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Abstract. To solve vibration problems of structure founded on the soil, the dynamic
behavior of the soil needs to be understood and an accurate dynamic stiffness model of the
soil has to be developed. Frequency dependent dynamic stiffness matrix of the massless,
flexible soil-structure interface can be calculated analytically or numerically, depending on
the complexity of the problem, using Boundary Element Method [1] or Thin Layer Method
[3]. In this paper the impedance functions of a stiff rectangular foundation laying on a
half-space are determined with the help of the Integral Transform Method (ITM) [4]. The
Integral Transform Method is an efficient method to calculate wave propagation in an elastic
homogeneous, or layered half-space. By the use of the decomposition of Helmholtz, the
Lamé’s equations of elastodynamics are converted to a system of decoupled partial differential
wave equations in space-time domain. With the help of a threefold Fourier Transform in the
wave number-frequency domain wave equations can be transformed into a system of three
decoupled ordinary differential equations which can be solved in the transformed domain. The
results in the original domain can be finally obtained by an Inverse Fourier Transform. Using
ITM method the dynamic stiffness of flexible foundation are determinate first. After that
the impedance functions of the stiff foundation are obtained using kinematic transformation
matrix. The obtained results are compared with impedance functions from literature.

1. Introduction

1.1. Impedance

Impedance can be any kind of resistance to wave oscillation.For example, electrical
impedance can be calculated as a ratio between voltage and current, acoustic impedance
as a ratio between sound pressure and particle velocity, etc. For the purpose of this paper,
mechanical impedance is calculated as a ratio between forceand response quantity, where the
response quantity is displacement

ZM =
f orce

response quantity
(1)



1.2. History of Impedance Functions

Impedance functions are frequency dependent foundation dynamic stiffnesses functions used
in the dynamic soil-structure interaction problems. Thosefunctions were first introduced by
Lamb, 1904. He studied the vibrations of a linear elastic half-space due to a harmonic load
acting on a point. In 1936,Reissneranalyzed the response to a vertical harmonic excitation of
a plate placed at the surface of a homogeneous elastic half-space. He was the first to notice the
existence of energy dissipated by radiation. Between 1953 and 1956,Sung, Quilan, Arnold
andBycroft were working on generalization of the work ofReissnerby introducing the six
degrees of freedom of the footing. Ten years later,Hsieh and Lysmerintroduced for the
first time the idea that soil - footing vibrations in verticaldirection can be represented with a
single-degree-of-freedom system which stiffness and damping are independent of frequency
- Lysmer’s analogy. This approach was extended to all degrees of freedom byRichart and
Whitman. In order to solve soil-structure interaction problems, many numerical approaches
are being developed form the beginning of 60’s [6]. The most successful ones areFinite
Element Method - FEMandBoundary Element Method - BEM. The impedance functions for
different type of foundations could be obtained using one ofthe before mention methods [5],
[7].

1.3. Integral Transform Method

It is clear that FEM is widely applicable and efficient, but there are some fields where is not
very suitable to use FEM. For example, while analyzing the behavior of a layered half-space
due to a dynamic loading, as the soil is semi-infinite and somekind of boundary conditions are
needed to account Sommerfeld’s radiation conditions, it ismore convenient to useIntegral
Transform Method(ITM). ITM is based on solving the Lamé’s elastodynamics equations
of half-space using the Helmholtz potentials and Fourier transformations. It is very efficient
solution technique which leads to a better understanding ofthe physical nature of the problem,
which can be integrated into FEM or BEM approaches [2]. On theother hands ITM has a
very restricted domain for application.

2. Propagation of Waves in Continuum

In general, the system of equations of motion of an elastic continuum is nonlinear, but, many
wave propagation effects in elastic solids can be adequately described by a linearized theory.
The system of equations governing the motion of linearly elastic a homogeneous isotropic
solid are obtained from the stress-equation of motion, Hooke’s law and strain-displacement
relations, in the form

µui, j j +(λ + µ)u j , ji = ρ üi (2)

whereλ andµ are two material parameters known asLamé’s constants

µ =
E

2(1+ν)
; λ = ν

E
(1+ν)(1−2ν)

(3)

while E is Young’s modulus andν is Poisson’s ratio.
In vector notation the equation (2) can be written as:

(λ + µ)∇∇ ·uuu+ µ∇2uuu= ρ üuu (4)
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The equilibrium equations, the kinematic and constitutiverelations and hence, theNavier’s
equation, must be satisfied at every interior point of the undeformed body, i.e. in the domain
Ω. On the surfaceSof the undeformed body, boundary conditions must be satisfied, also.
The system of equations (4) couples the three displacement components. It can be uncoupled
usingHelmholtzdecomposition, which states that any vectoruuu can be written as a sum of
gradient of a scalar potentialφ(x, t) and the curl of a vector potentialΨΨΨ(x, t) as:

uuu= ∇φ +∇×ΨΨΨ (5)

The scalar potentialφ(x, t) and the components of vector potentialΨi(x, t), i = x,y,z are
coupled through the boundary conditions.
Substitution of (5) into the field equation (4) yields

µ∇2[∇φ +∇×ΨΨΨ]+ (λ + µ)∇∇ · [∇φ +∇×ΨΨΨ] = ρ [∇φ̈ +∇× Ψ̈ΨΨ] (6)

Since that∇ ·∇×ΨΨΨ = 0, one obtains upon rearranging terms

∇[(λ +2µ)∇2φ ]+∇× µ∇2ΨΨΨ = ρ∇φ̈ +ρ∇× Ψ̈ΨΨ (7)

The displacement representation (5) satisfies the equationof motion if

∇2φ −
1
c2

p
φ̈ = 0 (8)

and

∇2ΨΨΨ−
1
c2

s
Ψ̈ΨΨ = 0 (9)

In these equations of motioncp is the velocity ofdilatational (longitudinal) waveor P-wave:

cp =

√

λ +2µ
ρ

(10)

cs is the velocity ofdistorsional (shear) waveor S-wave:

cs =

√

µ
ρ

(11)

and∇2 is the Laplacian:

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 (12)

The equation (5) can be written in the matrix form




ux

uy

uz



=







∂
∂x
∂
∂y
∂
∂z






φ +







0 − ∂
∂z

∂
∂y

∂
∂z 0 − ∂

∂x
− ∂

∂y
∂
∂x 0











Ψx

Ψy

Ψz



 (13)

The four potential fieldsφ , Ψx, Ψy and Ψz are not uniquely determined by the three
displacementsux, uy and uz. Usually, but not always, the relation∇ · ΨΨΨ = 0, is taken as
the additional constraint condition. Here, as a special case, Ψz is set to zero. Then, the
equation (13) can be written as

ux = φ,x−Ψy,z

uy = φ,y+Ψx,y

uz = φ,z−Ψx,y+Ψy,x

(14)
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3. Solution of Wave Equations using Integral Transform Method

To solve the equations of motions (8) and (9) theIntegral Transform Method(ITM) together
with theFourier Transformwill be used. The procedure is schematically described in figure
1.

Figure 1. ITM procedure scheme

TheFourier Transformf̂ (ω) of a functionf (t) andInverse Fourier Transformare defined by
the integrals:

f̂ (ω) =
∫ +∞
−∞ f (t)e−iωtdt ◦−• f (t) = 1

2π
∫+∞
−∞ f̂ (ω)eiωtdω (15)

where◦−• sign represents theFourier Transformation.
In case of a function with several independent variables, multiple integrals are used,
concerning the transformation of each variable

f̂ (kx,ky) =
∫ +∞
−∞

∫ +∞
−∞ f (x)e−i(kxx+kyy)dxdy

◦
|
•

f (x,y) = 1
2π
∫+∞
−∞

∫ +∞
−∞ f̂ (kx,ky)ei(kxx+kyy)dkxdky

(16)

By a threefoldFourier Transformwith regard tox◦−•kx, y◦−•ky andt ◦−•ω , equations (8)
and (9) can be transformed into the ordinary differential equations regarding thez-direction
in wave number domain

(

ω2

c2
p
− k2

x − k2
y

)

φ̂ +
∂ 2φ̂
∂z2 = 0 (17)

(

ω2

c2
s
− k2

x − k2
y

)

Ψ̂i +
∂ 2Ψ̂i
∂z2 = 0 , i = x,y (18)

The solution of the equations (17) and (18) is

φ̂ = A1eλ1z+A2e−λ1z (19)

Ψ̂i = B1ieλ2z+B2ie−λ2z , i = x,y (20)

whereA1, A2, B1i and B2i are the constants of integration, which can be obtained from
boundary conditions, whileλ1 andλ2 are equal to

λ 2
1 = k2

x + k2
y − k2

p, λ 2
2 = k2

x + k2
y − k2

s (21)
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In equations (21)kp andks are wave numbers forP- andS-waves

kp =
ω
cp

, ks =
ω
cs

(22)

This solution allows to derivative macro-element relations for each layer between the stress
and displacement at the top and bottom boundary of the layer in transformed domain. In
transformed domain the equation (14) can be written as

ûx = ikxφ̂ − Ψ̂y,z

ûy = ikyφ̂ − Ψ̂x,z

ûy = φ̂,z− ikyΨ̂x+ ikxΨ̂y

(23)

Substituting equations (20) and (19) into equation (23) thedisplacement vector in transformed
domain is obtained in the form





ûx

ûy

ûz



=





ikx iky 0 0 −λ2 λ2

iky ikx λ2 −λ2 0 0
λ1 −λ1 −iky −iky ikx ikx



 · {C} (24)

where

{C}T =
[

A1ezλ1 A2e−zλ1 B1xezλ2 B2xe−zλ2 B1yezλ2 B2ye−zλ2
]

(25)

The stress vector in transformed domain can be obtained fromthe strain-displacement
relations andHooke’s law [9] as

















σ̂x

σ̂y

σ̂z

τ̂xy

τ̂yz

τ̂zx

















= µ



















−2kx2− λ1
µ k2

p −2kx2− λ1
µ k2

p 0 0 −2ikxλ2 2ikxλ2

−2ky2− λ1
µ k2

p −2ky2− λ1
µ k2

p 2ikyλ2 −2ikxλ2 0 0
2kr − k2

s 2kr − k2
s −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2

−2kxky −2kxky ikxλ2 −ikxλ2 −ikyλ2 ikyλ2

2ikyλ1 −2ikyλ1 λ 2
2 + k2

y λ 2
2 + k2

y −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −(λ 2
2 + k2

x) −(λ 2
2 + k2

x)



















(26)

In the case of a layered half-space, it is better to use a new constantsĀ1, B̄1i instead ofA1,
B1i according to

A1eλ1z = A1eλ1he−λ1heλ1z = Ā1eλ1(z−h)

B1ieλ2z = B1ieλ2he−λ2heλ2z = B̄1ieλ2(z−h) (27)

whereh is depth of the layer andh > z. The displacement vector, for each layer, in the
transformed domain can be now written as





ûx

ûy

ûz



=





ikx iky 0 0 −λ2 λ2

iky ikx λ2 −λ2 0 0
λ1 −λ1 −iky −iky ikx ikx



 · {C̄} (28)

were{C̄}T is

{C̄}T =
[

A1e(z−h)λ1 A2e−zλ1 B1xe(z−h)λ2 B2xe−zλ2 B1ye(z−h)λ2 B2ye−zλ2
]

(29)

The unknown integration constants can be obtained from the boundary conditions at the
interface between the layers. At the upper surface of the topelement the boundary conditions
of the half space must be fulfilled, as well as the Sommerfeld’s radiation condition if the
bottom element goes to infinity.
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4. Half-Space Displacements Due to Harmonic Unit Force

In order to get the impedance functions of the rectangular foundations lying on the half-space,
the displacements of the half-space due to unit harmonic forces acting in vertical directionz,
and both horizontal directions,x andy (Figure 2) have to be calculated.

Figure 2. Harmonic force acting on the surface of the half-space

On the figures below, the displacements at the surface of the half-space due to the vertical
and horizontal force of unit amplitude, at frequencyω = 50Hzare displayed.
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Figure 3. Vertical displacementsuz (m) , Pz = 1 (kN), ω = 160rad/s, ν = 0.4
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Figure 4. Horizontal displacementsux (m), Pz = 1 (kN), ω = 160rad/s, ν = 0.4

5. Impedance Functions

5.1. Dynamic stiffness matrix of flexible rectangular foundation

The dynamic stiffness matrix of the flexible rectangular foundation,K f , is obtained by
inverting the dynamic flexibility matrix,K f = F−1

f . Elements of dynamic flexibility matrix
F f represent the nodal displacements at the surface of the half-space due to corresponding
harmonic forces of a unit amplitude. They are obtained usingITM. If n×n is a number of
nodes of a rectangular surface on half-space, the dimensionof the flexibility matrix is 3n×3n.
Nodal displacements vectoruf (3n,1) and corresponding force vectorPf (3n,1) are related by
dynamic stiffness matrix of flexible foundationK f (3n,3n)

Pf = K f u f (30)

5.2. Dynamic stiffness matrix of rigid rectangular foundation

Dynamic stiffness matrix of the corresponding rigid, massless, rectangular foundation
is obtained from dynamic stiffness matrix of flexible foundation using kinematic
transformation. Rigid foundation has 6 degrees of freedom:three translator vibrations, in
x, y andz directions, and three rotational vibrations, aroundx, y andz axes. The vector of
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Figure 5. Interaction surface between rigid foundation and soil

displacementsur in the centroidO of the interaction surface and corresponding force vector
Pr are, respectively

ur =

















ux

uy

uz

ϕx

ϕy

ϕz

















Pr =

















Px

Py

Pz

Mx

My

Mz

















(31)

Vectorsur andPr are related by

Pr = K rur (32)

whereK r(6,6) is dynamic stiffness matrix of rigid foundation.
Vector of nodal displacementsu f and vectorur are relate with kinematic constraint equation

u f = aur (33)

wherea(3(n×n),6) is kinematic matrix

a=





















a1

a2
...
ai
...

an×n





















(34)

This matrix consists ofn×n sub-matricesai , i = 1,2, · · ·n×n. Each sub-matrixai is obtained
from kinematic consideration, regarding nodeA= i and centroid of foundationO (Figure 5),
as

ai =





1 0 0 0 0 −yi

0 1 0 0 0 xi

0 0 1 yi −xi 0



 (35)
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Quantitiesxi andyi are horizontal distances inx andy direction, respectively, between the
centroid of the surface foundationO and nodeA= i, Figure 5.
Equaling the energy of the deformation, expressed in term ofboth pairs of variables,

E = PT
f u f = PT

r ur (36)

and taking into account Eqs. (30), (32) and (33), obtained isthe relation between the dynamic
stiffness matrix of rigid and flexible foundation in the form

K r = aTK f a (37)

At least, the dynamic stiffness matrix of rigid rectangularfoundation is obtained as

K r =

















Kxx 0 0 0 Kx,my 0
0 Kyy 0 Ky,mx 0 0
0 0 Kzz 0 0 0
0 Kmx,y 0 Kmx 0 0

Kmy,x 0 0 0 Kmy 0
0 0 0 0 0 Kmz

















(38)

The dynamic stiffness matrixK r is frequency dependent, complex matrix, which can be
written as a sum of real and imaginary part

K r(a0) = Re(K r(a0))+ i · Im(K r(a0)) (39)

The impedance functions are functions representing the dimensionless real and imaginary
part of dynamic stiffness matrixK r . Real part represents the dynamic stiffness, while
imaginary part represents damping of foundation in one direction. These functions are usually
written as functions of dimensionless frequencya0 = ωB/cs, whereB is the foundation
half-width. To obtain impedances the dynamic stiffnesses are reduced by the appropriate
coefficients of reduction. For vertical and horizontal stiffness the reduction coefficient is
equal toGB, while for rocking and torsional stiffness it is equal toGB3, whereG is shear
modulus of the soil.

6. Numerical Example

In the following example the impedance functions of the rigid massless square foundation
lying on the half-space is calculated using ITM. The dimensions of square foundation are
5m×5m. The foundation is divided into the mesh, with unit 0.25 meters in both directions.
The half-space characteristics are

− Elastic modulus:E = 5 ·107(1+2iD) kN/m2

− Damping ratio:D = 0.02

− Poisson coefficient:ν = 0.4

− Density:ρ = 2000 kg/m3

The process of obtaining impedance functions is divided into several parts.
First, the displacements at the surface of the half-space (in x, y andzdirections) for single unit
force inx, y andzdirection were calculated for every chosen angular frequencyω , using ITM.
The discretization mesh should be wide and dense enough to avoid troubles with singularities
and aliasing [8]. The obtained displacement fields are shownat Figures 3 and 4.
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The next step is calculation of flexibility matrix of the flexible foundation,Ff . The
displacement fields is calculated for one node of the mesh andthan shifted accordingly to
the global coordinate system, in order to fill the flexibilitymatrix Ff . Figure 6 shows the
example of shifting data for filling the columns and rows of the flexibility matrix Ff that
correspond to the vertical displacements due to vertical harmonic unit force. Assume that
displacement field is calculated for the acting force node which has index(i, j), Figure 6.a.
The displacement field due to the force acting in node(m,n), Figure 6.b, can be obtained for
every pair of index incrementsk andl from the relation

uz(i + k, j + l) = uz(m+ k,n+ l) (40)

The stiffness matrix of the flexible foundationK f is obtained by inverting the flexibility
matrix,K f = F−1

f .

(a) (b)

Figure 6. Calculation of the flexibility matrix. Shifting the displacements field data.

Finally, the stiffness matrix of the rigid foundationKr is obtained from the stiffness matrix
of the flexible foundationK f using kinematic transformation defined in Eq. (37). OnceKr is
calculated for every chosenω the impedance functions can be obtained, as described at the
end of the section 5.

Figures 7, 8, 9, 10 represent impedance functions. Since thefoundation is square,Kyy = Kxx

andKmy= Kmx. Dashed line refers to the results obtained in the numericalexample described
in this section; solid line refers to the results obtained bySchmid[5] usingBEM. Impedance
functions obtained using ITM have the same shape but higher values than functions obtained
usingBEM.
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Figure 7. Horizontal dynamic stiffnessKxx, ν = 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

a0 = ωB/cs

K
R

e
=

K
z
z
/
G

B

 

 
Schmid
ITM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

a0 = ωB/cs

K
I
m

=
K

z
z
/
G

B

 

 
Schmid
ITM

Figure 8. Vertical dynamic stiffnessKzz, ν = 0.4
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Figure 9. Rotational dynamic stiffnessKmx, ν = 0.4
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Figure 10. Torzional dynamic stiffnessKmz, ν = 0.4
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7. Conclusion

The ITM is used to calculate impedance functions for rectangular rigid foundation on a half-
space. The obtained results show good agreement with results from literature. Integral
Transform Methodis based on the analytic solution of the wave propagation theory and
transformed technique. The original problem is transferedto a new domain usingFast Fourier
Transform (FFT), where it can be solved much easily. The obtained results arereturned into
the original domain byInverse Fast Fourier Transform (IFFT). These transformations may
demand a considerable computational effort.
ITM is restricted to the half-space and to a horizontally layered half-space, with a
homogeneous and isotropic layers. In order to overcome thislimitation for the case of
local irregularitiesITM-approach can be combined withFEM. Instead ofFFT, Laplace
transformation orWavelet transformcan be used.
The advantage ofITM is that damping is taken into account automatically, as material, or
hysteretic damping as well radiation damping. The materialdamping is involved through
complex modulus, while radiation damping is defined bySommerfeld’s radiation condition.
This approach can be used for solving different problems of wave propagation in the soil,
specially problems of rail or road traffic induced vibrations.
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