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Abstract. To solve vibration problems of structure founded on the, stiie dynamic
behavior of the soil needs to be understood and an accuraterdy stiffness model of the
soil has to be developed. Frequency dependent dynaminestiffmatrix of the massless,
flexible soil-structure interface can be calculated amzdily or numerically, depending on
the complexity of the problem, using Boundary Element Mdtfij or Thin Layer Method
[3]. In this paper the impedance functions of a stiff rectdag foundation laying on a
half-space are determined with the help of the Integral §iam Method (ITM) [4]. The
Integral Transform Method is an efficient method to cal@ilative propagation in an elastic
homogeneous, or layered half-space. By the use of the dexsitiop of Helmholtz, the
Lamé’s equations of elastodynamics are converted to amsyaftdecoupled partial differential
wave equations in space-time domain. With the help of a fbléé-ourier Transform in the
wave number-frequency domain wave equations can be tramsfbinto a system of three
decoupled ordinary differential equations which can beexbin the transformed domain. The
results in the original domain can be finally obtained by amitge Fourier Transform. Using
ITM method the dynamic stiffness of flexible foundation aeteiminate first. After that
the impedance functions of the stiff foundation are obthinsing kinematic transformation
matrix. The obtained results are compared with impedangetifins from literature.

1. Introduction

1.1. Impedance

Impedance can be any kind of resistance to wave oscillatitor example, electrical
impedance can be calculated as a ratio between voltage arehtuacoustic impedance
as a ratio between sound pressure and particle velocity,Feticthe purpose of this paper,
mechanical impedance is calculated as a ratio betweendoteesponse quantity, where the
response quantity is displacement

B force
~ response quantity
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1.2. History of Impedance Functions

Impedance functions are frequency dependent foundatioardic stiffnesses functions used
in the dynamic soil-structure interaction problems. Thingetions were first introduced by
Lamh 1904. He studied the vibrations of a linear elastic hadegpdue to a harmonic load
acting on a point. In 193®&eissneranalyzed the response to a vertical harmonic excitation of
a plate placed at the surface of a homogeneous elasticgadtsHe was the first to notice the
existence of energy dissipated by radiation. Between 18831856,Sung Quilan, Arnold
andBycroftwere working on generalization of the work Beissnetby introducing the six
degrees of freedom of the footing. Ten years laktsieh and Lysmerintroduced for the
first time the idea that soil - footing vibrations in vertichtection can be represented with a
single-degree-of-freedom system which stiffness and dagrgre independent of frequency
- Lysmer’s analogy This approach was extended to all degrees of freedoRiblyartand
Whitman In order to solve soil-structure interaction problemsngnaumerical approaches
are being developed form the beginning of 60’s [6]. The mastsessful ones arEinite
Element Method - FEMindBoundary Element Method - BENThe impedance functions for
different type of foundations could be obtained using oninefbefore mention methods [5],

[7].

1.3. Integral Transform Method

It is clear that FEM is widely applicable and efficient, bugith are some fields where is not
very suitable to use FEM. For example, while analyzing theelvéor of a layered half-space
due to adynamic loading, as the soil is semi-infinite and skntkof boundary conditions are
needed to account Sommerfeld’s radiation conditions, ihdse convenient to usategral
Transform MethodITM). ITM is based on solving the Lamé’s elastodynamics ans
of half-space using the Helmholtz potentials and Fourangformations. It is very efficient
solution technique which leads to a better understandittgegfhysical nature of the problem,
which can be integrated into FEM or BEM approaches [2]. Onatirer hands ITM has a
very restricted domain for application.

2. Propagation of Waves in Continuum

In general, the system of equations of motion of an elastiticoum is nonlinear, but, many
wave propagation effects in elastic solids can be adequa¢sicribed by a linearized theory.
The system of equations governing the motion of linearlgtéaa homogeneous isotropic
solid are obtained from the stress-equation of motion, le@olaw and strain-displacement
relations, in the form

Hui jj + (A + H)uj ji = PG )
whereA andyu are two material parameters knownlasmés constants
E E
H=sarv A= Vaeva— 3

while E is Youngs modulus and’ is Poissors ratio.
In vector notation the equation (2) can be written as:

(A +p)00-u+pd%u=pi (4)
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The equilibrium equations, the kinematic and constitutelations and hence, thdaviers
equation, must be satisfied at every interior point of theefimgned body, i.e. in the domain
Q. On the surfac& of the undeformed body, boundary conditions must be satisdilso.

The system of equations (4) couples the three displacerermanents. It can be uncoupled

using Helmholtzdecomposition, which states that any vealazan be written as a sum of
gradient of a scalar potentig{x,t) and the curl of a vector potenti¥d(x,t) as:

u=0Op+OxW (5)

The scalar potentiap(x,t) and the components of vector potentl(x,t), i = x,y,z are
coupled through the boundary conditions.
Substitution of (5) into the field equation (4) yields

pP[Oe+0x W+ A +p)00- [Op+Ox W =p[de+0x¥]  (6)
Since thatl- 0 x W = 0, one obtains upon rearranging terms

O[(A +2u)0%¢] + 0 x u0?W = pOg+ p0 x W (7)
The displacement representation (5) satisfies the equaitimotion if

1.
Po—59=0 (8)
p
and

1 ..
W-SWw=0 (9)
C
S
In these equations of motiar is the velocity ofdilatational (longitudinal) waver P-wave

[A+2
Cp: Tu (10)

Cs is the velocity ofdistorsional (shear) waver S-wave

a
P
and? is the Laplacian:

, 0% 92 32

-7 4 7 7 12
ax2 + ay? + 022 (12)
The equation (5) can be written in the matrix form
d i 9
Uy ?( 0 T oz gy Wy
Uy = ?iy Q-+ %Z ; ~ 2% l-IJy (13)
Uz 9z — W X 0 l'IJZ

The four potential fieldsp, Wy, Wy and W, are not uniquely determined by the three

displacementsi, uy andu,. Usually, but not always, the relatidd- W = 0, is taken as
the additional constraint condition. Here, as a specia¢ c#s is set to zero. Then, the
equation (13) can be written as

Ux = @x — Wy 2
Uz = @z — Wxy + Wyx



3. Solution of Wave Equations using Integral Transform Method

To solve the equations of motions (8) and (9) thiegral Transform MethodITM) together
with the Fourier Transformwill be used. The procedure is schematically described uréig
1.

Fourier transformation - -
| Lame diff. eq. i; ‘>| Ordinary diff. eq.

V Usual FEM or BEM procedure
1

Analytical solution

1
I
* Inverse Fourier transform v

| Response I‘f - I Transformed response

Figure 1. ITM procedure scheme

TheFourier Transformf (w) of a functionf (t) andinverse Fourier Transforrare defined by
the integrals:

flw)= [T ft)e@dt o—e f(t) =4 [T f(w)d'dw (15)

whereo — e sign represents theourier Transformation
In case of a function with several independent variables|tiphe integrals are used,
concerning the transformation of each variable

Flloky) = J20 J2 f (x)e ot dxdy

(16)

™S e — o0

F(%,Y) = o [T [ £ (ke ky) €0 T9Y) dkdk,

By a threefold~ourier Transfomwnh regard toxo — eky, yo — ek, andt o — e w, equations (8)
and (9) can be transformed into the ordinary differentialapns regarding thedirection
in wave humber domain

wz 2 2\ 4 02¢
(C—%—kx—ky cp+ﬁ:o (17)
(£-K-$)9i+52 =0 . i=xy (18)
The solution of the equations (17) and (18) is
@ = AreM?4 Ape M2 (19)
W =Byeh?+Bae 2, i=xy (20)

where A1, Ay, By and By are the constants of integration, which can be obtained from
boundary conditions, whil@; andA; are equal to

M=K+KE-K, A=K +K -k (21)
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In equations (21, andks are wave numbers fd?- andS-waves

w w
= —y kS = — (22)

Cp Cs
This solution allows to derivative macro-element relasidor each layer between the stress
and displacement at the top and bottom boundary of the laygansformed domain. In
transformed domain the equation (14) can be written as

Kp

ljx = ikx(? - LPy,z
Substituting equations (20) and (19) into equation (23ylisplacement vector in transformed
domain is obtained in the form

lj\x |kx |ky O O —)\2 )\2
G | =ik ke A —Ay 0 0|-{C} (24)
ljz )\l _)\]_ _|ky _|ky |kx |kx

where
{C}T:[Ale”‘l A267M1 leez"Z BzX672/\2 BlyG'Z)‘Z Bzy67M2 ] (25)

The stress vector in transformed domain can be obtained fhmmstrain-displacement
relations andHookes law [9] as

G —2do@— e —2@-AkE 0 0 2kt 2ikedz

8y —2ky? — Au—lkf) —2ky? — %kf, 2ikyry  —2ikeAz 0 0

92 | _y 2k — k2 2%~k —2ikydy  2ikyAs 2ikuAz —2ikyAp (26)
Ty —2kky —2kky ikedz  —ikedz  —ikyAz ikyA2

Tyz 2ikyAq 2k AFHKE AZHKE —kky —kky

Tax 2ikeA —2ikeAy kky ky —(A2+KD) —(AZ+1K2)

In the case of a layered half-space, it is better to use a newtmtsA_l, B_li instead ofAq,
B according to

Agehi? = Ay Mghz — A ha(zh)
By = Byelhe ANl = By gholzh)

whereh is depth of the layer anll > z. The displacement vector, for each layer, in the
transformed domain can be now written as

(27)

G | =] ik ik A» —A2 0 0|-{C} (28)
ljz )\l _)\]_ _|ky _|ky |kx |kx

were{C}T is

{C}T = A= e 21 Bel@ Wl Bye 22 Byelzhh Bye 2z | (29)
The unknown integration constants can be obtained from thadary conditions at the
interface between the layers. At the upper surface of thel@pent the boundary conditions

of the half space must be fulfilled, as well as the Sommenelddiation condition if the
bottom element goes to infinity.



4. Half-Space Displacements Due to Harmonic Unit Force
In order to get the impedance functions of the rectangulandations lying on the half-space,

the displacements of the half-space due to unit harmonéefoacting in vertical direction
and both horizontal directiong,andy (Figure 2) have to be calculated.

R
//

N N
y \>\\\ y / /\ y \

-/ -

Figure 2. Harmonic force acting on the surface of the half-space

i

On the figures below, the displacements at the surface ofalespace due to the vertical
and horizontal force of unit amplitude, at frequeney= 50 Hz are displayed.

x10° x10°

Figure 3. Vertical displacements, (m) , P, =1 (kN), w = 160rad/s, v = 0.4
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Figure 4. Horizontal displacements, (m), P, =1 (kN), w = 160rad/s, v =0.4

5. Impedance Functions

5.1. Dynamic stiffness matrix of flexible rectangular foatioh

The dynamic stiffness matrix of the flexible rectangularrfdation, K¢, is obtained by
inverting the dynamic flexibility matrixK ; = Ff‘l. Elements of dynamic flexibility matrix
F¢ represent the nodal displacements at the surface of thespatfe due to corresponding
harmonic forces of a unit amplitude. They are obtained ukihd. If nx nis a number of
nodes of a rectangular surface on half-space, the dimeastbe flexibility matrix is 31 x 3n.
Nodal displacements vectag (3n,1) and corresponding force vect®r(3n,1) are related by
dynamic stiffness matrix of flexible foundatidty (3n,3n)

Pt =Ktus (30)

5.2. Dynamic stiffness matrix of rigid rectangular founidat

Dynamic stiffness matrix of the corresponding rigid, mass| rectangular foundation
is obtained from dynamic stiffness matrix of flexible foutida using kinematic
transformation. Rigid foundation has 6 degrees of freedthmee translator vibrations, in
X, y andz directions, and three rotational vibrations, aroung andz axes. The vector of
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Figure 5. Interaction surface between rigid foundation and soil

displacements, in the centroidO of the interaction surface and corresponding force vector
P, are, respectively

Ux P

Uy R

| Uz _ P,
Ur = b Pr= M, (31)

by My

¢Z MZ

Vectorsu; andP; are related by

Pr = KrUr (32)

whereK, (6, 6) is dynamic stiffness matrix of rigid foundation.
Vector of nodal displacements and vectou, are relate with kinematic constraint equation

Us = aur (33)
wherea(3(n x n),6) is kinematic matrix

a
a

a= : (34)

L Qnxn |
This matrix consists af x nsub-matrices; ,i = 1,2,---nx n. Each sub-matrig; is obtained
from kinematic consideration, regarding nolle- i and centroid of foundatio® (Figure 5),

as

1 0 0 O 0 -y
a=(010 0 0 X (35)
0 0 1 vy —X% 0



Quantitiesx; andy; are horizontal distances mandy direction, respectively, between the
centroid of the surface foundati@mand nodeA =i, Figure 5.
Equaling the energy of the deformation, expressed in terbotf pairs of variables,

E=Plus =Py (36)

and taking into account Egs. (30), (32) and (33), obtaingukiselation between the dynamic
stiffness matrix of rigid and flexible foundation in the form

Kir=aKsa (37)
At least, the dynamic stiffness matrix of rigid rectangudtarndation is obtained as

K O 0 0 Kymy
0 Ky O Kgmx O
0 0 Kz O 0
0 Kmy O Kmx O
Kmy« O 0 0  Kny

. 0 0 0 0 0 Kn|

The dynamic stiffness matriK, is frequency dependent, complex matrix, which can be
written as a sum of real and imaginary part

Kr(a0) = Re(K(a0)) +i - Im(K(a0)) (39)

The impedance functions are functions representing themsionless real and imaginary
part of dynamic stiffness matriK,. Real part represents the dynamic stiffness, while
imaginary part represents damping of foundation in onectize. These functions are usually
written as functions of dimensionless frequersgy= wB/cs, whereB is the foundation
half-width. To obtain impedances the dynamic stiffnesgesraduced by the appropriate
coefficients of reduction. For vertical and horizontalfagks the reduction coefficient is
equal toGB, while for rocking and torsional stiffness it is equal®B®, whereG is shear
modulus of the soil.

Kr= (38)

SN eNoNoNe)

6. Numerical Example

In the following example the impedance functions of thedigiassless square foundation
lying on the half-space is calculated using ITM. The dimensiof square foundation are
5mx 5m. The foundation is divided into the mesh, with uni2® meters in both directions.
The half-space characteristics are

— Elastic modulusE = 5-107(142iD) kN/n?
Damping ratio:D = 0.02
— Poisson coefficientv = 0.4
Density:p = 2000 kg/m?

The process of obtaining impedance functions is dividea $etveral parts.

First, the displacements at the surface of the half-spaceyiandz directions) for single unit
force inx, y andzdirection were calculated for every chosen angular frequen using ITM.
The discretization mesh should be wide and dense enougbitb@wubles with singularities
and aliasing [8]. The obtained displacement fields are shaiviaigures 3 and 4.
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The next step is calculation of flexibility matrix of the flbeké foundation,F;. The
displacement fields is calculated for one node of the meshtzaard shifted accordingly to
the global coordinate system, in order to fill the flexibilityatrix Fs. Figure 6 shows the
example of shifting data for filling the columns and rows oé ttexibility matrix F; that
correspond to the vertical displacements due to verticahbaic unit force. Assume that
displacement field is calculated for the acting force nod&whas index, j), Figure 6.a.
The displacement field due to the force acting in ngdg), Figure 6.b, can be obtained for
every pair of index incrementsandl from the relation

Ui+ Kk j+1) =u(m+kn+l) (40)

The stiffness matrix of the flexible foundatid€x is obtained by inverting the flexibility
matrix, K¢ = F; L.

(@) (b)

Figure 6. Calculation of the flexibility matrix. Shifting the displaments field data.

Finally, the stiffness matrix of the rigid foundatidf is obtained from the stiffness matrix

of the flexible foundatiof; using kinematic transformation defined in Eq. (37). OKgés
calculated for every chosemn the impedance functions can be obtained, as described at the
end of the section 5.

Figures 7, 8, 9, 10 represent impedance functions. Sincetimelation is squareyy = Kyx
andKmy = Kmx. Dashed line refers to the results obtained in the numesicahple described
in this section; solid line refers to the results obtained®biimid5] usingBEM. Impedance
functions obtained using ITM have the same shape but higllees than functions obtained
usingBEM.
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Figure 7. Horizontal dynamic stiffneskyy, v = 0.4
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Figure 8. Vertical dynamic stiffnes&,,, v = 0.4
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Figure 10. Torzional dynamic stiffneskp,,, v = 0.4
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7. Conclusion

ThelTM is used to calculate impedance functions for rectanguiéd foundation on a half-
space. The obtained results show good agreement with sefsaih literature. Integral
Transform Methods based on the analytic solution of the wave propagationrthand
transformed technique. The original problem is transfésedhew domain usingast Fourier
Transform (FFT)where it can be solved much easily. The obtained resultsetwiened into
the original domain bynverse Fast Fourier Transform (IFFTYhese transformations may
demand a considerable computational effort.

ITM is restricted to the half-space and to a horizontally lagehalf-space, with a
homogeneous and isotropic layers. In order to overcomelithitation for the case of
local irregularitiesITM-approach can be combined wifEM. Instead ofFFT, Laplace
transformation oiWavelet transforncan be used.

The advantage dfTM is that damping is taken into account automatically, as rizdteor
hysteretic damping as well radiation damping. The matel@hping is involved through
complex modulus, while radiation damping is defined3mmmerfeld radiation condition.
This approach can be used for solving different problems afeapropagation in the soil,
specially problems of rail or road traffic induced vibraton
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