Note

The maximum number of P-vertices of some nonsingular double star matrices

Aleksandra Erića ${ }^{\text {a }}$ C.M. da Fonseca ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Faculty of Civil Engineering, University of Belgrade, 11000 Belgrade, Serbia
${ }^{\mathrm{b}}$ Departamento de Matemática, Universidade de Coimbra, 3001-501 Coimbra, Portugal

ARTICLE INFO

Article history:

Received 22 February 2012
Received in revised form 21 May 2013
Accepted 22 May 2013
Available online 15 June 2013

Keywords:

Graphs
Matrices
Eigenvalues
Double stars
P-vertices

Abstract

In this short note, we construct a nonsingular matrix A whose graph is a double star of order $n \geqslant 4$ with $n-2$ P-vertices. This example leads to a positive answer, for $n \geqslant 6$, to a last open question proposed recently by Kim and Shader regarding the trees for which each nonsingular matrix has at most $n-2$ P-vertices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For a given $n \times n$ real symmetric matrix $A=\left(a_{i j}\right)$, we define the graph of A, which we write as $G(A)$, as the (simple) graph whose vertex set is $\{1, \ldots, n\}$ and edge set is $\left\{i j \mid i \neq j\right.$ and $\left.a_{i j} \neq 0\right\}$. We confine our attention to the set

$$
s(G)=\left\{A \in \mathbb{R}^{n \times n} \mid A \text { is symmetric and } G(A)=G\right\}
$$

i.e., the set of all symmetric matrices sharing a common graph G on n vertices. If G is a tree, then $A \in f(G)$ is an irreducible acyclic matrix.

Let us denote the (algebraic) multiplicity of the eigenvalue θ of a symmetric matrix A by $m_{A}(\theta)$. By $A(i)$ we mean the $(n-1) \times(n-1)$ principal submatrix formed by the deletion of the row and column indexed with i. More generally, if S is a subset of the vertex set of G, then $A(S)$ is the principal submatrix obtained from A by striking out rows and columns S. By $A[S]$ we mean the principal submatrix of A whose rows and columns are indexed with S. The reader is referred to [8-10] for a full account regarding the terminology used throughout.

Probably the main consequence of Cauchy's Interlacing Theorem for the eigenvalues of symmetric matrices is the set of inequalities

$$
m_{A}(\theta)-1 \leqslant m_{A(i)}(\theta) \leqslant m_{A}(\theta)+1 .
$$

In the case of $m_{A(i)}(\theta)=m_{A}(\theta)+1$, the vertex i is known as a Parter-vertex of A for $\theta[8-10]$ or as a θ-positive vertex of G [3,5,6]. When $\theta=0$, a Parter-vertex is simply called a P-vertex of $A[9]$, and $P_{\nu}(A)$ denotes the number of P-vertices of A.

In 2004, Johnson and Sutton [7] showed that each singular acyclic matrix of order n has at most $n-2$ P-vertices. Later, Kim and Shader proved in [8] that this does not hold for nonsingular acyclic matrices by constructing some examples for

[^0]

Fig. 1. The double star S_{34}.
paths and stars. Furthermore, these authors proved that $P_{v}(A) \leqslant n-1$, for any nonsingular matrix A in $s(T)$, when n is odd. Clearly, when n is even, we have $P_{v}(A) \leqslant n$. More recently, Anđelić et al. [2,1] considered other general cases and discussed some "continuity" properties of $P_{v}(A)$, when A runs over all tridiagonal matrices, for example.

One of the questions left open by Kim and Shader [8, Question (g), p. 407] concerned the existence of a tree T, of order n, such that for each nonsingular matrix $A \in s(T), P_{\nu}(A) \leqslant n-2$. In this brief note, we provide a positive answer to this question. More precisely, using an elementary approach, we show that a double star of order $\geqslant 6$ satisfies such an inequality.

2. Double stars

Let us recall that a double star is the tree obtained from two vertex disjoint stars by connecting their centers by a path. Double stars emerge often in the literature and constitute an important family of acyclic graphs [4,10]. Here we will consider two stars whose central vertices are joined by an edge. In order to be more precise, we write $S_{k_{1} k_{2}}$, with $k_{1}+k_{2}=n$, specifying the sizes of the two "disjoint" stars (see Fig. 1). In particular, a star on n vertices is a double star of the form $S_{n-1,1}$.

Let us consider now for $n \geqslant 4$ the matrix

$$
A_{n}=\left(\begin{array}{cccc|ccc}
1 & & & 1 & & & \\
& \ddots & & \vdots & & & \\
& & 1 & 1 & & & \\
1 & \cdots & 1 & n-5 & 1 & & \\
\hline & & & 1 & 0 & 1 & 1 \\
& & & & 1 & 1 & 0 \\
& & & & 1 & 0 & 0
\end{array}\right)
$$

where the upper left block is of order $n-3$.
We first observe that $\operatorname{det} A_{n}=1$. On the other hand,

$$
\operatorname{det} A_{n}(\ell)=0, \quad \text { for } \ell \in\{1, \ldots, n\}-\{n-3, n-1\}
$$

and

$$
\operatorname{det} A_{n}(n-1)=-\operatorname{det} A_{n}(n-3)=1,
$$

i.e.,

$$
P_{v}\left(A_{n}\right)=n-2 .
$$

We point out that the graph of A_{n} is the double star $S_{n-3,3}$.

3. The main result

We start this main section by observing that, for any $n=2,3,4,5$, it is possible to construct a nonsingular acyclic matrix whose graph is a path or a star of order n, with $n-1$ or n P-vertices (see [1]). Moreover, for $n=5$, the nonsingular matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

has four P-vertices. In this case, the graph of A is the double star S_{23}. Therefore, for $n \leqslant 5$, the answer to Question (g) posed by Kim and Shader [8] is "no". But, for $n \geqslant 6$, our result provides a positive answer to that question.

Theorem 3.1. For any nonsingular matrix $A \in \&\left(S_{n-3,3}\right)$, with $n \geqslant 6$,

$$
P_{v}(A) \leqslant n-2
$$

Proof. We begin by noting that, for any nonsingular matrix $A=\left(a_{i j}\right) \in s\left(S_{n-3,3}\right), P_{v}(A) \leqslant n-1$ [1, Theorem 7.1]. Furthermore, at least one of the vertices $n-2, n-1, n$ is not a P-vertex. In fact, let us assume that those vertices are all P-vertices. Consequently

$$
\begin{align*}
& \operatorname{det} A=-a_{n, n-2}^{2} a_{n-1, n-1} \operatorname{det} A(n-2, n-1, n) \neq 0, \tag{3.1}\\
& \operatorname{det} A=-a_{n, n-1}^{2} a_{n, n} \operatorname{det} A(n-2, n-1, n) \neq 0, \tag{3.2}
\end{align*}
$$

and

$$
\operatorname{det} A(n-2)=a_{n-1, n-1} a_{n, n} \operatorname{det} A(n-2, n-1, n)=0
$$

So, if $a_{n n} \neq 0$, we get a contradiction with (3.1); otherwise, $a_{n n}=0$ will contradict (3.2).
Now, let us suppose that $P_{\nu}(A)=n-1$. Since the vertex $n-3$ is one of the centers of the double star, we have

$$
0=\operatorname{det} A(n-3)=a_{11} a_{22} \cdots a_{n-4, n-4} \operatorname{det} A[n-2, n-1, n]
$$

and, on the other hand,

$$
0 \neq \operatorname{det} A=-a_{1, n-3}^{2} a_{22} \cdots a_{n-4, n-4} \operatorname{det} A[n-2, n-1, n]
$$

because $\operatorname{det} A(1)=0$. Therefore

$$
a_{11}=0
$$

But, since $\operatorname{det} A(2)=0$, we also have

$$
\operatorname{det} A=-a_{2, n-3}^{2} a_{11} a_{33} \cdots a_{n-4, n-4} \operatorname{det} A[n-2, n-1, n]=0 \text {, }
$$

which contradicts the nonsingularity of A. Taking into account the discussion in the previous section, the result follows.

Acknowledgments

We thank both referees for providing valuable and constructive comments which helped us to improve and correct the original manuscript.

References

[1] M. Anđelić, C.M. da Fonseca, R. Mamede, On the number of P-vertices of some graphs, Linear Algebra Appl. 434 (2) (2011) $514-525$.
[2] M. Anđelić, A. Erić, C.M. da Fonseca, Nonsingular acyclic matrices with full number of P-vertices, Linear Multilinear Algebra 61 (1) (2013) 49-57.
[3] C.M. da Fonseca, On the multiplicities of eigenvalues of a Hermitian matrix whose graph is a tree, Ann. Mat. Pura Appl. 187 (2) (2008) $251-261$.
[4] A. Erić, C.M. da Fonseca, Some consequences of an inequality on the spectral multiplicity of graphs, Filomat (in press).
[5] C.D. Godsil, Spectra of trees, Ann. Discrete Math. 20 (1984) 151-159.
[6] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, London, 1993.
[7] C.R. Johnson, B.D. Sutton, Hermitian matrices, eigenvalue multiplicities, and eigenvector components, SIAM J. Matrix Anal. Appl. 26 (2)(2004) $390-399$.
[8] I.-J. Kim, B.L. Shader, Nonsingular acyclic matrices, Linear Multilinear Algebra 57 (4) (2009) 399-407.
[9] I.-J. Kim, B.L. Shader, On Fiedler- and Parter-vertices of acyclic matrices, Linear Algebra Appl. 428 (11-12) (2008) 2601-2613.
[10] I.-J. Kim, B.L. Shader, Classification of trees each of whose associated acyclic matrices with distinct diagonal entries has distinct eigenvalues, Bull. Korean Math. Soc. 45 (1) (2008) 95-99.

[^0]: * Corresponding author.

 E-mail addresses: eric@grf.rs (A. Erić), cmf@mat.uc.pt (C.M. da Fonseca).

