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Isogeometric approach in dynamic analysis of spatial curved beams

Abstract:

Accurate numerical modeling of curved beams is of significant importance in different engineering
fields. Several challenges can be present during the curved beam formulation, primarily due to
the issues regarding the beam geometry, discretization and beam theory assumptions.

In this dissertation, the isogeometric approach is applied in the dynamic analysis of spatial
curved beams. A novel beam element was formulated using the Bernoulli - Euler hypothesis
and the fundamental relations of the differential geometry, as well as the Cauchy continuum
beam model. The geometry of the beam, as well as the displacement, velocity and acceleration
fields, were defined using the Non-Uniform Rational B-Spline (NURBS) basis functions, which
present the basis concept of the isogeometric approach. Complex geometry of the curved beams
can be modeled accurately using NURBS - based isogeometric approach. Formulation of the
spatial beam is conducted for the linear case, while the geometrically nonlinear formulation is
conducted only for the plane curved beam using an explicit integration procedure. Free and
forced vibration analyses of the curved beams are studied. In the latter, the influence of the
moving mass on the curved beams is analyzed. The presented approach had shown that, in
comparison to the classical finite element method (FEM), a less number of degrees of freedom
are required in order to obtain accurate results. Consequently, fewer computational resources
are needed to reach the appropriate level of accuracy for the curved beams. This makes the
presented approach competitive with the conventional FEM, especially in the analysis of the
flexible spatial engineering structures with complex geometry.

Keywords: Isogeometric analysis, Bernoulli - Euler beam, Free and transient analysis, Geo-
metrically nonlinear formulation
Scientific field: Civil Engineering
Scientific subfield: Engineering Mechanics and Theory of Structures
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Izogeometrijski pristup u dinamičkoj analizi prostornih krivolinijskih grednih nosača

Sažetak:

Tačno numeričko modelitanje krivolinijskih gredna nosač je od izuzetnog značaja u mnogim
inženjerskim oblastima. Geometrija krivolinijskog grednog nosača, diskretizacija grede kao i
potrebne pretpostavke grede, predstavljaju poteškoće prilikom formulacije krivolinijskog grednog
elementa.

U ovom radu je primenjen izogeometrijski pristup u dinamičkoj analizi prostornih krivolinijskih
grednih nosača. Novi gredni element je definisan primenom Bernuli - Ojelerove pretpostavke, kao
i osnovnih relacija diferencijalne geometrije i mehanike kontinuuma Košijeve grede. Geometrija
grede, kao i polje pomeranja, brzine i ubrzanja su definisani primenom NURBS baznih funkcija,
što predstavlja fundamentalnu osobinu isogeometrijskog pristupa. Složena geometrija krivolini-
jskog grednog nosača može se tačno modelirati primenom izogeometrijskog pristupa zasnovanog
na NURBS baznim funkcijama. Formulacija prostornog krivolinijskog grednog nosača je izvedena
u uslovina linearne teorije, dok je geometrijski nelinearna teorija primenjena samo na ravanskom
krivolinijskom grednom nosaču, primenom eksplicitne metode integracije. Izvšena je analiza
slobodnih i prinudnih vibracija. Analiza prinudnih vibracija je fokusirana na uticaj pokretnog
opterećenja na krivolinijski gredni nosač. Primenom date formulacije dobijeni su rezultati
zadovoljavajuće tačnosti sa manje stepeni slobode u poredjenju sa klasičnom metodom konačnih
elemenata. U sladu sa tim, u cilju dobijanja rezultata zadovoljavajuće tačnosti krivolinijskog
grednog nosača nepohodna je primena manje resursa. Ovo čini prikazani pristup konkurentnijim
klasičnoj metodi konačnih elemenata u analizi fleksibilnih inženjerskih konstrukcija sa složenom
geometrijom.

Ključne riječi: Izogeometrijska analiza, Bernuli - Ojlerova greda, Slobodne i prinudne vibracije,
Geometrijski nelinearna formulacija
Naučna oblast: Građevinarstvo
Uža naučna oblast: Tehnička mehanika i teorija konstrukcija
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1 Introduction

Beams are the most commonly used structural elements in numerous engineering fields, Figures
1.1 and 1.2. Consequently, its accurate formulation and efficient application are of essential
importance. Behaviour of beam elements is defined using a mathematical model of a beam.
This model is developed using the principles of physics and corresponding beam assumptions.
Solutions of engineering problems described with the mathematical model of a beam are usually
obtained applying the numerical procedures, of which the finite element method (FEM) is
the most widely used nowadays. The FEM is based on a physical discretization in which the
structural domain is divided into smaller domains, referred to as finite elements, forming a mesh
with the corresponding number of degrees of freedom (DOFs). If the solution of the engineering
problem obtained using FEM is not accurate, the number of DOFs should be increased, which
can be conducted by the mesh’s refinement. It is important to note that the FEM is implemented
in most software packages for structural engineers.

Figure 1.1: Tiger and Turtle – Magic Mountain, Duisburg (Germany), built 2011, base 44 x 37
m, height 21 m

Due to the aesthetic and functional requirements in the design process, curved spatial beam
elements cannot be avoided. Geometrical model of the curved spatial beam represents the
spatial curve, which can be obtained using computer-aided design (CAD) software packages.
To accurately describe the free-form curves, and the curves of conic sections like circle, ellipse,
parabola and hyperbola, CAD software packages utilize the NURBS basis functions.
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1. Introduction

Figure 1.2: Horizont Observatorium, Herten (Germany), built 2008, arches radius
approximately 45 m

CAD and FEM software packages have been developed independently. Therefore the direct
relation has not been established yet [1], which represents one of the main disadvantages in
nowadays design process. During the mesh refinement procedure, the initial geometry model
defined using CAD software packages is used to obtain finite element mesh. This procedure
is repeated until the solution to the engineering problem converges. Consequently, the design
process has the potential to become costly and time-consuming. In order to overcome this
disadvantage, the isogeometric approach has been formulated, in which a direct relationship
between the geometry and the numerical model of the structure is established. The NURBS
functions as basis functions of the numerical model’s solution space in the isogeometric approach
have enabled the direct relation. In accordance with the aforementioned, when the geometry
model of the structure is defined, all properties of the geometry model are taken as a starting
point of the numerical model. If the geometry model of the structure is accurately presented
using NURBS basis functions, errors due to geometric approximation are eliminated. If necessary,
the accuracy in the isogeometric analysis can be increased applying the refinement procedures.
However, the refinement is conducted only in the numerical model and does not influence the
structure’s geometry. Three refinement procedures are distinctive in the isogeometric approach,
H -, P -, and K - refinements. First two have their counterpart in the FEM, while the third,
where basis function degree and continuity can be arbitrary, is only unique for the isogeometric
approach.

The choice of the beam mathematical model (beam theory), which defines the behaviour of the
beam element, depends on numerous factors such as the accuracy of the required results and the
beam’s dimension amongst others. In general, the beam theories are based on the assumption
that the cross-section of the undeformed configuration, modeled as a rigid body, is perpendicular
to the beam’s centerline. One of the commonly used theories is the Timoshenko beam theory,
which takes into account axial, shear and bending effects. Consequently, the beam’s kinematic
is defined using the displacements of the beam’s centerline, torsional rotation and the rotation
about the principal axes. However, when used for slender beams, the locking effect occurs. To
overcome this effect, the Bernoulli-Euler beam theory can be formulated, in which the rigid
cross-section remains perpendicular to the beam’s centerline during the deformation process.
Due to this hypothesis, the shear deformation term vanishes at the beam’s centerline. Therefore
the rotations about the principal axes are coupled with the beam’s centerline displacements.
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In the case of the plane beam formulation only displacements of the beam’s centerline can
be used as a DOFs, forming rotation - free element, while in the case of the spatial beam
formulation displacements of the beam’s centerline and the torsional rotation can be used as a
DOFs. Consequently, the number of DOFs can be decreased compared to the Timoshenko beam
theory. Another advantage of the Bernoulli - Euler beam theory can be found in the case of
plane beams, where only beam’s centerline displacements are DOFs, forming rotation-free beam
formulation. The advantage is beneficial for the geometrically nonlinear analysis.

During their lifetime, beam-like structures are often subjected to dynamic load. Therefore,
dynamic formulation of beam elements is necessary for accurate prediction of their free vibration
properties and dynamic response due to dynamic load, which can vary both in time and space.
Moving dynamic load is induced by the mass moving along the element. This dynamic load is
usually modeled as moving force with constant magnitude and direction, while the inertial term
of the moving mass is neglected. However, in some cases, the effect of the inertial term of the
moving mass can significantly affect the response of structure and thus cannot be neglected.
Inertial part of the moving load is caused by an effect of the moving mass acceleration on its
trajectory and is dependent on the moving mass velocity and trajectory curvature.

If the structure’s configuration is significantly changed from the initial state during the deforma-
tion process, the application of linear analysis is no longer valid, and the non-linearity has to be
introduced. In the linear formulation, the displacement and rotation vectors can be used as a
DOFs, while for the case of nonlinear formulation, the rotation represents a tensor quantity.

This thesis presents the application of the isogeometric approach in the dynamic analysis of
the Bernoulli-Euler beam subjected to spatially varying dynamic loads. The linear dynamic
formulation of the spatial beam and the geometrically nonlinear dynamic formulation of the
plane beam have been derived. Basic properties of the differential geometry and the continuum
mechanics have been used during the derivation process of the beam governing equation of
motion.

After the Introduction section, Chapter 2 elaborates the literature overview and the previous
research in this field. The geometry representation of the curves using NURBS basis function
and its properties have been shown in Chapter 3. At the end of this chapter, a brief review
of the refinement procedure has been presented as an essential parameterization property. In
Chapter 4, the basic properties of the differential geometry related to the curves are presented,
and the relation with the NURBS parameterized curves is established. In addition, the ξλ
parameterization of the curves, proposed by Radenković [2], is introduced to simplify the
derivation procedure. A linear dynamic formulation of the spatial Bernoulli-Euler beam element
is derived in Chapter 5, for the free vibration and transient analysis. In the transient analysis
moving mass problem is studied using two models: moving load and moving mass. The
theoretical considerations of the geometrically nonlinear dynamic formulation of the plane
curved Bernoulli-Euler beam have been shown in Chapter 6. The main contributions of this
thesis have been shown in Chapters 5 and 6. All formulated beam models and presented
procedures have been implemented in the original Matlab code, Chapter 7, which is used for the
numerical verifications and parametric studies presented in Chapter 8. Finally, the conclusions
of the presented work and future research recommendations in this field are given in Chapter 9.
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2 Review of previous research

Nowadays, in order to solve wide range of problems in structural engineering, isogeometric
analysis (IGA) can be applied. Concept and the term were first introduced by Hughes and his
co-workers in their paper [3] where motivation, the basic idea, advantages and performances of
the structural analysis approach were presented. In addition, available refinement procedures
of the approach were given, denoted as H -, P - and K - refinement. Detail explanation of the
refinement procedures for the isogeometric approach in structural analysis and their advantages
and comparison to the FEM refinement procedures were given in [4], while [5] gave the error
estimates for the NURBS approximation in terms of the refinements. The performance of the
isogeometric approach was compared with the performance of the classical FEM in [6] using
different refinement procedures for the simple dynamic problems in the structural analysis. In
addition, the structural vibration analysis of simple beam problems, shell and solid elements
was given in [7]. A brief review of the isogeometric analysis and its formulation in wide range of
engineering problems was presented in [1], which can be observed as an isogeometric handbook.

Given the main idea of IGA - representation of the geometry and solution space of the numerical
model using the same basis functions, most of the research in this field was based on the NURBS
basis functions, used for their capability to accurately describe various geometric shapes. Details
of the NURBS functions, their construction, properties and advantages can be found in [8], [9].
During the derivation of the Bernoulli-Euler beam element, integration has to be conducted
in order to define some quantities. Since the NURBS basis functions are rational functions,
it is important to define a numerical integration procedure. Due to the increased continuity
between the elements, the NURBS - based isogeometric analysis has an advantage related to
the numerical integration. In comparison to the classical Gauss quadrature, fewer integration
points are necessary to obtain accurate results, as shown in [10].

Beam elements are solid bodies in which one dimension is significantly larger than the other
two. Therefore during the derivation process, the simplifications are introduced using proper
assumptions. Depending on the assumptions, the various beam theories are formulated, briefly
shown in the paper [11]. In this paper, the four engineering beam theories are given, Bernoulli-
Euler, Rayleigh, shear and Timoshenko theory, which are classified by their assumptions. As a
conclusion of this paper, the Bernoulli-Euler theory, as a classical beam theory, can be used
for slender beams, while the application of the Timoshenko theory is a well suited for the
non-slender beams.

Most of the studies in the field of the isogeometric beam formulation were focused on the
Timoshenko beam theory. The shear locking effect was detected as the main problem in these
papers. Beirão da Veiga showed [12] that the shear locking effect of the Timoshenko beam can
be avoided applying the isogeometric collocation approach with the mixed formulation, which
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is numerically validated for the straight beam. Auricchio et al. [13] used these procedures to
overcome the shear effects for the spatial curved Timoshenko beam. The reduced integration
and projection method were proposed by Bouclier et al. in [14] as an alternative procedure
for the locking effects solution of the Timoshenko beam. Besides the Timoshenko isogeometric
beam, the third-order shear deformation beam was formulated using the isogeometric approach
by Li and his co-workers [15].

The first work on the Bernoulli-Euler isogeometric beam was published by Hughes and his
co-workers in paper [3], where the potential of the isogeometric approach in the analysis of
straight plane beam was demonstrated. However, the full potential of the isogeometric approach
can be exploited for the case of the curved beams. One of the first papers on curved spatial
Bernoulli-Euler beam was given by Greco and Cuomo [16], where only linear static formulation
was presented. In this paper, the configuration of the deformed spatial curved beam was given
by two operators, one that translates beams’ centerline triads and the other that imposes
cross-section torsional rotation. In addition, Greco and Cuomo analyzed the Bernoulli-Euler
spatial curved beam continuity and suggested the solution of the G1 continuity in the parametric
domain [17]. Using the isogeometric concept, Raknes et al. [18] developed the spatial cable
model of the non-shear beam element, in which the torsional rotation term was neglected,
forming a rotation-free model. In this model, only the beam’s centerline displacements were
employed as DOFs. Borković et al. presented the rotation-free isogeometric formulation of
the plane Bernoulli-Euler beam element for static [19] and dynamic [20] analysis. The spatial
curved Bernoulli-Euler beam element for linear static analysis was published by Radenković et
al. [21], where torsional rotation, as a DOF, was introduced. The convergence properties of the
free vibration analysis of the straight plane Bernoulli-Euler beams were improved by Wang et
al. in [22] using higher-order mass matrices.

If the load applied to the structure induces large displacements, the application of the linear
analysis is not valid. In such cases, geometrically nonlinear analysis should be performed.
The geometrically nonlinear formulation assumes small deformation but finite strain, which
requires finite displacements and rotations [23]. Most of the research in the field of geometrically
nonlinear formulation are conducted for the straight beam using FEM. Bathe and Bolourchi
[24] derived the two - node spatial beam elements for the geometrically nonlinear static analysis
using total Lagrangian and update Lagrangian FEM formulation and showed that the latter
is computationally more efficient formulation. This article represents a particular case of a
general geometrically nonlinear procedure, which Bathe presented in book [25]. Belytschko
[26] gave the review of the implicit and explicit geometrically nonlinear formulations with
their advantages and restrictions in the structural analysis. Lo [27] presented finite element
formulation of the Timoshenko spatial beam element defined using finite strain and large
rotation, which was applied only for the static analysis. Hsiao and Yang [28] formulated the
geometric nonlinear co-rotational finite element of a curved planar Bernoulli-Euler beam for
dynamic analysis. Although the rotations in this work were taken to be large, the deflections
of the beam element measured in the element coordinates were small. Therefore, the beam
dominantly behaved as a rigid body. Chan [29] presented the procedure for large deflection
deformations of the spatial Bernoulli-Euler beam defined in the geometrically nonlinear finite
element formulation applied for the stability analysis with the post-buckling behaviour and the
dynamic analysis. The finite element formulation of the thin-walled composite beams within
the large deformation and small strain was published by Saravia [30]. He reviewed the main
inconsistencies of the geometrically nonlinear formulations present in most research papers.
Aforementioned inconsistencies arose from the inadequate representation of the rotation tensor
as a vector quantity and application of the inadequate strain-stress relations in the geometrically
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nonlinear formulation. Three kinematic representations of large rotations for the highly flexible
spatial curved beams undergoing arbitrarily large elastic deformation was analyzed by Pai
[31]. Based on the parametrization of the spatial curved beam element given by Greco and
Cuomo [16], Bauer et al. [32] gave the geometrically nonlinear static formulation of the spatial
Bernoulli-Euler curved beam using isogeometric approach.

Dynamic response of the mass moving along the structure has drawn attention to numerous
researchers for a century and a half. Most of the research in this field was related to the
analysis of mass moving along straight beam using linear FEM-based analysis.. One of the
earliest investigations in this field was carried out by Stokes in 1849 [33], where an inertial
term of moving mass on the plane straight Bernoulli-Euler beam was neglected, forming moving
load model. Also, in this paper, the inertial term of the beam was not taken into account,
which was included by Jeffcott in 1929 [34]. He analyzed basic cases of the straight plane
Bernoulli-Euler beams subjected to the moving load. Skeer and Hribar [35] and Stanišić and
Harding [36] presented more practical numerical-analytical solutions of the moving load problem,
which can be only applied to simply supported straight plane beam. Akin and Mofid developed
the analytical-numerical solution of the moving mass problem on the Bernoulli-Euler plane
straight beam with different types of boundary conditions [37], introducing the inertial part of
the moving mass resulted from beam’s vibrations. It was shown that the difference between
the results of the moving load and moving mass model could be significant for the case of
higher velocity of the moving mass. Genin et al. [38] formulated plane curved simply supported
Bernoulli-Euler beam subjected to the moving mass, which induced out-of-plain vibrations, while
Yang et al. [39] extended it to the in-plane vibrations. Both papers are limited to the linear
theory and curved beams with constant curvature. Lin and Lee in [40] analyzed the influence of
the boundary conditions and the moving mass velocity on the plane arch beam in the linear
case. In this paper, the moving mass had been formulated using two models: moving load and
moving mass model, and the difference between the formulations had been demonstrated. Sheng
and Wang [41] presented the geometrically nonlinear formulation of the moving mass problem
on the straight simply supported plane Bernoulli-Euler beam. The dynamic analysis of the
geometrically nonlinear three-dimensional beam subjected to the moving mass was published by
Zupan and Zupan [42]. In their work, two subsystems were analyzed, one is the beam defined
using the geometrically nonlinear formulation, while the moving mass was formulated as a point
mass. Li and Ren [43] gave analytical study on linear dynamic responses of a horizontally curved
beam with constant curvature subjected to three-directional moving loads. The isogeometric
approach in the moving mass problem formulation was applied by Van Do et al. in [44] for the
plane straight Bernoulli-Euler beam.
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3 NURBS

In this chapter, the geometry representation of the curves parameterized using NURBS basis
functions is discussed. Main properties, as well as the advantages of the given parameterization,
are presented. At the end of the chapter, the refinement procedures of the NURBS parameterized
curves are explained, and their effect on the shape of the curves is shown.

Geometry description of the physical structure represents the critical step in the structural
analysis. Beam, as three-dimensional structure, can be described as a spatial curve due to
the beam assumptions. This curve is denoted as a beam’s centerline. Besides the explicit and
implicit definition of the curve, the parametric description is the most useful for the geometric
representation of the curve [9]. One of the parametric description advantages can be found in
the straightforward boundary condition application for the beam-like structures.

Computed-aided design (CAD) software packages, nowadays widely used for geometry description
of the structures, are based on the parametric representation. Utilization of NURBS functions
in these software packages gives the possibility to accurately represent the curves with free
form and conical section shapes. In order to comprehend NURBS functions, it is essential to
formulate their constructive functions, B-Spline functions.

3.1 B-Spline functions

The B-Spline functions are constructed in the parameter domain using a knot vector. The knot
vector ξ is a set of non-decreasing real numbers (the knots, ξi) which represent coordinates of
the parametric space ξ. The interval between two adjacent knots is denoted as a knot span. If
the values of the adjacent knots are equal, the knot span is empty. The non-empty knot spans
subdivide the domain into elements.

The B-Spline functions are piecewise polynomial functions constructed using Cox de Boor
algorithm [8]. In the case of zero degree of polynomial (p = 0), the i-th B-Spline function is:

Ni,0 =
 1, ifξ ∈ [ξi, ξi+1[

0, otherwise
(3.1)

while for higher polynomial degree case, p>0:

Ni,p =


ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p−1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), ifξ ∈ [ξi, ξi+p+1[

0, otherwise
(3.2)
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Since the i-th B-Spline function is defined over multiple adjacent knot spans, it is crucial
to determine the continuity of the B-Spline function between the elements in the parametric
domain. The continuity is determined by the number of the B-Spline polynomial degree and
the number of the repeated knots k – Cp−k. The non-negativity and the partition of unity of
the B-Spline functions are additional important properties, used in the following formulations.
Some of the B-Spline properties are directly related to the knot vector properties. The knot
vector is denoted as an open vector if the number of repeated knots at the beginning and the end
of the parametric domain is equal to the B-Spline polynomial degree. The B-Spline functions
constructed over the open knot vector have an interpolatory property at the beginning and the
end of the domain.

Due to the recursive formulation of the B-Spline function, the derivative is easily obtained:
d

dξ
Ni,p (ξ) = p

ξi+p − ξi
Ni,p−1 (ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (3.3)

An arbitrary curve in Euclidean space C (ξ) can be constructed as a linear combination of the
B-Spline functions:

C (ξ) =
n∑
i=0

Ni,p (ξ)Pi (3.4)

where Pi represents the i-th control point, which discretizes curve in the Euclidean space, while
n is the number of the control points (basis functions). It is important to define control polygon,
which is constructed by the linear interpolation of the adjacent control points.

Depending on the B-Spline polynomial degree and the knots’ multiplicity, the B-Spline basis
functions are non-zero functions on the exact number of the knot spans. Consequently, the
i-th control point only locally influence the shape of the curve, where the i-th B-Spline basis
function has a non-zero value in the parametric domain. In Figure 3.1 various curve shapes
are presented with corresponding control polygons. As can be noticed, control point P0 has an
influence only on the part of the curve defined over the first knot span, where corresponding
B-Spline basis function has non-zero values. The rest of the curve has not changed its shape
during the change of the first control point position. Aforementioned represents an additional
advantage of the presented procedure for parameterization of the curves with an arbitrary shape.
Another essential property of the parametrized curve is its continuity, which is directly coupled
to the parametric continuity of the B-Spline basis functions.

Derivative of the curve is obtained from the derivative of the B-Spline basis function:
d

dξ
C (ξ) =

n∑
i=0

Ni,p (ξ)
dξ

Pi (3.5)

In addition, the B-Spline basis function degree p, the number of control points (ncp = n+ 1)
and the number of the terms in the knot vector (m) are coupled by the relation:

m = ncp + p+ 1 (3.6)

3.2 NURBS functions

The B-Spline basis functions are capable only to represent the polynomial curves accurately.
This limitation can be overcome with Non-Uniform Rational B-Spline (NURBS) functions for
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Figure 3.1: (a) Shape variations of the plane arbitrary shaped curve with the corresponding
control polygon, (b) B-Spline functions of polynomial degree p = 3, constructed over the knot

vector [0 0 0 0 1 2 3 3 3 3]

curves like circle, ellipse, parabola and hyperbola. As a rational functions, NURBS are derived
from the B-Spline functions:

Ri,p (ξ) =
n∑
i=0

Ni,p (ξ)wi∑n
j=0 Nj,p (ξ)wj

(3.7)

where wi represents the weight of the corresponding control point. Weights can be interpreted
as heights of the control points in the higher dimensional space.

NURBS basis functions have inherited the properties of the B-Spline basis functions such as the
partition of the unity, the local influence of the control points, and non-negativity. B-Spline
basis functions can be obtained directly from NURBS basis functions if the weights have equal
values for all control points. An arbitrary curve in Euclidean space constructed using NURBS
basis functions is obtained using Equation 3.4 by replacing Ni,p by Ri,p.

3.3 Refinements

In some cases, the local influence of the control point has to be reduced without changing the
shape of the curve. This can be achieved applying the refinement procedures given for the
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B-Spline and NURBS functions denoted as H -, P - and K - refinement procedures [45]. The
H - refinement represents the knot insertion procedure conducted by inserting the additional
knot at a non-empty knot span. Consequently, the number of elements and the control points
increases by one without changing the curve shape.

P0
a,=,P0

b,=,P0
c

P1
a,=,P1

b,=,P1
c

P2
a,=,P2

b,=,P2
c

P5
a,=,P6

b,=,P8
c

P3
b,=,P3

c

P5
b,=,P7

c

P4
a

P4
b

P4
c

P5
c

P6
c

P3
a

control,polygon
2nd,refinement

control,polygon
1st,refinement

initial,control,polygon

C(,,)ξ

(a)

ξ(b)

0 1 2 2.5 31.50.5
0

0.5

1
N0,3

a

N1,3
a

N2,3
a

N3,3
a

N4,3
a

N5,3
a

0 1 2 2.5 31.50.5
0

0.5

1
N0,3

b

N1,3
b

N2,3
b N3,3

b
N4,3

b

N5,3
b
N6,3

b

0 1 2 2.5 31.50.5
0

0.5

1
N0,3

c

N1,3
c

N2,3
c N3,3

c N4,3
c
N5,3

c

N8,3
c

N6,3
c

N7,3
c

Figure 3.2: (a) Control polygons of the plane curve with constant shape for three cases of H -
refinement (a - initial shape, b - 1st refinement, c - 2nd refinement), (b) the B-Spline functions

of polynomial degree p = 3 constructed using the different knot vectors

In Figure 3.2, the arbitrary plane curve is defined using the B-Spline basis functions of the
polynomial degree p = 3, constructed over the knot vector ξ = [0 0 0 0 1 2 3 3 3 3] . By
inserting additional knot at the parametric coordinate 2.5, the number of basis functions and
the number of control points have been increased by one. In addition, the control polygon
has changed its shape, while some of the basis functions have been modified. At the end of
the presented H - refinement example, the knot has been additionally inserted twice at the
parametric coordinate 2.5. Consequently, the knot multiplicity has been equal to the polynomial
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order of the basis functions. In this particular case, the non-boundary control point (Pc
5) has

become an interpolatory point.

The P - refinement denotes refinement procedure of the basis functions order elevation. Applying
the P - refinement, the geometry and the parameterization of the curve are intact, while the
degree of the basis function is elevated by preserving the parametric continuity, which is achieved
by the knot insertion at the initially defined knots.
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Figure 3.3: (a) Control polygons of the plane curve for two cases of P - refinement (a - initial
shape, b - 1st refinement), (b) the B-Spline functions of polynomial degree p = 3 constructed

using different knot vectors

In Figure 3.3, the plane curve has been constructed using the control points (Pa
i ) and the

corresponding B-Spline basis functions (N a
i,3). The P - refinement is conducted in order to elevate

the polynomial degree by one, while the parametric continuity is unchanged. Consequently, the
additional knots have been repeated. As can be noticed from the figure, the shape of the curve
and the number of elements is unchanged.

Additional refinement procedure unique for the isogeometric concept is the K - refinement,
representing the combination of the above refinement procedures. The order of activity in the
K - refinement is crucial, where knot insertion is conducted after the order elevation is done
[4]. It is important to emphasize that the activity order is not commutative, and the reversed
procedure will not provide the required results.

13



3. NURBS 3.3. Refinements

14



4 Differential geometry

In this chapter, the differential geometry is applied in order to define a 3D deformable beam
with respect to the beam’s centerline. In general, beam’s centerline is a spatial curve which can
be parametrized using NURBS parametrization. Introduction of the ξλ frame of reference [2]
has preserved the orthogonality of an arbitrary beam point basis vectors, which is convenient
for the Bernoulli-Euler beam formulation.

As a deformable body, the spatial beam can be derived directly from the three-dimensional
continuum applying appropriate beam assumptions, by reducing three-dimensional space to
one-dimensional one. As one dimension of the beam is significantly larger than the other two, all
kinematic and stress quantities of the beam can be given as a function of this dimension, denoted
as the beam’s centerline. Aforementioned represents the axis, which in general has an arbitrary
shape in Euclidean three-dimensional space, forming the curved beam. All formulations and
analyses of the curved beam will be conducted using a curvilinear coordinate system attached
to the beam’s centerline.

The beam’s centerline is defined by the position vector r. First basis vector of the curvilinear
beam’s system is a tangent unit vector [46] derived using differential geometry:

t = dr
ds

= r′ (4.1)

where s is the arc-length parameter. In order to complete the three-dimensional Euclidean space
of the curvilinear system, additional two basis vectors are required, the normal n and binormal
b vectors:

n = 1
K

dt
ds

= K
K

(4.2)

b = t× n (4.3)

In Equation 4.2, term K is the curvature vector with modulus K. Using this formulation,
normal and binormal vectors are also unit vectors. Consequently, the curvilinear beam’s system
in arc-length parameterization is orthonormal, i.e. its metric tensor is a unit tensor. Due
to the orthogonality of the basis vectors and the assumption of the rigid beam cross-section
perpendicular to the beam’s centerline, normal and binormal vectors are located in the beam
cross-section plane. The presented curvilinear system given in arc-length parameterization forms
the Frenet - Serret frame of reference with well-known relations [47]:

t′

n′

b′

 =


0 K 0
−K 0 τ

0 −τ 0



t
n
b

 (4.4)
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where τ is the torsion of the beam’s centerline.

4.1 NURBS parameterization

NURBS parameterization presents an efficient approach to parameterize the curve with an
arbitrary shape. Using this parameterization, the basis vectors are defined as:

g1 = dr
dξ

= dr
ds

ds

dξ
= t√g11 (4.5)

G2 = n = 1
K

dξ

ds

d

dξ

(
g1
|g1|

)
(4.6)

G3 = b = g1 × n
|g1 × n|

(4.7)

In Equation 4.5, the term g11 is the component of the NURBS parametrized centerline metric
tensor, which is in general different from 1. Consequently, the tangent vector g1 is not a unit
vector. However, it is collinear to the tangent vector of the arc-length parameterization, t. Using
NURBS parameterization of the beam’s centerline, its metric tensor is:

gij =


g11 0 0
0 1 0
0 0 1

 (4.8)

such that det(gij) = g11 = g. In addition, the derivative of the basis vectors with respect to the
NURBS parameter is: 

g1,1

G2,1

G3,1

 =


Γ1

11 gK 0
−gK 0 √

gτ

0 −√gτ 0



g1

G2

G3

 (4.9)

where (),1 denotes the derivative with respect to the NURBS parameter ξ, while Γ1
11 = 1

2
g,1
g

represents the Christoffel symbol of the second kind. Generally, beam formulation is defined
with respect to the beam’s principal axes, which do not coincide with vectors G2 and G3.
Consequently, new basis vectors in the direction to the principal axes, denoted as g2 and g3, are
introduced: g2

g3

 =
 cos β sin β
− sin β cos β

G2

G3

 (4.10)

where β represents the angle between the beam cross-section principal axes and the basis vectors
G2 and G3. Vectors g1, g2 and g3 form the moving frame of reference of the beam’s centerline in
the principal axes direction in NURBS parameterization i.e. NURBS moving frame of reference,
Figure 4.1.

Applying Equation 4.10, the metric tensor is unchanged, while the derivatives of the basis
vectors with respect to the parameter ξ are:

g1,1

g2,1

g3,1

 =


Γ1

11 K3 K2

−K3 0 K1

K2 −K1 0



g1

g2

g3

 (4.11)
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4. Differential geometry 4.1. NURBS parameterization

i1

i2
i3

X

Y

Z

r0

r1

r2

r3

s, ξ

r
b

bb, G3

n, G2

t, g1

g2
g3

ηζ

Figure 4.1: Spatial beam element with an arbitrary shape obtained using NURBS
parameterization [48]

where K1 = √gτ , K2 = K sin β, K3 = K cos β, Ki = gKi, (i = 2, 3).

The contravariant basis vectors of the NURBS moving frame of reference are easily obtained
using its metric tensor:

gij =


1/g 0 0
0 1 0
0 0 1

 (4.12)

Using NURBS moving frame of reference, an arbitrary point of the beam can be defined using
the position vector:

r̂ = r + ηg2 + ζg3 (4.13)
where η and ζ are coordinates of the principal axes. The tangent vector of an arbitrary point is
given as:

ĝ1 = dr̂
dξ

= g1,1 + ηg2,1 + ζg3,1 = g0g1 + ηK1g2 + ζK1g3 (4.14)

where g0 = 1− ηK3 + ζK2, while the vectors g2 and g3 are translated from the beam’s centerline
to the arbitrary point due to the rigid beam cross-section. Metric tensor of an arbitrary point is
given as:

ĝij =


ĝ11 −ζK1 ηK1

−ζK1 1 0
ηK1 0 1

 , ĝ11 = g2
0g11 +

(
ζ2 + η2

)
K2

1 (4.15)

The basis vector ĝ1 is not perpendicular to the basis vectors g2 and g3, which can be concluded
from the nonzero off-diagonal components of the metric tensor. In order to maintain the
same basis vectors for the centerline and an arbitrary point, a new parametrization has to be
performed introducing the ξλ frame of reference [2]. As mentioned before, basis vectors g2 and
g3 are the same for every beam cross-section point due to the rigid cross-section assumption in
the beam theory. However, the tangent vector in the ξλ frame of reference has to be the same
as the tangent vector of the centerline:

gλ = ∂r̂
∂ξλ

= ∂ξ

∂ξλ
ĝ1 + ∂η

∂ξλ
g2 + ∂ζ

∂ξλ
g3 = g1 (4.16)

In order to satisfy this condition, the relation between two parametrizations is given as:
∂ξ

∂ξλ
= 1
g0
,

∂η

∂ξλ
= ζK1

∂ξ

∂ξλ
,

∂ζ

∂ξλ
= −ηK1

∂ξ

∂ξλ
(4.17)
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4. Differential geometry 4.1. NURBS parameterization

In the ξλ frame of reference, the metric tensor of an arbitrary point is the same as the metric
tensor of the NURBS moving frame of reference of the beam’s centerline, Equation 4.8.

Employing the procedure for the geometric representation of the spatial curves using NURBS
basis functions, the position vector of the beam’s centerline is:

r =
N∑
i=0

Ri (ξ) ri =
N∑
i=0

Ri (ξ) rmi im = xmim (4.18)

where Ri (ξ) is the i-th NURBS basis function, ri is the i-th control point, rmi is the m-th
Cartesian component of the vector ri, while xm is the m-th Cartesian component of the position
vector with corresponding basis vectors of the Cartesian coordinate system, Figure 4.1.

Using Equations 4.5 - 4.7 and Equation 4.10, the basis vectors of the beam’s centerline can be
obtained using NURBS parameterization. The basis vectors in the Cartesian coordinate system
are:

gi = xmi im i = 1, 2, 3 (4.19)
with corresponding Cartesian components:

xm1 = xm,1 (4.20)

xm2 = 1
K

(
xm,11 − Γ1

11x
m
,1

)
cos β + 1

√
gK

xk,1xl,11e
klm sin β (4.21)

xm3 = 1
√
gK

xk,1xl,11e
klm cos β − 1

K

(
xm,11 − Γ1

11x
m
,1

)
sin β (4.22)

In previous relations xm,11 represents the second derivative with respect to the parameter ξ, while
eklm is the permutation symbol.
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5 Linear dynamic formulation of
spatial Bernoulli - Euler beam

In this chapter, the linear formulation of the spatial curved Bernoulli-Euler beam element
using the isogeometric approach is presented. Displacement, velocity and acceleration fields
are derived accounting for the infinitesimal displacements and rotations. Only linear parts are
taken into account in the kinematic and constitutive relations. Governing equations of motion
of the Bernoulli-Euler beam for the free vibration and forced vibration analysis are derived.
Latter are solved applying explicit direct integration scheme using central difference method.
Some of the presented theoretical considerations are published by the author in [48].

Beam theories are based on the assumption that beam cross-section can be modeled as a rigid
body. The motion of the rigid body is the composition of a reference point translation and a
rotation about the reference point. In beam formulation, the centroid of beam cross-section is
chosen for the reference point. The sum of all cross-section centroids forms the beam’s centerline,
where all beam quantities required for the beam formulation are defined.

In linear formulation, where both geometrical and material linearities are assumed, displacements
and rotations are infinitesimal vector quantities, therefore can be used as degrees of freedom. It
is essential to point out that the beam formulation will be presented in the convective coordinate
system. Using this system, coordinates of the material and spatial coordinate system are the
same, i.e. the label of the material point in the material coordinate system will be preserved in
the spatial coordinate system. Consequently, the basis vectors of the NURBS moving frame will
change during the deformation process.

The assumption of beam rigid cross-section causes additional simplifications. During the
deformation process some of the strain components in the convective coordinate system vanish,
i.e:

ε22 = 0, ε33 = 0, ε23 = 0 (5.1)

In addition, Bernoulli-Euler beam theory introduces additional assumption that the rigid cross-
section remains perpendicular to the beam’s centerline during the deformations. Consequently,
the strain tensor components in the convective coordinate system at the beam’s centerline are:

ε12 = 0, ε13 = 0 (5.2)
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5. Linear dynamic formulation 5.1. Deformed configuration of the beam

5.1 Deformed configuration of the beam

Due to external impact on the spatial beam, an initial undeformed configuration defined using
position vector r will have a new deformed configuration r∗ given as:

r∗ = r + u (5.3)

where u represents the displacement vector of the beam’s centerline, Figure 5.1.

x

y

z

r*

r

ur0
*

r0

u0 P1 P2

P3P4

P0

P5

P0
*

P1
*

P2
*

P3
*P4

*

P5
*

P6 = P6
*

P7 = P7
*

Figure 5.1: Deformed and undeformed configuration of the beam’s centerline with the
corresponding control polygon and the displacement vectors for the centerline and the first

control point

Using NURBS parametrization described in Section 4.1 the displacement vector can be repre-
sented as:

u (ξ) =
n∑
i=0

Ri,p (ξ)ui (5.4)

where ui is the displacement vector for the i-th control point. It is important to emphasize
that the displacement vector and the beam’s centerline geometry are presented using the
same NURBS parameterization. This concept is the fundamental property of the isogeometric
approach in structural analysis. In addition, the displacement vector can be represented as:

u = uαiα = ũmgm = ũngn (5.5)

where uα is the α-th Cartesian component of the centerline displacement vector, while ũm and
ũn are the m - th contravariant and n - th covariant components of the centerline displacement
in the NURBS moving frame of reference.

The position vector of an arbitrary point of deformed beam in convective coordinates is:

r̂∗ = r∗ + ηg∗2 + ζg∗3 (5.6)

which shows that the deformed beam configuration imposes new basis vectors of the beam’s
centerline. Using the convective coordinate system, basis vectors of the NURBS moving frame
for deformed configuration are:

g∗t =
(
δmt + ũm|t

)
gm (5.7)

where ũm|t presents the m - th component of the t - th covariant derivative.
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5. Linear dynamic formulation 5.2. Displacement field

In addition, basis vectors of the deformed configuration can be expressed as:

g∗m = gm + um (5.8)

where um represents the displacement vector of the m - th basis vector.

Use of the convective coordinate system provides an additional formulation of the deformed
basis vectors:

g∗m = F · gm (5.9)
In the previous relation, F represents the deformation gradient, which becomes the rotation
tensor Rg for the second and third base vector due to the beam assumption. Rotation about
the reference point in the linear formulation is defined as:

Rg = I + Φ (5.10)

where I is the unit tensor, while Φ is a skew-symmetric tensor, which represents the tensor of
infinitesimal rotation. By definition, the skew - symmetric tensor can be written as:

Φ · gj = φ× gj, j = 2, 3 (5.11)

where φ is the axial (dual) vector of the skew - symmetric tensor. Vector φ represents the
vector of infinitesimal rotation, which can be defined in NURBS moving frame of reference as:

φ = φigi, φi = 1
2√g ũj|ke

kji (5.12)

5.2 Displacement field

Displacement of an arbitrary point of beam can be defined as:

û = r̂∗ − r̂ (5.13)

Using Equations 4.13, 5.6 and 5.8 displacement field is expressed as:

û = u + ηu2 + ζu3 (5.14)

Equation 5.14 can be expressed in matrix form as:

û =
[
1 η ζ

]
︸ ︷︷ ︸

C


u
u2

u3


︸ ︷︷ ︸

uc

(5.15)

The first component of the displacement field u represents the displacement of the beam’s
centerline defined by Equation 5.5 as:

u =
[
i1 i2 i3

]
︸ ︷︷ ︸

i


u1

u2

u3

 (5.16)
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5. Linear dynamic formulation 5.2. Displacement field

Other components of the displacement field are defined applying Equations 5.7 and 5.8 and
relation ũm|t = ũj|tg

jm:

u2 = ũ1|2

g
g1 + ũ2|2g2 + ũ3|2g3 (5.17)

u3 = ũ1|3

g
g1 + ũ2|3g2 + ũ3|3g3 (5.18)

Applying the beam rigid cross-section assumption, as well as the Bernoulli-Euler assumption,
derivatives of the displacement components in the NURBS moving frame are:

ũ2|2 = 0, ũ3|3 = 0, ũ1|2 = −ũ2|1, ũ1|3 = −ũ3|1, ũ2|3 = −ũ3|2 (5.19)

Consequently, the terms u2 and u3 are:

u2 = − ũ2|1

g
g1 + ũ3|2g3 (5.20)

u3 = − ũ3|1

g
g1 − ũ3|2g2 (5.21)

The relation between the derivatives of the displacement components given in the NURBS
moving frame and in the Cartesian coordinate system is:

ũi|j = u,j · gi = um,jx
m
i (5.22)

If the previous relation is applied for the component ũ3|2, the derivative of the beam’s centerline
displacement with respect to the coordinate ζ, denoted as (),3, appears:

ũ3|2 = u,3 · g2 (5.23)

In the conventional beam formulation, only the derivative of the beam’s centerline displacement
with respect to the ξ coordinate exists. However, ũ3|2 appears in the first component of the
vector of infinitesimal rotation, given in Equation 5.12, when the beam assumption is applied:

φ1 = 1
√
g
ũ3|2 (5.24)

Consequently, the term ũ3|2 represents the physical component of the rotation in direction to the
axis g1, i.e. the torsional rotation of the beam cross-section, which will be denoted as ϕ in the
following. The torsional rotation represents the additional degree of freedom for the Bernoulli -
Euler beam besides the beam’s centerline translation.

By substituting Equations 5.22 and 5.24 into Equations 5.20 and 5.21, displacement vectors u2
and u3 are:

u2 =
[
−x

1
2
g

g1 −
x2

2
g

g1 −
x3

2
g

g1 g3

]
︸ ︷︷ ︸

Au


u1,1

u2,1

u3,1

ϕ

 (5.25)
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5. Linear dynamic formulation 5.2. Displacement field

AT
u =



−x
1
2
g
x1

1 −
x1

2
g
x2

1 −
x1

2
g
x3

1

−x
2
2
g
x1

1 −
x2

2
g
x2

1 −
x2

2
g
x3

1

−x
3
2
g
x1

1 −
x3

2
g
x2

1 −
x3

2
g
x3

1

x1
3 x2

3 x3
3


︸ ︷︷ ︸

Bu


i1

i2

i3


︸ ︷︷ ︸

iT

(5.26)

u3 =
[
−x

1
3
g

g1 −
x2

3
g

g1 −
x3

3
g

g1 −g2

]
︸ ︷︷ ︸

Cu


u1,1

u2,1

u3,1

ϕ

 (5.27)

CT
u =



−x
1
3
g
x1

1 −
x1

3
g
x2

1 −
x1

3
g
x3

1

−x
2
3
g
x1

1 −
x2

3
g
x2

1 −
x2

3
g
x3

1

−x
3
3
g
x1

1 −
x3

3
g
x2

1 −
x3

3
g
x3

1

−x1
2 −x2

2 −x3
2


︸ ︷︷ ︸

Du


i1

i2

i3


︸ ︷︷ ︸

iT

(5.28)

Finally, components of the displacement field can be represented in the matrix form as:

uc =


i 0 0
0 i 0
0 0 i



I 0
0 BT

u

0 DT
u


︸ ︷︷ ︸

Gu



u1

u2

u3

u1,1

u2,1

u3,1

ϕ


︸ ︷︷ ︸

ucc

, I =


1 0 0
0 1 0
0 0 1

 (5.29)

Components of the vector ucc represent the Cartesian components of the beam’s centerline
displacement and its derivatives with respect to the parameter ξ and the torsional rotation.
These components can be parametrized using the NURBS parametrization as:

ucc =
N∑
i=0

Riqi = Rq (5.30)
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5. Linear dynamic formulation 5.3. Velocity field

where

RT =



R0

R1
...

Ri

...
RN


, Ri =



Ri (ξ) 0 0 0
0 Ri (ξ) 0 0
0 0 Ri (ξ) 0

Ri,1 (ξ) 0 0 0
0 Ri,1 (ξ) 0 0
0 0 Ri,1 (ξ) 0
0 0 0 Ri (ξ)


(5.31)

qT =
[
q0 q1 · · · qi · · · qN

]
, qi =


ui1
ui2
ui3
ϕi

 (5.32)

Finally, the displacement field can be represented as:

û = CGuRq (5.33)

5.3 Velocity field

The velocity field represents the derivative of the position vector with respect to time and can
be derived directly from the displacement field as its material derivative:

v̂ = D

Dt
(û) = ˙̂u = u̇ + ηu̇2 + ζu̇3 (5.34)

Using Equation 5.8 velocity field can be written as:

v̂ = v + ηġ∗2 + ζġ∗3 = v + ηv2 + ζv3 (5.35)

Equation 5.35 can be written in the matrix form as:

v̂ =
[
1 η ζ

]
︸ ︷︷ ︸

C


v
v2

v3


︸ ︷︷ ︸

vc

(5.36)

The first term in Equation 5.35 represents the velocity of the beam’s centerline and is obtained
directly from Equation 5.16 as:

v =
[
i1 i2 i3

]
︸ ︷︷ ︸

i


u̇1

u̇2

u̇3

 (5.37)
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5. Linear dynamic formulation 5.4. Acceleration field

Other terms are obtained from Equation 5.9:

v2 = ġ∗2 = Ṙg · g2 = Φ̇ · g2 (5.38)

v3 = ġ∗3 = Ṙg · g3 = Φ̇ · g3 (5.39)

The skew-symmetric tensor Φ can be represented using the axial (dual) vector φ, thus the
previous relations can be represented as:

v2 = φ̇× g2 (5.40)

v3 = φ̇× g3 (5.41)

where the components of the vector φ̇ in terms of the NURBS moving frame are:

φ̇k = 1
2√ge

klmu̇l|m (5.42)

In the previous relation, the term u̇l|m represents the derivative of the velocity components given
in the NURBS moving frame of reference.

Using Equations 5.22 and 5.42, the velocity field is obtained as:

v̂ = CGuRq̇, q̇T =
[
q̇0 q̇1 · · · q̇i · · · q̇N

]
, q̇i =


u̇i1
u̇i2
u̇i3
ϕ̇i

 (5.43)

where the components of the vector q̇i are the velocity components in the Cartesian coordinate
system and torsional rotational velocity of the i-th control point.

5.4 Acceleration field

Acceleration field of the beam is obtained as a time derivative of the velocity field:

â = D

Dt
(v̂) = ˙̂v = v̇ + ηv̇2 + ζv̇3 = a + ηa2 + ζa3 (5.44)

Equation 5.44 can be written in the matrix form as:

â =
[
1 η ζ

]
︸ ︷︷ ︸

C


a
a2

a3


︸ ︷︷ ︸

ac

(5.45)

Acceleration of the beam’s centerline is given as:

a =
[
i1 i2 i3

]
︸ ︷︷ ︸

I


ü1

ü2

ü3

 (5.46)
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5. Linear dynamic formulation 5.5. Kinematic relations

while:

a2 = φ̈× g2 (5.47)

a3 = φ̈× g3 (5.48)

Components of the vector φ̈ are:

φ̈k = 1
2√ge

klmül|m (5.49)

where ül|m are the derivatives of the acceleration components given in the NURBS moving frame
of reference.

Using Equations 5.22 and 5.49 the acceleration field is obtained as:

â = CGuRq̈, q̈T =
[
q̈0 q̈1 · · · q̈i · · · q̈N

]
, q̈i =


üi1
üi2
üi3
ϕ̈i

 (5.50)

where components of the vector q̈i are the acceleration components in the Cartesian coordinate
system and torsional rotational acceleration of the i-th control point.

5.5 Kinematic relations

Components of the strain tensor of an arbitrary beam point in the convective coordinate system
are given as:

ε̂ij = 1
2
(
ĝ∗ij − ĝij

)
(5.51)

Applying the rigid cross-section assumption, the terms ε̂22, ε̂33 and ε̂23 for an arbitrary beam
point vanishes.

The axial strain component can be obtained from the corresponding components of the metric
tensors for the undeformed and deformed beam configurations:

ε̂11 = 1
2 (ĝ∗11 − ĝ11) (5.52)

Substituting ĝ11 given in Equation 4.15 for the deformed and undeformed beam configuration,
the axial strain component becomes:

ε̂11 =1
2 (g∗11 − g11)− η

(
K
∗
3 −K3

)
+ ζ

(
K
∗
2 −K2

)
− ηζ

(
K
∗
3K
∗
2 −K3K2

)
+

1
2

[
η2
(
K
∗
3K
∗
3 −K3K3

)
+ ζ2

(
K
∗
2K
∗
2 −K2K2

)]
+

1
2
(
η2 + ζ2

)
(K∗1K∗1 −K1K1)

(5.53)
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5. Linear dynamic formulation 5.5. Kinematic relations

In the IGA - based formulation of the Bernoulli-Euler beam element, the following reference
deformation terms are chosen:

ε11 = 1
2 (g∗11 − g11) , κ1 = K∗1 −K1, κ2 = K

∗
2 −K2, κ3 = K

∗
3 −K3 (5.54)

If the nonlinear terms with respect to the reference deformation are neglected, Equation 5.53
can be written as:

ε̂11 = g0
[
(1 + ηK3 − ζK2) ε11 − ηκ3 + ζκ2

]
+
(
η2 + ζ2

)
K1κ1 (5.55)

Using Equations 5.7, 5.8, 5.12 and Equation 4.11 for the case of the undeformed and deformed
beam configuration, reference deformation terms for the Bernoulli-Euler beam in the linear
formulation are:

ε11 = g1 · u1 (5.56)

κ1 = g∗2,1 · g∗3 − g2,1 · g3 = u1 · (K3g3 +K2g2) + ϕ,1 (5.57)

κ2 = −g∗1,1 · g∗3 + g1,1 · g3 = −g3 ·
(
u1,1 −

1
2
g,1
g
u1

)
+K3ϕ (5.58)

κ3 = g∗1,1 · g∗2 − g1,1 · g2 = g2 ·
(
u1,1 −

1
2
g,1
g
u1

)
−K2ϕ (5.59)

Matrix formulation of the reference deformation terms is given as:
ε11

κ1

κ2

κ3


︸ ︷︷ ︸
ε

=


xm1 0 0 0

K3x
m
3 +K2x

m
2 0 0 1

Γ1
11x

m
3 −xm3 K3 0

−Γ1
11x

m
2 xm2 K2 0


︸ ︷︷ ︸

L


um,1

um,11

ϕ

ϕ,1


︸ ︷︷ ︸

uξ

(5.60)

Components of the vector uξ can be parametrized using NURBS parametrization as:

uξ =
N∑
i=0

Biqi = Bq (5.61)

where:

B =
[
B0 · · · Bi · · · BN

]
(5.62)

BT
i =


Ri,1 (ξ) 0 0 Ri,11 (ξ) 0 0 0 0

0 Ri,1 (ξ) 0 0 Ri,11 (ξ) 0 0 0
0 0 Ri,1 (ξ) 0 0 Ri,11 (ξ) 0 0
0 0 0 0 0 0 Ri (ξ) Ri,1 (ξ)

 (5.63)

and:

qT =
[
q1 · · · qi · · · qn

]
, qi =


ui1
ui2
ui3
ϕi

 (5.64)
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5. Linear dynamic formulation 5.6. Constitutive relations

Due to the Bernoulli-Euler assumption, the shear deformation at the beam’s centerline vanishes.
However, deformation for an arbitrary beam point using Equation 5.51 and 4.15 for undeformed
and deformed beam configuration is given as:

ε̂12 = 1
2 (ĝ∗12 − ĝ12) = −1

2ζκ1 (5.65)

ε̂13 = 1
2 (ĝ∗13 − ĝ13) = −1

2ηκ1 (5.66)

As can be noticed in Equation 5.55, the axial strain component couples the axial, flexural
and torsional deformations. Following the relations given in Equation 4.17, the axial strain
component in ξλ frame of reference is defined as:

ε̂11 (ξλ) = 1
g0

[
(1 + ηK3 − ζK2) ε11 − ηκ3 + ζκ2

]
(5.67)

where only axial and flexural deformation are coupled. In the ξλ frame of reference the shear
strain components for the Bernoulli-Euler beam are:

ε̂12 (ξλ) = − 1
2g0

ζκ1 (5.68)

ε̂13 (ξλ) = − 1
2g0

ηκ1 (5.69)

5.6 Constitutive relations

Assuming linear elastic material behavior, the constitutive relations can be written as:

Ŝij = 2µε̂ij + λδij ε̂
m
m (5.70)

where Ŝij and ε̂ij respectively represents the mix component of the second Piola - Kirchhoff stress
tensor and Green - Lagrangian strain tensor of an arbitrary point, while µ and λ are Lame’s
constants:

µ = E

2 (1 + ν) , λ = Eν

(1 + ν) (1− 2ν) (5.71)

In previous relations, E represents the Young’s modulus and ν denotes the Poison’s ratio. Using
this formulation the deformation is small but in general strain can be finite.

Condition of zero values of the stress components Ŝ2
2 and Ŝ3

3 , yields a new relation between the
stress and strain components:

Ŝij = 2µ
(
ε̂ij + νδij ε̂

1
1

)
(5.72)

Equation 5.72 can be written in the direct notation as:

Ŝ = D : ε̂ (5.73)

where D is the constitutive tensor. The contravariant components of the stress tensor of an
arbitrary point given with respect to the covariant components of the strain tensor are:

Ŝij = 2µĝipĝjmε̂pm + λδimĝ
jmĝrnε̂rn (5.74)
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5. Linear dynamic formulation 5.7. Strong formulation

The contravariant components of the stress tensor formulated in the NURBS moving frame of
reference are non-zero, which is the main motivation for the introduction of the ξλ frame of
reference, making the formulation more efficient. Using the ξλ frame of reference, components
of the stress tensor are obtained as:

Ŝ11 = Eg11g11ε̂11 (5.75)

Ŝ1α = 2µg11ε̂1α (α = 2, 3) (5.76)

5.7 Strong formulation

Using Cauchy equilibrium equation for dynamic formulation:

ρa =∇ · t + f (5.77)

with the corresponding boundary conditions, the strong form is obtained [49]. In this equation
ρ is the mass density, a is the acceleration vector, t is the Cauchy stress tensor, f is external
force vector per volume, while ∇· is the divergence operator.

The previous equation can be presented in a component formulation as:

ρai = tij|j + f i (5.78)

5.8 Weak formulation

Multiplying Equation 5.77 with an arbitrary vector h and applying the integration over the
deformed volume domain, a new relation is obtained:∫

V

ρa · hdV =
∫
V

(∇ · t) · hdV +
∫
V

f · hdV (5.79)

The first term on the right side of Equation 5.79 can be modified using the following relation:

∇ · (t · h) = (∇ · t) · h + t :∇h (5.80)

as: ∫
V

ρa · hdV =
∫
V

∇ · (t · h) dV −
∫
V

t :∇hdV +
∫
V

f · hdV (5.81)

Using the divergence theorem for transforming the volume to surface integral and applying the
Neumann boundary conditions, the weak formulation of the corresponding initial value problem
is obtained: ∫

V

t :∇hdV =
∫
V

f · hdV −
∫
V

ρa · hdV +
∫
S

p · hdS (5.82)

Equation 5.82 can be written in component form as:∫
V

tijhi|jdV =
∫
V

f ihidV −
∫
V

ρaihidV +
∫
S

pihidS (5.83)
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5. Linear dynamic formulation 5.8. Governing equation of motion

Weak formulation given by Equations 5.81 and 5.82 presents a starting point for formulation of
numerical methods in the computational mechanics.

Choosing the virtual displacement δû for the test function, the principle of the virtual work is
given as: ∫

V

t :∇δûdV =
∫
V

f · δûdV −
∫
V

ρâ · δûdV +
∫
S

p · δûdS (5.84)

The above relation in the undeformed configuration can be expressed as:∫
Vo

S : δεdVo =
∫
Vo

f · δûdVo −
∫
Vo

ρoâ · δûdVo +
∫
So

p · δûdSo (5.85)

where Vo and So represents volume and area elements on the undeformed configuration. In the
previous relation the contribution of the internal forces (δWint), the inertial forces (δWiner) and
the external forces (δWext) in virtual work are:

δWint =
∫
Vo

S : δεdVo (5.86)

δWiner =
∫
Vo

ρoâ · δûdVo (5.87)

δWext =
∫
Vo

f · δûdVo +
∫
So

p · δûdSo (5.88)

5.9 Governing equation of motion of the Bernoulli-Euler
beam

Using ξλ frame of reference, the virtual work of the internal beam forces is defined as:

δWint (ξλ) =
∫
Vo

(
Ŝ11δε̂11 + 2Ŝ12δε̂12 + 2Ŝ13δε̂13

)
dVo (5.89)

In the linear formulation, the beam configuration is assumed to be known quantity. Consequently,
the variation of the Bernoulli-Euler strain components is obtained directly from Equations 5.67
- 5.69 as:

δε̂11 (ξλ) = 1
g0

[
(1 + ηK3 − ζK2) δε11 − ηδκ3 + ζδκ2

]
(5.90)

δε̂12 (ξλ) = − 1
2g0

ζδκ1 (5.91)

δε̂13 (ξλ) = − 1
2g0

ηδκ1 (5.92)

In addition, the variation of the reference deformation terms is obtained from Equations 5.60
and 5.61 as:

δε = LBδq (5.93)
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5. Linear dynamic formulation 5.9. Governing equation of motion

where δq represents vector whose components are the variation of the control point displacements
and the torsional rotation.

Substituting Equations 5.75 and 5.76 and Equation 5.90 - 5.92 into Equation 5.89, the contribu-
tion of the internal forces for the Bernoulli-Euler beam can be written as:

δWint (ξλ) =
∫
Vo

(Nδε11 +M1δκ1 +M2δκ2 +M3δκ3) dVo (5.94)

where N , M1, M2, M3 are the energy conjugate cross-section forces:

N =
∫

(1 + ηK3 − ζK2)S11dηdζ (5.95)

M1 =
∫ (

ηS12 − ζS13
)
dηdζ (5.96)

M2 =
∫
ηS11dηdζ (5.97)

M3 = −
∫
ζS11dηdζ (5.98)

Equations 5.95 - 5.98 can be written in the matrix form as:
N

M1

M2

M3


︸ ︷︷ ︸

Rk

= 1
g2


EA 0 EI2 −EI3

0 µgI11 0 0
EI2 0 EI22 −EI23

−EI3 0 −EI32 EI33


︸ ︷︷ ︸

Dk


ε11

κ1

κ2

κ3


︸ ︷︷ ︸
εk

(5.99)

where:

A =
∫ (1 + ηK3 − ζK2)

g0
dηdζ (5.100)

I11 =
∫ η2 + ζ2

g0
dηdζ (5.101)

I22 =
∫ η2

g0
dηdζ (5.102)

I33 =
∫ ζ2

g0
dηdζ (5.103)

I23 = I32 = −
∫ ηζ

g0
dηdζ (5.104)

Substituting Equations 5.60, 5.61, 5.93 and 5.99 into Equation 5.94:

δWint (ξλ) =
∫
Vo

RkδεkdVo =
∫
Vo

εTkDkδεkdVo = qT
∫
ξ

BTLTDkLB√gdξδq (5.105)

stiffness matrix is obtained:
K =

∫
ξ

BTLTDkLB√gdξ (5.106)
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5. Linear dynamic formulation 5.9. Governing equation of motion

Implementation of the internal part of the virtual work requires a variation of the displacement
field (δû). As the configuration of the beam is known during deformation, the variation of the
displacement vectors is obtained from Equation 5.33 as:

δû = CGuRδq (5.107)

Substituting Equations 5.50 and 5.107 in the inertial part of the virtual work given in Equation
5.87:

δWiner = q̈T
∫
Vo

ρoRTGT
uCTCGuRdVoδq (5.108)

mass matrix is obtained:
M =

∫
ξ

ρoRTGT
uDmGuR

√
gdξ (5.109)

where:

Dm =
∫

CTCdηdζ =
∫ 

1 η ζ

η η2 ηζ

ζ ηζ ζ2

 dηdζ (5.110)

External load on the beam element can only be defined on the beam’s centerline, thus the
contribution of the external forces of the virtual work is defined as:

δWext =
∫
ξ

f · δudξ (5.111)

where δu represents the virtual displacement of the beam’s centerline:

δu =
N∑
i=0

Ruiδqi = Ruδq (5.112)

In the previous relation Ru is defined as:

Ru =
[
Ru0 Ru1

. . . Rui
. . . RuN

]
, Rui =


Ri (ξ) 0 0 0

0 Ri (ξ) 0 0
0 0 Ri (ξ) 0

 (5.113)

Substituting the expression of the virtual displacement of the beam’s centerline in Equation
5.111:

δWext =
∫
ξ

f ·Rudξδq (5.114)

external load vector is defined:
Q =

∫
ξ

f ·Rudξ (5.115)

Substituting Equations 5.105, 5.108 and 5.114 into Equation 5.85 and dividing by δq, the
governing equation of the motion of the Bernoulli-Euler curved spatial beam using isogeometric
approach in linear analysis is defined as:

Mq̈ + Kq = Q (5.116)
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5. Linear dynamic formulation 5.10. Free vibration analysis

5.10 Free vibration analysis

For the purpose of the free vibration analysis, the external load vector vanishes, thus the
Equation 5.116 is defined as:

Mq̈ + Kq = 0 (5.117)

A solution of the previous equation can be assumed as:

q̈ = qkeiωk (5.118)

where i is the imaginary number, ωk is the natural frequency, while qk is its corresponding
modal vector.

Substituting Equation 5.118 into Equation 5.117 yields:(
K− ω2

kM
)

qk = 0 (5.119)

The natural frequencies are obtained from:

det
(
K− ω2

kM
)

= 0 (5.120)

while the corresponding modal vectors are obtained from Equation 5.119 using well-known
procedure.

5.11 Transient analysis

Equation 5.116 is an ordinary differential equation and for the requirement of the transient
analysis the time discretization has to be applied by dividing the continuous time t into time
intervals ∆tn. Direct time integration can be conducted using implicit or explicit integration
schemes [50]. In this study, the explicit time integration scheme is employed, which calculates
the equilibrium of the system at time (ti+n) from the equilibrium of the system at the current
time (tn). In order to employ the explicit time integration scheme, Equation 5.116 is set for the
current time:

Mq̈n + Kqn = Qn (5.121)
where q̈n and qn are acceleration and displacement components in the control points, while Qn

is the external load vector at current time tn.

At current time point tn, the configuration of the system is known in terms of displacement
vector of the control points, while the acceleration vector is unknown. This equation can be
solved using Newmark-β method [51]. Applying Newmark-β method with β = 0 [26], explicit
dynamic integration is used, also known as a central difference method by relations:

q̇n = qn+1 − qn−1

∆tn−1/2 + ∆tn+1/2
(5.122)

q̈n = 1
∆tn

(
q̇n+1/2 − q̇n−1/2

)
= 1

∆tn

qn+1 − qn
∆tn+1/2

− qn − qn−1

∆tn−1/2

 (5.123)
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5. Linear dynamic formulation 5.12. Moving load and moving mass model

Substituting Equation 5.123 into Equation 5.121 the configuration at the later time is calculated:

qn+1 = qn + ∆tn+1/2

∆tnM−1 (Qn −Kqn) + qn − qn−1

∆tn−1/2

 (5.124)

Figure 5.2: Schematic representation of the central difference method

In the linear analysis, the time intervals are equal (∆t), therefore the configuration at the later
time is:

qn+1 = 2qn − qn−1 + ∆t2M−1 (Qn −Kqn) (5.125)

The main problem regarding the central difference method is its conditional stability [52], as
the time step in the linear analysis is bounded by:

∆tmax = 2
ωmax

(5.126)

where ωmax is the maximum natural frequency of the system.

5.12 Moving load and moving mass model

Mass moving along the structure generates a dynamic response, significant for structures such
as bridges and cranes. Therefore, the accurate model of this load has to be defined. Most of
the research on this topic describes the influence of the moving mass using moving load model
[53], [54], where the inertial part of the moving mass is neglected, and only the influence of the
gravitational acceleration is taken into account:

fm = mgm (5.127)

where m is the mass, while gm is the gravitational acceleration. As can be noticed from the
previous equation, the moving load model defines the moving force with constant magnitude
and direction.
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5. Linear dynamic formulation 5.13. Boundary conditions

However, effects of the inertial term of the moving mass on the dynamic response can be significant
in some cases (for curved beams [40]). Consequently, moving mass model is formulated, taking
into account the inertial term of the moving mass, given by the following expression:

fm = m (gm − am) (5.128)

where am is the acceleration of the moving mass. The acceleration is obtained from the trajectory
of the moving mass as its double material derivative. The trajectory of the mass represents the
spatial curved line and can be given in the Frenet - Serret reference frame using tangent, normal
and binormal vectors denoted as tm, nm and bm. Using this frame of reference, the acceleration
of the mass is obtained as [55]:

am(s) = KV 2nm + atm (5.129)
where K is the trajectory curvature, V is the velocity magnitude, while a is the acceleration
magnitude given in the arc - length coordinate. The trajectory of the moving mass is directly
related to the beam geometry, thus the acceleration in the NURBS moving frame of reference is
given as:

am (ξ) =
(
Γ1

11V
2
ξ + aξ

)
g1 +KgV 2

ξ g2 (5.130)
where

Vξ = V
√
g
, aξ = −Γ1

11V
2

g
+ a
√
g

(5.131)

In the moving mass model, both the direction and magnitude of the moving mass vary with
respect to time and space. This can be observed from Equation 5.129 as in general the curvature
K is variable for the curved beam as well as the velocity V and the acceleration a.

5.13 Boundary conditions

Particular attention should be paid to the Dirichlet boundary conditions due to the presented
formulation of the Bernoulli-Euler spatial beam element using the isogeometric approach where
degrees of freedom (DOF) are three displacements in the direction to the Cartesian coordinate
system (ui, i = 1, 2, 3) and torsional rotation of beam’s cross-section (ϕ1). Rotations about
principle axes (ϕ2, ϕ3) do not represent DOFs of the Bernoulli-Euler spatial beam element.
However, their application is essential in the formulation of boundary conditions. The following
boundary conditions can be assigned to the ends of spatial beam element:

1. Free (F)
ui 6= 0 (i = 1, 2, 3), ϕj 6= 0 (j = 1, 2, 3)

2. Simply supported (SS)
ui = 0 (i = 1, 2, 3), ϕj 6= 0 (j = 1, 2, 3)

3. Clamped (C1)
ui = 0 (i = 1, 2, 3), ϕ1 6= 0 ϕk = 0 (k = 2, 3)

4. Fully clamped (C2)
ui = 0 (i = 1, 2, 3), ϕj = 0 (j = 1, 2, 3)

Application of F and SS boundary conditions is accomplished by removing the corresponding
rows and columns in the stiffness and mass matrices. Before applying C1 and C2 boundary
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5. Linear dynamic formulation 5.13. Boundary conditions

conditions, modifications due to constrains of the principle axis rotations are necessary. Rotation
about the principle axes are obtained from Equation 5.12 as:

ϕ2 = 1
2√g

(
−ũ3|1 + ũ1|3

)
, ϕ3 = 1

2√g
(
u2|1 − u1|2

)
(5.132)

Previous equation can be further modified applying Bernoulli-Euler assumption and Equation
5.22, hence the rotations can be written as:

ϕ2 = − 1
√
g
g3 · u,1, ϕ3 = 1

√
g
g2 · u,1 (5.133)

Introducing NURBS parameterization in previous equations with clamped constrains, the
displacement components are coupled as:

ϕ2 = 0 → g3 · u,1 = g3 ·
n∑
i=0

Ri,1(ξ)ui = xm3

n∑
0=1

Ri,1(ξ)umi = 0 (5.134)

ϕ3 = 0 → g2 · u,1 = g2 ·
n∑

0=1
Ri,1(ξ)ui = xm2

n∑
0=1

Ri,1(ξ)umi = 0 (5.135)

It is important to notice that nonzero derivatives at the beginning of the beam are only defined
for the first two basis functions, which can be concluded from Equations 3.1, 3.2 and 3.3. Hence,
the clamped constrain at the beginning of the beam entails:

x1
3u

1
1 + x2

3u
2
1 + x3

3u
3
1 = 0 (5.136)

x1
2u

1
1 + x2

2u
2
1 + x3

2u
3
1 = 0 (5.137)

where xm3 are Cartesian components of the basis vector g3 at the beginning of the beam. These
relations allow displacement of the second control point only in direction with tangent vector at
the beginning of the beam thus the number of degrees of freedom is reduced by two. The same
conclusion can be derived for the clamped endpoint of the beam element where only the last
two basis functions have non-zero derivatives.
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6 Geometrically nonlinear dynamic
formulation of plane Bernoulli - Euler
beam

Theoretical considerations of the dynamic behaviour of plane Bernoulli-Euler beam concerning
the geometrically nonlinear formulation are presented in this chapter. Bernoulli-Euler and beam
hypothesis are taken into consideration using strain-rate tensor, while acceleration field is derived
neglecting the product of the velocity quantities. Product of the velocity gradient components,
and the product of the angular velocity vector components are neglected. Implementation of
the explicit integration scheme has simplified the variation of the axial component of the strain
tensor, which is defined for the geometrically nonlinear formulation.

Plane beams are constrained with two conditions. The first condition is related to the beam
geometry, as beam’s centerline with the corresponding vectors g1 and g2 lies in the plane defined
with the basis vector g3, denoted as a beam plane, Figure 6.1. In addition, the displacements of
the beam occur only in the beam plane. As a consequence of this constrains, the direction of
the basis vector g3 during the deformation process is unchanged.

Figure 6.1: Arbitrary curved plane beam
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6. Geometrically nonlinear dynamic formulation 6.1. Deformed configuration of beam

The position vector of an arbitrary point of the plane beam in the undeformed configuration is
defined as:

r̂ = r + ηg2 (6.1)
with corresponding basis vector:

ĝ1 = dr̂
dξ

= (1− ηK) g1 = g0g1 (6.2)

Orthogonality between the arbitrary point basis vectors ĝ1 and g2 is preserved, which can
be concluded from the previous equation, thus the application of the ξλ frame of reference is
avoided.

Geometrically nonlinear formulation of the Bernoulli-Euler beam becomes more efficient in
terms of number DOFs and procedure of the beam derivation, if material derivatives of the
deformation components are used instead of strain components [23]. Consequently,

d22 = 0, d12 = 0 (6.3)

where dij are the components of the strain - rate tensor. Applying beam and Bernoulli - Euler
hypotheses on the strain - rate tensor yields:

ṽ2|2 = 0, ṽ1|2 = −ṽ2|1 (6.4)

which will be used in the forthcoming derivations.

6.1 Deformed configuration of beam

Due to the external plane load acting on the beam, the position of arbitrary point of beam is
given as:

r̂∗ = r̂ + û (6.5)
where û represents the displacement vector of an arbitrary point. The position vector of an
arbitrary point in the deformed configuration of the beam can also be defined as:

r̂∗ = r∗ + ηg∗2 (6.6)

Due to the rigid cross-section assumption, the basis vector g∗2 in the geometrically nonlinear
formulation is defined using the rotation tensor Rg:

g∗2 = Rg · g2 (6.7)

It is important to point out that the description of the rotation in the geometrically nonlinear
formulation requires the application of the rotation tensor [23]. Different rotation parameteriza-
tion can be found in [56]. However, the exponential parametrization has been found to be the
most convenient, given as:

Rg = eΦ (6.8)
where Φ represents the skew-symmetric tensor. The skew-symmetric tensor can be written as:

Φ · a = φ× a (6.9)

where a is an arbitrary vector, while φ is the axial (dual) vector of the skew - symmetric tensor
Φ.
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6. Geometrically nonlinear dynamic formulation 6.2. Displacement field

Advantage of the exponential parameterization of the rotation tensor can be found in the
material derivative of the rotation tensor:

Ṙg = Φ̇ · eΦ = Φ̇ ·Rg (6.10)

with corresponding relation:
Φ̇ · a = φ̇× a = ω× a (6.11)

where ω is the angular velocity vector [23]:

ω = 1
2√g∗ e

klmṽm|lg∗k (6.12)

Plane formulation of the curved beam implies only rotation about the basis vector g3. Applying
Bernoulli - Euler assumption, given by Equation 6.4, the angular rotation vector is defined as:

ω = 1√
g∗
ṽ2|1g∗3 = ω̃3g∗3 (6.13)

Using exponential parameterization of the rotation tensor, its variation is obtained as:

δRg = δΦ · eΦ = δΦ ·Rg (6.14)

with corresponding relation:
δΦ · a = δφ× a = δφ× a (6.15)

where δφ is variation of axial vector:

δφ = 1
2√g∗ e

klmδũm|lg∗k (6.16)

For the case of a plane beam, the variation of the axial vector is:

δφ = 1√
g∗
δũ2|1g∗3 (6.17)

6.2 Displacement field

Displacement field of the plane curved beam is obtained by substituting Equations 6.1, 6.6 into
Equation 6.5:

û = u + ηu2 =
[
1 η

]
︸ ︷︷ ︸

CN

 u
u2


︸ ︷︷ ︸

unc

(6.18)

In order to employ the principle of virtual work, the variation of the displacement field is found
as:

δû = δu + ηδu2 = CN

 δu
δu2


︸ ︷︷ ︸
δunc

(6.19)
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6. Geometrically nonlinear dynamic formulation 6.2. Displacement field

where the variation of beam’s centerline displacement is:

δu =
[
i1 i2

]
︸ ︷︷ ︸

iN

δu1

δu2

 (6.20)

Using Equations 6.7, 6.14 - 6.17, the variation of the displacement field second term (u2) is:

δu2 = δg∗2 = − 1
g∗
δũ2|1g∗1 = −

(
δu,1 · g∗2

) g∗1
g∗

(6.21)

Term δũ2|1 is obtained from the following relation:

δu,m = δ
(
ũk|mg∗k

)
= δũk|mg∗k + ũk|mδg∗k (6.22)

Matrix representation of Equation 6.21 is given as:

δu2 = − 1
g∗

[
x1

2
∗g∗1 x2

2
∗g∗1

] δu1,1

δu2,1

 = − 1
g∗

x1
2
∗
x1

1
∗
x1

2
∗
x2

1
∗

x2
2
∗
x1

1
∗
x2

2
∗
x2

1
∗


︸ ︷︷ ︸

BN

i1

i2


︸ ︷︷ ︸

iTN

δu1,1

δu2,1

 (6.23)

Combining Equations 6.20 and 6.23, vector δunc can be represented as:

δunc =
i 0

0 i

I 0
0 BT


︸ ︷︷ ︸

GN


δu1

δu2

δu1,1

δu2,1


︸ ︷︷ ︸

uncc

, I =
1 0

0 1

 (6.24)

NURBS parameterization of the vector uncc is obtained as:

uncc =
N∑
i=0

Riδqi = Rq (6.25)

where:

RT =



R0
...

Ri

...
RN


, Ri =


Ri (ξ) 0

0 Ri (ξ)
Ri,1 (ξ) 0

0 Ri,1 (ξ)

 (6.26)

δqT =
[
q0 . . . qi . . . qN

]
, δqi =

δui1
δui2

 (6.27)

Finally, the variation field of the displacement is obtained as:

δû = CNGNRδq (6.28)
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6. Geometrically nonlinear dynamic formulation 6.3. Velocity field

6.3 Velocity field

The velocity field is obtained as a material derivative of the displacement field:

v̂ = D

Dt
(û) = ˙̂u = u̇ + ηu̇2 = v + ηv2 = CN

 v
v2

 (6.29)

where the velocity of the beam’s centerline is:

v =
[
i1 i2

]
︸ ︷︷ ︸

iN

u̇1

u̇2

 (6.30)

Using Equation 6.9, the term v2 is:

v2 = ġ∗2 = ˙Rg · g2 = Φ̇ · g∗2 (6.31)

By substituting Equations 6.10 - 6.13 and relation ṽi|j = v,j · gi into Equation 6.31, term v2 is:

v2 = 1√
g∗
ṽ2|1g∗3 × g∗2 = − 1

g∗

(
v,1 · g∗2

)
g∗1 (6.32)

Following the derivation procedures from the previous section, the velocity field of the plane
curved beam is:

v̂ = CNGNRq̇, q̇T =
[
q̇0 . . . q̇i . . . q̇N

]
, q̇i =

u̇i1
u̇i2

 (6.33)

6.4 Acceleration field

By definition, the acceleration field represents the material derivative of the velocity field:

â = D

Dt
(v̂) = ˙̂v = v̇ + ηv̇2 = a + ηa2 = CN

 a
a2

 (6.34)

where the acceleration of the beam’s centerline is:

a =
[
i1 i2

]
︸ ︷︷ ︸

iN

ü1

ü2

 (6.35)

The material derivative of Equation 6.31 represents:

a2 = ˙ω× g∗2 = ω̇× g∗2 + ω× (ω× g∗2) (6.36)

Using Equation 6.13, the material derivative of angular velocity vector for the plane curved
beam is:

ω̇ = ˙̃ω3g∗3 (6.37)
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6. Geometrically nonlinear dynamic formulation 6.5. Kinematic relations

where
˙̃ω3 =

˙̃v2|1
√
g∗ − ˙√g∗ṽ2|1

g∗
= a,1 · g∗2√

g∗
− g∗1 · iαṽα,1ω̃3√g∗

(g∗)3/2 −
v1|1 · v2|1

(g∗)3/2 (6.38)

The product of the velocity gradient components, as well as the product between the velocity
gradient components and the angular velocity vector component, is assumed to be negligible in
comparison to the velocity gradient and the angular velocity vector components. Consequently,
only the first term in Equation 6.38.

In the second part of Equation 6.36 the vector triple product, can be written as:

ω× (ω× g∗2) = (ω · g∗2)ω − (ω · ω) g∗2 =
(
ω̃3ω̃3g∗3 · g∗2

)
g∗3 −

(
ω̃3ω̃3

)
g∗2 (6.39)

Assuming the product of the angular velocity vector components small in comparison to the
angular velocity vector components, the vector triple product vanishes.

By substituting Equations 6.37 - 6.39 into Equation 6.36, the second term of the acceleration
field is:

a2 = − 1
g∗

(
a,1 · g∗2

)
g∗1 (6.40)

As in the previous section, the acceleration field is obtained as:

â = CNGNRq̈, q̈T =
[
q̈0 . . . q̈i . . . q̈N

]
, q̈i =

üi1
üi2

 (6.41)

6.5 Kinematic relations

For the case of a plane Bernoulli-Euler beam, only axial component in the strain tensor exists,
which can be defined in the convective coordinate system as:

ε̂11 = 1
2 (ĝ∗11 − ĝ11) = 1

2 (ĝ∗1 · ĝ∗1 − ĝ1 · ĝ1) (6.42)

Substituting Equation 6.2 for deformed and undeformed configuration in previous relation yields:

ε̂11 = 1
2 (g∗ − g)− η (K∗g∗ −Kg) + 1

2η
2
(
g∗K∗2 − gK2

)
= ε11 − ηκ + η2κ (6.43)

where g = g11 and g∗ = g∗11. In the previous equation the reference deformation terms are
selected as:

ε11 = 1
2 (g∗ − g) , κ = K∗g∗ −Kg, κ = g∗K∗2 − gK2 (6.44)

Matrix representation of Equation 6.43 is given as:

ε̂11 = ε11 − ηκ + η2κ =
[
1 −η η2

]
︸ ︷︷ ︸

Cξn


ε11

κ
κ


︸ ︷︷ ︸
εn

(6.45)
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The variation of the axial strain component is:

δε̂11 = δε11 − ηδκ − η2δκ =
[
1 −η η2

]
︸ ︷︷ ︸

Cξn


δε11

δκ
δκ


︸ ︷︷ ︸
δεn

(6.46)

Applying variation to the reference deformation terms given in Equation 6.44 yields:
δε11 = g∗1 · δu,1 (6.47)

δκ =
(
δu1,1 −

1
2
g∗,1
g∗
δu,1

)
· g∗2 (6.48)

δκ = −2K
∗

g∗2
δu,1 · g∗1 +

(
1
g∗
δu1,1 −

1
2
g∗,1
g∗2

δu,1
)
· g∗2 (6.49)

Matrix representation of the variation of the reference deformation terms is:
δε11

δκ
δκ


︸ ︷︷ ︸
δεn

=


xm1
∗ 0

−Γ1
11
∗
xm2
∗ xm2

∗

−Γ1
11
∗
xm2
∗ − 2K

∗

g∗
xm1
∗ xm2

∗

g∗


︸ ︷︷ ︸

Ln

 δum,1
δum,11


︸ ︷︷ ︸

δuξn

(6.50)

Components of the vector δuξn can be parameterized using NURBS parameterization:

uξn =
N∑
i=0

Bniδqin = Bnδqn (6.51)

where

B =
[
Bn0 . . . Bni . . . BnN

]
, Bni =


Ri,1 0

0 Ri,1

Ri,11 0
0 Ri,11

 (6.52)

δqn =
[
δq1

n . . . δqin . . . δqNn
]
, δqin =

δui1n
δui2n

 (6.53)

Finally, the reference variation of the axial strain is given as:
δε̂11 = CξnLnBnδqn (6.54)

6.6 Constitutive relations

Beam formulation is conducted in small strain conditions in order to apply constitutive Hook’s
law [30]:

Ŝkl = 2µ
(
ĝ∗1kĝ∗1kε̂kl + νĝ∗11ĝ∗11ε̂11

)
(6.55)
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6. Geometrically nonlinear dynamic formulation 6.7. Weak formulation

In the case of plane curved beam only the first term of the stress tensor is defined:

Ŝ11 = Eε̂11
1
g∗0

4
1
g∗2

(6.56)

6.7 Weak formulation

The principle of virtual work defined by Equation 5.85 can also be applied for the case of the
geometrically nonlinear dynamic formulation of the plane Bernoulli-Euler beam. Substituting
Equation 6.56, 6.45 and 6.54 into the internal forces contribution of the virtual work given by
Equation 5.86, yields:

δWint =
∫
Vo

Ŝδε̂dVo =
∫
Vo

Ŝ11δε̂11dVo =
∫
ξ

εTnDnLnBn
√
gdξδqn = Fintδqn (6.57)

where
Dn = E

g∗2

∫
CT
ξnCξndηdζ (6.58)

Internal forces of the plane curved Bernoulli-Euler beam (Fint) represents the point forces at
the control points, which can be defined as:

Fint =
∫
ξ

εTnDnLnBn
√
gdξ (6.59)

By substituting Equations 6.41 and 6.28 into the inertial forces contribution of the virtual work,
given by Equation 5.87, the mass matrix (M) is derived as follows:

δWine =
∫
Vo

ρoâ · δûdV = q̈
∫
ξ

ρoRTGT
nDmnGnR

√
gdξδq = q̈TMδqn (6.60)

where
Dmn =

∫
CT
nCndηdζ (6.61)

In order to determine the influence of the external forces in the virtual work, the variation of
the beam’s centerline displacement should be defined:

δu =
N∑
i=0

Ruiδqi = Ruδq (6.62)

where

Ru =
[
Ru0 Ru1 . . . Rui . . . RuN

]
, Rui =

Ri (ξ) 0
0 Ri (ξ)

 (6.63)

Substituting the previous relation in the contribution of the external forces, given by Equation
5.88, yields:

δWext =
∫
ξ

f · δudξ =
∫
ξ

f ·Rudξδqn = Fextδqn (6.64)
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6. Geometrically nonlinear dynamic formulation 6.8. Transient analysis

In the previous relation, the external point forces at the control points are defined as:

Fext =
∫
ξ

f ·Rudξ (6.65)

Finally, the governing equation of motion for the curved Bernoulli-Euler beam element for geo-
metrically nonlinear formulation defined using isogeometric approach is obtained by substituting
Equations 6.57, 6.60 and 6.64 into Equation 5.85 as:

Mq̈ = Fext − Fint (6.66)

6.8 Transient analysis

Using explicit time integration schemes, internal and external forces at the control points are
known, while the acceleration vector is an unknown quantity. Consequently, Equation 6.66
should be modified as:

q̈ = M−1 (Fext − Fint) (6.67)

When the accelerations of the control points are computed from Equation 6.67, the velocity and
displacements can be calculated using relations 5.122 and 5.123.

The explicit time integration scheme is conditionally stable. In the linear formulation, the time
step is bounded by the system’s maximum natural frequency. However, in the nonlinear analysis,
a reduction factor γ should be included [57]:

∆tn < ∆tn,max = γ
2

ωn,max
(6.68)

In the scope of this study, the influence of the factor γ has not been analyzed. The numerical
verification of the dynamic response of the plane curved Bernoulli-Euler isogeometric beam, has
been carried out assuming γ = 0.9, ensuring convergence of the numerical calculations.
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7 Object-Oriented Computer Program

The algorithms presented in the previous chapters are implemented in Matlab using Object
- Oriented Programming (OOP). In comparison to the Procedural - Programming, OOP has
shown significant advantages such as reliability, reusability and extendibility [58]. Adding a new
feature in OOP or fixing an old one takes less time and effort. In addition, OOP has achieved
significant decrease in program size and complexity. OOP is based on the concept of objects
which can contain properties and methods. Objects represent the instances of the classes, which
can be connected using different relationships. The graphical representation of the classes and
their relationships can be presented using the Unified Modeling Language (UML). Simplified
UML class model of the isogeometric formulation of the presented problems is shown in Figure
7.1, where classes and their relationships are given without the arguments and return value
types of a method. In the following, the short explanation of the given classes is given with the
adequate properties and methods.

Input represents the class which encapsulates the information regarding the analysis problem,
with the following properties: MaterialProperties, CrossSection, FunctionDegree, KnotVector,
WeightVector, BoundaryConditions. Presented class does not contain methods.

BSplineBasis is the class representing the B - Spine basis functions. Consequently, the
properties are knot vector (KnotVector) and degree of basis function (FunctionDegree). Nec-
essary methods contained in the class are NumberOfFunction(), SpanOfParametricPoint(),
FunctionValue(), FunctionDerivative(), PlotFunction(), PlotFunctionDerivative().

NURBS_Basis is a subclass of the BSplineBasis class and for its construction weight vector
is required which represents the property of the class (WeightVector). The class methods
are: NURBS_function(), NURBS_derivative(), PlotNURBS() and PlotNURBS_derivattive().
The methods of the BSplineBasis and NURBS_Basis classes implements the procedures
regarding the basis functions as given in [9] and [8].

Refinement represents the class in which the properties are DegreeElevation and FunctionCon-
tinuity while the methods are three types of refinement procedures for the IGA based analysis:
P_ref(), H_ref() and K_ref() which are presented in [9], [8] and [1].

Composition of the Refinement class objects creates the Geometry class where control points
(ControlPoints) are additional property. In addition, Geometry class uses Integration class
in which only QuadNode() method is contained [10].

BernoulliEuler class encapsulates the element formulation of Bernoulli - Euler beam. The
class properties are Material and Section, while the class methods are: L_Matrix(), B_Matrix(),
Deformation(), SectionProp(), Force(), Material(), StiffnessMatrix() and MassMatrix(). In
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7. Object-Oriented Computer Program

BSplineBasis Input

KnotVector MaterialProperties

FunctionDegree CrossSection

NumberOfFunction() FunctionDegree

SpanOfParametricPoint() KnotVector

FunctionValue() WeightVector

L_Matrix() Condensation()

FunctionDerivative() BoundaryConditions

PlotFunction()

PlotFunctionDerivative() BernoulliEuler Analysis

Material InitialConditions

Section AnalysisType

B_Matrix() MatrixKnn()

NURBS_Basis Refinement Deformation() MatrixMnn()

WeightVector DegreeElevation SectionProp() dT()

NURBS_function() FunctionContinuity Force() FreqAndShape()

PlotModeShape()

PlotNURBS() H_ref() StiffnessMatrix() ExplicitDyn()

ControlPoints

NURBS_derivative() P_ref() Material()

PlotNURBS_derivative() K_ref() MassMatrix()

Geometry Integration

BasicVectors()

BasisFunctions:[Refinement] QuadNode()

CurveDerivative()

ChristoffelSymbol()

QuasiCurvature()

Curvature()

Figure 7.1: Simplified UML class diagram of the dynamic analysis of the isogeometric Bernoulli
- Euler beam

this class the plane and spatial beam can be formulated for the linear and nonlinear dynamic
analysis, depending on the analysis type.

Analysis class is a class containing all procedures regarding the linear and geometrically
nonlinear dynamic analysis. Boundary conditions are taken into account and the stiffness and
mass matrix of the system are formulated, which are used for the free vibration or transient
analysis in the linear and geometrical nonlinear case. The class properties are InitialConditions
and AnalysisType, while its methods are: Condensation(), MatrixKnn(), MatrixMnn(), dT(),
FreqAndShape(), PlotModeShape() and ExplicitDyn().
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7. Object-Oriented Computer Program

In the UML class diagram of the IGA procedure three relationships can be found: inheritance
(line with an unfilled arrowhead), association (arrow line) and composition (line with the filled
diamond shape).
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8 Numerical examples

8.1 Free vibration analysis

8.1.1 Validation study

In this section, the validation study of the proposed method for free vibration analysis will be
conducted. The natural frequencies of the fully clamped - fully clamped conical helix obtained
using the Bernoulli-Euler isogeometric beam element are compared with available results from
the literature [59], and the results from the commercial finite element (FE) software package
Abaqus [60]. The base and top radius of the conical helix are R1 = 25mm and R2 = 5mm,
with constant pitch angle α = 4.8◦ and 6.5 coils, Figure 8.1(a). The cross-section of the conical
helix is circular with diameter d = 2mm, while the beam material is defined using the Young’s
modulus E = 210GPa, the Poisson’s ratio ν = 0.3 and the mass density ρ = 7850kg/m3.

R1
d

R2

α

(a) (b) (c)

interpolation
points

control
points

Figure 8.1: (a) conical helix geometry; (b) interpolation points of the conical helix; (c) NURBS
based parameterization control points of the conical helix

Geometry of the conical helix is defined based on 78 interpolation points (Figure 8.1(b)), which
are imported in the Rhinoceros NURBS modeling software [61] and used to construct a free-form
NURBS based curve with 81 control points and the degree of B-spline basis functions p = 3,
Figure 8.1(c). For the FE analysis, the Rhinoceros geometry model of the free-form curve is
converted into a polyline with 256 line segments of the average length of 0.0025m. The conical
helix in Abaqus is modeled using the B33 beam element based on the Bernoulli - Euler hypothesis.
The results of the first ten natural frequencies obtained using the presented approach, Abaqus,
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and results given in [59] are given in Table 8.1. An excellent agreement is achieved between
the results obtained using isogeometric formulation (I), and the results obtained using the FE
software Abaqus (A), which is confirmed with the relative error less than 1.0 % (∆I−F ). The
higher relative error is observed between the results obtained using the presented approach and
the results from the literature (Y) based on the Timoshenko beam formulation [59]. In addition,
the first three mode shapes of the conical helix are obtained using the presented isogeometric
approach and compared with the mode shapes from Abaqus, Figure 8.2.

Table 8.1: First ten natural frequencies [Hz] obtained using the present study (IGA) compared
with the literature results (Yildirim) and the results from the Abaqus (Abaqus) presented with

the relative error [%] between corresponding frequencies (∆X−Y = X−Y
X
∗ 100)

Mode IGA (I) Abaqus (A) Yildirim (Y) [59] ∆I−A ∆I−Y

312 DOFs 2054 DOFs

1 108.39 108.27 110.64 0.11 -2.03
2 112.76 112.51 115.19 0.22 -2.11
3 134.20 133.16 135.91 0.78 -1.26
4 141.88 140.83 143.77 0.74 -1.31
5 193.39 192.67 196.92 0.36 -1.80
6 200.65 200.07 204.3 0.29 -1.79
7 218.07 217.43 - 0.29 -
8 229.11 228.4 - 0.31 -
9 265.74 265.16 - 0.22 -
10 281.55 280.02 - 0.54 -
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1st mode

2nd mode

3rd mode

(a) (b)

deformed shape

undeformed shape
deformed shape

undeformed shape

Figure 8.2: First three mode shapes of the conical helix obtained using: (a) presented
isogeometric approach, (b) FEM based software Abaqus
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8.1.2 Convergence study

The convergence study of the presented isogeometric approach is demonstrated on the example
of an spatial curved beam. The geometry of the fully clamped - simply supported curve, Figure
8.3, is defined using the following control points:

CPT =


3 3 −3 −5 3 3 −3 −3 3 3 6 6 9 12
0 3 3 −5 −3 3 3 −3 −3 0 0 0 0 0
8 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 0 1 0 0 0

 (8.1)

and the 3rd - order basis functions defined over the knot vector and weight vector::

ξT =
[
0 0 0 0 1/7 2/7 3/7 4/7 5/7 6/7 1 1 1 1

]
(8.2)

wT =
[
1 1 1 10 1 1 1 1 1 1 1 1 1 1

]
(8.3)

The beam material is defined using the Young’s modulus E = 31.5GPa, the Poisson’s ratio
ν = 0.2, and the mass density ρ = 2500kg/m3. The cross-section is circular with a diameter
d = 0.1m.

x

y
z

P0

P1P2

P3

P4

P5

P6

P7

P8

P9
P10

P11
P12 P13

control point

control polygon

C( )ξ

Figure 8.3: An arbitrary curve C(ξ) with corresponding control points Pi

First, the H - refinement procedure is applied to demonstrate the convergence property of the
presented isogeometric approach. This procedure is conducted by knot insertion, hence the
number of control points and the number of DOFs increase. In Table 8.2, the first ten natural
frequencies of the structure with respect to the number of DOFs are presented. As can be
noticed, the H - refinement convergence property of the isogeometric approach is satisfactory.
Differences between the natural frequencies of the spatial beam with 224 DOFs and 280 DOFs is
negligible as demonstrated with the relative error (∆). Aforementioned leads to the conclusion
that the spatial beam model with 224 DOFs gives the accurate results of the considered natural
frequencies.
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Table 8.2: Convergence of the first ten natural frequencies of the presented approach with
variable numbers of DOFs obtained applying H - refinement procedure

Mode 44 DOFs 92 DOFs 144 DOFs 176 DOFs 224 DOFs 280 DOFs ∆[%]

1 0.7564 0.4553 0.4261 0.4206 0.4034 0.3995 -0.98
2 1.0679 0.5722 0.4604 0.4532 0.4433 0.4363 -1.60
3 1.3222 0.6862 0.6270 0.6168 0.6082 0.6039 -0.71
4 2.5097 0.8432 0.7450 0.7199 0.7129 0.7091 -0.54
5 3.3681 1.0349 0.9396 0.9144 0.8980 0.8923 -0.64
6 4.3789 1.8702 1.5117 1.4070 1.3427 1.3182 -1.86
7 5.3475 2.0596 1.5512 1.5980 1.4548 1.4376 -1.20
8 8.2056 2.6546 2.3032 2.1660 2.0878 2.0638 -1.16
9 9.6639 2.8893 2.3649 2.3600 2.3046 2.2982 -0.29
10 11.869 4.2264 3.1792 2.9852 2.8662 2.8353 -1.10

The same conclusion can be drawn from Figure 8.4, which presents the convergence rate of the
beam’s natural frequencies computed using the H - refinement.

Figure 8.4: Convergence of the first ten natural frequencies computed using the H - refinement
for isogeometric beam element

An additional convergence study has been conducted applying the P - refinement, where the
number of DOFs is increased by order elevation of the basis functions. The results of the first
ten natural frequencies of the spatial beam have been calculated and presented in Table 8.3.
Convergence has been achieved with the beam model with 220 DOFs, verified by the relative
error ∆ between the beam model with 264 DOFs and 220 DOFs.

In Figure 8.5 the convergence rate of the given refinement procedure is presented.
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Table 8.3: Convergence of the first ten natural frequencies of the presented study using the P -
refinement procedure

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
Mode 44 DOFs 88 DOFs 132 DOFs 176 DOFs 220 DOFs 264 DOFs ∆[%]

1 0.7564 0.4605 0.4195 0.4106 0.4007 0.3970 -0.93
2 1.0679 0.5276 0.4643 0.4410 0.4370 0.4338 -0.74
3 1.3222 0.6812 0.6103 0.6094 0.6026 0.6017 -0.15
4 2.5097 0.7944 0.7223 0.7148 0.7107 0.7087 -0.28
5 3.3681 1.0158 0.9086 0.9005 0.8920 0.8896 -0.27
6 4.3789 1.7677 1.3755 1.3253 1.3145 1.3054 -0.70
7 5.3475 1.8876 1.6269 1.5496 1.4709 1.4395 -2.18
8 8.2056 2.4605 2.1175 2.0518 2.0584 2.0352 -1.14
9 9.6639 2.5991 2.3718 2.2793 2.3077 2.2423 -2.92
10 11.869 3.7272 2.9055 2.8272 2.8300 2.7961 -1.21

Figure 8.5: Convergence of the first ten natural frequencies computed using the P - refinement
for isogeometric beam element

In order to demonstrate the advantage of the presented approach, the convergence of the natural
frequencies obtained using the FEM is given. A physical discretization is applied using the
interpolation points to define the geometry of the FE model, forming six different FE models
with respect to the length of finite elements, Figure 8.6. The results of the natural frequencies
are presented in Table 8.4 with respect to the number of DOFs. The last column of the table
shows the relative error (∆) between the sixth FE model with 762 DOFs and the isogeometric
beam model obtained using the H - refinement procedure with 280 DOFs. As can be noticed,
the adequate results of the natural frequencies are obtained with a considerably less number of
DOFs using isogeometric beam model compared to the FE model.

56



8. Numerical examples 8.1. Free vibration analysis

Figure 8.6: Finite element models of the spatial beam

In addition, the first five mode shapes are obtained using the isogeometric approach, and a good
agreement has been achieved with the mode shapes obtained using Abaqus, Figure 8.7.

8.1.3 Influence of boundary conditions

In this section, the influence of boundary conditions on the natural frequencies of the curved
spatial beam is investigated. The beam geometry and the mechanical properties are taken
from the previous example. Analysis has been conducted on the beam model with 224 DOFs
obtained using the H - refinement procedure. The following boundary conditions have been
considered: fully clamped (C), simply supported (SS) and free (F). The results of the first
ten natural frequencies for different types of boundary conditions have been calculated using
the isogeometric approach and presented in Table 8.5. As expected, the boundary conditions
significantly affect the natural frequencies of the curved spatial beam. A stiffer beam has a
higher value of the natural frequency, which is demonstrated for the case of the fully clamped -
fully clamped boundary conditions.
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Table 8.4: Convergence of the first ten natural frequencies obtained using FEM - based software
Abaqus

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Mode 42 DOFs 74 DOFs 106 DOFs 170 DOFs 362 DOFs 762 DOFs ∆[%]

1 0.6472 0.5364 0.4943 0.4488 0.4102 0.4002 0.18
2 1.2036 0.6964 0.5794 0.4996 0.4474 0.4372 0.21
3 1.6235 1.0378 0.8928 0.7581 0.6345 0.6086 0.78
4 2.0611 1.2421 0.9828 0.8188 0.7314 0.7127 0.51
5 2.6692 1.3111 1.1402 1.0063 0.9136 0.8933 0.11
6 2.7452 2.0272 1.7250 1.4968 1.3426 1.3140 -0.32
7 3.0944 2.1783 1.8986 1.6470 1.4712 1.4374 -0.01
8 3.4226 2.6949 2.4952 2.2386 2.0928 2.0581 -0.28
9 4.0822 2.9734 2.7006 2.4195 2.3369 2.3001 0.08
10 12.8930 4.0433 3.5451 3.1491 2.8927 2.8326 -0.10

Table 8.5: Influence of boundary conditions on the spatial curved beam

C-C SS-C C-SS F-C C-F
Mode 280 DOFs 283 DOFs 283 DOFs 286 DOFs 286 DOFs

1 0.3995 0.1660 0.2599 0.1355 0.1288
2 0.4363 0.3416 0.3394 0.1376 0.1370
3 0.6039 0.4447 0.5888 0.2704 0.2669
4 0.7091 0.6639 0.6617 0.2969 0.2932
5 0.8923 0.8016 0.7335 0.4248 0.4047
6 1.3182 1.1031 1.2238 0.6142 0.6220
7 1.4376 1.1202 1.3336 0.7542 0.7454
8 2.0638 1.5951 1.5594 0.8446 0.8438
9 2.2982 1.6576 1.7163 1.2451 1.2499
10 2.8353 2.3401 2.3195 1.5278 1.5202

8.2 Linear dynamic analysis of a curved spatial beam

8.2.1 Moving load problem

8.2.1.1 Validation and convergence study

In this example, the validation study of the presented theoretical considerations is conducted.
The horizontally curved arch beam with length L = 24m and subtended angle α = 30◦ is
subjected to the out-of-plane and in-plane moving load with constant magnitude and constant
velocity. Displacements, as well as torsional rotations at points P1 and P4 are restrained. The
beam geometry has been modeled with one isogeometric element using four control points with
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deformed shape

undeformed shape
deformed shape

undeformed shape

1st mode

2nd mode

3rd mode

4th mode

(a) (b)

5th mode

Figure 8.7: First five mode shapes of the spatial beam obtained using: (a) presented
isogeometric approach, (b) FEM based software Abaqus

corresponding weights, as given in Figure 8.8, and 3rd-degree NURBS basis functions. The
beam material is homogeneous defined using the Young’s modulus E = 32.2GPa, the Poisson’s
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ratio ν = 0.2 and the mass density ρ = 2400kg/m3, while the cross-section is rectangular with
the dimensions b/h = 5/1.8m. The mass m moving along the curved beam with constant
velocity V = 40m/s has generated the gravitational out-of-plane load fw = −m · g, as well
as inertial in-plane moving load fu = m · V 2/R directed toward the arch center. In previous
relations, g is the gravitational acceleration, while R represents the arch radius. Displacements
of the beam’s midpoint obtained using the isogeometric approach have been compared with the
semi-analytical results from the literature [39] applicable only for the simply supported arches.
It is important to point out that the beam model presented in [39] is based on the Timoshenko
beam theory. Besides the validation study, the same beam is used for the convergence study of
the presented approach using H -, P - and K - refinement.

Figure 8.8: Geometry of the beam subjected to the moving load

First, the convergence study of the proposed method has been conducted by applying the P -
refinement procedure. The beam’s midpoint in-plane (u) and out-of-plane (w) displacements
obtained using P - refinement procedure are presented respectively in Figure 8.9 and Figure
8.10.

Figure 8.9: In-plane displacement (u) of the beam’s midpoint obtained using the P - refinement
procedure
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Figure 8.10: Out-of-plane displacement (w) of the beam’s midpoint obtained using the P -
refinement procedure

As can be noticed, the converged results for both displacements have been achieved with the 6th
- order NURBS basis function model (20 DOFs). The converged results are in good agreement
with the results from the literature. However, the displacements obtained using the presented
isogeometric method are slightly greater than the displacements from the literature, which
indicates that the isogeometric model is more flexible than the literature model. This observation
is contradictory with respect to the applied beam theories in the presented isogeometric approach
and in the literature. Therefore, additional free vibration analysis has been carried out using
the FE commercial software Abaqus. The natural frequencies for two directions calculated using
the presented approach, Abaqus and the results from the literature are presented in Table 8.6.
The natural frequencies obtained from FE commercial software Abaqus are calculated using the
B33 beam element based on the Bernoulli-Euler beam theory and the B31 beam element based
on the Timoshenko beam theory.

Table 8.6: In-plane (Ωu) and out-of-plane (Ωw) natural frequencies [rad/s] obtained using
isogeometric approach, FEM software Abaqus and the results from the literature

IGA Abaqus (B33) Abaqus (B31) Yang et al. [39]

Ωu 31.15 31.31 31.05 32.1
Ωw 112.21 115.18 110.29 115.4

As can be observed from the previous table, the beam’s natural frequencies obtained using
the isogeometric approach and the FE software package Abaqus (B33 and B31) are slightly
lower than the literature results. Aforementioned also indicates that the literature model is
stiffer than the isogeometric model. The reason for this can be found in reference [39]. The
displacements are represented as the sum of a series of sine functions, and only the first mode is
taken into consideration, which can lead to the stiffer beam formulation [39].
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In addition, the H - refinement procedure is applied in the convergence study by knot insertion,
while conserving C2 continuity. Figure 8.11 and Figure 8.12 show the beam’s midpoint in-plane
(u) and out-of-plane (w) displacements, respectively. As can be noticed, the results have
converged for the case of model 4 with 20 DOFs.

Figure 8.11: In-plane displacement (u) of the beam’s midpoint obtained using the H -
refinement procedure

At the end of the convergence study, K - refinement procedure is applied. Displacements of
the beam’s midpoint are obtained using isogeometric models applying different degree and
continuity of NURBS basis functions, Figure 8.13 and Figure 8.14. As can be noticed, in the
case of K - refinement procedure, the number of DOFs is not directly related to the accuracy
of the results, which is shown for the case of the 3rd - order NURBS basis functions and C1

continuity with 16 DOFs.

8.2.1.2 Parametric study

The effect of the moving load magnitude and velocity are investigated for the simply supported
spatial curved beam. The geometry of the beam is defined using four control points with unit
weight vector and 3rd - order B-spline basis functions, Figure 8.15. The beam material is defined
with the Young’s modulus E = 210GPa, the Poisson’s ratio ν = 0.2 and the mass density
ρ = 7850kg/m3, while the beam cross-section is rectangular with the dimensions b/h = 0.1/0.1m.
The moving mass m is modeled as a gravitational force with constant magnitude F = −m · g
and direction, forming the moving load model. The load is moving along the beam with a
constant velocity V . In order to investigate the influence of the moving load magnitude and
velocity on the response of the curved beam, the displacements of the beam at the load position
are analyzed. The calculations have been conducted using the isogeometric beam model with
7th - order B-spline basis functions (24 DOFs) obtained using the P - refinement procedure.
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Figure 8.12: Out-of-plane displacement (w) of the beam’s midpoint obtained using the H -
refinement procedure

Figure 8.13: In-plane displacement (u) of the beam’s midpoint obtained using the K -
refinement procedure

First, the effect of the moving load magnitude on the spatial beam response is investigated.
Three cases of moving load magnitude are analyzed, F = 1kN , F = 50kN , F = 100kN with
constant velocity of V = 40m/s. In order to compare the results, the displacements of the
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Figure 8.14: Out-of-plane displacement (w) of the beam’s midpoint obtained using the K -
refinement procedure

Figure 8.15: Simply supported curved spatial beam subjected to moving mass

beam at the moving load position have been divided by the moving load magnitude, forming
normalized displacements. The normalized components of the beam displacement in Cartesian
coordinates denoted as u, v and w are presented in Figures 8.16 - 8.18, respectively. As can
be seen, the normalized displacement components are equal for all calculated moving load
magnitude cases. As expected, the linear relation between the load magnitude and beam
response holds for the linear dynamic formulation of the curved spatial beam subjected to the
moving load.

Next, the effect of the moving load velocity on the beam response is investigated. In order
to compare the displacement components of the beam at the position of the moving load,
moving load traveling time has been divided by the total traveling time, forming normalized
dimensionless time coordinate. Components of the beam displacements at the moving load
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Figure 8.16: Normalized u displacement with respect to the moving load magnitude variation

Figure 8.17: Normalized v displacement with respect to the moving load magnitude variation

position have been presented in Figures 8.19 - 8.21. Maximum displacement for u component
of the beam displacement appears for moving load velocity of V = 50m/s, while maximum
displacement of other two displacement components v and w occur for velocity of V = 20m/s.
Beside the magnitude, moving load velocity can affect the sign of the displacement component,
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Figure 8.18: Normalized w displacement with respect to the moving load magnitude variation

which can be observed for the displacement component u for the velocity of approximately
V = 70m/s.

Figure 8.19: u displacement with respect to the moving load velocity
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Figure 8.20: v displacement with respect to the moving load velocity

8.2.2 Moving mass problem

8.2.2.1 Validation and convergence study

In Section 8.2.1.1, validation and convergence study of the moving load model has been presented
for the load with constant magnitude. This load has been generated by the mass m moving
with constant velocity V = 40m/s along the curved beam with constant curvature. Therefore,
the same example has been chosen to validate the moving mass model of the curved spatial
beam formulated using the isogeometric approach. During the validation and convergence study
of the moving mass model, the results of the beam’s midpoint displacement obtained using the
moving mass model are identical to the result obtained using the moving load model. This is
demonstrated in Figure 8.22 for the case of the beam model with 24 DOFs obtained using the
P - refinement procedure with 7th - order NURBS basis functions. Consequently, the moving
mass model provides accurate results with satisfactory convergence property, indicated by the
identical results between the moving load and the moving mass model. The identical results
are obtained due to the beam’s constant curvature, which generates the force with constant
magnitude. In the next section, the beam with variable curvature will be analyzed, and the
differences between the results obtained using the moving load and the moving mass model will
be presented.
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Figure 8.21: w displacement with respect to the moving load velocity

Figure 8.22: In-plane (u) and out-of-plane (w) beam’s midpoint displacement obtained using
moving mass model (mass) and moving load model (load)
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8.2.2.2 Parametric study

To investigate the influence of the moving mass magnitude and velocity on the response of
the curved spatial beam, beam described in Section 8.2.1.2 is analyzed. As demonstrated in
theoretical considerations, mass moving along the beam generates the inertial force, which will
be included in the dynamic response analysis in line with the gravitational force.

Beam displacement at the position of the moving mass is observed for the three cases of mass
magnitudes: m = 0.01t, m = 1t and m = 100t. In Figures 8.23 - 8.25 Cartesian components of
the normalized displacement are presented. As can be noticed from the presented figures, mass
magnitude does not influence the normalized displacement. Consequently, linear relation holds
for the case of moving mass model of the curved spatial beam in the linear dynamic formulation.

Figure 8.23: Normalized u displacement with respect to the moving mass magnitude variation

In addition, the influence of the moving mass velocity on the response of the curved spatial beam
is analyzed. In Figures 8.26 - 8.28 beam displacement components at the moving mass position
are presented. As can be observed from the figures, the maximum displacement of the curved
spatial beam at the position of the moving mass increases as the moving mass velocity increases.
It is also important to note that the sign of the displacement components changes with respect
to the moving mass velocity, which can be observed for all displacement components. Therefore,
the moving mass velocity has a significant impact on the response of the curved spatial beam.
As can be observed from the figures, the higher mass velocities have shown to produce large
beam displacements, hence the linear analysis is no longer applicable.

Finally, the beam displacement components obtained using the moving load and the moving
mass model are compared. In Figures 8.29 - 8.32 displacement components of the beam at the
position of the moving mass are given for the following moving mass velocities: V = 1m/s,
V = 10m/s, V = 30m/s and V = 50m/s. In case of the moving mass velocity of V = 1m/s,
the inertial load of the moving mass model are negligible. Consequently, the displacement
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Figure 8.24: Normalized v displacement with respect to the moving mass magnitude variation

Figure 8.25: Normalized w displacement with respect to the moving mass magnitude variation

components obtained using the moving load and the moving mass model are the same. The
displacement obtained using moving load and moving mass formulations diverges as a moving
mass velocity increases, due to the increased inertial load in the moving mass model.
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Figure 8.26: u displacement with respect to the moving mass velocity

Figure 8.27: v displacement with respect to the moving mass velocity
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Figure 8.28: w displacement with respect to the moving mass velocity

Figure 8.29: Displacements of the beam at the position of the moving mass of velocity V = 1
m/s obtained from moving load and moving mass model
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Figure 8.30: Displacements of the beam at the position of the moving mass of velocity V = 10
m/s obtained from moving load and moving mass model

Figure 8.31: Displacements of the beam at the position of the moving mass of velocity V = 30
m/s obtained from moving load and moving mass model

8.3 Nonlinear dynamic analysis of curved plane beam

In this section, the property of the geometrically nonlinear dynamic formulation for a plane
curved Bernoulli - Euler beam defined using isogeometric approach will be given. After analyzing

73



8. Numerical examples 8.3. Nonlinear dynamic analysis of curved plane beam

Figure 8.32: Displacements of the beam at the position of the moving mass of velocity V = 50
m/s obtained from moving load and moving mass model

the time-varying load, the moving load and the moving mass effects on the curved plane beam
in the geometrically nonlinear formulation will be presented.

8.3.1 Harmonic load

8.3.1.1 Validation and convergence study

The numerical example has been conducted to illustrate the convergence property of the geomet-
rically nonlinear dynamic formulation of a curved plane beam obtained using the isogeometric
approach. Also, this example is used to show the accuracy of the proposed formulation.

Geometry of the cantilever beam is defined as the circular arc of radius R = 10m and subtended
angle of 60◦, Figure 8.33, discretized using the control points:

CPT =
0 3.17 6.83 10

0 1.83 1.83 0

 (8.4)

and corresponding 3rd - order NURBS base functions constructed over knot vector:

ξT =
[
0 0 0 0 1 1 1 1

]
(8.5)

and weight vector:
wT =

[
1 0.911 0.911 1

]
(8.6)

The beam cross-section is rectangular with the dimensions b/h = 0.1/0.1m, while the beam
material is defined using the Young’s modulus E = 210GPa and the mass density ρ =
7850kg/m3.
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Cantilever curved beam is subjected to the harmonic load at the free end:

F (t) = 30 ∗ sin(10t) (8.7)

Figure 8.33: Circular arch subjected to the time varying load

Horizontal and vertical displacements of the beam free end obtained using the isogeometric
approach are compared with the results from Abaqus with 630 DOFs. Beam structure is modeled
in Abaqus using 209 B21 beam elements, based on the Timoshenko beam theory, which are
only available for the explicit geometrically nonlinear dynamic analysis.

In Figures 8.34 and 8.35 the convergence of the beam free end obtained using the P - refinement
procedure has been presented. As can be noticed, the results have converged for the model with
6th - order NURBS basis functions (11 DOFs). The converged results are in excellent agreement
with the results obtained using the FE commercial software Abaqus.

Figure 8.34: Convergence of the horizontal displacement of the beam free end obtained using
the P - refinement isogeometric procedure

By inserting additional knots uniformly in the model with the 3rd - order NURBS basis functions,
H - refinement procedure is applied. In Figures 8.36 and 8.37 the results of horizontal (u) and
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Figure 8.35: Convergence of the vertical displacement of the beam free end obtained using the
P - refinement isogeometric procedure

vertical (v) displacements of beam free end are shown for various models obtained using the
H - refinement procedure. As can be noticed, the results are in excellent agreement with the
reference results and have converged for the model with 15 DOFs.

Figure 8.36: Convergence of the horizontal displacement of the beam free end obtained using
the H - refinement isogeometric procedure
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Figure 8.37: Convergence of the vertical displacement of the beam free end obtained using the
H - refinement isogeometric procedure

Figures 8.38 and 8.39 represents the horizontal displacement of the beam free end, while Figures
8.40 and 8.41 represents its vertical displacement obtained using the K - refinement procedure.
As can be noticed, for higher order of NURBS basis functions and lower continuity, the results
converge faster and become more accurate.

Figure 8.38: Convergence of the horizontal displacement of the beam free end obtained using
the K - refinement isogeometric procedure - Part 1
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Figure 8.39: Convergence of the horizontal displacement of the beam free end obtained using
the K - refinement isogeometric procedure - Part 2

Figure 8.40: Convergence of the vertical displacement of the beam free end obtained using the
K - refinement isogeometric procedure - Part 1

8.3.1.2 Parametric study

Effects of geometrical nonlinearity on the dynamic response of curved plane beam are demon-
strated on the example of cantilever beam described in the previous section. The displacements

78



8. Numerical examples 8.3. Nonlinear dynamic analysis of curved plane beam

Figure 8.41: Convergence of the vertical displacement of the beam free end obtained using the
K - refinement isogeometric procedure - Part 2

of the beam free end are obtained using the model with 6th - order NURBS basis functions (11
DOFs) for variable dynamic load amplitudes. In order to compare the results, displacements
have been divided by the load amplitude, forming normalized displacements. In Figures 8.42 and
8.43 normalized horizontal and vertical displacement of the beam free end have been presented
respectively. As can be seen, the normalized displacements increase as the load amplitude
increases. Moreover, for the load amplitude of F = 0.1kN , the normalized displacements have
the same values as normalized displacements obtained in the linear dynamic analysis.

8.3.2 Moving load problem

8.3.2.1 Validation and convergence study

Simply supported plane curved beam is subjected to the moving load, Figure 8.44. The beam
geometry is defined using four control points with corresponding weight vector and 3rd - order
NURBS basis functions constructed over the knot vector:

wT = [0 0 0 0 1 1 1 1] (8.8)

The Young’s modulus E = 210GPa and the mass density ρ = 7850kg/m3 constitute the beam
homogeneous material. For the purpose of convergence and accuracy study, the load magnitude
is constant F = 200kN , as well as the load velocity V = 10m/s. In order to study the behaviour
of the proposed method, displacements of the beam midpoint have been calculated. The same
beam has been modeled using the FEM commercial software Abaqus with 1181 B21 elements
and 3543 DOFs. The moving mass in Abaqus has been defined as a reference point with adequate
mass magnitude, connected to the plane beam using spring. Surface-to-surface contact (Explicit)
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Figure 8.42: Normalized tip horizontal displacement with the variable amplitude of the load

Figure 8.43: Normalized tip vertical displacement with the variable amplitude of the load

feature of Abaqus has been used to simulate the motion of the moving mass on the beam with
a kinematic contact method and finite sliding. Contact interaction property has been defined in
the tangent direction as a rough, and in normal direction as a hard contact.

First, the P - refinement procedure has been conducted. In Figure 8.45 and Figure 8.46,
horizontal and vertical displacements of the beam midpoint have been presented applying P -
refinement procedure. As can be noticed, the horizontal displacement has converged for the
model with 11th-order NURBS basis functions, while the vertical displacement has converged
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Figure 8.44: Circular arch subjected to moving load

for the model with 12th-order NURBS basis functions. The converged results are in good
agreement with the results obtained using Abaqus. Also, the displacements are smaller than
the displacements obtained using Abaqus, which is caused by the difference in the applied beam
theory.

Figure 8.45: Convergence of the horizontal displacement of the beam’s midpoint obtained using
P - refinement

Furthermore, the H - refinement procedure has been conducted to analyze the convergence
property of the proposed method, Figure 8.47 and Figure 8.48. As can be noticed, the model
with 24 DOFs gives converged results the horizontal displacement of the beam’s midpoint, while
26 DOFs are needed for the converged results of its vertical displacement.
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Figure 8.46: Convergence of the vertical displacement of the beam’s midpoint obtained using P
- refinement

In the end, the K - refinement procedure has been applied. The results of the horizontal and the
vertical displacements of the beam’s midpoint for the different function degree and continuity
are presented in Figures 8.49 - 8.60.

In Table 8.7, minimal time step ∆t, the number of required time steps nt, and the number of
the integration points nint are presented for the converged results for the case of P -, H - and K
- refinement. As the continuity of the basis function decreases, the number of the time steps
and the integration points decreases as well. Aforementioned is important, as the time step
represents the main drawback in the explicit geometrically nonlinear dynamic analysis.

8.3.2.2 Parametric study

In this section, the influence of the moving load magnitude and velocity on the beam displacement
is presented on the example of the beam from the previous example. The results are obtained
using the model with 6th-order NURBS basis function, and C2 continuity.

Fist, the influence of the moving load magnitude (F ) has been analyzed. The beam’s midpoint
horizontal and vertical displacements for the different load magnitude cases have been calculated.
In order to compare the results, the displacements have been divided by the load magnitude,
forming the normalized displacements, Figures 8.61 and 8.62. As can be noticed, the normalized
displacements change with the load magnitude, which does not occur in the linear analysis.
Increase of the load magnitude produces the increase of the normalized displacements.

The moving load velocity effect on the beam’s midpoint displacements has been investigated,
Figures 8.63 and 8.64. Normalized time for the different load velocity cases has been achieved
by dividing the load traveling time with the total load traveling time. Horizontal and vertical
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Figure 8.47: Convergence of the horizontal displacement of the beam’s midpoint obtained using
H - refinement

displacements of the beam’s midpoint vary for the different load velocities. The maximum
displacement does not have to be achieved for the biggest load velocity, which can be observed
for the case of the horizontal displacement, where the maximum is obtained for the load velocity
of approximately V = 40m/s.

In addition, the horizontal projection of the moving load velocity (Vx) is presented in Figure
8.65 for the case of two load magnitudes, F = 1kN and F = 200kN . For the case of load
magnitude F = 1kN , the results of the geometrically linear and nonlinear analysis coincide. In
this example, the horizontal projection of the moving load velocity corresponds to the case of the
load movement on the undeformed beam. For the load magnitude F = 200kN , the horizontal
projection of the moving load velocity differs from the previous example, as beam displacement
is significant for the larger load magnitude.

8.3.3 Moving mass problem

In this section, the difference between the moving load and moving mass model in the geometri-
cally nonlinear formulation of the plane beam is investigated. Beam model presented in the
previous section has been used in the analysis. The mass moving along the beam with the
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Figure 8.48: Convergence of the horizontal displacement of the beam’s midpoint obtained using
H - refinement

constant velocity V = 10m/s is obtained by dividing the load magnitude F = 200kN with
the gravitational acceleration g = 9.81m/s2. In Figures 8.66 and 8.67 horizontal and vertical
displacements of the beam’s midpoint obtained using moving load and moving mass models are
presented. As can be noticed, a significant difference between the results can be observed in
both the magnitude and sign of the displacements.
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Table 8.7: Number of degrees of freedom (DOF), time step (∆t), number of required time steps
(nt) and number of integration points (nint) for the converged models obtained using P -, H -

and K - refinement procedures

DOF ∆t nt nint

P - ref P12 22 2.86e-5 41983 13
H - ref P3 26 3.47e-5 34565 48

K - ref

P3, C1 40 2.57e-5 46633 40
P4, C3 26 2.87e-5 41822 55
P4, C2 26 3.61e-5 33252 30
P4, C1 24 4.50e-5 26695 20
P5, C4 26 2.47e-5 48611 60
P5, C3 24 3.43e-5 35006 30
P5, C2 32 3.60e-5 33372 24
P5, C1 34 4.35e-5 27575 18
P6, C5 26 2.21e-5 54245 63
P6, C4 22 3.45e-5 34779 28
P6, C3 28 2.86e-5 41961 28
P6, C2 18 5.40e-5 22211 14
P7, C6 26 2.05e-5 58403 64
P7, C5 28 2.23e-05 53742 40
P7, C4 30 2.33e-05 51586 32
P8, C7 26 1.97e-05 60976 63
P8, C6 26 2.33E-05 51412 36
P8, C5 26 2.59E-05 46255 27
P8, C4 22 3.48E-05 34459 18
P9, C8 24 2.27E-05 52966 50
P9, C7 28 1.98E-05 60677 40
P9, C6 22 3.15E-05 38122 20
P10, C9 24 2.30E-05 52183 44
P10, C8 24 2.19E-05 54747 33
P10, C7 24 2.66E-05 45165 22
P11, C10 22 2.82E-05 42543 24
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Figure 8.49: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 1
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Figure 8.50: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 2

87



8. Numerical examples 8.3. Nonlinear dynamic analysis of curved plane beam

Figure 8.51: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 3
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Figure 8.52: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 4
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Figure 8.53: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 5
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Figure 8.54: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 6

91



8. Numerical examples 8.3. Nonlinear dynamic analysis of curved plane beam

Figure 8.55: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 7
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Figure 8.56: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 8
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Figure 8.57: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 9
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Figure 8.58: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 10
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Figure 8.59: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 11
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Figure 8.60: Convergence of the horizontal and vertical displacement of the beam’s midpoint
obtained using K - refinement, part 12
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Figure 8.61: Normalized horizontal displacement of the beam’s midpoint for different moving
load magnitude

Figure 8.62: Normalized vertical displacement of the beam’s midpoint for different moving load
magnitude
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Figure 8.63: Horizontal displacement of the beam’s midpoint for different moving load velocities

Figure 8.64: Vertical displacement of the beam’s midpoint for different moving load velocities
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Figure 8.65: Load velocity horizontal projection for two cases of load magnitude, F = 1kN and
F = 200kN

Figure 8.66: Moving load/mass study - horizontal displacement
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Figure 8.67: Moving load/mass study - vertical displacement
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9 Conclusions and recommendations for
future work

A novel approach based on the fundamental relations of the differential geometry and Cauchy
continuum beam model is presented and applied to derive the stiffness and consistent mass
matrices of the corresponding spatial curved beam element. The proposed formulation has been
validated and its accuracy and convergence have been demonstrated using numerical examples
for free vibration and transient linear and geometrically nonlinear analysis of Bernoulli-Euler
curved beams. The isogeometric approach was used to analyze the influence of the moving mass
on the curved beam in linear and geometrically nonlinear formulations. The moving mass was
formulated as a moving load and moving mass model, where the effects of the mass inertia are
taken into account.

From the number of numerical analyses, the following conclusions have been drawn:

• The isogeometric method has shown the capability to provide accurate results for the free
vibration analysis of the spatial curved beams. The natural frequencies obtained using the
presented approach are in excellent agreement with the results obtained using commercial
FE software Abaqus and the literature results. The available results from the literature
are obtained using Timoshenko beam theory which gives a more flexible beam than the
Bernoulli - Euler beam theory. Consequently, the natural frequencies obtained using the
presented approach are slightly higher than the results from the literature. Although the
results from the Abaqus are obtained using B33 beam element, based on the Bernoulli -
Euler beam theory, it can be noticed that its results are slightly lower than the results
obtained using the presented approach. The cause for that can be found in the formulation
of the B33 beam element as the rotary inertia for twist around the beam axis is the
same as for Timoshenko beams [62]. The convergence study of the free vibration analysis
has shown that the relatively small number of DOFs is required to obtain the converged
results of the natural frequencies. The same spatial beam has been modeled using Abaqus,
which shows that in order to obtain converged results, in comparison to the isogeometric
approach, larger number of DOFs are required. Based on the results it can be concluded
that the isogeometric approach has an advantage over the FEM, which is particularly
useful in the dynamic analysis, as the time necessary for the analysis is directly related to
the number of DOFs.

• The analysis of the boundary conditions influence on the curved spatial beam was shown
that the various types of boundary conditions (clamped, simply supported and free) can
be applied to the presented isogeometric Bernoulli - Euler beam element. In addition, the
analysis has shown that the stiffer beam has a higher value of the natural frequencies.
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• The proposed method has demonstrated excellent performance in the linear dynamic
analysis of the curved spatial beam subjected to the moving load. The results obtained
using the isogeometric approach have fast convergence rate and satisfactory accuracy in
comparison to the available results from the literature. As shown in the examples, the
moving load velocity has a significant impact on the beam response. It can be observed
that the maximum displacement has occurred for the specific moving load velocity (critical
velocity) and is not the same for the vertical and two horizontal displacements. The
magnitude of the moving load velocity can also change the sign of the beam displacement
component, as shown in the numerical examples.

• The same model has been used to validate the moving load and moving mass model in
the dynamic linear analysis. The magnitude of the moving mass velocity has a significant
impact on the beam displacement, and the sign of all beam displacements can be changed
as a consequence of the mass velocity. The beam displacements obtained using a moving
load and moving mass model are compared for the different velocity magnitude. As the
velocity magnitude decreases, the differences between the models become negligible.

• The example of the curved plane beam formulated using geometric nonlinearity has
shown that the proposed method gives accurate results compared to the results obtained
using commercial FE software Abaqus. Abaqus beam element library does not include
Bernoulli - Euler beam element in the explicit geometrically nonlinear dynamic analysis.
Consequently, the Timoshenko B21 beam element was used in order to model curved
plane beam in the examples of the geometrically nonlinear dynamic analysis. As can be
seen, the results obtained using the proposed method converges fast in the geometrically
nonlinear formulation of the curved plane beam. The same beam has been used for the
parametric study in which the influence of the load magnitude on the beam response
was analyzed. As can be observed, the beam displacement and the magnitude of the
load are not proportional, which is demonstrated with the normalized beam displacement.
As load magnitude decreases, the beam response obtained using geometrically nonlinear
formulation approaches to the response obtained using the linear formulation.

• The proposed method provided accurate results in comparison to the results obtained
using software Abaqus in the analysis of the moving mass influence on the curved plane
beam formulated using geometric nonlinearity. From the converged models obtained
using P -, H - and K - refinement procedures, the required number of time steps and the
number of integration points were extracted. As can be observed, lower continuity of the
NURBS basis functions decreased the number of time steps and integration points, which
significantly decreased the time necessary for the analysis. Moving load parametric study
has shown that the direct relationship between the beam displacement and the moving load
magnitude cannot be established, while the moving load velocity has a significant impact
on the beam response. Same as in the linear formulation, the magnitude of the moving load
velocity is not proportional to the beam displacements, introducing the phenomenon of the
critical velocity, which was not analyzed in this study. Finally, the comparison between
the moving load and moving mass model in the geometrically nonlinear formulation is
given. As in the linear formulation of the beam, the significant difference in the results
can be observed between the moving load and moving mass model.

Several future directions are possible to continue and enhance the work presented in this thesis:

• Special attention should be focused on the geometrically nonlinear formulation of the
spatial curved Bernoulli - Euler beam using isogeometric approach. Main problem in this
formulation is related to the torsional rotation of the beam’s cross section, which represents
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the tensor quantity. One of the possible solution of the torsional parametrization can be
obtained using exponential parameterization, as presented in this study.

• The presented Object - Oriented computer program is developed only for the Bernoulli -
Euler isogeometric beam. However, the upgrade is possible considering the Timoshenko
beam theory and the corresponding isogeometric beam element. This approach will
extend the range of possible structural applications to the beam elements with larger
section heights, such as deep beams. Thereafter, the limitations of Bernoulli - Euler and
Timoshenko isogeometric beam elements could be identified for the plane and spatial
curved beams.

• Explicit dynamic geometrically nonlinear formulation has limitations regarding the buckling
analysis, which can be overcome using the implicit dynamic formulation. Aforementioned
formulation can be applied for the static and dynamic buckling analysis of the curved
plane and spatial beams.

• The phenomenon of the moving mass critical velocity has been observed, both for the
linear and geometrically nonlinear formulation. Further investigation of this phenomenon
is of great importance for the curved beams.

• Influence of the friction between the curved beam and moving mass is not accounted in
the presented study. It is assumed that its influence can be significant in the dynamic
analysis, thus additional investigation should be conducted in the future research.
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