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In this paper, we provide sufficient conditions for constructing univalent analytic functions in the unit disk
jzj < 1. We motivate our results through several examples and compare with the previously known coefficient
conditions. Finally as an application, we present an interesting theorem involving Gaussian hypergeometric
function.
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1. Introduction and Main Results

Let D :¼ fz 2 C: jzj < 1g denote the open unit disk in the complex plane C. Let A denote the family of all functions
analytic in D and normalized by the conditions f ð0Þ ¼ 0 ¼ f 0ð0Þ � 1, and set

S ¼ f f 2 A: f is univalent in Dg:

The class S has been central in the development of geometric function theory since Bieberbach stated the conjecture
janj � n for n � 2, for f ðzÞ ¼ zþ

P1
n¼2 anz

n 2 S, with equality precisely when f ðzÞ equals the Koebe function kðzÞ ¼
z=ð1� zÞ2 or its rotation e�i�kðzei�Þ. This conjecture was finally solved in 1985 by de Branges [1]. Deriving sufficient
coefficient conditions for f to belong to S or some of its natural geometric subclasses (such as convex, starlike and
close-to-convex) has been some of the important issues in the theory of univalent functions. For example ifP1

n¼2 njanj � 1 then f ðzÞ defined by the above (normalized) power series satisfies the condition jf 0ðzÞ � 1j < 1 in D
and moreover, f ðDÞ is starlike. This sufficient condition is also necessary for the range f ðDÞ to be a starlike domain
whenever an < 0 for all n � 2 (cf. [7]). Recall that f 2 S is called starlike if the range f ðDÞ is starlike (with respect to
the origin), and is analytically characterized by the condition

Re
z f 0ðzÞ
f ðzÞ

� �
> 0 in D:

For instance the Koebe function kðzÞ ¼ z=ð1� zÞ2 is starlike in D. A univalent function g (need not be normalized) is
said to be convex if the range gðDÞ is a convex domain. A function f 2 A is called close-to-convex if
Reðei�z f 0ðzÞ=gðzÞÞ > 0 on jzj < 1 for some � 2 R and for some starlike function g 2 S. It is known that close-to-convex
functions are univalent in D, but not necessarily the converse. Moreover, it is convenient (or rather enough) to show
that f is close-to-convex in order to check the univalency of f .

Theorem 1. Let f 2 A and g be a convex univalent function in D such that m ¼ inf
z2D
jg0ðzÞj > 0. If

jf 0ðzÞ � g0ðzÞj < m for z 2 D;
then f is close-to-convex (with respect to g) in D.

Proof. From the hypothesis we get,

jf 0ðzÞ � g0ðzÞj < jg0ðzÞj for z 2 D:

Since g0ðzÞ 6¼ 0 in D, the above calculation gives
�� f 0ðzÞ
g0ðzÞ � 1

�� < 1 which implies that f is close-to-convex in D. �

In [5], Nicolae N. Pascu obtained the following result:
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Theorem 1.1. Let f and g be analytic in D. If there exists an m > 0 such that

jf 0ðzÞ � g0ðzÞj � m � jRefg0ðzÞgj
for every z 2 D, then f is univalent in D.

Proof. Since the theorem is not well-known, it may be appropriate to outline a proof of this result. By hypothesis,
we have jRefg0ðzÞgj � m > 0 and hence, without loss of generality, we may assume that Re g0ðzÞ � m. Since
Re g0ðzÞ � m > 0, it follows from the Noshiro–Warschawski Theorem that g is univalent in D. Then for each z0; z1 2 D
with z1 6¼ z0, one has

jf ðz1Þ � f ðz0Þ � ðgðz1Þ � gðz0ÞÞj ¼ ðz1 � z0Þ
Z 1

0

f f 0ðð1� tÞz0 þ tz1Þ � g0ðð1� tÞz0 þ tz1Þg dt
����

����
� jz1 � z0j

Z 1

0

jf 0ðð1� tÞz0 þ tz1Þ � g0ðð1� tÞz0 þ tz1Þj dt

� jz1 � z0j
Z 1

0

Refg0ðð1� tÞz0 þ tz1Þg dt

¼ Re e�i argðz1�z0Þðz1 � z0Þ
Z 1

0

g0ðð1� tÞz0 þ tz1Þ dt
� �

¼ Refe�i argðz1�z0Þ ðgðz1Þ � gðz0ÞÞg
� jgðz1Þ � gðz0Þj:

In the above estimates if the first quantity is equal to the last quantity, then this case can happen only when f and g are
linear functions. Thus in this case f and g are univalent. Otherwise, we obtain the following strict inequality

jf ðz1Þ � f ðz0Þ � ðgðz1Þ � gðz0ÞÞk < jgðz1Þ � gðz0Þj:

Since g is univalent in D, it follows that gðz1Þ � gðz0Þ 6¼ 0 and so, we have

f ðz1Þ � f ðz0Þ
gðz1Þ � gðz0Þ

� 1

����
���� < 1:

Thus we have f ðz1Þ � f ðz0Þ 6¼ 0 and so f is univalent in D. �

According to Theorem 1.1, univalency of f can be achieved without g being convex.

Theorem 2. Let f 2 A and f ðzÞ ¼ zþ
P1

n¼2 anz
n. Suppose that g is analytic and convex (univalent) in D, such that

gðzÞ ¼
P1

n¼1 bnz
n and m ¼ inf

z2D
jg0ðzÞj > 0. If

X1
n¼2

njan � bnj < m� j1� b1j; ð1:1Þ

then f is close-to-convex in D.

Proof. Using the power series expansion for f ðzÞ and gðzÞ, we see that

jf 0ðzÞ � g0ðzÞj ¼ 1� b1 þ
X1
n¼2

ðnan � nbnÞzn�1

�����
�����

� j1� b1j þ
X1
n¼2

jnan � nbnj < m:

Hence by the hypothesis and Theorem 1, f is close-to-convex in D. �

We remark that the univalency of f follows under the condition of ð1:1Þ with g being convex. Moreover, by using the
Theorem 1.1, we can easily obtain the following result.

Theorem 3. Let f 2 A, and f ðzÞ ¼ zþ
P1

n¼2 anz
n. If

X1
n¼2

jnan � �j � 1�
�

2
; ð1:2Þ

for some � with 0 � � < 2, then f is univalent in D.

Proof. Let gðzÞ ¼ z� � logð1� zÞ. Then Re g0ðzÞ > 1þ �=2 for z 2 D. Now,
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jf 0ðzÞ � g0ðzÞj ¼ �þ
X1
n¼2

ðnan � �Þzn�1

�����
�����

< �þ
X1
n¼2

jnan � �j < 1þ �=2:

Thus, by Theorem 1.1, we see that f is univalent in D. �

The case � ¼ 1 clearly gives the following.

Corollary 1. Let f 2 A and let f ðzÞ ¼ zþ
P1

n¼2 anz
n. If

X1
n¼2

jnan � 1j �
1

2
; ð1:3Þ

then f is univalent in D.

Remark 1. If we take � ¼ 0 in Theorem 3, then we get that the function f ðzÞ ¼ zþ
P1

n¼2 anz
n is univalent in D

whenever

X1
n¼2

njanj � 1: ð1:4Þ

But we know that if the coefficients of f satisfies the inequality ð1:4Þ, then f is also close-to-convex and starlike in D.
Therefore, it is natural to ask whether the condition on g in Theorem 1, or the coefficient condition ð1:1Þ in Theorem 2
ensures the starlikeness of f .

Next, we present an application of our coefficient inequality. For complex numbers a, b, and c with
c 6¼ 0;�1;�2; . . . , the Gaussian hypergeometric function defined by the series

Fða; b; c; zÞ ¼ 2F1ða; b; c; zÞ ¼
X1
n¼0

ða; nÞðb; nÞ
ðc; nÞð1; nÞ

zn

is analytic in jzj < 1, where ða; 0Þ ¼ 1 and ða; nÞ ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ n� 1Þ for n 2 N ¼ f1; 2; . . .g. Also, for
Re c > Reðaþ bÞ, we have

Fða; b; c; 1Þ ¼
�ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ

:

We have

F0ða; b; c; zÞ ¼
ab

c

� �
Fðaþ 1; bþ 1; cþ 1; zÞ: ð1:5Þ

Theorem 4. Let a, b, and c be either positive real numbers satisfying c > aþ bþ 1 or a; b 2 C, c 2 R with b ¼ a

and c > 2Re aþ 1. Then the analytic function

f ðzÞ ¼ zFða; b; c; zÞ � logð1� zÞ � z ð1:6Þ
is univalent in D, whenever

�ðcÞ�ðc� a� b� 1Þ
�ðc� aÞ�ðc� bÞ

½abþ c� a� b� 1� �
3

2
: ð1:7Þ

Proof. Let f ðzÞ ¼ �ðzÞ � logð1� zÞ � z ¼ zþ
P1
n¼2

anz
n, where

�ðzÞ ¼ zFða; b; c; zÞ ¼ zþ
X1
n¼2

bnz
n: ð1:8Þ

Then

f 0ðzÞ ¼
1

1� z
þ
X1
n¼2

nbnz
n�1

so that a1 ¼ 1 and nan ¼ nbn þ 1 for all n � 2. Thus, by Corollary 1, it suffices to show that
P1
n¼2

nbn � 1=2. Now from
ð1:8Þ we have,

X1
n¼2

nbnz
n�1 ¼ zF0ða; b; c; zÞ þ Fða; b; c; zÞ � 1:
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Now letting z! 1�, we get

X1
n¼2

nbn ¼ F0ða; b; c; 1Þ þ Fða; b; c; 1Þ � 1

¼
ab

c

�ðcþ 1Þ�ðc� a� b� 1Þ
�ðc� aÞ�ðc� bÞ

þ
�ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ

� 1 (Using (1.5))

¼
�ðcÞ�ðc� a� b� 1Þ

�ðc� aÞ�ðc� bÞ
½abþ c� a� b� 1� � 1

and therefore, by ð1:7Þ it follows that
P1
n¼2

jnan � 1j � 1=2. The conclusion follows. �

Remark 2. If a; b > 0, T1ða; bÞ ¼ maxfaþ b; aþ bþ ðab� 1Þ=2; 2abg and c satisfies either

c � T1ða; bÞ; ð1:9Þ
or c ¼ aþ b with

ab � 1; aþ b � 2ab and
�ðaþ bÞ
�ðaÞ�ðbÞ

� 1; ð1:10Þ

then the analytic function f defined by ð1:6Þ is close-to-convex with respect to �logð1� zÞ. Indeed, from the proof of
Theorem 4, we have nan ¼ nbn þ 1 and so

nan � ðnþ 1Þanþ1 ¼ nbn � ðnþ 1Þbnþ1

and hence the first part of the remark follows from Theorem 2.1 [6], so we omit the details. Similarly the second part of
the last remark, follows easily from the proof of the second part of Theorem 2.1 [6]. However, it seems that ð1:10Þ does
not hold for values other than a ¼ 1 and b ¼ 1.

In order to demonstrate the usefulness of our coefficient condition ð1:3Þ, we present an example.

Example 1.2. Let f be an analytic function in the unit disk D of the form

f ðzÞ ¼ zþ
X1
n¼2

anz
n; an ¼

1

�n�1
þ

a

�n�1

� �
1

n
; ð1:11Þ

where � , � are real numbers greater than or equal to 1 and a is a positive real number. If �ð�þ 1Þ � að� þ 1Þ, then it
can be easily seen that f is close-to-convex in D by Noshiro–Warchawski–Wolff univalence criterion [2]. Indeed, a
computation reveals

f 0ðzÞ ¼ 1þ
z

� � z
þ

az

�� z

and so

Re f 0ðzÞ > f 0ð�1Þ ¼ 1�
1

� þ 1
�

a

�þ 1
¼
�ð�þ 1Þ � að� þ 1Þ
ð� þ 1Þð�þ 1Þ

; z 2 D;

which shows that Re f 0ðzÞ > 0 if and only if �ð�þ 1Þ � að� þ 1Þ.
Consider the special choice � ¼ 1. Then we have Re f 0ðzÞ > 0 if and only if a � �þ1

2
. Also we have,

X1
n¼2

jnan � 1j ¼
X1
n¼2

a

�n�1
¼

a

�� 1
;

where � 6¼ 1. Therefore, by Corollary 1, f is univalent in D if a � ��1
2

.
Moreover, for the an’s given by ð1:11Þ, a simple calculation gives,

X1
n¼2

jnan � ðnþ 1Þanþ1j ¼

1

�
þ

a

�
; if � > 1, � > 1

1

�
; if � > 1, � ¼ 1

a

�
; if � ¼ 1, � > 1.

8>>>>>>><
>>>>>>>:

If either a� � �ð� � 1Þ with � > 1 and � > 1, or a � � with � ¼ 1 and � > 1, holds then by a well-known result
[4] (see also [6]) the function f defined by ð1:11Þ is close-to-convex with respect to �logð1� zÞ in D.

In particular, for � ¼ 1, a ¼ 1=2, and � ¼ 2, the function f defined by ð1:11Þ takes the form
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f ðzÞ ¼ zþ
X1
n¼2

1

n

1

2n
þ 1

� �
zn

so that

f 0ðzÞ ¼ 1þ
X1
n¼2

1

2n
þ 1

� �
zn�1 ¼ 1þ

z

1� z
þ

z

2ð2� zÞ

and therefore,

X1
n¼2

jnan � 1j ¼
X1
n¼2

1

2n
¼

1

2
:

Moreover, for this function we see that Re f 0ðzÞ > 1=3 in D and jf 0ðzÞ � 1j ! þ1 when z approaches 1� through real
values of z. Also in this case,

X1
n¼2

njanj ¼
X1
n¼2

1

2n
þ 1

� �
¼ þ1;

showing that the well-known criterion
P1

n¼2 njanj � 1 (implying univalency and starlikeness of f ðzÞ ¼ zþ
P1

n¼2 anz
n)

is not satisfied.

Acknowledgments

The first author thanks University Grants Commission (UGC) India for its financial support. The work of the second
author was supported by MNZZS Grant, No. ON174017, Serbia. The authors thank the referee for useful comments
and also for suggesting the proof of Theorem 1.1.

REFERENCES

[1] de Branges, L., ‘‘A proof of the Bieberbach conjecture,’’ Acta Math., 154(1–2): 137–152 (1985).
[2] Duren, P. L., Univalent Functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg,

Tokyo), Springer-Verlag (1983).
[3] Goodman, A. W., Univalent Functions, Vols. 1–2, Mariner, Tampa, Florida (1983).
[4] Ozaki, S., ‘‘On the theory of multivalent functions,’’ Sci. Rep. Tokyo Bunrika Daigaku, 2: 167–188 (1935).
[5] Pascu, N. N., Criteria for Univalence (Romanian language), University of Transilvania, Brasov (2003).
[6] Ponnusamy, S., and Vuorinen, M., ‘‘Univalence and convexity properties for Gaussian hypergeometric functions,’’ Rocky

Mountain J. Math., 31(1): 327–353 (2001).
[7] Silverman, H., ‘‘Univalent functions with negative coefficients,’’ Proc. Amer. Math. Soc., 51: 109–116 (1975).

Coefficient Criteria for Univalent and Close-to-Convex Functions 161


