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ARTICLE INFO ABSTRACT

Keywords: Let A denote the family of all analytic functions fin the unit disk D with the normalization
An{ilytic f(0) =0 =f'(0) — 1. In this note, we mainly consider the radius of univalence of F defined
Univalent by F(z) = z2/f(z), where f belongs to some subclasses of A or S, the class of univalent

Radius of univalence functions from A. The results of the present article sharpen the earlier known results.
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1. Introduction and main results

Let A denote the family of all analytic functions f in the unit disk D ={z€ C: |z] <1} with the normalization
f(0)=0=f'(0)—-1,and S = {f € A: f is univalent in D}. Determination of the radius of univalence of many geometric sub-
classes has been a classical problem in geometric function theory which still has many issues to be resolved (see for example
[5]). In [11] the authors considered problem of finding the radius of univalency of A(z) defined by the quotient

A2) :g, (1)

where f and g are chosen appropriately from some subsets of .4 such as S. More precisely, the radius r € (0,1) was found so
that the function G(z) defined by G(z) = r~'A(rz) is in the class &/. Here

U={feA:|Uz)| <1forzeD},

where

2
U@ =r@ () -1 zen. @)

(z

See [1] and also [4,8,9,17]. Several generalizations of the class ¢/ were investigated (see eg. [14]). If we choose f(z) = zin (1),
then the function A(z) defined above reduces to the simple form

Az) == 3)

and from the recent paper [11] one can get a number of results for A(z) given by (3). But in certain special situation such as
form (3), a direct approach does provide sharp results. The aim of this paper is to deal with such cases, especially when the
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function A(z) is given by (3) with appropriate restriction on g. We remark that a general form of A(z) is discussed in [7] but for
a different purpose. We begin with some notations and definitions as follows:

P(1/2) ={f € A: Re(f(2)/z) > 1/2 for z € D},

-1/2) = : Re( 1 zf”(z)) 1 for z ID} and
C(-1/2) {feA (+f'(z) > =5 €
_ . Zf”(2)> 3 }
g {feA. Re<1+ o <3 forze D 5.
Recall that if U, = {f €U : f"(0) = 0}, then each function in ¢, is known to be included in the class P(1/2). We also have
K c P(1/2), where K denotes the class of all functions f € S that are convex, i.e. f(D) is a convex domain. The classes
C(—1/2) and G have been studied recently, for example in [12,15]. Functions in C(—1/2) are known to be close-to-convex
in D. Moreover, Ozaki [16] introduced the class G and proved that functions in G are univalent in D. Later in [19], Umezawa
discussed a general version of this class. However, functions in G are proved to be starlike in D, see for eg. [6, Theorem 1] and
[13 Example 1, Eq. (16)] (see also [15]).
From now onwards, for obvious reason, it is convenient to work with a change of notation, namely, with the transforma-
tion f — F; defined by

F(2) == F;(2) = 7+, 4)
where f is appropriately chosen from .A.

Theorem 1. Let F be defined by (4). Then we have the following:

f € P(1/2) implies that F € U in the disk |z| < r; = 1. As for the univalence the result is sharp.

f € S implies that F € U in the disk |z| < r, =1, and the result is best possible (as for the univalence).

f €C(—1/2) implies that F € U in the disk |z| < r3, where r3 = %‘5 ~ 0.381966. The result is also sharp.
f € G implies that F € U in the disk |z| < r4, where 14 ~ 0.923898 is the root of the equation

3r+(2-r)log(1—-r)=0,

that lies in the interval (0,1).

(@)
(b)
(c)
(d)

Proof. Consider the function F defined by (4), where we may let for convenience f(z) = z+ >, ,a,z". The condition on fin
each case implies that f(z)/z # 0 and hence, F € A and z/F(z) # 0 in D. By the definitions of Ur(z) (see (2)) and F, it follows

that
Up(z) = -2 <% - %) = —z(@) +Jg —-1= —g(n —2)a,z" !
and therefore,
Ur(@)| < 30— 2)la 2" (5)

=3

3

(a) Let f(z) = z+ >, ,anz" belong to P(1/2). Then it is well-known that |a,| < 1 forn = 2,3,... and, by (5), we deduce that

for |z| =T.

e

Ur(2)] <

n-1 _ r2
(n—=2)lz]"" = a

r)?

3
I
w

We thus have, |Ur(z)| < 1ifr2 < (1 —1)?,i.e.if 0 <1 < r; = 1/2. This means that F € U for |z| < 1/2 and so, F is univalent for
|z| < 1/2. For the function f(z) = ;% € P(1/2), we see that F(z) = z — z> and so, F'(z) vanishes at z = 1/2 showing that F cannot
be univalent in the disk |z| < r if r > 1/2. This proves that the radius 1/2 is best possible.
(b) Let f(z) = z+ >, ,an2z" belong to the class S. Then the de Branges theorem [2] gives that |a,| < nforn = 2,3,.... Using
this coefficient inequality, the corresponding condition (5) reduces to

3r2—r

3
Up(2)| <> (n—2)njz" " = a 5 for |z =T,
r

NgE

Il
w

n

which is less than 1 if 0 < r < r, = 1/3. Thus, F € ¢/ in the disk |z| < 1/3. For the Koebe function f(z) = z/(1 — z)?, we obtain
that F(z) = z(1 — 2)®> = z — 22> + 23 and thus, F'(z) = 1 — 4z + 322 which vanishes at z = 1/3. It means that the radius 1/3 is
best possible.
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(c) Suppose that f € C(—1/2). Then |a,| < 25! holds for n = 2,3,.... and in view of this estimate, (5) reduces to

e n+1 a1 2r2 =13
Us( z|" = for |z| =,
Ur@] <3 (n A = for e
which is less than 1 if 0 < r < r3 = 3=/5, Thus, F € U in the disk |z| < r5. In order to prove the sharpness part, we consider the
function f(z) = 222, Then it is easy to see that f € ¢(—1/2) and for this function, we have
z(1 - 2)?
F(z) :7(1 7;) ,
2
so that
_ _ 2
Fl(z) = 1-21-3z+z ).

2
(1-39)
We see that F'(r;) = 0 and the desired result follows.
(d) In this case, we let f € G. Then from a recent result from [12], we have

|an|<# forn=23,...

(n—"1)n
and thus, by (5), we obtain that for |z| =1
Ur@)] <3 (n - 2 = 22T log(1 - < 1
F £ ) r g )

if 0 <1 <14, where r4 ~ 0.923898 is the root of the equation
3r+(2-r)log(1—-r)=0,
that lies in the interval (0, 1). The proof is complete. O

Theorem 2. Define
272
f@+e@ ©)

where f,g € A. If both f, g are in any one of P(1/2),S,C(—1/2), and G, then the conclusions in each case of Theorem 1 continues to
hold for the function F, defined by (6).

Fi(z) =

Proof. First we observe that

Ur, (2)] = '722 (F11(z) ) %>
(D) ()

=2 |os @ + U 2)

<5 (15 @) + Us, )]

and the desired conclusions follow if we apply the proof of Theorem 1. O

Theorem 3. Let f — Gy be the transformation defined by the quotient
ZZ

T a0

Jo f%[) dt

Then we have the following:

G(z) = Gy(2) =

(a) f € 4 implies that G € i in the disk |z| < 1. In particular, G is univalent in D.
(b) f € S implies that G € ¢ in the disk |z| < s, where 15 ~ 0.969845 is the root of the equation
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log(1 2/ log dt =0,

that lies in the interval (0, 1).

692

Proof.

(a) Let f € U. Then f can be written as
(8)

Z
_1+b12+b222+"'

) -

and therefore, we have
Therefore, as in [10], we let z = re for r € (0,1) and apply the Parseval formula to obtain

2

4 /

() - 1' -

1 2n

27 )

Allowing r — 1°, we obtain the inequality 35 (n — 1)?|b,)? <

X\ b,_
@=z+) le"
n=2

so that

S(n

n=2

0=>"(n—17b,r" < 1.

n=2

o0

> n- l)bnz”

n=2

1. Next, we let g(z) = [ - 7 dt. Then we have

z = b, _,
%71+;—n+1z.

Using the method in the proof of Theorem 1 and the inequality (5), it follows easily that

= brl n = n
Ue@) < > —2) Pl gt =5 1 ol g
2

n=3 n=.

and, since

- - 1 > /1 1 1
Z n+1 z;(n+1)n_;<ﬁ_n+l) v
we deduce by the Cauchy-Schwarz inequality that

1

Us(z)] < (i(n—l)ﬂbnf) (i(n:])z> <1,
n=2

n=

n=2
which means that G € U.
(b) Consider the case f € S. Again, f can be written in the form (8), and therefore, from the well-known Area Theorem [5

Theorem 11, p. 193, vol. 2], we have

> (n—1)ba* <
n=2
Thus, as in Case (a), Cauchy-Schwarz inequality yields that
. ba| | n
< — 1)
Us(@)] < >_(n—1)-"5 ]
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1 2 Jog(1 — t)
—2<10g1—z 2/ 7dt

and therefore, from the previous inequality, we find that |U¢(z)| < 1 if
it IOg ) 2n

log(1 — |z*) — 2 dt = log(1 — |z*) + 22 I > 0.

This gives the condition |z| < 15, where 5 ~ 0.969845 is the root of the equation
™ log(1 —
log(1 7r2)72/ log =8 4 _ o,
Jo t

that lies in the interval (0,1) .

Our next result is related to a transform hy of f € S introduced by Danikas and Ruscheweyh [3]:

hy(2) == ';(()) dt = Z+Z

where c,(f) (n > 1) denote the logarithmic coefficients of f. It was conjectured that the transform hf € S for each f € S. This
conjecture remains open.

n+1
n+1%UV

Theorem 4. Let f € S,a; = f"(0)/2!, and let H be defined by the quotient

Zz
HE) = i 9)
Then H € U in the disk |z| < re(b), where rs(b) = 15(0) ~ 0.557666 is the root of the equation
(4(a+1) - b*)r® + (4(a—3) - b*)r* +4(3r* = 1) =0, (10)

in 0 < b < 2 that lies in the interval (0,1) and where a = 2212,
For a ready reference, the roots of Eq. (10) for various values of b in the unit interval [0, 2] are displayed in Table 1.

Proof of Theorem 4. Consider the function hs(z) defined as above. Then, we see that

hi(z) = /OZ< +t<logf( )> )dt72+2 cn,](f)z”

where ¢, (f) (n > 1) denote the logarithmic coefficients of f € S defined by

Table 1

Values of rg(b]) when b € [0,2].
Values of b Roots of Eq. (10)
0 0.557666
1/4 0.558138
1/2 0.55957
3/4 0.562015
1 0.565569
5/4 0.570383
3/2 0.57669
714 0.584845

2 0.595415
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log? 2 = 3 e, )z
n=1

Note that

z - "
Az~ ! +;n+ 1)z
and ¢ (f) = a, = f"(0)/2. Further, for the function f € S the following sharp inequality is known from [18]:

N - 12
Z<n+1) en () < f:a~2.57974.

Again, as before, it follows easily that

= n
Un(z)] <) (n-2) 7|Cn (Nl Z(n*1 il len ()] 121"
n=3

< (S(ih) @R ) (Sm- e

n=2 n=2
1
1 2(1z2*(1 + |z
< (a-greur) (ELOED
(1—12%)

which is less than 1 whenever,
1 3
(a-FlerthP a1 + i) < 1 - 12
Simplifying this inequality gives

B(|ay|,r) :=4(a+ 1)rS +4(a—3)r* +4(3r* — 1) — (|ax[*r* + |a2|)r* < 0,

where r = |z|. Note that if rg(b) (0 < b = |a,| < 2) is the root of the Eq. (10), i.e. B(b,rs(b)) =0, then clearly rg(b) > rs(0),
where 15(0) = s ~ 0.557666 is the root of the equation

(a+Dr+(@-3)r*+3r2-1=0,
that lies in the interval (0, 1). The result follows. O
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