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Abstract. This paper presents the procedure for stability analysis of frames in elastic-plastic domain 
using the concept of the tangent modulus. When the buckling of structure occurs in plastic domain, 
it is necessary to replace the constant modulus of elasticity E with the tangent modulus Et. Tangent 
modulus is stress dependent function and takes into account the changes of the member stiffness in 
the inelastic range. Formulation of the corresponding stiffness matrices is based upon the solution of 
the equation of bending of the beam according to the second order theory. Numerical analysis was 
performed using the code ALIN, developed in the C++ programming language. 

Introduction 

Calculation based on the theory of elastic stability is widely applied in the engineering practice. 
Namely, it can be assumed that engineering structures have generally elastic behavior when they are 
subjected to the usual working loads. Therefore, it is clear that such theory is the basis of the 
standards related to stability analysis of the framed structures [1, 2]. This calculation is defined by 
the determination of the effective buckling length of the compressed columns. However, stability 
calculation becomes more complicated if, before the critical load is achieved, some compressed 
members enter into the phase of nonlinear material behavior. It means that stresses in such columns 
become higher than the proportionality limit. Therefore, such calculation obtains another type of 
nonlinearity and it becomes also materially (or physically) nonlinear problem. Investigation of the 
buckling in the elastic-plastic domain has always been of interest to the researchers in the field of 
steel structures. Many authors have dealt with such kind of problems, for example [3, 4, 5], and 
many corresponding solutions have been suggested. In this paper the problem is analysed using the 
tangent modulus concept [6]. It means that elastic modulus will be replaced by the tangent modulus 
(Et) to represent the distributed plasticity along the length of the member due to yielding caused by 
the axial force. The value of tangent modulus is a function of the member's axial loading state, and 
is often evaluated from the capacity specification equations of the column. 

Stability analysis of the plane frame structures in inelastic domain. 

In the elastic range there is a linear relationship between stresses and strains, so the modulus of 
elasticity E is constant. Taking into consideration well known expression for the Euler’s critical 
force, critical stress in a member may be expressed as a function of the modulus of elasticity (E) and 
the slenderness ratio (λi): 
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This equation of hyperbola is valid until the critical stress is less than a proportionality limit, as it 
is shown in Figure 1.  
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When this stress is exceeded, the member is buckling in a plastic range. Many scientists were 
dealing with this problem. Bauschinger first made, at the end of the nineteenth century, an 
experimental study of this problem. On the basis of this results and his own research, Tetmajer later 
suggested expression for the linear relation between stress and slenderness in the plastic domain. 
Engesser had noticed in all the tests performed [7] the deviation of the column buckling curve from 
the Euler's theoretical one. Many other scientists also investigated these problems, as Karman and 
Shanley who modified Engeser’s curve. Some of the most significant buckling curves in the plastic 
domain are given in Fig. 1. 
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Figure 1. Buckling curves in the plastic domain 

As it is already mentioned, in the case of elastic stability problem, the modulus of elasticity E has 
a constant value. But, elastic-plastic analysis is more complicated. For the structural member where 
the proportionality limit is exceeded, for each new load increment the member stiffness has to be 
changed and the corresponding tangent modulus Et should be used for that member. The generally 
accepted approach applied to this problem is the tangent modulus concept [6]. It is based on the 
observation that the load-shortening relationship, for a section made of a material such as structural 
steel, is affected by the residual stresses that result inevitably form the manufacturing process. Thus, 
the effective stress-strain diagram of the material is as in Fig. 2. 
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Figure 2. Stress-strain diagram of structural steel 

Below a proportionality limit σp, it is elastic. Above that point it is inelastic with gradually 
decreasing resistance, measured by the tangent modulus Et. The theory postulates that, for an ideally 
straight column with an elastic critical stress greater than σp, bifurcation of equilibrium can occur 
and the column will start to buckle at the load [8] 
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where Et is the tangent modulus corresponding to the stress σcr,i = Pcr,i / A.  
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Eq.(2) is mathematically identical to the expression for the Euler load (Pcr = π2EI/L2). But the 
difference is in the fact that E is only a function of the type of material and Et is also a stress 
dependent function. A frequently used [6] relationship between the two moduli is 
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This is an empirical expression designed to represent the behavior of structural steel columns in 
the inelastic range. Implicitly this expression takes the assumption that the proportionality limit is 
half of the yield point. This expression was used in development of the program ALIN related to the 
nonlinear elastic-plastic analysis of frame structures. 

The finite element method, as the most efficient numerical method for the solution of various 
numerical problems, is applied in this paper. As it is well known, when using the finite element 
method, the critical load may be obtained from the homogeneous matrix equation as the non-trivial 
solution: 

0=⋅qK     (4) 

In Eq. (4) K is the global stiffness matrix for the whole frame, including the corresponding 
boundary conditions, while q represents the vector of generalized coordinates. This problem can be 
solved by an incremental process, by increasing the load at the specified increments until the critical 
value is reached, i.e. until det K = 0 is obtained.  

In order to formulate the exact matrix stability analysis, it is necessary to obtain the 
corresponding stiffness matrix. Interpolation functions should be derived from the solution of the 
differential equation of bending according to the second order theory. Such interpolation 
polynomials are obtained as trigonometric or hyperbolic functions of the axially loaded element. 
The advantage of such approach is in the fact that only one finite element is needed for each beam 
or column, so the total number of finite elements is 5-10 times less than in the usual approach based 
on the geometric stiffness matrix. 

Stiffness matrix for the member of the so-called type “k“ (i.e. clamped at both ends), subjected to 
compressive force is given by [9]: 
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where: 
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It is obvious that stiffness matrix for nonlinear material behavior has the same form as for the 
linear behavior of the material, but they are essentially very different. Namely, the difference is 
primarily in the fact that constant modulus E is replaced by stress dependent tangent modulus Et.  
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The critical load for the whole frame is then obtained as the solution of the corresponding 
stability equation: 

( ) 0det =ω
t

K     (9) 

On the basis of this theoretical approach, a numerical example will illustrate this elasto-plastic 
stability analysis of steel frames. For the numerical analysis, the corresponding computer code 
ALIN is used. The code, developed using C++ language, enables the complex linear analysis of the 
plane and space frames. The basic possibilities of this program are analysis according to the first 
and the second order theory, dynamic analysis and stability analysis, i.e. calculation of the critical 
load in the elastic and inelastic domains. 

Numerical analysis 

The six-story three-bay non-sway steel frame is analyzed. The frame is clamped at the base, with 
the load on each column at each story. The span lengths are 10m, and the height of stories is 5m, as 
it is given in Fig. 3.  
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Figure 3. Numerical examples – six-story three-bay non-sway frame 

The numerical analysis is performed for five different cross-sections. So, it is assumed that all 
columns and girders in the frame have cross-sections 2 8, 2 12, 2 16, 2 20 and 2 26. First, 
applying the elastic analysis, the critical load is obtained. In that case the modulus of elasticity has a 
constant value E = 210,000,000 kN/m2. But, when the stresses in the columns are higher than the 
proportionality limit, the inelastic stability analysis is performed. Then the modulus of elasticity 
(that is now tangent modulus) becomes stress dependent. The yield stress of the steel is σv = 
240,000 kN/m2. Table 1 presents obtained results of the critical load for all six considered cross 
sections. 

Table 1. Values of critical load for the frame given in Figure 3 

 elastic analysis inelastic analysis 

   Pcr,el = 64.91 kN   Pcr,inel = 61.10 kN 

   Pcr,el = 161.03 kN   Pcr,inel = 116.65 kN 

   Pcr,el = 323.37 kN   Pcr,inel = 175.87 kN 

   Pcr,el = 596.29 kN   Pcr,inel = 242.99 kN 

   Pcr,el = 1304.03 kN   Pcr,inel = 371.98 kN 
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From the Table it can be seen what differences in results are obtained when the calculation is 
performed in elastic and elastic-plastic domain respectively. This differences increase for the frames 
with larger stiffness. 

The results of the elastic modulus and tangent modulus at the moment of buckling are presented 
in the Tab. 2. Since the axial force in columns is not constant, the elastic-plastic stability analysis 
leads to different behavior of the columns in the different floors. Therefore, the results for the 
columns in all stories of the analyzed frame are given separately. 

 
Table 2. Values of tangent modulus for the frame given in Figure 3 

 1st floor 2nd floor 3rd floor 

   Et = 178,264,572 kN/m2   Et = 204,804,847 kN/m2   E = 210,000,000 kN/m2 

   Et = 102,512,698 kN/m2   Et = 171,256,295 kN/m2   Et = 205,668,274 kN/m2 

   Et = 64,644,826 kN/m2   Et = 151,756,926 kN/m2   Et = 199,714,531 kN/m2 
   Et = 44,940,849 kN/m2   Et = 141,258,497 kN/m2   Et = 196,053,029 kN/m2 
   Et = 30,175,286 kN/m2   Et = 133,268,263 kN/m2   Et = 193,112,364 kN/m2 

 
 4th floor 5th floor 6th floor 

   E = 210,000,000 kN/m2   E = 210,000,000 kN/m2   E = 210,000,000 kN/m2 

   Et = 205,748,633 kN/m2   E = 210,000,000 kN/m2   E = 210,000,000 kN/m2 

   Et = 208,517,641 kN/m2   Et = 178,166,256 kN/m2   E = 210,000,000 kN/m2 
   Et = 209,324,446 kN/m2   Et = 181,072,747 kN/m2   E = 210,000,000 kN/m2 
   Et = 209,707,588 kN/m2   Et = 183,053,935 kN/m2   Et = 143,151,406 kN/m2 

 

From these results it is possible to notice the usefulness of applying the inelastic stability analysis 
for considered frame structures. It is clear that frames with larger stiffness can be exposed to larger 
critical load, so the stress in their columns can exceed the proportionality limit of the material. 
Therefore, it is necessary to perform stability analysis in inelastic domain. So, the physical 
properties of materials are changed and the corresponding tangent modules should be calculated. 
Again, it should be emphasized that the values of this module depend on the axial force in the 
columns. Tab. 2 also shows the difference in the behavior of columns in different floors. Obviously, 
the overall buckling of the multi-story frame is governed by the columns in the first, most loaded 
floor. 

Summary 

The paper is presenting the procedure for stability analysis of the frame structures in elastic-
plastic domain. Performed numerical analyses show the advantages of this procedure when 
compared to the standard elastic stability analysis. Stiffness matrices are derived using the tangent 
modulus which is stress dependant and follows changes of the member stiffness in the inelastic 
field. These matrices have been implemented in the computer code ALIN. The presented algorithm 
introduces more accurate calculation of buckling in plastic domain. It allows monitoring the 
phenomena of stability loss of the frame structure in the plastic domain and direct determination of 
the critical force at the moment of buckling. 
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