
 
 

FACULTY OF  MECHANICAL AND CIVIL ENGINEERING  KRALJEVO 

UNIVERSITY OF KRAGUJEVAC 

 KRALJEVO-SERBIA 

  
 

 

 

 
 

 
 
 
 
 

THE THIRD INTERNATIONAL SYMPOSIUM FOR STUDENTS  
 
 
 
 
 
 
 
 
 
 
 

SRMA 2013 
 

 
 
 
 
 
 
 
 
 

PROCEEDINGS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kopaonik, 26
th 

–  28
th   

September 2013. 



 

 

PUBLISHER: 

Faculty of Mechanical and Civil Engineering Kraljevo 
 

 
 
 

EDITOR: 

Prof. dr Miomir Vukićević, mech. eng. 
 
 
 
 
 

PRINTOUT: 

SaTCIP d.o.o. Vrnjačka Banja 
 
 
 
 
 

No. of copies:   100 



SRMA 2013 
ISBN 978-86-82631-67-5 

[3] G.McGinty,   J.J.Irrgang,   D.Pezzullo,  ” Biomechanical 
considerations for rehabilitation of the knee”, Department of  

physical  therapy, University of  Pittsburgh  Scholl  of Health 
and Rehabilitation sciences,Pittsburgh,USA, 1999 

FREE VIBRATION OF PLATE ASSEMBLIES USING SPECTRAL ELEMENT 
METHOD 

 
Miloš M. Jočković1 

Mentor: Dr Mira M. Petronijević, Faculty of Civil Engineering, Belgrade 

Mentor: Dr Marija T. Nefovska-Danilović, Faculty of Civil Engineering, Belgrade 
1 University of Belgrade, Faculty of Civil Engineering, Serbia, milosjockovic32@gmail.com 

 
Abstract –In this paper, the Spectral Element Method (SEM) 
is applied to analyze free vibration of two plates 
perpendicularly assemblied, so-called L plate. In order to 
obtain necessary results, the transformation matrices have 
been developed for two positions of rectangular plates. 
Numerical example is conducted for L plate assemblies 
consisting of rectangular plates with same mechanical and 
geometrical properties. The accuracy of the results obtained 
by the SEM is verified by comparing them with the solutions 
obtained by conventional Finite Element Method (FEM). 
  

1. INTRODUCTION 
 
Plates form many structural components ranging from walls 
and floors of high-rise buildings, panels in ship hull and 
aircraft, to printed circuit boards and silicon chips. It is rare 
that plates are independent in the structures, but assembled. 
The most common solution method for analysing these types 
of structures is the Finite Element Method (FEM) [2]. The 
size of the finite element depends on the highest frequency in 
the analysis. Consequently, to gain accurate results for large 
structures with high eigenfrequencies it is required a lot of 
finite elements and the increase the number of finite elements 
takes greater computer time and effort to solve the problem. 
As an alternative to the FEM in dynamic analysis the Spectral 
Element Method can be used. The SEM is based on the 
spectral representation of the displacement field and on the 
exact solution of the governing equations of motion defined 
in the frequency domain. Consequently, the dynamic stiffness 
matrix is frequency dependent, i.e. the analysis is performed 
in the frequency domain. The SEM is especially useful for 
one-dimensional elements where the accurate solutions for 
governing equations of motions are obtained. However, for 
two-dimensional elements, it is not possible to obtain exact 
solutions of partial differential equations that satisfy arbitrary 
boundary conditions.  In order to find a solution of a problem, 
plate displacements are presented as infinite Fourier type 
series. For practical purposes, the series have to be truncated, 
which introduces an error. Consequently, the solutions are 
approximate and satisfy the prescribed degree of accuracy.  
The procedure for the development of the dynamic stiffness 
matrix for rectangular plate undergoing in-plane and 
transverse vibration can be found in the literature, [4], [7]. 
Earlier studies of modal characteristics of plate assemblies 

were conducted for plates with specific boundary conditions. 
Bercin [2] analyzed plate assemblies that were simply-
supported along longitudinal edges.  
The main objective of this paper is to present the 
development of the transformation matrix necessary for 
obtaining the dynamic stiffness matrix of L plate assembly 
for general case of boundary conditions. The obtained results 
were compared with the results obtained by the FEM. 
 
2. DYNAMIC STIFFNESS MATRIX OF 

PLATES 
 
General form of equation of motion of the plates in the 
frequency domain without presence of external load can be 
given as: 

 2( ) 0L hu u  (1) 

where ( , )x yu u is displacement vector,  is the mass 
density, h is the plate thickness,  is the circular frequency 
and L is the differential operator.  
In order to find a solution of equation of motion, plate 
displacements are presented as series: 
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where mC are integration constants and ( , )mf x y  are base 
functions that satisfy Eq. (1). 

Relation between the displacements ˆ( )q s  and forces ˆ( )Q s  
along the boundaries is obtained by performing so-called 
projection method [1]. This method is based on projections of 
the displacements and forces on the boundaries onto a set of 
functions ( )h s : 
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where ˆ,n nq q hˆn nq q hˆ,n ,  is projection of displacements and 

ˆ,n nQ Q hˆn n,Q Q h,n ,  is projection of forces along boundaries. 



Projections of the displacements and forces along boundaries 
are collected into vector: 

 ˆˆ, ,n nq h Q hq Q Q̂ hQ hQ h,,Q hQnq n
ˆq q̂ hq̂ h, nq h,q hq h  (4) 

Now, it is possible to define a relation between displacements 
and forces for general case by using a diagonal dynamic 
stiffness matrix: 
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where 
tDK
 

is dynamic stiffness matrix for out-of-plane 

vibration and 
iDK  is dynamic stiffness matrix for in-plane 

vibration. Presented dynamic stiffness matrix (5) gives the 
relation between the displacement vector q  and the force 

vector Q : 

 DQ K q  (6) 

 
Figure 1. Edge displacements for L plate in local coordinate 

systems 
 

The force vector Q  is defined as: 
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The displacement vector q  is defined as: 
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Represented vectors are given in the local coordinate system. 
The plate’s displacements in the local coordinate system are 
given in Fig. 1. 
 

3. TRANSFORMATION OF PLATE 
DYNAMIC STIFFNESS MATRIX 

 
As shown in the previous section, in the SEM the force-
displacement relation of plate is defined by the dynamic 
stiffness matrix. Therefore, the same assemblage procedure is 
used as in the FEM. First, it is necessary to transform 
displacements and forces along the edges from local 
coordinate system to global coordinate system. Fig. 1. shows 
the system consisting of two plates, so-called L plate, with 
edge displacements in the local coordinate systems. It is 
necessary to transform the displacements in the global 
coordinate system, Figure 2. 
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Figure 2. Edge displacement of L plate in global coordinate 

system 
Using the transformation matrix the displacements have been 
transformed: 

 T Tq = T q  (9) 

where vector q  is given in Eq. (8), and displacement vector 
in global coordinate system is defined as: 
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Figure 3.  L plate with dimensions and edge numeration 

 
 
 

Table 1. Eigenfrequencies of L plate assembly 

SEM 
FEM 

Mesh size 
М=1 M=3 M=10 5x10 10x20 20x40 40x80 
15.0 15.1 15.1 14.8 15.1 15.1 15.1 
19.3 19.3 19.3 18.7 19.1 19.2 19.3 
52.7 53.0 53.1 49.7 52.2 52.9 53.0 
65.7 65.9 65.9 60.8 64.5 65.5 65.8 
66.9 67.2 67.3 62.7 66.1 67.0 67.2 
70.4 70.6 70.3 66.0 69.4 70.3 70.6 

117.3 116.0 115.8 106.5 115.3 115.7 115.8 
118.4 119.5 119.6 112.7 116.2 118.8 119.4 
130.8 131.6 131.7 116.6 127.5 130.6 131.4 
133.8 135.1 135.2 126.0 133.1 134.7 135.1 
 
It is necessary to transform edge forces too, using the same 
transformation matrix: 

 T TQ = T Q  (11) 

where vector Q  is given in Eq. (7), and force vector in 
global coordinate system is defined as: 

 

T
T 0 1 m MQ = Q Q Q Q

 
T 1 2 3 4
0 0 0 0 0Q = Q Q Q Q

 

0 0 0S S S

j j j
x x xN T Mj T

0Q
 

0 0 0S S S

k k k
y y yN T Mk T

0Q
 

T 1 2 3 4
m m m m mQ = Q Q Q Q

 

m m m m

j T j j j j
m x xy x xQ N N T M

 

m m m m

k T k k k k
m y xy y yQ = N N T M

 

m m

j j
S Ar rj

mr
m m

j j
S Ar rk

mr
 

1 3, ;j 2 4,k  

, , ,
m m m m

j j j j j
m x xy x xr N N T M  

, , ,
m m m m

k k k k k
m y xy y yr N N T M  

(12) 

Substituting Eq. (9) and Eq. (11) into Eq. (6)  the relation 
between the force vector and displacement vector in global 
coordinate system is obtained: 
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where the dynamic stiffness matrix in the global coordinate 
system is given as: 
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In the following, it will be shown the transformation matrix 
for horizontal plate: 

 T
1 2T = T T  (15) 
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The first sub matrix is defined as: 
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The second sub matrix is defined as: 
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The same procedure is repeated for the vertical plate, with the 
corresponding transformation matrix.  
 

4. NUMERICAL EXAMPLE 
 
In order to illustrate the convergence and accuracy of the 
modal characteristics of L plates using the principles 
explained above, it will be shown example of two connected 
rectangular plates with same geometrical and mechanical 
characteristics, Young’s modules E=30GPa, mass density 
ρ=2.5t/m3, Poisson’s ratio ν=0.15, edge length a = b = 3m 
and plate thickness h=0.15m. Edges 2. and 5 are clamped and 
the other edges of L plate are completely free, Fig. 3. The 
results of the first 10 eigenfrequencies are compared with the 
results obtained using SAP2000 [7], Table 1. 
 

5. CONCLUSION 
 
Calculation of eigenfrequencies of plate assemblies with 
arbitrary boundary conditions has been presented in this 
paper. For that purpose the computer code in MATLAB has 
been developed. The present solution has been validated by 
comparing it with the results obtained using SAP2000 finite 
element code. The results indicated high precision of the 
proposed solution in comparison with the FEM. The number 
of unknowns was significantly decreased in the SEM, without 
loosing accuracy. The FEM requires mesh refinement with 
increasing frequencies. However, the accuracy of the results 
is not dependent on the mesh refinement in the SEM. In 
addition, the computation time and memory cost were 
decreased, too. Consequently, the SEM has demonstrated a 
great potential in modeling rectangular plate assemblies. 
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