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ABSTRACT8

The paper presents an adaptive section discretization scheme for the inelastic response analysis9

of structural members with cross sections that can be decomposed into rectangular and circular10

subdomains. Each subdomain can consist of a different material. As long as the largest strain11

in a subdomain does not exceed the specified trigger strain values, the subdomain contribution12

to the section response is determined by the numerically exact cubature rule for the subdomain.13

Once the largest strain reaches the trigger value for a subdomain, it is discretized with a fiber14

mesh and the numerical evaluation of its contribution to the section response is determined with15

the midpoint integration rule. The fiber mesh with the midpoint integration rule remains in effect16

for the activated subdomain until the end of the response history. The paper applies the adaptive17

discretization scheme to the thin-walled sections common in metallic structures and investigates18

the effect of different trigger strain values on the accuracy and computational efficiency of the19

inelastic response analysis of wide-flange steel sections and multi-story steel frames under static20

and dynamic excitations.21

INTRODUCTION22

Nonlinear static and dynamic analyses are commonly used in the evaluation of new and existing23

structures under performance-based engineering requirements. In this context, the numerical24
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model of the structure needs to be robust, accurate, and computationally efficient. Among the25

different models developed in the past, nonlinear fiber beam/column elements are widely used for26

the simulation of the inelastic response of moment resisting frames, because they balance accuracy27

with computational efficiency, as several studies on the simulation of RC, steel, and composite28

steel-concrete frames have demonstrated (Kostic and Filippou 2012; Terzic and Stojadinovic 2015;29

Hajjar et al. 1998; Minafò and Camarda 2021; Cheng and Shing 2022).30

In the formulation of a fiber-based beam/column element, the inelastic deformations are moni-31

tored at two or more cross sections along the element length (Neuenhofer and Filippou 1997; Scott32

et al. 2008). These cross sections are discretized into a number of integration points or fibers, so that33

the evaluation of the section response can be performed numerically. Consequently, the numerical34

accuracy and computational efficiency of the section evaluation depend on the integration rule35

and the number of integration points for the discretization. With increasing number of integration36

points the numerical accuracy increases with an almost proportional increase in computation time.37

It is, therefore, important to select the optimal number of integration points for optimizing the speed38

of computation without undue sacrifice in accuracy.39

To date, few studies have addressed the optimisation of the fiber cross section integration.40

Because of its effect on the computation time, this issue is important for the seismic response41

analysis under a large suite of ground motions, as is currently the case in professional practice42

for the dynamic response analysis of structures in regions of high seismic risk. It is also of43

importance in system identification studies that require numerous analyses with different input44

parameters. Berry and Eberhard (2008) made a proposal for the efficient discretization of circular45

reinforced concrete sections. Kostic and Filippou (2012) analyzed various integration rules for46

the section discretization problem. They concluded that the higher-order integration rules do47

not offer gains over the midpoint integration rule under inelastic deformations. In addition, they48

made practical recommendations for the discretization of steel wide flange sections and rectangular49

reinforced concrete sections. Quagliaroli et al. (2015) proposed a subdomain discretization in50

combination with Gauss quadrature rules for the accurate determination of the ultimate strength of51
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RC sections. None of these studies, however, study the problem under the aspect of an adaptive52

section discretization.53

A couple of recent studies investigated adaptive section discretization strategies. Guided by the54

insight that only a small percentage of the sections experience inelastic deformations during the55

nonlinear analysis of the structural model, while the majority remain in the linear elastic range, He56

and co-workers proposed an analysis strategy that starts with all sections in the linear elastic range57

(He et al. 2017a; He et al. 2017b) and replaces the discretization of sections that exceed prescribed58

strain limits by a standard fiber mesh. More recently, Kostic and Filippou (2022) proposed a more59

general adaptive section discretization scheme for rectangular and circular cross sections for RC60

and composite steel-concrete structural members. The proposal divides each section into circular61

or rectangular concentric "rings". As the section deformations increase, the rings with inelastic62

strains above specified limits are discretized with a standard fiber mesh, while the inner portion of63

the section that remains in the linear elastic range uses exact cubature rules for the determination64

of its contribution to the section forces and stiffness. The computational time savings range from65

30% to 75% without affecting the accuracy of the response. This method is, however, limited to66

solid circular and rectangular sections that allow the subdivision of the integration domain into67

concentric circular or rectangular "rings". For sections with complex geometries that do not meet68

this subdivision criterion, as is the case for the wide-flange (WF) profiles of metallic structural69

members, a more general subdivision scheme of the integration domain is required.70

The general domain subdivision method in this paper extends the idea of section subdivision71

with gradual activation of a subdomain to sections of arbitrary shape composed of circular or72

rectangular subdomains. Because each subdomain may be assigned a different material model, the73

proposed adaptive scheme applies to homogeneous as well as to non-homogeneous sections. The74

method uses the exact cubature rule for a circular or rectangular subdomain before the trigger strains75

are exceeded and replaces the cubature rule with a standard mesh discretization of the subdomain76

thereafter. The proposed adaptive discretization scheme is implemented at the section level, so77

that it can be used with any type of fiber beam-column element following the organization for78
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the element state determination in Scott et al. (2008). The paper demonstrates the computational79

benefits of the proposed scheme for metallic structures with thin-walled cross sections.80

ADAPTIVE SECTION DISCRETIZATION FOR THIN-WALLED SECTIONS81

The determination of the stress resultants s and the section stiffness matrix ks for a beam/column82

element with plane sections remaining plane after deformation involves the following integrals over83

the section area 𝐴84

ks =

∫
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where 𝐸𝑡 is the tangent modulus and 𝜎 the normal stress at the material point with coordinates85

(𝑦, 𝑧) relative to the section coordinate system. 𝑁 is the normal force and 𝑀𝑦, 𝑀𝑧 are the bending86

moments about the axes 𝑦 and 𝑧, respectively. The numerical evaluation of these integrals over the87

cross section area 𝐴 gives:88
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where 𝑛 𝑓 is the number of integration points (IPs) or fibers. The subscript 𝑖 refers to the variables89

of the 𝑖-th fiber with 𝐴𝑖 playing the role of an integration weight that for the midpoint integration90
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rule can be visualized as the fiber area. When the modulus of elasticity 𝐸𝑡 is constant over the91

area 𝐴, as is the case under linear elastic conditions, the integrals in Eqs. (1)-(2) involve at most92

quadratic polynomials in 𝑦 and 𝑧.93

The exact evaluation of integrals involving polynomials over a circular or rectangular domain94

uses cubature formulas with a small number of integration points (IPs) (Abramowitz et al. 1964;95

Cools 2003). Fig. 1 shows the cubature rule for the unit square area with the integration points96

located at (±
√

3
3 ,±

√
3

3 ) with weights equal to 1
4 .97
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Fig. 1. Cubature rule for a unit square area with 4 IPs.
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Fig. 2. Adaptive section discretization scheme for wide flange section: (a) division into 3 rectangular
subdomains, (b) cubature rule for initial response, (c) fiber mesh for top flange after its activation,
(d) section discretization after activation of all subdomains.

The proposed adaptive discretization scheme will be illustrated with the example of a thin-98

walled, wide-flange section in Fig. 2. Before the start of the inelastic response analysis the section99

is subdivided into a number of rectangular subdomains. The simplest choice subdivides the section100

into three rectangular domains, as Fig. 2(a) shows: one for the upper flange (domain 1), one for101

the lower flange (domain 2), and one for the web (domain 3). The input data also include the fiber102

mesh parameters for the numerical evaluation of the contribution of each subdomain to the section103
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Fig. 3. Recommendations for wide flange section discretization with the midpoint integration rule
from Kostic and Filippou (2012): (a) 12 MP scheme, (b) 108 MP scheme.

integrals once the trigger strains are exceeded during the response history. The fiber mesh selection104

depends on the target accuracy for the inelastic response. Fig. 3(a) shows the coarsest recommended105

mesh from the study by Kostic and Filippou (2012) involving 4 midpoint integration points in each106

flange and in the web in the arrangement 1x4 for a total of 12. It is denoted with 12MP. Fig. 3(b)107

shows the finest recommended mesh from the study by Kostic and Filippou (2012) involving 36108

midpoint integration points in each flange and in the web in the arrangement 3x12 for a total of 108109

integration points. It is denoted with 108MP. Finally, the input data also include the positive and110

negative trigger strain values Y𝑙𝑖𝑚+ and Y𝑙𝑖𝑚− , respectively, for each subdomain. These values are111

equal to the yield strain of the metallic material or a small multiple of it, as will be discussed in the112

evaluation studies of the next sections. For non-homogeneous sections the specified trigger strains113

may vary from one subdomain to the next.114

With this input information, the inelastic response analysis can commence. At the start of the115

analysis, each rectangular subdomain of the wide-flange section in Fig. 2(a) uses the cubature rule116

in Fig. 1 with 4 IPs, as Fig. 2(b) shows. When the largest normal strain at one of the corners of117

a rectangular subdomain exceeds the trigger value, the subdomain integration changes from the118

cubature rule to a fiber mesh with the midpoint integration rule, as is the case for the flange in119

Fig. 2(c). The switch from the cubature rule to the fiber mesh with midpoint integration rule is120

called "subdomain activation" in this paper. Once the fiber mesh comes into effect for a subdomain,121

it remains in effect until the conclusion of the inelastic response history. Fig. 2(d) shows the122

discretization of the cross section for the case that both flanges and the web are activated at some123
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point of the response history. The fiber mesh for each rectangular subdomain in Fig. 2(c) and124

(d) uses the finest recommended discretization of 3x12 from the study by Kostic and Filippou125

(2012). It is possible to subdivide the wide-flange section into more rectangular subdomains, but126

the gains may be offset by the computational overhead for checking the trigger strain values in each127

subdomain.128

It is also possible to use a coarser fiber mesh discretization for the adaptive scheme. The study129

by Kostic and Filippou (2012) recommends a fiber mesh with 2x8 IPs in the flanges and 8x1 IPs in130

the web for a total of 40 IPs, if the axial strains are of secondary interest in the columns. Instead131

the coarse mesh alternative of 1x4 IPs for each subdomain is not recommended for the adaptive132

scheme, because it has accuracy limitations under biaxial flexure while offering significantly smaller133

computational savings relative to the non-adaptive scheme with the same mesh discretization. This134

issue will be discussed further in the context of the inelastic response analysis of a 6-story steel135

frame under bidirectional ground excitation.136
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Fig. 4. Schematic outline of adaptive section discretization for a wide-flange section.

Fig. 4 shows a schematic outline of the adaptive section discretization. For given section137

deformations e the normal strains at the corners of each rectangular subdomain are compared with138

the trigger strain values. If the largest normal strain exceeds the trigger strain, the corresponding139

subdomain is "activated" by changing the numerical evaluation of its contribution to the section140

resultants and the section stiffness matrix from the cubature rule to the 3x12 fiber mesh with the141

midpoint integration rule, as is the case for the web in the middle of Fig. 4. Once a subdomain is142

"activated", the fiber mesh with the midpoint integration rule remains in effect for the remainder143

of the analysis, as is the case for the flange in the middle of Fig. 4. The computational savings are144
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rather significant for cases involving the activation of a few section subdomains in a large structural145

model.146

NUMERICAL SIMULATIONS147

This section assesses the computational savings of the proposed adaptive section discretization148

for the inelastic response of sections under large inelastic strain reversals and for the static and dy-149

namic response of structural models under lateral loads inducing significant inelastic deformations.150

The computational savings are contrasted with the accuracy for the global and the local response151

for different trigger strain values for a section subdomain. The analytical studies were conducted152

with FEDEASLab, a Matlab-based general purpose framework for the nonlinear response analysis153

of structures (Filippou and Constantinides 2004).154

Section analyses155

The following section analyses demonstrate the relation between the response accuracy for the156

proposed adaptive section discretization and the selected trigger strain values [ Y𝑙𝑖𝑚− , Y𝑙𝑖𝑚+ ]. For157

a material with a well defined yield strain and equal yield strength in tension and compression,158

it is reasonable to select as target strains 𝑒𝑙𝑖𝑚,1 = [ − 𝑓𝑦
𝐸
,

𝑓𝑦
𝐸
], where 𝑓𝑦 is the yield strength and159

𝐸 is the elastic modulus of the material. With this selection the adaptive discretization achieves160

the same accuracy as the non-adaptive discretization with the same fiber mesh parameters for each161

subdomain. Delaying the subdomain activation with the selection of larger trigger strain values162

leads to slightly larger computational benefits of the adaptive discretization without undue penalty163

for the response accuracy. The following study uses the inelastic response of a W14x120 steel164

section to explore the response accuracy for two cases of larger trigger strain values: (a) a trigger165

strain of twice the yield strain 𝑒𝑙𝑖𝑚,2 = [ −2 𝑓𝑦
𝐸
, 2 𝑓𝑦

𝐸
], and (b) a trigger strain of three times the yield166

strain 𝑒𝑙𝑖𝑚,3 = [ −3 𝑓𝑦
𝐸
, 3 𝑓𝑦

𝐸
].167

Among the load histories investigated in the study by Kostic and Filippou (2012) two challenging168

cases are selected:169

1. Fig. 5(a) shows the first load history: two curvature cycles about the weak 𝑦-axis with170
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variable axial force simulating the effect of overturning moments. The curvature reversal171

value ^𝑦 is equal to 3^𝑝𝑦 for the first cycle and equal to 6^𝑝𝑦 for the second, where ^𝑝𝑦 is the172

curvature under the plastic moment capacity 𝑀𝑝𝑦. The axial force varies about the gravity173

compression value of (−0.20)𝑁𝑝 with an amplitude of (0.10)𝑁𝑝 for the first curvature cycle174

and (0.20)𝑁𝑝 for the second, where 𝑁𝑝 is the plastic axial capacity.175

2. Fig. 5(b) shows the second load history: two biaxial curvature cycles under a constant axial176

compression of −20% 𝑁𝑝. The curvature ^𝑦 about the weak axis is 10 times larger than177

the curvature ^𝑧 about the strong axis. The curvature reversal value ^𝑧 is equal to ^𝑝𝑧 for178

the first cycle and equal to 2^𝑝𝑧 for the second, where ^𝑝𝑧 is the curvature under the plastic179

moment capacity 𝑀𝑝𝑧.180
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Fig. 5. Load history for section analyses: (a) curvature about 𝑦-axis with variable axial force, and
(b) biaxial curvature under constant axial force 𝑁 = (−0.20)𝑁𝑝

.

Figs. 6 and 7 show the response history of the W14x120 steel section for the first load history.181

The results are presented for two non-adaptive and three adaptive section discretizations with182

different trigger strain values. The non-adaptive fiber mesh discretizations correspond to the fine183

mesh of 108 IPs in 3(b), representing the reference solution, and the coarse mesh of 12 IPs in 3(a),184

denoted with 12MP in the figures. Both non-adaptive discretizations use the midpoint integration185

rule. The adaptive section discretizations use one rectangular subdomain for each flange and the186
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web. Once activated, a subdomain uses a fiber mesh of 3x12, as shown in Fig. 2, with the midpoint187

integration rule. The three adaptive discretization cases correspond to trigger strain values of 𝑒𝑙𝑖𝑚,1,188

𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3 for the activation of a subdomain.189

The uniaxial material modal for the homogeneous section is based on J2 plasticity with kinematic190

and isotropic hardening Simo and Hughes (1998). The following results are independent of the191

specified yield strength 𝑓𝑦 = 470 MPa and elastic modulus 𝐸 = 200 GPa, because the loading and192

the response variables are normalized with respect to the plastic capacities and the corresponding193

deformations. The kinematic and isotropic hardening modulus of the material is set equal to a very194

small value for numerical stability purposes.195

The results of the reference solution in Figs. 6 and 7 are numerically exact for all practical196

purposes Kostic and Filippou (2012). The adaptive discretization with trigger strain values 𝑒𝑙𝑖𝑚,1197

equal to the yield strain of the material produces identical results with the reference solution in198

Fig. 6(a) and Fig. 7(a). This happens because the cubature rule is exact for the contribution of199

each rectangular subdomain to the section response before its activation, and the fiber mesh of200

the subdomain is the same as for the reference solution after its activation. The results are also201

excellent for the adaptive discretization 𝑒𝑙𝑖𝑚,2 with trigger strain values of twice the yield strain,202

both in terms of the moment-curvature history in Fig. 6(b) and the normal force-axial strain history203

in Fig. 7(b) except for a slight discrepancy for the delayed transition from the linear elastic to the204

inelastic response. The results for the adaptive discretization 𝑒𝑙𝑖𝑚,3 with trigger strain values of205

three times the yield strain show a bigger discrepancy for the delayed transition from the linear206

elastic to the inelastic response Figs. 6(b) and 7(b), but are still in good agreement with the reference207

solution for the remainder of the moment-curvature history in Fig. 6(b). A slight error remains,208

however, for the normal force-axial strain history in Fig. 7(b), which increases with increasing209

axial deformation. In contrast to the excellent results of the three adaptive discretization schemes,210

the accuracy limitations of the section discretization with a coarse fiber mesh are evident for the211

moment-curvature history in Fig. 6(a), but especially for the normal force-axial strain history in212

Fig. 7(a).213
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Fig. 6. Moment-curvature history for W14x120 steel section under variable axial force for two-non
adaptive and 3 adaptive discretizations with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3.
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Fig. 7. Axial force-axial strain history for W14x120 steel section under variable axial force for
two-non adaptive and 3 adaptive discretizations with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3.

The second load history with biaxial flexural deformations under dominant bending about the214

weak 𝑦−axis of the wide flange section was selected because it is the most challenging from the215

standpoint of response accuracy (Kostic and Filippou 2012).216

Figs. 8 - 10 show the moment-curvature history about the two principal axes and the normal217

force-axial strain history for the W14x120 section with bilinear material. The results of the reference218

solution in Figs. 8 - 10 are numerically exact for all practical purposes Kostic and Filippou (2012).219
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Fig. 8. Moment-curvature history about the 𝑧-axis for W14x120 steel section under constant axial
force for two-non adaptive and 3 adaptive discretizations with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3.
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Fig. 9. Moment-curvature history about the 𝑦-axis for W14x120 steel section under constant axial
force for two-non adaptive and 3 adaptive discretizations with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3.

The adaptive discretization with trigger strain values 𝑒𝑙𝑖𝑚,1 equal to the yield strain of the material220

produces again identical results with the reference solution in Figs. 8(a), 9(a) and 10(a). The results221

are also excellent for the adaptive discretization 𝑒𝑙𝑖𝑚,2 with trigger strain values of twice the yield222

strain in Figs. 8(b), 9(b) and 10(b). In fact, except for a slight discrepancy for the delayed transition223

from the linear elastic to the inelastic response these results are practically indistinguishable from224

the reference solution. The results for the adaptive discretization 𝑒𝑙𝑖𝑚,3 with trigger strain values of225
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Fig. 10. Axial force-axial strain history for W14x120 steel section under constant axial force for
two-non adaptive and 3 adaptive discretizations with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3.

three times the yield strain also show very good agreement with the reference solution in Figs. 8(b),226

9(b) and 10(b) except for the slightly more pronounced discrepancy for the delayed transition227

from the linear elastic to the inelastic response for the moment-curvature history and the slight228

underestimation of the axial strain in Fig. 10(b) with maximum error of about 15%. Such error229

may still be acceptable for the inelastic response analysis of a multi-story steel frame, as will be230

discussed later. In contrast to the excellent results of the three adaptive discretization schemes, the231

accuracy limitations of the section discretization with a coarse fiber mesh are evident for the normal232

force-axial strain history in Fig. 10(a), but especially for the moment-curvature history about the233

strong 𝑧-axis of the wide flange section in Fig. 8(a). Such a coarse fiber mesh discretization is234

unsuitable for this type of biaxial flexural deformation response, as already pointed out by Kostic235

and Filippou (2012).236

For the computational savings of the three adaptive discretization schemes it is relevant to237

consider the activation results in Table 1. Noting that the total number of load steps for both load238

histories is 261, it is clear that modest computational savings result from the late activation of239

the web for the uniaxial load history under trigger strain values 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2. Without web240

activation, the computational savings are slightly larger for the trigger strain values 𝑒𝑙𝑖𝑚,3. The241
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computational savings are minimal for the biaxial load history with trigger strain values 𝑒𝑙𝑖𝑚,1 and242

𝑒𝑙𝑖𝑚,2 and modest with trigger strain values 𝑒𝑙𝑖𝑚,3 that do not lead to web activation. It is worth243

mentioning, however, that the early excursion into the inelastic range for both load histories is rather244

unfavorable to the adaptive discretization scheme. The conclusion about computational savings245

would be quite different for load histories with several early cycles under small inelastic excursions.246

This is the case for many sections of structural models, as will be demonstrated in the next section.247

TABLE 1. Load steps for subdomain activation during section analyses.

Trigger strains Uniaxial load history Biaxial load history
flange 1 flange 2 web flange 1 flange 2 web

𝑒𝑙𝑖𝑚,1 25 25 120 23 23 28
𝑒𝑙𝑖𝑚,2 29 29 134 24 25 41
𝑒𝑙𝑖𝑚,3 32 32 – 28 29 –

In conclusion, the section analyses show that the adaptive discretization with trigger strain248

values of 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2 produces results that are practically identical with the reference solution249

with a non-adaptive fiber mesh of 108 integration points. For a single section the computational250

benefits of these adaptive discretizations are modest, especially under a load history with an early251

excursion into large inelastic deformations. Because the computational benefit is more appreciable252

for the adaptive discretization with trigger strain values 𝑒𝑙𝑖𝑚,3 while the error remains relatively253

small, it is retained for further investigation of its global and local response accuracy for the multi-254

story frames in the next section, for which the computational savings from the adaptive section255

discretization strategy promise to be appreciable.256

Multi-story steel frames257

This section investigates the accuracy and the computational benefits of the proposed adaptive258

discretization scheme for the inelastic response analysis of a 20-story frame under static loads and259

of a 6-story frame under bidirectional ground accelerations.260

The numerical model for both frames uses a force-based, fiber beam-column element for each261

member with a 4-point Gauss-Lobatto rule for the numerical integration along the element axis262
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(Taucer et al. 1991). At each integration point the numerical evaluation of the section response263

uses either a fiber mesh with 108 IPs for the reference solution, or an adaptive discretization with a264

rectangular subdomain for each flange and the web. Each subdomain uses the exact cubature rule265

before activation, and switches to a 3x12 fiber mesh once activated when the largest normal strain266

exceeds the specified trigger value, as discussed in connection with Figs. 2 and 4. The inelastic267

response analysis of both frames accounts for nonlinear geometry effects under large displacements268

with the corotational formulation (Crisfield 1996).269

Pushover analysis of twenty story steel frame270

The inelastic response analysis under static loads concerns the 20-story space frame in Fig. 11271

from the original study by Orbison et al. (1982) and several subsequent studies (Chiorean 2009;272

Ngo-Huu et al. 2007). The frame is subjected to concentrated nodal forces corresponding to gravity273

loads of 4.8 kN/m2, and to a gradually increasing wind load of 0.96 kN/m2 in the𝑌 direction acting274

on the facade at 𝑌 = 0. Fig. 11 lists the wide flange profiles for the columns and the girders of the275

frame. The steel material has yield strength 𝑓𝑦 = 344.8 MPa and elastic modulus 𝐸 = 200 GPa.276

The uniaxial material model for the fiber-beam column elements is assumed to be linear elastic,277

perfectly plastic.278

Fig. 12 shows the inelastic response of the 20-story frame in terms of the relation between the279

load factor for the lateral loading and the horizontal drift ratio in the 𝑌 -direction for point A on the280

roof of the building. The latter is expressed by the ratio of the horizontal translation 𝑈𝑌 𝐴 for point281

A in the 𝑌 -direction and the total height 𝐻 of the 20-story frame. The load-displacement response282

of the model for the reference solution with a fiber mesh of 108 IPs at each of 4 integration points283

of the fiber-beam column elements gives an ultimate load factor of 1.08 in very good agreement284

with the load factor 1.06 reported by Chiorean (2009).285

Fig. 12(a) shows that the results of the adaptive section discretization with trigger strain values286

𝑒𝑙𝑖𝑚,1 equal to the yield strain are identical with the reference solution. In Fig. 12(b) the adaptive287

discretizations 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3 with trigger strain values equal to twice or three times the yield288

strain, respectively, show a slightly larger ultimate load factor of 1.09 and 1.10, respectively. A289
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Fig. 11. Twenty-story frame

marker on the load-displacement relation for the adaptive section discretizations in Fig. 12(a) and290

(b) marks the load step at the first subdomain activation. The delay of the first subdomain activation291

for larger trigger strain values is evident from the comparison of the responses in Fig. 12(b) for the292

trigger strain values 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3 with the response in Fig. 12(a) for trigger strain values 𝑒𝑙𝑖𝑚,1.293

This delay has a small effect on the accuracy of the inelastic response and on the ultimate load294
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Fig. 12. Load-displacement response of 20-story frame for the non-adaptive section discretization
with 108 MP and three adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3

factor value for the adaptive section discretization schemes in Fig. 12(b).295

The smooth transition of the inelastic response relation during the activation of the first sub-296

domain and all subsequent activations distinguishes the proposed adaptive section discretization297

scheme from an earlier proposal for an adaptive section activation (He et al. 2017a; He et al. 2017b).298

TABLE 2. Relative computation time with number of fully and partially activated sections at the
conclusion of the pushover analysis for the 20-story frame

Discretization Time No of fully No of partially
activated sections activated sections

Reference 100% / /
Adaptive 𝑒𝑙𝑖𝑚,1 24% 67 77
Adaptive 𝑒𝑙𝑖𝑚,2 22% 50 53
Adaptive 𝑒𝑙𝑖𝑚,3 21% 36 38

Table 2 gives details about the computational effort for the adaptive section discretization299

schemes with trigger strain values 𝑒𝑙𝑖𝑚,1, 𝑒𝑙𝑖𝑚,2 and 𝑒𝑙𝑖𝑚,3 relative to the reference solution with300

a non-adaptive fiber mesh of 108 IPs at each of 4 integration points of the fiber-beam column301

elements of the model. The table lists the number of fully and partially activated sections for the302

structural model at the end of the pushover analysis, and reports the computation time of each303

adaptive scheme relative to the time for the reference solution. The computation time is from 4.2 to304
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4.8 times shorter for the adaptive discretization schemes than for the reference solution depending305

on the selected trigger strain values.306

The number of fully and partially activated sections should be compared with the total number307

of sections to be monitored in the model, which for 460 elements with 4 sections each amount308

to 1840. Even when one accounts for the fact that the two internal integration points of a beam-309

column element will not experience inelastic deformations for perfectly plastic material response310

in the absence of significant distributed element loads and reduces the number of sections to be311

monitored for inelastic action to 920, the cause for the computational savings is clear. Relaxing312

the trigger strain values from the yield strain (𝑒𝑙𝑖𝑚,1) to twice the yield strain (𝑒𝑙𝑖𝑚,2) reduces the313

number of fully and partially activated sections appreciably, but the savings in computation time314

are not worth the slight loss of accuracy. Similarly, the small additional savings from the relaxation315

of the trigger strain value to 3 times the yield strain do not justify the more appreciable loss of local316

response accuracy observed in the section response analyses.317

In conclusion, the adaptive discretization schemes with trigger strain values of 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2318

offer comparable savings in computation time for the inelastic pushover analysis with a slight319

accuracy loss for the global and local inelastic response of the latter.320

Dynamic response of six story frame under bidirectional ground acceleration321

The inelastic response analysis under bidirectional ground accelerations concerns the irregular322

six-story frame in Fig. 13. The frame geometry is based on earlier studies by multiple authors323

(Chiorean 2009), but the structure underwent significant re-design to meet the current seismic324

design requirements of Eurocode 8 for a DCM ductility class. Fig. 13 shows the resulting column325

and girder sizes for the six-story frame noting that the columns of the six story block are oriented so326

that the strong axis of bending coincides with the global Y-axis, while the 6 columns of the 3-story327

portion have the strong axis of bending coincide with the global X-axis. The steel material has328

yield strength 𝑓𝑦 = 250 MPa and elastic modulus 𝐸 = 206.85 GPa. The uniaxial material model329

for the fiber-beam column elements is assumed to be linear elastic, perfectly plastic.330

The gravity load of the frame amounts to 6 kN/m2. It is used to set up the equivalent concentrated331
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nodal forces due to gravity and in the determination of the lumped mass terms 𝑀1 and 𝑀2 in Fig. 13.332

The damping of the structural model is represented with the modal damping method of Wilson333

and Penzien with a 2% damping ratio for all modes. Four node linear elastic planar quadrilateral334

elements with high in-plane stiffness are used to constrain the motion of each floor to a translation335

in X, a translation in Y and a rotation about the Z-axis. The planar quadrilateral elements do not336

affect the translation in Z and the other rotations at each node, which are thus independent. The337

6-story frame was subjected to the following ground acceleration records in both horizontal X-338

and Y-directions simultaneously with the name of the recording station in parentheses: Imperial339

Valley (Hotwille Post Office), Northridge (LA Hollywood Storage), Loma Prieta (Gilroy), Landers340

(Barstow), Kobe (Takatori), Kocaeli Turkey (Izmit), Chi-Chi Taiwan (CHY024) and Darfield, New341

Zealand (Page Road Pumping Station).342

Because of the very small benefit in computation time for the case 𝑒𝑙𝑖𝑚,3 in the nonlinear343

pushover analyses of the preceding section, the adaptive section discretization cases are limited to344

𝑒𝑙𝑖𝑚,1 with a trigger strain value equal to the yield strain, and 𝑒𝑙𝑖𝑚,2 with a trigger strain value equal345

to twice the yield strain.346

TABLE 3. Calculation time (in % of time for the reference solution) and error in the maximum
value of the relative roof drift for the six-story frame under bidirectional earthquake loading.

Earthquake PGA Adaptive 𝑒𝑙𝑖𝑚,1 Adaptive 𝑒𝑙𝑖𝑚,2
record time error 𝑛𝐹 /𝑛𝑃 time error 𝑛𝐹 /𝑛𝑃

Imperial Valley-06 0.21g 29% 0.34% 11/45 21% 1.00% 0/5
Northridge-01 0.36g 39% 0.35% 37/95 25% 0.86% 14/25
Loma Prieta 0.36g 30% 0.15% 9/45 23% 0.24% 2/7
Landers 0.14g 22% 0.13% 0/5 20% 0.60% 0/0
Kobe 0.62g 51% 0.39% 79/121 39% 0.79% 51/67
Kocaeli Turkey 0.23g 27% 0.24% 5/39 21% 0.52% 0/2
Chi-Chi Taiwan 0.28g 33% 0.26% 22/59 25% 1.03% 7/17
Darfield N.Zealand 0.22g 28% 0.52% 15/45 23% 2.13% 2/10

Note: 𝑛𝐹 - number of fully activated sections, 𝑛𝑃 - number of partially activated sections.

Table 3 provides details about the computation time and the global response accuracy of the347

nonlinear response history analyses with the adaptive section discretization schemes with trigger348

strains 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2 under the selected ground motions. The computation time is expressed349
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Fig. 13. Six-story frame

in % relative to the time for the reference solution with a non-adaptive discretization with a fiber350

mesh of 108 MP for each section. The table also lists the number 𝑛𝐹 of fully activated sections351

and the number 𝑛𝑃 of partially activated sections at the completion of the analysis. With 63352

elements and 4 monitored sections for each element the total number of monitored sections for this353

model is 252. Because the integration points at the interior of each frame element remain elastic354

during the analysis, the maximum number of sections to be monitored for possible inelastic action is355

realistically half as many, i.e. 126. The table also lists the error in the maximum value for the relative356

lateral roof drift at point A in Fig. 13. The relative error is the difference between the maximum357

value for the reference solution and the maximum value for the adaptive section discretization358

normalized by the maximum value for the reference solution according to the following relation359

𝑒𝑟𝑟𝑜𝑟 (%) =
����𝑑𝑚𝑎𝑥,𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑑𝑚𝑎𝑥,𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒

𝑑𝑚𝑎𝑥,𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

���� · 100 (5)
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The values in Table 3 show that the adaptive discretization 𝑒𝑙𝑖𝑚,1 with a trigger strain value360

equal to the yield strain gives excellent results with a computation time from 2 to 4.5 times shorter361

than the reference solution depending on the ground motion. The largest error for the lateral roof362

drift value of the adaptive solution amounts to 0.52% of the reference solution. The largest error363

for the lateral roof drift value increases to 2.13% for the adaptive section discretization 𝑒𝑙𝑖𝑚,2 with364

trigger strain values equal to twice the yield strain. The savings in computation time for the adaptive365

solution also increase with reductions from 2.6 to 5 times of the time for the reference solution366

depending on the ground motion.367

0 10 20 30 40
0

6

12

18

24

30

Fig. 14. Evolution of the total number of section integration points (IPs) under the Kobe acceleration
record for the non-adaptive section discretization with 108 MP and for two adaptive schemes with
strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.

In conclusion, the adaptive discretization reduces the computation time for the response history368

analysis by reducing the number of section integration points. Fig. 14 shows the evolution of369

the total number of section integration points during the dynamic response history analysis of the370

6-story steel frame under the Kobe ground acceleration. For this model with 63 elements, 4 sections371

per element and 108 IPs per section, there is a total of 27216 material IPs for the non-adaptive372

discretization. The adaptive solutions start the analysis with 12 IPs per section for a total of 3024.373

The number of IPs increases during the analysis as inelastic strains appear at different sections of374

the structural model, activating them fully or partially. With a trigger strain value equal to the yield375
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strain for the adaptive scheme 𝑒𝑙𝑖𝑚,1, the total number of IPs at the end of the analysis is 12976,376

a little less than half of the number for the reference solution. For the Kobe ground acceleration377

these IPs come into play over a short time span between 3 and 6 sec in Figure 14, because of the378

strong acceleration pulse in the record. The computational savings relative to the reference solution379

amount to 50%, as Table 3 confirms. For the adaptive scheme 𝑒𝑙𝑖𝑚,2 with a trigger strain value of380

twice the yield strain the total number of IPs at the end of the response history analysis is 8880 in381

Figure 14, about a third of the number for the reference solution. This reduces the analysis time382

to about 40% of the time required for the reference solution in Table 3. The significantly reduced383

number of material IPs in the structural model reduces the requirements for data storage and for384

post-processing the results of the response history analysis, which are not included in Table 3. The385

benefits can, therefore, be even more significant.386

Table 3 shows that the reduction in analysis time is smallest for the Kobe acceleration record,387

because of the activation of all inelastic material IPs early in the response time history, as Figure 14388

shows. For the other records in Table 3, the percentage of inelastic material IPs over the course of389

the response history analysis is smaller and the computational savings bigger.390

Figs. 15-22 show the relative roof drift history at point A and the axial force-bending moment391

history at the base of column 1 for the structural model in Fig. 13. Figs. 15-18 show the response392

histories under the Kobe ground acceleration, which causes the largest inelastic deformations in the393

model, and consequently activates the largest number of inelastic material IPs. Figs. 19-22 show394

the same response histories under the Darfield, NZ ground acceleration. This record generates the395

largest relative error between the adaptive discretization schemes and the reference solution among396

all acceleration histories in Table 3.397

The results in Figs. 15-22 demonstrate that the accuracy of the proposed adaptive section398

discretization schemes is excellent for the global displacements and the local forces. Very small399

errors appear in the history of local deformation measures when the trigger strain value of twice400

the yield strain is selected, but these are practically insignificant.401

Further analyses of the 6-story frame under the Kobe and Landers earthquake motions were402
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Fig. 15. Relative roof drift in X under the Kobe ground acceleration for the non-adaptive section
discretization with 108 MP and for two adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.
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Fig. 16. Relative roof drift in Y under the Kobe ground acceleration for the non-adaptive section
discretization with 108 MP and for two adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.

undertaken with a non-adaptive section discretization for the girders with the smallest possible403

number of 12 IPs (Kostic and Filippou 2012), to take advantage of the fact that the girders are404

subjected to uniaxial bending on account of the in-plane rigidity of the floor diaphragm. For the405

columns the same three section discretizations as for the preceding analyses were studied: (1) a406

non-adaptive fiber mesh with 108 IPs, an adaptive scheme with a 3x12 fiber mesh for each activated407

flange and web for trigger strain values 𝑒𝑙𝑖𝑚,1, and an adaptive scheme with a 3x12 fiber mesh408
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Fig. 17. Normalized axial force 𝑁-bending moment 𝑀𝑧 history at the base of column 1 under
the Kobe ground acceleration for the non-adaptive section discretization with 108 MP and for two
adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2
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Fig. 18. Normalized axial force 𝑁-bending moment 𝑀𝑦 history at the base of column 1 under
the Kobe ground acceleration for the non-adaptive section discretization with 108 MP and for two
adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.

for each activated flange and web for trigger strain values 𝑒𝑙𝑖𝑚,2. These studies confirmed the409

conclusions of this section, namely that410

• either trigger strain criterion of 𝑒𝑙𝑖𝑚,1 or 𝑒𝑙𝑖𝑚,2 gives results of comparable accuracy with411

those in Figs. 15-22 for the global and the local response;412
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Fig. 19. Relative roof drift in X under the Darfield ground acceleration for the non-adaptive section
discretization with 108 MP and for two adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.
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Fig. 20. Relative roof drift in Y under the Darfield ground acceleration for the non-adaptive section
discretization with 108 MP and for two adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.

• the computational savings from the relaxation of the trigger strain criterion from the yield413

strain (𝑒𝑙𝑖𝑚,1) to twice the yield strain (𝑒𝑙𝑖𝑚,2) are so small as to not be significant.414

• the computational effort for the adaptive scheme is 2 to 3 times smaller than for the non-415

adaptive scheme, even when it is applied only to the columns of the structural model.416

It is, therefore, safe to conclude that the proposed adaptive section discretization scheme will offer417

significant computational savings for large structural models, even when it is applied only to those418
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Fig. 21. Normalized axial force 𝑁-bending moment 𝑀𝑧 history at the base of column 1 under the
Darfield ground acceleration for the non-adaptive section discretization with 108 MP and for two
adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.
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Fig. 22. Normalized axial force 𝑁-bending moment 𝑀𝑦 history at the base of column 1 under the
Darfield ground acceleration for the non-adaptive section discretization with 108 MP and for two
adaptive schemes with strain limits 𝑒𝑙𝑖𝑚,1 and 𝑒𝑙𝑖𝑚,2.

sections and elements that may experience inelastic deformations under uniaxial, but especially419

under biaxial flexure conditions.420

CONCLUSIONS421

The paper presents an adaptive section discretization scheme for the inelastic response analysis422

of structural members with cross sections that can be decomposed into rectangular and circular423
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subdomains. Each subdomain can consist of a different material. As long as the largest strain in424

a subdomain does not exceed the specified trigger strain values, the subdomain contribution to the425

section response is determined by the numerically exact cubature rule for the subdomain. Once the426

largest strain reaches the trigger value for a subdomain, it is discretized with a fiber mesh and the427

numerical evaluation of its contribution to the section response is determined with the midpoint428

integration rule. The fiber mesh remains in effect for the activated subdomain until the end of429

the response history. The proposed adaptive discretization scheme is simple to implement in any430

nonlinear frame element that uses section integration for the evaluation of the inelastic response.431

Because the integration transition from the elastic to the inelastic range is gradual, the resulting432

response is smooth, thus ensuring numerical robustness.433

The paper applies the proposed method to thin-walled sections composed of rectangular subdo-434

mains and investigates the effect of different trigger strain values on the accuracy and computational435

efficiency of the inelastic response analysis of wide-flange steel sections and multi-story steel frames436

under static and dynamic excitations.437

For the studies in this paper the reference solution consists of a 3x12 fiber mesh for the flanges and438

the web for all sections of the beam-column elements in the structural model. The adaptive section439

discretization uses the same 3x12 fiber mesh for each rectangular subdomain so that the response440

of a wide-flange section with activation of both flanges and the web is practically indistinguishable441

from the reference solution. The adaptive section discretization maintains excellent accuracy for442

the global and local response measures of steel frames even for a trigger value of twice the yield443

strain for the activation of each subdomain. At the same time it takes advantage of the limited444

number of sections and section subdomains undergoing inelastic deformations during the response445

history to reduce the number of inelastic material stress-strain relations that need to be evaluated446

in a given load step. The resulting computational savings in the analysis time, the amount of data447

storage, and the time for post-processing are rather significant. Even for the structural models of448

this paper with a very modest number of elements to be monitored for inelastic action, the reduction449

in computation time ranges from 2.6 to 5 times relative to the non-adaptive reference solution.450
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These savings are expected to increase in proportion with the number of sections and elements that451

need to be monitored for inelastic action in a large structural model. The selection of either the452

yield strain or twice the yield strain as the trigger criterion for the activation of each subdomain453

has a relatively small effect on the computation time. This leads to the recommendation to use the454

yield strain as the trigger criterion ensuring the same accuracy for the global and the local response455

as the non-adaptive section discretization with the same number of IPs for each subdomain.456

While the studies in this paper are limited to the fine mesh for the reference solution, as457

recommended by Kostic and Filippou (2012), similar results are expected for the coarser fiber458

mesh recommendation with 2x8 IPs in the flanges and 8x1 IPs in the web, as long as the adaptive459

discretization uses the same fiber mesh for the activated subdomains. The reason for this is that460

the ratio of activated subdomains is not expected to change. However, with the cubature rule for461

a rectangular subdomain requiring 4 IPs, the savings in material stress-strain evaluations for each462

inactive subdomain are smaller than for the fine mesh: 4 instead of 16 for the flange, and 4 instead463

of 8 for the web rather than 4 instead of 32 for each flange and web with the fine mesh. Because464

this coarse discretization leads to inaccuracies in local response measures, especially under biaxial465

flexure, Kostic and Filippou (2012) recommend that the fine mesh be used, unless the local response466

accuracy is carefully assessed with a preliminary study.467

While space limitations did not allow for an exhaustive evaluation of the different options for the468

fiber mesh of the adaptive section discretization, it is promising that the proposed scheme permits469

customizing the computational time requirements of the structural model under specific accuracy470

requirements for the global and local inelastic response. The computational savings promise to be471

very significant, especially for large structural models with many sections to monitor for inelastic472

action under a suite of ground motions, as is commonly the case for performance-based analysis in473

regions of high seismic risk.474

DATA AVAILABILITY STATEMENT475

Some or all data, models, or code that support the findings of this study are available from the476

corresponding author upon reasonable request.477

28 Kostic, December 4, 2022



ACKNOWLEDGMENTS478

The first author thanks Ministry of Science of the Republic of Serbia for financial support under479

the project number 2000092.480

REFERENCES481

Abramowitz, M., Stegun, I. A., and Miller, D. (1964). Handbook of mathematical functions with482

formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics483

Series No. 55). United States Department of Commerce, National Bureau of Standards.484

Berry, M. P. and Eberhard, M. O. (2008). “Performance modeling strategies for modern rein-485

forced concrete bridge columns.” Report no., PEER Report 2007/07, Department of Civil and486

Environmental Engineering, University of California, Berkeley, CA.487

Cheng, J. and Shing, P. B. (2022). “Practical nonlinear analysis methods for flexure-dominated488

reinforced masonry shear walls.” Journal of Structural Engineering, 148(8), 04022109.489

Chiorean, C. (2009). “A computer method for nonlinear inelastic analysis of 3d semi-rigid steel490

frameworks.” Engineering Structures, 31(12), 3016–3033.491

Cools, R. (2003). “An encyclopaedia of cubature formulas.” Journal of Complexity, 19(3), 445–453.492

Crisfield, M. A. (1996). NonLinear Finite Element Analysis of Solids and Structures, Volume 1.493

John Wiley & Sons.494

Filippou, F. C. and Constantinides, M. (2004). “Fedeaslab getting started guide and simulation495

examples.” Report No. NEESgrid-2004-22, University of California, Berkeley.496

Hajjar, J. F., Molodan, A., and Schiller, P. H. (1998). “A distributed plasticity model for cyclic anal-497

ysis of concrete-filled steel tube beam-columns and composite frames.” Engineering Structures,498

20(4), 398–412.499

He, Z., Fu, S., and Ou, J. (2017a). “State transformation procedures for fiber beam-column element500

in inelastic dynamic time history analysis for moment-resisting frames.” Journal of Computing501

in Civil Engineering, 31(5), 04017036.502

He, Z., Fu, S., Shi, Y., Tao, Q., and Sun, C. (2017b). “New speedup algorithms for nonlinear503

29 Kostic, December 4, 2022



dynamic time history analysis of supertall building structures under strong earthquakes.” The504

Structural Design of Tall and Special Buildings, 26(16), e1369.505

Kostic, S. and Filippou, F. (2012). “Section discretization of fiber beam-column elements for cyclic506

inelastic response.” Journal of Structural Engineering, 138(5), 592–601.507

Kostic, S. and Filippou, F. (2022). “An adaptive fiber section discretization scheme for nonlinear508

frame analysis.” Journal of Structural Engineering, Forthcoming.509

Minafò, G. and Camarda, G. (2021). “Use of fiber-section beam elements for modelling the510

monotonic flexural response of rc jacketed columns.” Engineering Structures, 228, 111503.511

Neuenhofer, A. and Filippou, F. C. (1997). “Evaluation of nonlinear frame finite-element models.”512

Journal of Structural Engineering, 123(7), 958–966.513

Ngo-Huu, C., Kim, S.-E., and Oh, J.-R. (2007). “Nonlinear analysis of space steel frames using514

fiber plastic hinge concept.” Engineering Structures, 29(4), 649–657.515

Orbison, J. G., McGuire, W., and Abel, J. F. (1982). “Yield surface applications in nonlinear steel516

frame analysis.” Computer Methods in Applied Mechanics and Engineering, 33(1), 557–573.517

Quagliaroli, M., Malerba, P., and Sgambi, L. (2015). “A parametric subdomain discretization for518

the analysis of the multiaxial response of reinforced concrete sections.” Advances in Engineering519

Software, 82, 87–104.520

Scott, M. H., Fenves, G. L., McKenna, F., and Filippou, F. C. (2008). “Software patterns for521

nonlinear beam-column models.” Journal of Structural Engineering, 134(4), 562–571.522

Simo, J. C. and Hughes, T. J. (1998). Computational Inelasticity. Springer-Verlag New York,523

Incorporated, Secaucus, NJ, USA.524

Taucer, F., Spacone, E., and Filippou, F. (1991). “A fiber beam-column element for seismic analysis525

of reinforced concrete structures.” Report UCB/EERC-91/17, Earthquake Engineering Research526

Center, University of California, Berkeley.527

Terzic, V. and Stojadinovic, B. (2015). “Evaluation of post-earthquake axial load capacity of circular528

bridge columns.” ACI Structural Journal, 112(1), 23–33.529

30 Kostic, December 4, 2022


