FISFVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Starlike and close-to-convex functions defined by differential inequalities

M. Obradović ^a, S. Ponnusamy ^{b,*}

ARTICLE INFO

Keywords:

Univalent

Starlike

Close-to-convex, and convex functions

Schwarz lemma

Convolution, and Hadamard product

ABSTRACT

We present new sufficient conditions for an analytic function to be close-to-convex and starlike, respectively. These conditions are easy to apply and can be used to obtain functions in these classes.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathscr H$ denote the space of all analytic functions in the unit disk $\mathbb D:=\{z\in\mathbb C:|z|<1\}$. Then, we think of $\mathscr H$ as a topological vector space endowed with the topology of uniform convergence over compact subsets of $\mathbb D$. Further, let $\mathscr A$ denote the class of functions $f\in\mathscr H$ having the expansion of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n(f) z^n$$

and let $\mathscr{S} \subset \mathscr{A}$ be the set of univalent functions in \mathbb{D} . For a given $\lambda \geqslant 0$, we say that a function $f \in \mathscr{A}$ belongs to the family $\mathscr{U}(\lambda)$ if

$$\left| f'(z) \left(\frac{z}{f(z)} \right)^2 - 1 \right| \leqslant \lambda, \quad z \in \mathbb{D}.$$
 (1.1)

It is clear that functions in $\mathcal{U}(0)$ are of the form

$$f(z) = \frac{z}{1 - bz}$$

with $|b| \le 1$. If $\lambda > 0$, then we may use the strict inequality in (1.1). Also, we observe that equality in (1.1) with $\lambda = 1$ is not possible. It is well-known that $\mathcal{U}(1) \subsetneq \mathcal{S}$, and therefore functions in $\mathcal{U}(\lambda)$ are univalent if $0 \le \lambda \le 1$. This class has been studied by a number of authors, see [4] and the references therein.

For a given $0 \leqslant \beta < 1$, a function $f \in \mathscr{S}$ is called starlike of order β , denoted by $\mathscr{S}^*(\beta)$, if $\operatorname{Re}(zf'(z)/f(z)) > \beta$ for all $z \in \mathbb{D}$. We set $\mathscr{S}^*(0) \equiv \mathscr{S}^*$ and each f in \mathscr{S}^* is referred to as a starlike function and $f(\mathbb{D})$ is indeed a domain that is starlike (with respect to 0); i.e. $tw \in f(\mathbb{D})$ whenever $w \in f(\mathbb{D})$ and $t \in [0,1]$. A function $f \in \mathscr{S}$ that maps the unit disk \mathbb{D} onto a convex domain is called a convex function. Let \mathscr{K} denote the class of all functions $f \in \mathscr{S}$ that are convex. It is well-known that $f \in \mathscr{K}$ if and only if $zf' \in \mathscr{S}^*$. Finally, a function $f \in \mathscr{A}$ is close-to-convex (univalent), denoted by $f \in \mathscr{C}$, if and only if there exists a convex

E-mail addresses: obrad@grf.bg.ac.yu (M. Obradović), samy@iitm.ac.in (S. Ponnusamy).

^a Department of Mathematics, Faculty of Civil Engineering, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia

^b Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India

^{*} Corresponding author

function g (not necessarily normalized) such that Re(f'(z)/g'(z)) > 0 in \mathbb{D} . We remark that close-to-convex functions are necessarily univalent. We have the following strict inclusion

$$\mathscr{K} \subsetneq \mathscr{S}^*(1/2) \subsetneq \mathscr{S}^* \subsetneq \mathscr{C} \subsetneq \mathscr{S}$$
.

Various aspects of these and many other special classes have been studied extensively (for details, see [1,2]).

In Section 2, we use Schwarz function version of representation of functions in $\mathcal{U}(\lambda)$ and apply convolution technique to obtain sufficiency for starlikeness, in particular. In Section 3, we present simple sufficient condition for functions to be in the class of close-to-convex functions.

In order to prove the results of Section 2, we recall that the Hadamard product $f \star g$ of two power series $f(z) := \sum_{n=0}^{\infty} a_n(f) z^n$ and $g(z) := \sum_{n=0}^{\infty} a_n(g) z^n$ in \mathscr{H} is the power series defined by

$$f \star g(z) := \sum_{n=0}^{\infty} a_n(f) a_n(g) z^n.$$

Clearly, $f \star g$ is also a member of \mathcal{H} . The following lemma, which is essentially due to Ruscheweyh [3], is crucial for the proof of Theorem 3.1.

Lemma 1.2. Let $c \in \mathbb{C}$ with Re (c) < 1 and $F_c(z) := \sum_{n=1}^{\infty} \frac{1-c}{n-c} z^{n-1} \in \mathcal{H}$. Then

$$\sup_{z\in\mathbb{D}}|f\star F_c(z)|\leqslant \sup_{z\in\mathbb{D}}|f(z)|,\quad \textit{for any } f\in \mathcal{H}.$$

Let us finally consider $j \ge 0$ and

$$\mathscr{B}_{j} = \{ \omega \in \mathscr{H} : |\omega(z)| \leq |z|^{j}, \ z \in \mathbb{D} \}.$$

Clearly \mathcal{B}_i is a subspace of \mathcal{H} and a topological space of its own.

2. Sufficient conditions for starlikeness

For our presentation, we introduce a definition. For $\alpha \in \mathbb{C}$ and $\lambda \geqslant 0$, define

$$\mathscr{G}(\alpha,\lambda) = \left\{ F \in \mathscr{A} : \left| \frac{zF''(z)}{F'(z)} - (2+\alpha) \left(\frac{zF'(z)}{F(z)} - 1 \right) \right| \leqslant \lambda \left| \frac{zF'(z)}{F(z)} \right|, \ z \in \mathbb{D} \right\}$$

and

$$\mathscr{U}(\lambda,\alpha) = \left\{ f \in \mathscr{A} : \frac{f(z)}{z} \neq 0, \ \left| \left(\frac{z}{f(z)}\right)^2 f'(z) + \alpha \frac{z}{f(z)} - \alpha - 1 \right| \leqslant \lambda, \ z \in \mathbb{D} \right\}.$$

For convenience, we set

$$\mathscr{U}_2(\lambda,\alpha)=\{f\in\mathscr{U}(\lambda,\alpha):\ f''(0)=0\}\quad\text{and}\quad\mathscr{G}_2(\lambda,\alpha)=\{F\in\mathscr{G}(\lambda,\alpha):\ F''(0)=0\}$$

and so, $\mathscr{U}(\lambda, 0) \equiv \mathscr{U}(\lambda)$.

Theorem 2.1. *Let* $f \in \mathcal{U}(\alpha, \lambda)$.

(i) If α is a complex number such that $0 < \lambda \leq \text{Re}(-\alpha)$ and $\delta = \lambda/\text{Re}(-\alpha)$, then we have

$$\operatorname{Re}\ \left(\frac{f(z)}{z}\right) > \frac{1}{1+\delta}, \quad z \in \mathbb{D}.$$

- (ii) If α is a nonzero real number with $\alpha \leq -1$, then f is starlike whenever $0 < \lambda \leq 1/2$.
- (iii) If α is a complex number such that $0 < \lambda \leq \min\{\text{Re}(-\alpha), \lambda_0(\alpha)\}$ then f is starlike, where $\lambda_0(\alpha)$ is given by

$$\lambda_0(\alpha) = \frac{2|\alpha|}{|\alpha| + |1 + \alpha| + \sqrt{\left(|\alpha| + |1 + \alpha|\right)^2 + 4\left(|\alpha| - Re\alpha\right)}}. \tag{2.2}$$

Proof. Let $f \in \mathcal{U}(\lambda, \alpha)$ and, for convenience, set $a_2 := a_2(f) (= f''(0)/2!)$. Then, as

$$-z\left(\frac{z}{f(z)}\right)'+\frac{z}{f(z)}=\left(\frac{z}{f(z)}\right)^2f'(z),$$

it follows that

$$-z\left(\frac{z}{f(z)}\right)' + (\alpha + 1)\left(\frac{z}{f(z)} - 1\right) = \lambda\omega(z),\tag{2.3}$$

where ω is analytic for |z| < 1 such that $\omega(0) = 0$ and $|\omega(z)| \le 1$. We observe that $\omega'(0) = -2a_2\alpha$. For Re $\alpha < 0$, it follows that

$$\frac{z}{f(z)} = 1 - \lambda \sum_{n=1}^{\infty} \frac{a_n(\omega)}{n - 1 - \alpha} z^n = 1 - \lambda \int_0^1 \frac{\omega(tz)}{t^{\alpha + 2}} dt, \quad z \in \mathbb{D},$$
 (2.4)

for some $\omega \in \mathcal{B}_1$. Since $\omega \in \mathcal{B}_1$, we find that

$$\left|\frac{z}{f(z)} - 1\right| \le \delta|z|, \quad z \in \mathbb{D},\tag{2.5}$$

where $\delta = \lambda/|\text{Re }\alpha|$. Therefore, we have

$$\left| \frac{f(z)}{z} - \frac{1}{1 - \delta^2 |z|^2} \right| \leqslant \frac{\delta |z|}{1 - \delta^2 |z|^2}, \quad z \in \mathbb{D}$$

which gives

$$\operatorname{Re}\left(\frac{f(z)}{z}\right)\geqslant \frac{1}{1+\delta|z|}>\frac{1}{1+\delta},\quad z\in\mathbb{D}.$$

Proof of Case (i) follows.

For the proof of Case (ii), we may rewrite (2.4) in an equivalent form as

$$\frac{z}{f(z)} = 1 + \frac{\lambda}{\alpha}\omega(z) \star zF_{1+\alpha}(z), \quad z \in \mathbb{D}. \tag{2.6}$$

It follows then from (2.3) and (2.6) that

$$\frac{zf'(z)}{f(z)} = \frac{1 + \alpha + \lambda \omega(z)}{1 + (\lambda/\alpha)zF_{1+\alpha}(z) \star \omega(z)} - \alpha, \quad z \in \mathbb{D}.$$

$$(2.7)$$

By Lemma 1.2 and the maximum principle, it is enough to assert the inequality

$$\inf \left\{ \operatorname{Re} \left(\frac{zf'(z)}{f(z)} \right) : f \in \mathcal{U}(\lambda, \alpha), \ z \in \mathbb{D} \right\} \geqslant \inf \left\{ \operatorname{Re} \left(\frac{1 + \alpha + \lambda e^{i\varphi}}{1 + (\lambda/|\alpha|)e^{i\psi}} - \alpha \right) : \ \varphi, \psi \in \mathbb{R} \right\}. \tag{2.8}$$

Because of the analytic characterization of the class \mathscr{S}^* , we see that $\mathscr{U}(\lambda,\alpha) \subset \mathscr{S}^*$ if the image of \mathbb{D} by any Möbius transformation of the type

$$T(z) = \frac{1 + \alpha + \lambda z}{1 + (\lambda/|\alpha|)e^{i\psi}z} - \alpha$$

is a disk which lies completely in the right half-plane Re w > 0. Now, it is a simple exercise to see that w = T(z) maps the unit disk |z| < 1 onto the disk

$$\left|w - \frac{1 + \lambda^2 \left(\frac{\alpha}{|\alpha|^2} - \frac{e^{-i\psi}}{|\alpha|}\right)}{1 - \lambda^2/|\alpha|^2}\right| < \lambda \frac{\left|1 - \frac{e^{-i\psi}(1+\overline{\alpha})}{|\alpha|}\right|}{1 - \lambda^2/|\alpha|^2}.$$

In particular this gives

$$Re \ w > \frac{1 + \lambda^2 Re \ \left(\frac{\alpha}{|\alpha|^2} - \frac{e^{-i\psi}}{|\alpha|}\right) - \lambda \left|1 - \frac{e^{-i\psi}(1+\overline{\alpha})}{|\alpha|}\right|}{1 - \lambda^2/|\alpha|^2}$$

and therefore, a sufficient condition for Re w > 0 to hold is that

$$1 + \lambda^{2} \operatorname{Re} \left(\frac{\alpha}{|\alpha|^{2}} - \frac{e^{-i\psi}}{|\alpha|} \right) \geqslant \lambda \left| 1 - \frac{e^{-i\psi}(1 + \overline{\alpha})}{|\alpha|} \right|. \tag{2.9}$$

From (2.8), it is clear that for the starlikeness of functions in $\mathcal{U}(\lambda, \alpha)$, it suffices to verify the condition (2.9). Clearly, this inequality (2.9) holds if

$$1 + \lambda^2 \operatorname{Re} \left(\frac{\alpha}{|\alpha|^2} \right) \geqslant \lambda g(\psi_0) := \lambda \max_{0 \leqslant \psi \leqslant 2\pi} g(\psi),$$

where

$$g(\psi) = \frac{\lambda}{|\alpha|} \operatorname{Re} \left(e^{-i\psi} \right) + \left| 1 - \frac{e^{-i\psi} (1 + \bar{\alpha})}{|\alpha|} \right|. \tag{2.10}$$

Case 1: Suppose that α is real and negative. Then, $g(\psi)$ takes the form

$$g(\psi) = -\frac{\lambda \cos \psi}{\alpha} + \left| 1 + \frac{e^{-i\psi}(1+\alpha)}{\alpha} \right| = -\frac{\lambda \cos \psi}{\alpha} + \sqrt{1 + 2((1+\alpha)/\alpha)\cos \psi + ((1+\alpha)/\alpha)^2}. \tag{2.11}$$

Note that if $\alpha \le -1$, then $\psi_0 = 0$ clearly gives the point of maximum for $g(\psi)$. Thus, (2.9) holds if

$$1 + \frac{\lambda^2}{\alpha} \geqslant \lambda g(0) = -\frac{\lambda^2}{\alpha} + \lambda \left(2 + \frac{1}{\alpha}\right)$$

which is equivalent to $(\lambda - \alpha)(2\lambda - 1) \le 0$. This gives the condition $\lambda \le 1/2$ whenever $\alpha \le -1$.

Case 2: Suppose that α is a complex constant such that Re α < 0. In this case, by the Triangle inequality, $g(\psi)$ given by (2.10) satisfy the condition

$$|g(\psi)| \leqslant \frac{\lambda}{|\alpha|} + \left(1 + \frac{|1 + \alpha|}{|\alpha|}\right).$$

Using this, we see that (2.9) holds if λ and α are related by

$$1 + \lambda^2 \operatorname{Re} \left(\frac{\alpha}{|\alpha|^2} \right) \geqslant \lambda \left[\frac{\lambda}{|\alpha|} + \left(1 + \frac{|1 + \alpha|}{|\alpha|} \right) \right]$$

which, by a computation, is equivalent to

$$\lambda^2(|\alpha| - \text{Re }\alpha) + \lambda(|\alpha| + |1 + \alpha|)|\alpha| - |\alpha|^2 \le 0.$$

This gives the condition $\lambda \leq \lambda_0(\alpha)$, where

$$\lambda_0(\alpha) = \frac{-|\alpha|(|\alpha|+|1+\alpha|)+|\alpha|\sqrt{\left(|\alpha|+|1+\alpha|\right)^2+4(|\alpha|-Re~\alpha)}}{2(|\alpha|-Re~\alpha)}$$

which is same as the $\lambda_0(\alpha)$ given by (2.2). \square

Example 2.1. When α is a real number, the condition on $\lambda_0(\alpha)$ takes a simple form. In this case, Theorem 2.1(iii) gives the following inclusion

$$\mathscr{U}(\alpha,\lambda)\subset\mathscr{S}^*$$

whenever $0 < \lambda \leqslant \frac{\sqrt{1-8\alpha}-1}{4}$ and α is a real number with $-1 \leqslant \alpha < 0$.

Corollary 2.12. Let $0 < \lambda \le \text{Re } (-\alpha)$ and $\delta = \lambda/\text{Re } (-\alpha)$. Then

$$\mathscr{G}(\alpha,\lambda) \subset \mathscr{S}^*(1/(1+\delta)).$$

Proof. For $f \in \mathcal{U}(\alpha, \lambda)$, let F be defined by

$$F(z) = z \exp \left[\int_0^1 \left(\frac{f(tz)}{tz} - 1 \right) \frac{dt}{t} \right].$$

Then it follows that

$$\frac{zF'(z)}{F(z)} = \frac{f(z)}{z} \tag{2.13}$$

and therefore, it is a simple exercise to see that

$$\left|\frac{zF''(z)}{F'(z)} - (2+\alpha)\left(\frac{zF'(z)}{F(z)} - 1\right)\right| \leqslant \lambda \left|\frac{zF'(z)}{F(z)}\right|$$

is equivalent to $f \in \mathscr{U}(\alpha, \lambda)$. Thus, the above correspondence $f \mapsto F$ gives a bijection from $\mathscr{U}(\alpha, \lambda)$ onto $\mathscr{G}(\alpha, \lambda)$. The result now follows from Theorem 2.1(1), and (2.13). \square

Theorem 2.1 can be improved whenever $f \in \mathcal{U}(\alpha, \lambda)$ has the property that f''(0) = 0. For example, we have

Theorem 2.14. Let $f \in \mathcal{U}_2(\alpha, \lambda)$ with Re $\alpha < 1$ and λ be such that $0 < \lambda \leqslant 1$ – Re α . Then we have

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) > \frac{1 - \operatorname{Re}\alpha}{\lambda + 1 - \operatorname{Re}\alpha}, \quad z \in \mathbb{D}.$$

Proof. Let $f \in \mathcal{U}_2(\lambda, \alpha)$. Because $a_2 = 0$, as in the proof of Theorem 2.1, we obtain that

$$\frac{z}{f(z)} = 1 - \lambda \sum_{n=2}^{\infty} \frac{a_n(\omega)}{n-1-\alpha} z^n = 1 - \lambda \int_0^1 \frac{\omega(tz)}{t^{\alpha+2}} \ dt, \quad |z| < 1, \quad \text{ for some } \omega \in \mathscr{B}_2.$$

As $|\omega(z)| \le |z|^2$ and Re $\alpha < 1$, the last representation gives that

$$\left| \frac{z}{f(z)} - 1 \right| \le \delta |z|^2, \quad z \in \mathbb{D} \left(\delta = \frac{\lambda}{1 - \text{Re } \alpha} \right)$$

which, after some computation, is seen to be equivalent to

$$\left| \frac{f(z)}{z} - \frac{1}{1 - \delta^2 |z|^4} \right| \leqslant \frac{\delta |z|^2}{1 - \delta^2 |z|^4}, \quad z \in \mathbb{D}$$

so that

$$\operatorname{Re}\left(\frac{f(z)}{z}\right)\geqslant \frac{1}{1+\delta|z|^2}>\frac{1}{1+\delta},\quad z\in\mathbb{D}$$

and we complete the proof.

From the above correspondence and the fact that f''(0) = 0 if and only if F''(0) = 0, the following result is an easy consequence of Theorem 2.14. This result shows that, in the case of vanishing second coefficient of functions in $\mathscr{G}(\alpha, \lambda)$ one has an improved estimate.

Corollary 2.15. Let $0 < \lambda \le 1$ – Re α and $\delta = \lambda/(1 - \text{Re } \alpha)$. Then

$$\mathscr{G}_2(\alpha,\lambda) \subset \mathscr{S}^*(1/(1+\delta)).$$

The class $\mathscr{G}(-1,\lambda)$ was investigated by Silverman [5]. However, if $\alpha=-1$ then Corollary 2.12 implies the recent result of Singh [6, Theorem 1], namely the inclusion

$$\mathscr{G}(-1,\lambda) \subset \mathscr{S}^*(1/(1+\lambda))$$

for $0 < \lambda \le 1$. Thus, Corollary 2.12 generalizes the result of [5,6]. Moreover, we also have an improved estimate

$$\mathcal{G}_2(-1,\lambda) \subset \mathcal{S}^*(2/(2+\lambda))$$

which holds for a larger range $0 < \lambda \le 2$.

From the association between f and F above and (2.13), we observe that

$$f\in \mathscr{S}^* \Longleftrightarrow \operatorname{Re} \, \left(2 + \frac{zF''(z)}{F'(z)} - \frac{zF'(z)}{F(z)}\right) > 0, \quad z \in \mathbb{D}.$$

This is similar to the Alexander transform which provides the one-to-one correspondence between convex and starlike functions.

3. Sufficient conditions for close-to-convexity

Theorem 3.1. Suppose that $g \in \mathcal{K} \cap \mathcal{U}(\lambda)$ for $0 \le \lambda \le 1$. If $f \in \mathcal{A}$ satisfies the condition

$$\left|f'(z)\left(\frac{z}{g(z)}\right)^2 - 1\right| \leqslant \sqrt{1 - \lambda^2}, \quad z \in \mathbb{D}$$
 (3.2)

then f is close-to-convex.

Proof. Put

$$u = f'(z) \left(\frac{z}{g(z)}\right)^2$$
 and $v = g'(z) \left(\frac{z}{g(z)}\right)^2$

for a fixed $z \in \mathbb{D}$. Then, by an elementary geometry, the hypotheses gives

$$|\arg u| \leqslant \arcsin(\sqrt{1-\lambda^2})$$
 and $|\arg v| \leqslant \arcsin \lambda$.

Thus, it follows that

$$\left|\arg\left(\frac{f'(z)}{g'(z)}\right)\right| = \left|\arg\left(\frac{u}{v}\right)\right| \leqslant \arcsin(\sqrt{1-\lambda^2}) + \arcsin\lambda = \frac{\pi}{2}, \quad z \in \mathbb{D}$$

which implies that the function f is close-to-convex in \mathbb{D} . \square

Example 3.1. It is now a simple exercise to see that the function g defined by

$$\frac{z}{g(z)} = 1 + \lambda z^2$$

is in the class $\mathscr{U}(\lambda)$ whenever $0 \le \lambda \le 1$. Now, we consider the square root transform of the Koebe function $k(z) = z/(1+z)^2$ given by

$$s(z) = \sqrt{k(z^2)} = \frac{z}{1 + z^2}$$

Since the radius of convexity of s is known to be $r_0 = \sqrt{3-2\sqrt{2}} \approx 0.171573$, it follows that $r^{-1}s(rz)$ is a convex function for $0 < r \le r_0$. This observation shows that g is convex whenever $0 < \lambda \le r_0^2 \approx 0.0294373$. In particular, $g \in \mathscr{K} \cap \mathscr{U}(\lambda)$ with $\lambda \in (0, r_0^2]$. Finally, we consider a two-parameter family of functions $f_{\alpha,\lambda} := f$ defined by

$$f(z) = \int_0^z \frac{1 + \alpha z}{(1 + \lambda z^2)^2} dz,$$

where $\alpha \in \mathbb{C}$. We compute that

$$\left|f'(z)\left(\frac{z}{g(z)}\right)^2-1\right|=|\alpha z|\leqslant |\alpha|,\quad z\in\mathbb{D},$$

and, by Theorem 3.1, we conclude that f is close-to-convex whenever $|\alpha| \leqslant \sqrt{1-\lambda^2}$, and $\lambda \in (0,r_0^2]$. More generally, we see that

$$f(z) = z \int_0^1 \frac{1 + \alpha \omega(tz)}{(1 + \lambda t^2 z^2)^2} dt$$

is close-to-convex whenever $|\alpha| \leqslant \sqrt{1-\lambda^2}$ and $\lambda \in (0,r_0^2]$. Here $\omega(z)$ is any Schwarz function, i.e. $\omega(z)$ is any analytic map of $\mathbb D$ to $\mathbb D$ such that $\omega(0)=0$.

Theorem 3.3. Let $g \in \mathcal{S}^*$ such that $|(z/g(z)) - 1| \le \lambda$ for $0 \le \lambda \le 1$. If $f \in \mathcal{A}$ satisfies the condition

$$\left|f'(z)\left(\frac{z}{g(z)}\right)^2-1\right|\leqslant \sqrt{1-\lambda^2},\quad z\in\mathbb{D},$$

then f is close-to-convex.

Proof. Put

$$u = f'(z) \left(\frac{z}{g(z)}\right)^2$$
 and $v = \frac{z}{g(z)}$

for a fixed $z \in \mathbb{D}$. Again, by an elementary geometry, the hypotheses gives

$$|\arg u| \leqslant \arcsin(\sqrt{1-\lambda^2})$$
 and $|\arg v| \leqslant \arcsin \lambda$.

Thus, we have

$$\left|\arg\left(\frac{zf'(z)}{g(z)}\right)\right| = \left|\arg\left(\frac{u}{v}\right)\right| \leqslant \arcsin(\sqrt{1-\lambda^2}) + \arcsin\lambda = \frac{\pi}{2}, \quad z \in \mathbb{D}$$

which implies that the function f is close-to-convex in \mathbb{D} . \square

Example 3.2. Consider $g(z) = z/(1 + \lambda z)$, where $0 \le \lambda \le 1$. Then $g \in \mathcal{S}^*$ and

$$|(z/g(z)) - 1| = |\lambda z| \le \lambda, \quad z \in \mathbb{D}.$$

Theorem 3.3 shows that if $0 \le \lambda \le 1$, then every $f \in \mathcal{A}$ satisfying the condition

$$\left|f'(z)(1+\lambda z)^2-1\right|\leqslant \sqrt{1-\lambda^2},\quad z\in\mathbb{D}$$

is close-to-convex in \mathbb{D} . Equivalently, we see that the function f defined by

$$f(z) = z \int_0^1 \frac{1 + \alpha \omega(tz)}{(1 + \lambda tz)^2} dt$$

belongs to $\mathscr C$ whenever $|\alpha| \le \sqrt{1-\lambda^2}$ and $0 \le \lambda \le 1$, where $\omega(z)$ is any Schwarz function. In particular, the function

$$f(z) = z \int_0^1 \frac{1 + \sqrt{1 - \lambda^2} tz}{\left(1 + \lambda tz\right)^2} dt$$

is univalent in \mathbb{D} if $0 \le \lambda \le 1$. \square

Example 3.3. Consider the function $g(z) = z + \mu z^2$, where $0 < \mu \le 1/2$. Then

$$|g''(z)| = 2\mu \leqslant 1$$

and therefore, $g \in \mathcal{S}^*$. As

$$\frac{z}{g(z)} - 1 = -\frac{\mu z}{1 + \mu z}$$

and $w = -\mu z/(1 + \mu z)$ maps the unit disk $\mathbb D$ conformally onto the disk

$$\left| w - \frac{\mu^2}{1 - \mu^2} \right| < \frac{\mu}{1 - \mu^2},$$

it follows that $|w| < \mu/(1+\mu)$. Now we let $\mu = \lambda/(1-\lambda)$ with $0 < \lambda \le 1/3$. Then the starlike function g satisfies the condition

$$\left|\frac{z}{g(z)}-1\right|<\lambda,\quad z\in\mathbb{D}$$

and therefore, by Theorem 3.3, every $f \in \mathscr{A}$ such that

$$\left|f'(z)\frac{1}{\left(1+\frac{\lambda}{1-\lambda}z\right)^2}-1\right|<\sqrt{1-\lambda^2},\quad z\in\mathbb{D}$$

belongs to *C*. Equivalently, the function

$$f(z) = z \int_0^1 \frac{1 + \sqrt{1 - \lambda^2} \omega(tz)}{(1 + (\lambda/(1 - \lambda))tz)^2} dt$$

belongs to $\mathscr C$ whenever $0 < \lambda \le 1/3$, and $\omega(z)$ is any Schwarz function.

Acknowledgements

The authors thank the referee for many useful suggestions.

References

- [1] A.W. Goodman, Univalent Functions, vols. 1-2, Mariner, Tampa, Florida, 1983.
- [2] P.L. Duren, Univalent Functions, Springer-Verlag, Berlin, 1983.
- [3] R. Fournier, S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52 (1) (2007) 1-8.
- [4] M. Obradović, S. Ponnusamy, Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions, J. Math. Anal. Appl. 336 (2007) 758–767.
- [5] H. Silverman, Convex and starlike criteria, Int. J. Math. Math. Sci. 22 (1999) 75–79.
- [6] V. Singh, Remarks on a paper by H. Silverman, Int. J. Math. Math. Sci. 27 (2001) 65-68.