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On the class U

M. Obradovié and S. Ponnusamy

Abstract. In this mini survey article, we present important properties of
the class U of analytic functions f in the unit disk |z| < 1 which satisfy the

condition ,
‘(f(ZZ)) -1

Our special emphasis is to list down few important and basic results such as
characterization and necessary and sufficient coefficient conditions for func-
tions to be in U.

<1, Jz|<1.
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1. Introduction and preliminaries about U/

Let A denote the class of all functions f analytic in the unit disk D = {z € C :
|z| < 1}, with the normalization f(0) = 0 and f’(0) = 1. The article concerns
the class U of all functions f € A satisfying the condition

\Us(2)] <1, zeD,

where

(1) Uste) = ( f(zz>>2f’(2) 1

According to Aksentév’s theorem [1] (see also [16]) each functions in U belongs
to §. Here S denotes the class of all normalized univalent analytic functions
in D which is indeed the main object in the theory of univalent functions. We
observe that mappings f € S can be associated with the mappings F' € X,
namely univalent functions F' of the form,

F(Q)=C+ Y el [¢>1,
n=0
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which satisfies the condition F'(¢) # 0 for || > 1, by the correspondence

F(¢) = % > 1.

Using the change of variable ¢ = 1/z, the association f(z) = 1/F(1/z) quickly
yields the formula

F/(C) —1= Uf(Z),
where Uy is defined by (1.1). Some facts about the class &/ may now be recalled.
Each function in

S 2 2 2 z

z= {z (1+£2)2 Txz 1+22 1j:z—|—z2}

belongs to U. Also, it is well-known that functions in Sz are the only functions
in S having integral coefficients in the power series expansions of f € S (see
[5]). From the geometric characterization of starlike functions (with respect to
the origin) , it is a simple exercise to see that Sz, C S*. Here S* C S denotes the
class of all starlike (univalent) functions in D and every f € S* is characterized

by the inequality [3, 6]
!
Re (Zf (Z)> >0, zeD.
f(z)

A function f € § is said to belong to the class C of convex functions (i.e. f(DD) is
a convex domain) if and only if z f' € S*. It is worth pointing out that the Koebe
function k(z) = z/(1 — 2)? belongs U N S*. Also, the analytic characterization
of starlike functions shows that Sy C S*. We remark that functions in Sz are
extremal for certain geometric subclasses of §. In particular, it is natural to ask
whether U/ is included in 8*. In fact, U is not a subset of S* as the function

fi(2)

B z
_l—l—%z+%z3

demonstrates. It is easy to see that f; € Y. On the other hand, for this function,

we have
2f1(z) B 1—23

filz) 14141423
and at the boundary point zy = (—1414)/v/2, |20| = 1, we obtain that
20.f1(20) 2—2\/§+1—2\/§,
= i
fl(ZO) 3 3

which gives that Re {20 f](20)/f1(20)} < 0. Consequently, there are points in the
unit disk |z| < 1 for which Re{zf{(z)/f1(2)} < 0 showing that the function f;
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is not starlike in . More generally, the function (see [11])
2

J(z) = 1+ bz + (e%8/2)23
belongs U, but is not in S* when 0 < b < 1/2 and 0 < [ < arctan(2b), because
(zf’(z)) [sin 3 — 2b cos (] sin 3
Re | —*
f(z)

1 it (@P2)P
2. Basic Properties of the class U/

< 0.

Theorem 2.1. (Characterization for U) Every f € U has the representation

z Zw(t) B ~f"(0)
%_1—a2z—z/o tTdt, az = as(f) = 9

where w € By, the class of analytic functions in the unit disk D such w(0) =
W'(0) =0 and |w(2)| <1 for z € D.

Proof. Let f(z) =2+ > ,o,a,z" in Y. Then one has

T 40 ana (m) fz)=1+(as—a})s+--, z€D,

which may be written as

22) _Z(ﬂzz)),*ffz)_(ffz))Qf'(z)_””(z)’ el

with w € Bj. Also, by the Schwarz lemma, |w(z)] < |2]?, 2 € D. From the

previous relation, we obtain
1 1\ w(z)
fz) =) 2

and, since

by integration we get

The desired representation follows. |
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This representation together with many others which follow from this led to
a number of recent investigations, see for example [9, 11, 12, 13, 15]. However,
because w € By, the Schwarz lemma gives |w(z)| < |2]? in D. Consequently, we
have

VA
2.3 —— daz—1| < |z]%, zeD.
23) \M : ] "

We observe that if z is fixed (0 < |z| < 1), then this inequality determines the
range of the functional

"
—— + asz
f)
in the class Y. In particular, if as = 0 then by a computation (2.3) gives that
f(z) 1 |2
— eD
PRI ST [ T R
so that, for every f € U with f”(0) = 0, we have
kd ||
< < . zeD
and
1) 1
2.4 R > > — D.
(24) e(z I 2 C€

We now formulate

Corollary 2.5. Let f € U. Then one has

(a) 'm‘l‘ < |2/(Jas] + 2]}, z € D

M) 2
(b) Re( . > 0 for|z| < —4+\a2|+\a2|

(c) Re (M) > % in D if f"(0) = 0.

z

2.1. Interesting subclass of U. Investigation on various subclasses of S has
a long history and continues to occupy a prominent place in function theory. In
[7], the authors introduced a subclass P(2) of U, consisting of functions f for

which o
(79)

We have the following strict inclusion (see [7]).

Theorem 2.6. P(2) C U.

<2, zeD.
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Proof. Let f € P(2) and f(2) =2+ Y o, axz®. We may introduce

we) = (725) 10 1= (35 + 5 1

p(z) = (a3 —a3)z* +---, z€D,
Also, we observe that p(0) = p/(0) = 0, and

2 (2) = —22 (%)

By assumption, |zp/(z)| < 2 in D which by a well-known subordination relation
gives that [p(z)| < 1, z € D. That is, f € U. n

so that

Further work on the classes & and P(2), including some interesting general-
izations of these classes, may be found in [9, 17]. We remark that the constant 2
in the inclusion result of Theorem 2.6 is the best possible. For this, we consider
the function

f(Z) = ﬁ, e > 0.
Then we observe that
" 1 o 1
(ffz)) =2+ +e)(1+2) and f(2) = ﬁ

from which we obtain that f'(1/(14 ¢€)) = 0 and therefore, the function f is not
univalent in D.

2.2. Condition for functions to be in /. One of the sufficient conditions for
a function f(z) =z + )~ ,a,2" to be in S* is that >, nla,| < 1. Moreover,
this coefficient condition is also sufficient for f to belong to R, where R denotes
the class of normalized analytic functions f in D satisfying the condition

If'(z) =1 <1 inD.

It is worth pointing out that the convex class C neither contained in R nor
contains R. In spite of the fact that neither §* is included in & nor includes U,
we have the following interesting result (see also [4]).

Theorem 2.7. Let f(z) = z+ Y ", a,2" such that >~ ,nla,| < 1. Then
feU. The result is sharp.
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Proof. Under the assumption, we find that

‘f@—(%?f

and therefore,

< Z(R—Q)IanlJr( !an!)

n=2 n=

[e.9] o0 2
< 1-2) aol+ <Z !an|)
n=2 n=2

< <1 - Z |an|>
- V?Q

from which we easily obtain that f € U.

To see that the constant bound 1 in the coefficient estimate cannot be replaced
by 1+ ¢, € > 0, we consider the function

f(z):z+1+€

We observe that f/(z) = 1+ (1 + €)2"! has a zero in D because ¢ > 0. Thus,
the result is sharp. =

2" (n > 2).

2.3. Functions in U/ of special form. In this section we focus our attention
for analytic functions f in D of the form
z

(28) 16) = Ty

We remark that if f € S then z/f(2) is nonvanishing in the unit disk D and
hence, can be represented as Taylor’s series of the form (2.8) which is convenient
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for our investigation. Now, we recall that if f € § and has the above form, then
from the well-known Area Theorem [6, Theorem 11 on p.193 of Vol. 2] we have
(2.9) > (n—1)b* <1
n=2

But that condition is not sufficient for the univalence of an analytic function f
of the form (2.8) (see Theorem 2.13 below). In the next theorem we present a
sufficient condition for the univalence in terms of the coefficients b,, of analytic
functions f of the form (2.8).

Theorem 2.10. (Sufficient coefficient condition for /) Let f € A have the
form (2.8). If

o0

S (- Dbl < 1.

n=2
then f € U and the constant 1 is the best possible in a sense: if

o0

S =Dl =1+,

n=2

for some € > 0, then there exists an f such that f is not univalent in D.

Proof. The first part of the statements of the theorem follows from

- (f(ZZ)>,+ e 1’

|— > (n=1)by2"

n=1

Up(2| =

(e.)
< ) (n—1)b| <1,
n=1
In order to prove the sharpness part of the theorem, we consider the function

f(2) = z — qz% where ¢ = 1;;{%, e > 0, so that < ¢ < 1. Then, we have

1 o0
— :1 nn
f) 1-qz *;qz

and [ee] (e%e] 2
q
n—1b,| = n—1)¢"=(——) =1+e¢.
>_(n= 1)l =3 (n = 1)g (1_q)

Also, we see that f’(z) = 1 —2¢z and therefore, f’(2—1q) = 0 showing that f is not
univalent in the unit disk D. n
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The coeflicient condition (2.10) is only a sufficient condition for f to be in the
class U. In fact it can be easily seen that the condition (2.10) is not a necessary
condition for the corresponding function to be in that class. For instance, if f is

given by
z 1 NG 1
B R AP e
O S

then on one hand we have

1
Us(2)] = 51221 11+ VBiz + 2% < 1,

4

and on the other hand,

[e.9]

S (n = 1)fbu| =

n=2

+ +->1

|

W =
Wl

Theorem 2.11. (Necessary coefficient condition for U) Let f € U have
the form (2.8). Then

[e.9]

(2.12) > (n=1p > < 1.

n=2

In particular, we have |b1| < 2 and |b,| < =X~ for n > 2. The results are sharp.

n—1

o0

Proof. Recall that f € U/ if and only if
Z(n — 1)b,2"

Uy (2)| = ’f(zz) — (ffz))/_ 1‘ &

We note that g(z) = > >°,(n — 1)b,2" is analytic in D and therefore, with
i0

z =re", we have

< 1.

- n 1 o i0y |2
Z(n — 1)3|b,|*r*" = %/ ‘g(re 0)‘ df <1
n=2 0

so that, as r — 17, we obtain the desired inequality.

Because by = —f”(0)/2, the Bieberbach inequality gives that |b;| < 2 and fact
that the Koebe function k(z) = z/(1 — 2)? belongs to U shows that the result is
the best possible. Further, the inequality (2.12) implies that for n > 2 we have
that [b,| < —L;. The functions s,(z), for n > 2, defined by

(n—1)z , z 2"

n(z) = —— e 1
5n() o in—1 ° Sn(2) +n—1

also belong to the class U showing that the result is sharp. |



On the class U 9

We observe that the necessary coefficient condition (2.12) for the class U is
stronger than that for the class S, namely the inequality (2.9).

Theorem 2.13. Let f € A and have the form (2.8) satisfying the condition

[e.9]

> (n=1)b* < 1.

n=2

Then f is univalent in the disk |z| < % and the result is the best possible.
Proof. Consider the function g(z) = 1 f(rz), where 0 < r < 1. Then

Z o0
— =1+ b,r".
9(2) ;

Because
oo

Y (n=Dbalr" = D Vo —1b|vn - 1"

(Z(n - 1)1"2”)

[NIES

< (Z(n - 1)Ibn|2>

n=2 n=2
1
[e’s) 2 7”2
S e e e
n=2

for 0 < r < \/Li’ it follows easily that ¢ is in the class U. In particular f(z) is
univalent in the disk |z| < %

For the function fy(2) = 2z — \%zz we have

z 1 =/ 1\",
f(Z)_l—%z_Hz;(ﬁ) :

n=

i(" = Dlbu]* = i(n —1) G)n 1

n=2 n=2

and

On the other hand Re f}(z) = Re (1 — v/22) > 0 for |z| < \/Li and f(
which implies that fy(2) is not univalent in a larger disk.

&=

Theorem 2.14. Let f € A and have the form (2.8) satisfying the condition

[e.o]

> (n=17p, > < 1.

n=2
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Then f is univalent in the disk |z| < 4/ @ and the result is the best possible.

Proof. As in the proof of Theorem 2.13, it suffices to observe that

[NIES

2

Z(n—1)|bn|r”§<Z(n—1)2|bn|2> (Zr%> < 17”_ <1

2
n=2 n=2 n=2 r

whenever 7 + 12 —1 <0, that isif 0 < r < ry = @ ~ 0.78615. It means
that the function g defined by g(z) = £ f(rz) is in the class U and hence, f(z) is

univalent in the disk |z| < rg = \/@.

For the function fy(z) defined by

fo(2)
we have that Re fy(z) > 0 in D so that f € A and

z N
=1 02" =1—rpzlog(l —
+;n— T rozlog(l — 19z)

o0 o0

S = 120 =S (0 — 1)2(717%)2 .y

n=2 n=2

On the other hand side for |z| < ry we find that

g -2

while for rg < z=17r < 1:

(%)Q%(Z) N 1‘ "1 j& 21

4

2 Y

It means that go(z) = % fo(rz) is in the class U for r < ro, but not in a larger
value of 7, and hence, f is univalent in the disk |z| < ro, but not in a larger disk.
Moreover, a computation gives

1 —roz —rgz?

fo(z) = (1 =719z)(1 — rozlog(l —r92))?

and therefore, f(ro) = 0. Thus, f cannot be univalent in any disk larger than
the disk |z] < 7. ]
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3. Function in U/ in some special situation

The class of functions f € A of the form (2.8) for which b, > 0 for all n > 2
is especially interesting and deserves a separate discussion (see [12]).

Theorem 3.1. Let f € A have the form (2.8) with b, > 0 for all n > 2. Then
we have the following equivalence:

(a) feS
(b) M#Oforzeﬂ)

z
oo

(¢) > (n—1)b, <1

n=2

(d) felu.
Proof. (a) = (b): Let f € S be of the form (2.8) with b, > 0 for all n > 2.
Then, f'(z) #0 and f(z)/z # 0 in D.

(b) = (c): From the representation of f and (2.2) we quickly see that for
z €D,

2 o0
rz
flirz)=1- Z(n — 1)br"z"
(76)
from which, as z/f(z) # 0, it follows that f'(rz) # 0 is equivalent to
1-— Z(n — 1)bpr"2" # 0.
n=2

We claim that >~ 2 ,(n—1)b, < 1. Suppose on the contrary that >~ ,(n—1)b, >
1. Then, on the one hand, there exists a positive integer m such that

m

> (n=1)b, > 1

n=2

and so there exists an ry with 0 < ry < 1 and

m

Z(n — 1)brg > 1.

n=2
On the other hand, as b,, > 0 for n > 2, we have that

o0 m

(f(ro)) fllro) =1=> (n—1)byry <1=Y (n—1)burf <0
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and, since f'(r) is a continuous function of r with f/(0) =1 and f'(r¢) < 0, there
exists an r; (0 < r; < rg < 1) such that f'(r;) = 0. This is a contradiction.
Consequently, we must have

> (n—1)b, < 1.

n=2
(c) = (d): Suppose that > ,(n — 1)b, < 1. Then, by Theorem 2.10, it
follows that f € U.
(d) = (a): U C S is a well-known fact. n

The condition Theorem 3.1(c) may be used to conclude quickly that the func-

tions
z z z z

Y ) Y d—
(142)2" 142" 1422 R QAP

are in U.

Corollary 3.2. If f is of the form (2.8) with b, > 0 for all n > 2 and such that
Re (f'(2)) > 0 for z € D, then f € U.

Proof. The condition Re (f'(z)) > 0 for z € D implies that f € S. The conclu-
sion follows from Theorem 3.1 (see also Theorem 3.1). n

Corollary 3.3. If f(z) =z — )", a,z" is in S*, where a, > 0 for n > 2, then
feu.
Proof. Let f € §*. Then z/f(z) can be expressed as
z 1
f(z)  1—agz—azz®—---

where b,, > 0 for all n € V. Then, by Theorem 3.1, the inequality

:1+b12+b222+"‘,

> (n—-1)b, <1
n=2
holds and hence, by Theorem 2.10, f € U. |

Corollary 3.3 especially helpful in obtaining functions that are in §* N U,
as there are numerous results concerning starlike functions with negative co-
efficients. For example, f,(z) = z — 2™/m is in §* and hence in U. Since
f(z) =2—=3""",]a,|2" is in 8* if and only if >~ 7, n|a,| <1 (see [18, Theorem
2]), this result can be used to generate functions f € U that are not starlike.
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Example 3.4. Let

= —7 — d F — .
Then
< (1 +Z>2 2 2 -
= =(1+2242)(1+224+32"+)=1+42+4 ) n"
F(z) (1—2)? —~
so that
rz >
F ):1—1-47“2—1-45 nr'z"
rz

n=2
for 0 < r < 1. By Theorem 3.1, this function F' is univalent if and only if r
satisfies the inequality

42(71 — Dnr™ < 1,
n=2

This gives the condition
82

(1—rp

which implies that 0 < r < rg & 0.23607.

<1, ie 3r+5m+r3—-1<0,

3.1. Radius property of univalent functions. If for every f € S the func-
tion % f(rz) e U for 0 < r < rg, and rg is the largest number for which this hold,
then we say that rg is the U radius (or the radius of U-property) in the class S.
In this case, we may conveniently write ro = r44(S).

Theorem 3.5. TU(S):\/LE.

Proof. Let f € §. Then every such an f has the form

Py o
= E bp2".
) 1+ 2 z

Then, by (2.9), we obtain that

> (n=1)b* < 1.
n=2
The desired conclusion clearly follows from Theorem 2.13. Moreover, to see that

the number \/Li is the best possible, we consider the function

z(l—\%z)
1—22

f(z) =
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If we put z = pe? € D, then we have
Re ((1 . ZZ)f,(Z)) _ (1 - p2)(1 + p2 - \/§pCOS 0)
11— p2ei)?

for 0 < p < 1. Thus, f is close-to-convex in D and therefore, f € §. Next, we
z

note that ,
(féo)‘ﬂw>_1‘: Vi

is less than 1 for |z| < \/Li’ equal to 1 for z = \/LE and bigger than 1 for \/LE <z=
r < 1. The sharpness part follows. |

>0

2

Remark 3.6. In later articles, the authors (see also [4] for many related results)
considered the class U(A) defined by the condition

2

< /
() 10
and find that 74y (S)=y/ 135

3.2. Convolution properties with U.

<X, z€eD.

Theorem 3.7. Let f,g € S with the representations

z > z >
=1+ E b,z", — =1+ E cn2".
f(z) — 9(2) —~

If
d(z) = S Oobnn"
&) =@ g~ L e 20
for every z € D, then
z
F(z):q)(z)eu

and, in particular, F is univalent in D.

Proof. For f,g € S with their representations we have that

> (n=1)b> <1 and > (n—1)fe]* < 1.
n=2 n=2
By assumption
z z -
O(2) = * =1+ bpenz™ # 0,
f(z) g(2) nzl
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and therefore, the function F' is analytic in ID. By the classical Cauchy-Schwarz
inequality, we conclude that

N

[o.¢] oo o 2
Z(n — 1)[bncn| < Z(n —1)|ba]? Z(n — Dlea|? <1,
n=2 n=2 n=2
which, by Theorem 2.10 , F' € U. |

Further results on convolution may be obtained from |2, 14].
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