropic linear Hook’s material is assumed for each layer, to formulate constitutive 
equations as: 
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where     Tk
yzxzxyyyxx

k σ  and     Tk
yzxzxyyyxx

k ε are stress and 

strain components respectively,  k
ijQ  and     Tk

xyyyxx
k 00  are transformed reduced 

elastic stiffness [25]  and coefficients of thermal expansion in global coordinates, while T  is 
temperature rise. 
 
2.4 Temperature rise 
 
 The temperature rise for thermal buckling problem analyzed in this paper, includes uniform 
temperature rise and linear temperature rise. The uniform temperature rise assumes that the plate 
initial temperature is iT . The temperature is uniformly raised to a final value fT  in which the 

plate buckles. The temperature change is then if TTT  . The linear temperature rise through 

the thickness is assumed as: 
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where z  is the coordinate variable in the thickness direction measured from the middle plane of 

the plate, and temperature difference is botttop TTT  . 
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2.5 Governing equations and boundary conditions 
 
 The governing equations of the present LW theory are derived using the Principle of virtual 
displacements (PVD). After performing the integration in the thickness direction the internal work and 
external work due to in-plane thermal forces become:  
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are the stress resultants in middle and I-th plane, respectively.   
                                   

3. Finite element solution 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Finite element model 
 
3.1  Displacement field 

 The GLPT finite element consists of middle surface plane and I=1, N planes through the 
thickness of the plate, Figure 2. The element requires only the 0C  continuity of major unknowns, 
thus in each node only a displacement components are adopted, that are  wvu ,,  in the middle 

surface element nodes and  II VU ,  in the I-th plane element nodes. The generalized 

displacements over finite element e  are expressed as: 
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e
j VUwvu  dd ,  are displacement vectors in the middle plane and 

I-th plane, respectively, and e
j  are interpolation functions, for the j-th node of the element e , 

while  ejΨ  and  ejΨ  are given in [25]. 
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3.2 Geometry of the element 
 

 The geometry of the element is interpolated with the same interpolation functions over the 
element e , as the generalized displacements, thus isoparametric finite element formulation is 
adopted. 

 

e

m

1j
jj

m

1j
jj

m

1j
jje

z

y

x

z

y

x





































































. (8) 

where  jjj zyx  are  zyx  coordinates of j-th node of the element e . 

 
4. Numerical results and discussion 
 

Using previously derived finite element solution, an original computer program was coded 
using MATLAB programming language, for thermal buckling of imperfect plates. The parametric 
effect side to thickness ratio a/h, imperfection amplitude and imperfection form on critical 
temperature are analyzed.  

 Example 1: Plate is simply supported ( a / b 1 ) and made of mаterial with following material 

constants: 6 0
cr cr

E 1 GPa, 0.21, 1 10 1 / C , T T           

 
  2h/a   10h/a   20h/a   a / h 100  
         
 CFS[21] FEM CFS[21] FEM CFS[21] FEM CFS[21] FEM 
         
0 0.1523 0.1665 0.129510-1 0.130610-1 0.335610-2 0.337110-2 0.135910-3 0.136710-3 
0.1 0.1715 0.1695 0.135610-1 0.131810-1 0.345810-2 0.340010-2 0.139110-3 0.137910-3 
0.2 0.1908 0.1779 0.141710-1 0.135410-1 0.356010-2 0.349010-2 0.142310-3 0.141510-3 
0.3 0.2102 0.1907 0.147910-1 0.141110-1 0.366110-2 0.363810-2 0.145610-3 0.147410-3 
0.4 0.2295 0.2056 0.154010-1 0.149510-1 0.376210-2 0.384310-2 0.148810-3 0.155610-3 
0.5 0.2488 0.2198 0.160210-1 0.159810-1 0.386410-2 0.410410-2 0.152110-3 0.166110-3 

 
Table. 2.Critical buckling temperature under uniform temperature rise versus imperfection size   

 
Table 2 shows variation of critical temperature crT  of square (a/b=1) simply supported plate 

under uniform temperature rise as a function of imperfection size   and plate thickness ratio a/h.  

It is shown that crT  increases with the increase on imperfection size and is greater for thicker 
compared to thin plates, as expected. The results obtained with the present finite element model 
are in good agreement with closed form solution [21]. 
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 Example 2: Plate is simply supported ( a / h 100, a / b 1  ) and made of mаterial with 

following material constants: 6 0
cr cr

E 2 GPa, 0.3, 2 10 1 / C , T T          
 

 
Fig. 4. Critical buckling temperature under uniform rise versus a) b/a and b) b/h ratio 

 
Figure 4 shows variation of critical temperature crT  of thin (a/h=100) simply supported 

plate under uniform temperature rise, as a function of imperfection size , for different 
imperfection modes (sin type, local type and global type). It may be observed that critical 
temperature is most sensitive to global G2 imperfection mode, and less sensitive to local L2 
imperfection mode. As reported from the previous example, critical temperature increases with 
increase of imperfection size .  
 
5. Conclusion 
 
 The present study extends the previous works on linear and nonlinear thermo mechanical 
bending, buckling and vibrations of perfect plates [23, 24, 25, 26], to thermal buckling of 
imperfect plates, using Koiter’s model of imperfection. The finite element solution is derived for 
thermal buckling using LW theory of Reddy [1]. The buckling temperature obtained with the 
present LW solution is compared with the closed form solutions of  LW [21] model from the 
previous paper. It may be concluded that present model gives acceptable critical temperatures for 
thick and thin, perfect and imperfect plates and may serve as a benchmark for further 
investigations. 
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