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,QWHUQDWLRQDO�6FLHQWLILF�&RPPLWWHH�

WƌŽĨ͘��ƌ͘�'ůŝŐŽƌ�<ĂŶĞǀēĞ� [MK]� WƌŽĨ͘��ƌ͘�>ũƵďŝĐĂ�<ĂŶĞǀēĞ� [MK]�
WƌŽĨ͘��ƌ͘�^ůĂǀƚĐŚŽ�'͘�^ůĂǀƚĐŚĞǀ� [BG]� WƌŽĨ͘��ƌ͘�^ĂƓŽ�DĞĚǀĞĚ� [SI]�

WƌŽĨ͘��ƌ͘�WĞƚĂƌ�EŽǀĂŬ� [SI]� WƌŽĨ͘��ƌ͘�:ŽƌĚĂŶ�,ƌŝƐƚŽǀ� [BG]�
WƌŽĨ͘��ƌ͘�^Đ͘�EĞǀĞŶ��Ƶŝđ� [HR]� WƌŽĨ͘��ƌ͘��ŐŝƐ�WĂƉĂĚŽƵƉŽƵůŽƐ� [GR]�

WƌŽĨ͘��ƌ͘�<ŽŶƐƚĂŶƚŝŶŽƐ�WĂƉĂŬŽƐƚĂƐ� [GR]� WƌŽĨ͘��ƌ͘�^ŽƉŚŝĂ�EĂƚĂůŝĂ��ŽĞŵŝ� [GR]�
WƌŽĨ͘��ƌ͘��ƵƓĂŶ�'ŽůƵďŽǀŝđ�� [BA]� �ƌ͘�DĂƌŝĂ�/ĐŚŝŵ� [RO]�

�ƌ͘�sĞƐŶĂ��ĂƌŝƓŝđ� [FI]� WƌŽĨ͘��ƌ͘��ĞēĂŶ�/ǀĂŶŽǀŝđ� [ME]�
�ƌ͘�'ǇƵůĂ�'ƌſĨ� [HU]� �ƌ͘�&ƌŝĞĚƌŝĐŚ��ŝŶŬĞůĂĐŬĞƌ� [DE]�
�ƌ͘��ůĂƚĂŶ��Ăƌ� [HR]� Dƌ͘�^Đ͘�>ƵŬĂ��ĂƌĂƉŽǀŝđ� [HR]�

�ƌ͘��ĂƌŬŽ�<ŶĞǎĞǀŝđ� [BA]� �ƌ͘��ĚƌĂǀŬŽ�E͘�DŝůŽǀĂŶŽǀŝđ� [BA]�
�ƌ͘�DŝŚĂũůŽ�:͘�^ƚŽũēŝđ� [BA]� � �

3URJUDP�&RPPLWWHH�

WƌŽĨ͘��ƌ͘�DůĂĚĞŶ�^ƚŽũŝůũŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘�DŝůĂŶ�ZĂĚŽǀĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�

WƌŽĨ͘��ƌ͘�^ŝŵĞŽŶ�KŬĂ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�sŝŶēĂ�/ŶƐƚŝƚƵƚĞ�ŽĨ�EƵĐůĞĂƌ�^ĐŝĞŶĐĞƐ�
WƌŽĨ͘��ƌ͘�'ƌĂĚŝŵŝƌ�/ůŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

WƌŽĨ͘��ƌ͘��ƌĂƚŝƐůĂǀ��ůĂŐŽũĞǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘��ƌĂŐŽůũƵď��ŝǀŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘�sĞůŝŵŝƌ�^ƚƌĞĨĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

WƌŽĨ͘��ƌ͘��ƌĂŐŽƐůĂǀĂ�^ƚŽũŝůũŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�
�ƌ͘�WƌĞĚƌĂŐ�^ƚĞĨĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�sŝŶēĂ�/ŶƐƚŝƚƵƚĞ�ŽĨ�EƵĐůĞĂƌ�^ĐŝĞŶĐĞƐ�

WƌŽĨ͘��ƌ͘��ƌĂŐŽƐůĂǀ�aƵŵĂƌĂĐ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�&ĂĐƵůƚǇ�ŽĨ��ŝǀŝů��ŶŐŝŶĞĞƌŝŶŐ�
�ƌ͘�DŝŽĚƌĂŐ�DĞƐĂƌŽǀŝđ͕� �ŶĞƌŐŽƉƌŽũĞŬƚ��Ed�>͕��ĞůŐƌĂĚĞ�

WƌŽĨ͘��ƌ͘��ƵƓĂŶ�'ǀŽǌĚĞŶĂĐ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŽǀŝ�^ĂĚ͕�&ĂĐƵůƚǇ�ŽĨ�dĞĐŚŶŝĐĂů�^ĐŝĞŶĐĞƐ�
WƌŽĨ͘��ƌ͘�DŝůƵŶ��Ăďŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�<ƌĂŐƵũĞǀĂĐ͕�&ĂĐƵůƚǇ�ŽĨ��ŶŐŝŶĞĞƌŝŶŐ�

WƌŽĨ͘��ƌ͘�sůĂĚĂŶ�<ĂƌĂŵĂƌŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�<ƌĂŐƵũĞǀĂĐ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů�ĂŶĚ��ŝǀŝů��ŶŐ͘�ŝŶ�<ƌĂůũĞǀŽ�
�ƌ͘��ĂƌŬŽ�^ƚĞǀĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�sŝŶēĂ�/ŶƐƚŝƚƵƚĞ�ŽĨ�EƵĐůĞĂƌ�^ĐŝĞŶĐĞƐ�

WƌŽĨ͘��ƌ͘�DĂũĂ�dŽĚŽƌŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ��ĞůŐƌĂĚĞ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�

+RQRXUHG�&RPPLWWHH�

WƌŽĨ͘��ƌ�EĞŶĂĚ�d͘�WĂǀůŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘��ƌĂŐĂŶ��Ŷƚŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ��ůĞĐƚƌŽŶŝĐ��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

WƌŽĨ͘��ƌ�sůĂƐƚŝŵŝƌ�EŝŬŽůŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘��ĞŵĂů��ŽůŝđĂŶŝŶ͕� ^ƚĂƚĞ�hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŽǀŝ�WĂǌĂƌ�

WƌŽĨ͘��ƌ͘�DĂũĂ��ƵƌŽǀŝđ�WĞƚƌŽǀŝđ͕� �ƵƌŽƉĞĂŶ�hŶŝǀĞƌƐŝƚǇ͕�&ĂĐƵůƚǇ�ĨŽƌ�/ŶƚĞƌŶĂƚŝŽŶĂů��ŶŐŝŶĞĞƌŝŶŐ�DĂŶĂŐĞŵĞŶƚ�
:ĂƌŽƐůĂǀ�hƌŽƓĞǀŝđ͕� �ŶĞƌŐŽƉƌŽũĞŬƚ��Ed�>͕��ĞůŐƌĂĚĞ�

2UJDQL]LQJ�&RPPLWWHH�

�ŽĐ͘��ƌ͘��ĞũĂŶ�DŝƚƌŽǀŝđ, hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
�ŽĐ͘��ƌ͘�DŝƌũĂŶĂ�>ĂŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

�ƌ͘�DŝƌŬŽ�^ƚŽũŝůũŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
DĂƌŬŽ�/ŐŶũĂƚŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

WƌŽĨ͘��ƌ͘��ƌĂŶŝƐůĂǀ�^ƚŽũĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘�DŝđĂ�sƵŬŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

WƌŽĨ͘��ƌ͘�:ĞůĞŶĂ�:ĂŶĞǀƐŬŝ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
WƌŽĨ͘��ƌ͘�'ŽƌĚĂŶĂ�^ƚĞĨĂŶŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�

�ƌ͘�'ŽƌĂŶ�sƵēŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
�ŽĐ͘��ƌ͘�WƌĞĚƌĂŐ��ŝǀŬŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
Dƌ͘��ƌĂŐĂŶ�<ƵƓƚƌŝŵŽǀŝđ͕� hŶŝǀĞƌƐŝƚǇ�ŽĨ�EŝƓ͕�&ĂĐƵůƚǇ�ŽĨ�DĞĐŚĂŶŝĐĂů��ŶŐŝŶĞĞƌŝŶŐ�ŝŶ�EŝƓ�
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Determination of dynamic thermal characteristics of a building wall 
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Abstract: In this paper, based on in situ experimental temperature measurements, the following dynamic 
thermal parameters of a wall were calculated: decrement factor, time shift of thermal transmittance and 
areal heat capacities. The outdoor and indoor air temperature of a resident building in Belgrade during the 
three months from spring to summer of the last year were collected by data loggers. The experimental 
data were processed using the techniques of filtering and Locally Scatter plot Smoothing (LOESS) 
method, in order to get frequency and amplitude of daily temperature variations. A solution of the Fourier 
heat equation for this case, in matrix formulation in frequency space, is given. Matrix's elements of the 
Fourier equation were used for calculation of the dynamic thermal parameters of the wall. 

Keywords: Fourier heat equation, temperature data processing, wall's thermal parameters  

Corresponding author: 0LOLFD�0LUNRYLü��milicamirkovic91@gmail.com 

1. Introduction 
 
Dynamic thermal parameters describe the thermal behavior of building components subjected to time 
dependent boundary conditions (BC). These conditions could be variable temperature and heat flow rate on 
one or both of their boundaries. Generally, the variable condition assume any function of time but often 
means sinusoidal variation of known frequency. The response of the building component's is twofold: 
transient, which decrees in time, and steady with the same harmonics as excitation. The amplitudes of the 
temperature and the heat flux is damped as the excitation traverses the component. The both quantities have 
time delay compared to surface's BC [1]. This imply that usage of the complex functions could be 
appropriate for description of the physics involved. In this way, the dynamic parameters of the wall: 
decrement factor, time shift of thermal transmittance and areal heat capacities have been defined over 
complex quantities based on the solution of the Fourier heat equation in frequency space [2]. 
In this paper, a procedure leading to the Fourier heat equation solution in complex matrix form for a 
multilayered wall, using the Laplace transform, was adopted. Also, the results of simultaneous measurements 
of the external and internal air temperature in an apartment located on the second floor residential five storey 
building in Belgrade, were shown. Using techniques of signal processing, temperature variations in form of 
sine functions on the both surfaces of the wall of the building were extracted [3]. From this, the period of the 
temperature changes due to daily variation, was determined.  
 

2. Experimental setup and measurement methodology 
Figure 1 shows the “data logger” used for measurements of the air temperature inside and outside of the 
apartment. Inside and outside temperatures were measured at the same moments,  every 5 minutes. Response 
time of the logger to step excitation is 20s. The logger measures and stores up to 16382 temperature readings 
over range from -350C to 800C.  The logger is protected against water and dust when the plastic cap and seal 
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are fitted. Figure 2 represents the measurement accuracy of the air temperature according to manufacturer 
specifications. Within a measuring range of 00C to 400C the maximum absolute error of measurement is less 
than 0C. 
Facade of  the living room wall faces south. Outdoor temperatures are measured in vicinity of the building 

close to the same wall in a place sheltered from direct sunlight. We used two measuring devices of the same 
manufacturer and type. 
Data logger were placed at the living room of the apartment, on the dresser (Figure 3) and in the window of 
ventilated garage on the ground floor of the building (Figure 4). Windows of the apartment were circled with 
rectangle on the figure 4. During entire course of measurements there were no people present and no power 
consumption in the apartment.  

 
 
 
 
 

3. Solution of the Fourier equation in matrix form 
 
The Fourier equation for the heat conduction in a homogeneous wall of thickness , without heat sources 
and sinks is: 

,                                                                (1) 

Figure 1. Data logger used for measuring air 
temperature and relative humidity Figure 2. The data logger accuracy of air temperature 

measurement, according to the manufacturer. 

Figure 3. The living room of the apartment Figure 4. The building and marked windows of the 
apartment at the second floor.  
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where O  is coefficient of the thermal conductivity, U is density and � �txT ,  is temperature field inside the wall. 
BCs subjected to the surfaces at both sides are of the mixed type: 
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Subscripts u and s stand for indoor and outdoor. D  is a convection coefficient. Eqn (1) is the partial 
differential equation and could be transformed into the ordinary differential equation using the Laplace-

transform formalism, ³
f

� 
0

),(),( dtetxTxjT tjZZ , (j-imaginary unit): 
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where � �xT0 - initial condition for the temperature field in the wall at 0 t . We adopt 0)(0  xT , because  
we are interested in steady-state solution.  With a short mark OU /ck  , eqn (3) reads: 
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Solution of eqn � �5  has well known form � � � �xjexjT ZKZ  , , where )( ZK j  is solution of characteristic 

equation � � 02  �� kjj ZZK ,  � � kjj �r ZZK 2,1 . Now, general solution of eqn (4) is:  
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Applying BC (2) in 0 x we arrive to: 
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Eqns (7) give unknown constants 1C and 2C : 
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The temperature field in the wall is: 
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Our aim is to relate the temperatures and the heat fluxes at both surfaces. In order to achieve this  the 
Laplace-transform of the heat flux on outdoor surface of the wall is used: 
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Also, the outdoor surface temperature is: 
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In matrix form eqns (10) and (11) reads: 
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In eqn (12) the temperatures of the wall surfaces could be expressed over the air temperatures � �ZjTs  and 
� �ZjTu . Using BC (2) in matrix form we get: 

   � � � �
� � � � � �

� �»¼
º

«
¬

ª
»
¼

º
«
¬

ª
� »

¼

º
«
¬

ª
»
¼

º
«
¬

ª
� 

Z
Z

D
Z

Z
Z

D
Z

jq
jT

jq
jq
jT

jq
s

zs

s
s

u

u

u
u

11  ,11          (13)                                                                       

 
Substituting into eqn (12) we get an equation relating the temperatures and the heat flow rates at the both 
side of the wall: 
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If the wall is multilayered with n-layers eqn (14) is: 
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where nZZZ ,..., 21  stands for matrix of each layer. 

 

4. Dynamic thermal parameters of the wall 
 
As stated in the first chapter the following parameters describe the most important physics of processes: 
decrement factor, time shift of thermal transmittance and areal heat capacities. The decrement factor f
relates periodic and steady-state thermal transmittance, more precisely, the modulus ratio of modulus of the 
periodic transmittance and steady-state transmittance 0U [2] is: 

120

11
ZU

f � .                                                                 (16) 

f illustrates the heat flux damping capability of a wall when the flux changes in the time as a sinusoidal  
function. The decrement factor has value between zero and one and if it is close to zero it means that the wall 
has strong damping capabilities. This is the characteristic of the massive constructions. The thermal 
transmittance does not include the thermal bridges.  
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The time shift ft'  represents the period which takes the amplitude of the heat flux to traverses construction 
element [2]: 

� � > @hZTt f 12arg
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 '                                                              (17) 

As in the case of the decrement factor, for the lighter constructions the time shift is shorter than for massive 
one.  
The areal heat capacity is the heat capacity per unit area of construction element. The two definitions exist 
[2]:  
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Distinction between these definitions is that the first one relates to external period of the temperature 
variations and the later to internal one. 

5. Numerical results and discussion 
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In Figure 5 the measured outdoor and indoor air temperature were shown. The measurements in the period 
from 22.04.2014. to 02.08.2014 were made. In this period each logger recorded 29326 readings. Red curve in 

Figure 5 corresponds to the indoor and black to the outdoor temperatures. As expected, indoor curve has 
much lower amplitude than the outdoor one. To calculate the matrix elements 211211 ,, ZZZ  and 22Z , it is 
necessary, beside material parameters, to know the angular frequency of the sinusoidal input temperatures. 
The FFT spectra of the outdoor temperatures for Belgrade, for period of last fifty years, have several picks at 
frequencies corresponding to daily, seasonal, half year and year temperature variations [4]. The most 
influential frequency on the numerical values of the matrix elements are the daily temperature variations 
because in this case the corresponding angular frequency has  maximal value. In Figure 6 a typical outlook of 
the daily air temperature variations, recorded in our outdoor measurements is shown. To extract the 
frequency of interest from the data, filtering was used. All temperature changes lasting mach longer and 
shorter than a day has been removed by a band-pass filter. The bandwidth filter, with corresponding time 
interval from 20h to 28h was chosen, because the characteristic temperature variations do not follow exactly 
day time. To justify this bandwidth interval, the LOESS smoothing algorithm on temperature curves was 
applied. In Figures 7 and  8 smoothed, original, sinus fitted and band pass curves for outdoor and indoor air 
temperature, were shown respectively. Orange curve represents sum of two curves: smoothed with the 
LOESS algorithm and band pass. Excellent agreement of original (measured) data and processed one was 
obtained. Filtered curves are fitted at sine function of the form � � )/(sin0 ZS cxxAy �� , where c0  xA, ,y  
and Z  are variable parameters. In Figures 7 and 8 with blue color filtered curves were shown. 

Figure 5. Outdoor (black) and indoor (red) 
air temperature. 
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Figure 6. Outdoor temperature variations for the 
first 5 days. 
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Figure 7. Outdoor air temperature curve (black), band 
pass filter curve (red), sinus fit of band pass curve 
(blue), LOESS algorithm curve (green) 

Figure 8. Indoor air temperature curve 
(black), band pass filter curve (red), sine 
fit of band pass curve (blue), LOESS 
algorithm (green) 
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Figure 9. Sinusoidal outdoor (red) and 
indoor (blue) air temperature changes 
curves 

In Figure 9 extracted sinusoidal outdoor (red) and indoor 
(blue) air temperature were drown. These curves has been 
used for determination of the period T of input 
temperature functions from both sides of the wall. 
Corresponding periods are 88162s and 88189s for outdoor 
and indoor temperature respectively. A mean values of 
88170s was chosen as a common period (1day has 
86400s). In Figure 7 and 8 all fitting parameters including 
the angular frequency were given. 
Dynamic thermal parameters of the wall: the decrement 
factor, time shift of thermal transmittance and areal heat 
capacities were calculated as explained in chapters 3 and 
4. The structure and  numerical values of dimensions and physical characteristics of the wall materials are 
shown in Table 1. In the Table 2 numerical values of these parameters were given. The wall is massive 
because it has decrement factor close to zero, meaning that it has strong damping capability. The massive 
constructions also have greater value of the time shift and in the Table 2 these values were shown.  
 
Table 1. Physical characteristics of wall materials  

 
  
 

 

 
 

 

 

Table 2. Numerical values of dynamic parameters 
f  [h] ft'  )]/([  2

1 KmJN  )]/([  2
2 KmJN  

0,26 -2,57 56389 171854 

 

6. Conclusion 
 
In this paper, the experimental data of indoor and outdoor temperature of a residential building in Belgrade, 
out of heating season, during three months, were processed and used to extract the period of characteristic 
daily sine temperature variations necessary for calculation of the dynamical parameters. The band pass filter 
has been used for data extraction for the daily temperature variations. The fitting to sine function and LOESS 
smoothing algorithm are used to check the results obtained by band pass filter. The physics of the heat 
transfer in the wall has been modeled by the Laplace transform approach which relates the outdoor and 
indoor temperatures and corresponding the heat fluxes in the matrix form. The matrix elements for the 
calculation of the parameters were used. The thermal properties of the construction in dynamical regime 
could be estimated from the  dynamical parameters. 
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