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1. Introduction
Let »# denote the space of all analytic functions in the unit disk D := {z € C : |z| < 1}. Then, we think of # as a topological

vector space endowed with the topology of uniform convergence over compact subsets of D. Further, let ./ denote the class
of functions f € »# having the expansion of the form

f@) =2+ a2
n=2

and let & C .7 be the set of univalent functions in D. For a given 1 > 0, we say that a function f € .o/ belongs to the family
w (5 if

o) -

It is clear that functions in #(0) are of the form

<A zeD. (1.1)

o =175

with |b| < 1. If 2 > 0, then we may use the strict inequality in (1.1). Also, we observe that equality in (1.1) with 2 =1 is not
possible. It is well-known that #(1)Z.%, and therefore functions in #(2) are univalent if 0 < 2 < 1. This class has been studied
by a number of authors, see [4] and the references therein.

For a given 0 < $ < 1, a function f € & is called starlike of order g, denoted by *(B), if Re(zf'(2) /f(z)) > p for all z € D. We
set #*(0) = &* and each fin .#* is referred to as a starlike function and f(D) is indeed a domain that is starlike (with respect
to 0); i.e. tw € f(D) whenever w € f(D) and t € [0, 1]. A function f € % that maps the unit disk D onto a convex domain is
called a convex function. Let »#* denote the class of all functions f € & that are convex. It is well-known that f € ¢ if and
only if zf' € &*. Finally, a function f € .7 is close-to-convex (univalent), denoted by f € %, if and only if there exists a convex
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function g (not necessarily normalized) such that Re(f’(z)/g’(z)) > 0 in D. We remark that close-to-convex functions are nec-
essarily univalent. We have the following strict inclusion

HCI (2SI CCC Y.

Various aspects of these and many other special classes have been studied extensively (for details, see [1,2]).

In Section 2, we use Schwarz function version of representation of functions in #(4) and apply convolution technique to
obtain sufficiency for starlikeness, in particular. In Section 3, we present simple sufficient condition for functions to be in the
class of close-to-convex functions.

In order to prove the results of Section 2, we recall that the Hadamard product f % g of two power series
f(2) =30 0an(f)z" and g(2) := >, yan(g)z" in # is the power series defined by

f*g@):=> a.(f)a.(g)z"
n=0
Clearly, f % g is also a member of .#. The following lemma, which is essentially due to Ruscheweyh [3], is crucial for the
proof of Theorem 3.1.
Lemma 1.2. Let ¢ € C with Re (¢) < 1 and F¢(2) := S50, 1=62""1 € . Then
sup|f % F.(z)| <suplf(z)|, foranyfe #.
zeD

zeD

Let us finally consider j > 0 and
Bi={we#:|wz)| <z, ze D}

Clearly % is a subspace of # and a topological space of its own.

2. Sufficient conditions for starlikeness

For our presentation, we introduce a definition. For « € C and 4 > 0, define

N |ZF'@) ZF'(z) AzF’(z)
Y(a, 1) = {FE&/. F2) (2+oc)<F(z) 1) < o) | ze D}
and
2
UL, 00) = {fe of :]@ # 0, ’Q%) f’(z)+ocj%—oc—l </ ze D}.

For convenience, we set

Uy(2y00) ={f € w(2,a): f'(0)=0} and %,(i,a)={F <€ %(,a): F'(0)=0}
and so, %(4,0) = U(7).
Theorem 2.1. Let f € %(«, 7).

(i) If o is a complex number such that 0 < 2 < Re(—«) and é = //Re(—), then we have

Re <@> >1L+5, zeD.

(ii) If « is a nonzero real number with o. < —1, then f is starlike whenever 0 < . < 1/2.
(iii) If o is a complex number such that 0 < 2 < min{Re(—a), Ao()} then f is starlike, where Jo(o) is given by

2|o|

Jo(0) =

- . 22)
ol + 11+ 0 + 1/ (jo] + |1+ 0)? + 4(|er| — Rew)

Proof. Let f € %(/, o) and, for convenience, set a, := a,(f)(= f"(0)/2!). Then, as

() 1t~ ) 7
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it follows that

4@%)#(%1)(}%4) — J0(2), 2.3)

where w is analytic for |z] < 1 such that w(0) = 0 and |w(z)| < 1. We observe that &’ (0) = —2ayo. For Re « < 0, it follows that

K™ @), . T ot)
f(z)fl A;F]idzfl e dt, zeD, (2.4)

for some w € %;. Since w € %,, we find that

%—1‘ <dlzl, zeD, (2.5)

where 6 = A/|Re «|. Therefore, we have

fg 1 __ oK
z  1-812P " 1-8)7*

which gives

Re(@>> L >1 zeD.

z ) 7 146zl 7 1+8
Proof of Case (i) follows.
For the proof of Case (ii), we may rewrite (2.4) in an equivalent form as

z )
2= 142 0(2) * 2F1,.(2), z€D. (2.6)

It follows then from (2.3) and (2.6) that

zZf'(2) 140+ 0(2)
@ 14 GjaFa@ xog 2P 2.7)

By Lemma 1.2 and the maximum principle, it is enough to assert the inequality

14 o+ 2ei®

inf{Re (%) cfeu(la), ze [D} > inf{Re (W—a> RORVES R}. (2.8)

Because of the analytic characterization of the class 7%, we see that #(Z,a) c &* if the image of D by any Md&bius transfor-
mation of the type
(2) = 1+o+2z .
1+ (2/|of)etz

is a disk which lies completely in the right half-plane Re w > 0. Now, it is a simple exercise to see that w = T(z) maps the unit
disk |z| < 1 onto the disk

2 iy
1+ (W - ﬁ)
1- 72 /Jof?

e W(1+4m)
[E]

1- 22|

In particular this gives

1+ /°Re ( 2 E”"’) - 111 _etiid)

o Tl o]

1-22/|o)?

Re w >

and therefore, a sufficient condition for Re w > 0 to hold is that

iy (] 4
1+ /%Re <°‘ ¢ ) > A’l—ﬂ. 2.9)

log? o o]

From (2.8), it is clear that for the starlikeness of functions in #(4,«), it suffices to verify the condition (2.9). Clearly, this
inequality (2.9) holds if

1+ A°Re (%) > 2g(Y,) := A max g(y),
o

O<y<2m
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where

) = ke (e ) +[1 - 02 210
Case 1: Suppose that « is real and negative. Then, g(y) takes the form

gw)= -8V '1 + efwl((lf W= 2OV i 21+ /mycosy o+ (14 )/ (211)

Note that if o < —1, then v, = 0 clearly gives the point of maximum for g(y). Thus, (2.9) holds if
V) 2
A P> 1
1 +? > Ag(0) = —E+)v<2 +&>

which is equivalent to (2 — «)(24 — 1) < 0. This gives the condition 4 < 1/2 whenever a < —1.
Case 2: Suppose that « is a complex constant such that Re « < 0. In this case, by the Triangle inequality, g(y) given by
(2.10) satisfy the condition

20| <|§+ (l L +°“).

\ |t

Using this, we see that (2.9) holds if 2 and « are related by

1+ 77Re (-2 >;{i+<1+|1+°“>}
|ot] [ o]

which, by a computation, is equivalent to

72(jo] ~ Re ) + a(Ja] + 1+ o]l — o> < 0.

This gives the condition 1 < 4o(c), where

_ —lodlod + 11+ o) + |Of\\/(|0<| +[1+a))* +4(|2| —Re )
- 2(Jo| — Re o)

Ao (0t)
which is same as the 4o(«) given by (2.2). O

Example 2.1. When « is a real number, the condition on () takes a simple form. In this case, Theorem 2.1(iii) gives the
following inclusion

U0, 1) C I

whenever 0 < /. < ¥1=82=1 and « is a real number with —1 < a < 0.

Corollary 2.12. Let 0 < 2 < Re (—«) and 6 = /./Re (—o). Then
G(a, ) € *(1/(1 +9)).

Proof. For f € %(a, 1), let F be defined by
1
B f(tz) dt
F(z) =zexp [/0 <7—1 ik

Then it follows that

ZF'(z) _f(2)
Fz)  z (2.13)

and therefore, it is a simple exercise to see that

zF'(z) ZF (2) zF (2)
—(2 -1)<2

o @ (Fg

F(z)
is equivalent to f € #(«, 7). Thus, the above correspondence fi—F gives a bijection from % («, ) onto %(c, 2). The result now
follows from Theorem 2.1(1), and (2.13). O

Theorem 2.1 can be improved whenever f € %(a, 1) has the property that f”(0) = 0. For example, we have

Theorem 2.14. Let f € %, (o, 1) with Re « < 1 and 2 be such that 0 < 2 < 1 — Re o. Then we have

Re <@> >ﬂ zeD.

z A+1—Rea’
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Proof. Let f € %, (A, o). Because a, = 0, as in the proof of Theorem 2.1, we obtain that

Z N W@ o [T p
f(z)fl A;n—l—azfl /10 e dt, |z] <1, for some w e %,.

As |@(2)] < |z)* and Re o < 1, the last representation gives that
z 2 . A
——1/<9d|z], zeD (6=—+-—
f | <o 2e0 (3= 15)

which, after some computation, is seen to be equivalent to

@ _ 1 < 5‘2‘2 ze
z 1=z 1=
so that
Re (jE) 2;2>L, zeD
z 1+0)z° 1+9

and we complete the proof. O

From the above correspondence and the fact that f”(0) = 0 if and only if F'(0) = 0, the following result is an easy conse-
quence of Theorem 2.14. This result shows that, in the case of vanishing second coefficient of functions in %(«, 1) one has an
improved estimate.

Corollary 2.15. Let0 < A< 1—Re aand 6 = /(1 —Re o). Then
Gy, ) € *(1/(1 +9)).
The class %(—1, 2) was investigated by Silverman [5]. However, if & = —1 then Corollary 2.12 implies the recent result of
Singh [6, Theorem 1], namely the inclusion
G(—-1,2) c s (1/(1+ 1)
for 0 < A < 1. Thus, Corollary 2.12 generalizes the result of [5,6]. Moreover, we also have an improved estimate
Go(-1,2) c 9 (2/2+ 1))

which holds for a larger range 0 < 1 < 2.
From the association between f and F above and (2.13), we observe that

. ZF'(z) zF'(2)
fe s < Re <2+ F) F(z)) >0, zeD.

This is similar to the Alexander transform which provides the one-to-one correspondence between convex and starlike
functions.

3. Sufficient conditions for close-to-convexity

Theorem 3.1. Suppose that g € # N(2) for 0 < A < 1. If f € o7 satisfies the condition

P/(z)(gé)y—l <V1-2 zeD (3.2)
then f is close-to-convex.
Proof. Put

for a fixed z € D. Then, by an elementary geometry, the hypotheses gives

|argu| < arcsin(V'1—7%) and |argv| < arcsin .
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Thus, it follows that

arg (Q(?))‘ = ‘arg (%)‘ < arcsin(V/1 — /%) + arcsin /. = g, zeD

which implies that the function f is close-to-convex in D. O

Example 3.1. It is now a simple exercise to see that the function g defined by
z
g@)
is in the class # (1) whenever 0 < 4 < 1. Now, we consider the square root transform of the Koebe function k(z) = z/(1 + z)*
given by

s(z):,/k(z):ﬁ.

Since the radius of convexity of s is known to be ry = v/3 — 2v/2 & 0.171573, it follows that r~'s(rz) is a convex function for
0 < r < 1o. This observation shows that g is convex whenever 0 < /1 < r3 ~ 0.0294373. In particular, g € # N %(2) with
2. € (0,r2). Finally, we consider a two-parameter family of functions f, ; := f defined by

fe= [ i

+i22)?

=1+.22

where o € C. We compute that

)

and, by Theorem 3.1, we conclude that f is close-to-convex whenever || < V1 — 42, and 4 € (0,r2]. More generally, we see
that

— |zl < |of, zeD,

[N 1+ao(tz)
! (Z)*Z./o (1+2t222)2dt

is close-to-convex whenever |« < V1 — 4% and 4 € (0, r3]. Here w(z) is any Schwarz function, i.e. @(z) is any analytic map of
D to D such that w(0) = 0.

Theorem 3.3. Let g € 9 such that |(z/g(z)) — 1| < 4 for 0 < 2 < 1. If f € </ satisfies the condition
2
’(z)(i) -1|<V1-2, zeD,
8(2)

then f is close-to-convex.

Proof. Put
2
z z
u=f"(2)|=— and v=——
ro(gs) 5@
for a fixed z € D. Again, by an elementary geometry, the hypotheses gives
|argu| < arcsin(vV'1—4%) and |argv| < arcsin L.

Thus, we have

Zf'(2)\| _ u e R
‘arg (ﬁ)‘ = ‘arg (;)‘ < arcsin(v'1—2%) +arcsin 4 =5, Z€ D

which implies that the function f is close-to-convex in D. O

Example 3.2. Consider g(z) = z/(1 + /z), where 0 < A < 1. Then g € " and
I(z/g(2)) = 1| =izl < 4, zeD.

Theorem 3.3 shows that if 0 < 2 < 1, then every f € .7 satisfying the condition

V’(z)(l +/lz)2—1‘ <V1-2, zeD
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is close-to-convex in D. Equivalently, we see that the function f defined by

M1+ om(tz)
f(z)*z/o 1+ itz)? at

belongs to ¥ whenever |« < V1 —4? and 0 < 2 < 1, where w(z) is any Schwarz function. In particular, the function
1 12
1 1-7tz
fe)=z / +7A2dt
o (1+itz)

isunivalentin DiIf0<i<1. O

Example 3.3. Consider the function g(z) = z + uz?, where 0 < ¢t < 1/2. Then
g"(2)| =2pu <1
and therefore, g € 9. As

B B
giz) = 1+uz
and w = —uz/(1 + uz) maps the unit disk D conformally onto the disk
@ 0
W T <o 2
it follows that jw| < u/(1 + u). Now we let u = 4/(1 — 1) with 0 < 4 < 1/3. Then the starlike function g satisfies the condition
Z 1‘ <i zeD
8(2)
and therefore, by Theorem 3.3, every f € .«# such that
f’(z)%—l <V1-2, zeD
(1+152)

belongs to %. Equivalently, the function
1 -1 ] _ 22
fz) = z/ + p) a)(tz)2 dt
o (1+(4/(1-=2)tz)

belongs to ¥ whenever 0 < 4 < 1/3, and w(z) is any Schwarz function.
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