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Where is f(z)/f ′(z) univalent?
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Abstract. Let S denote the family of all univalent functions f in the unit disk
D with the normalization f(0) = 0 = f ′(0)− 1. There is an intimate relation-
ship between the operator Pf (z) = f(z)/f ′(z) and the Danikas-Ruscheweyh
operator Tf :=

∫ z

0
(tf ′(t)/f(t)) dt. In this paper we mainly consider the uni-

valence problem of F = Pf , where f belongs to some subclasses of S. Among
several sharp results and non-sharp results, we also show that if f ∈ S, then
F ∈ U in the disk |z| < r with r ≤ r6 ≈ 0.360794 and conjecture that the

upper bound for such r is
√
2− 1.

Keywords. Analytic, univalent, starlike functions, radius of univalence.

2010 MSC. Primary: 30C45.

1. Introduction and Main Results

Let B denote the class of analytic functions ω(z) in the unit disk D := {z ∈
C : |z| < 1} such that ω(0) = 0 and |ω(z)| < 1 for z ∈ D. If f, g are two
analytic functions in D, then we say that f is subordinate to g, written f ≺ g
or f(z) ≺ g(z), if there exists an ω ∈ B such that f(z) = g(ω(z)). We also note
that if g is univalent, then it is easy to show that f ≺ g if and only if f(0) = g(0)
and f(D) ⊂ g(D).

We consider the family A of all functions f analytic in D with the normaliza-
tion f(0) = 0 = f ′(0)−1. By S, S ⊂ A, we denote the class of univalent functions
in D. Certain special subclasses of S possess various remarkable features due to
their geometrical properties. By C, K, and S⋆ we denote the subclasses of S
which consist of convex, close-to-convex, and starlike functions, respectively. For
β ∈ [0, 1), let S⋆(β) denote the usual normalized class of all (univalent) starlike
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functions of order β. Analytically, f ∈ S⋆(β) if f ∈ A and satisfies the condition

zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, z ∈ D.

It is well-known that C ⊊ S⋆(1/2), and S⋆ := S⋆(0). At this point it is interesting
to note that a function belonging to S⋆(1/2) may not be convex in |z| < R for any

R >
√
2
√
3− 3 = 0.68 . . ., see [8, Theorem 1]. We say that f ∈ A is starlike in

|z| < r (i.e. to say f ∈ S⋆ in |z| < r) for some 0 < r ≤ 1, if f(|z| < r) is starlike
with respect to the origin. This means that the last subordination condition is
satisfied for |z| < r instead of the full disk |z| < 1. Similar convention will be
followed for other classes. We refer to [3, 4, 11] for a detailed discussion on these
classes. Also let us introduce some notations and definitions as follows:

U = {f ∈ A : |Uf (z)| < 1 for z ∈ D} , Uf (z) = f ′(z)

(
z

f(z)

)2

− 1,

C(−1/2) =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1

2
, for z ∈ D

}
, and

G =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
<

3

2
, for z ∈ D

}
.

According to Aksentév’s theorem [1] (see also [10]), the strict inclusion U ⊊ S
holds. In a recent paper the authors in [14] discussed the class U(λ) in geometric
perspectives.

Moreover, C(−1/2) ⊂ K, and functions in G are proved to be starlike in D,
see for eg. [12, Example 1, Equation (16)]. See also [7] for further details and
investigation on the class G.

This article concerns with the operator

(1.1) F (z) := Pf (z) =
f(z)

f ′(z)

for locally univalent functions f ∈ A. The main problem is to consider the
univalency and starlikeness of Pf when f belongs to some of the subclasses of S
defined above.

Among others our interest in the operator Pf arose from the fact that there
exists an intimate relation between this one and the Danikas-Ruscheweyh ([2])
operator

(1.2) Tf (z) :=

∫ z

0

tf ′(t)

f(t)
dt = z +

∞∑
n=1

n

n+ 1
cn(f)z

n+1 (f ∈ S),
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where cn(f) (n ≥ 1) denote the logarithmic coefficients of f ∈ S defined by

log
f(z)

z
=

∞∑
n=1

cn(f)z
n.

The conjecture that Tf ∈ S for each f ∈ S remains open.

The relation between (1.1) and (1.2) becomes obvious, when one considers the
equivalent operators in the w-plane where w = f(z). Let g(w) = f−1(w) be the
function inverse to f . If we transform the operator Pf to the w-plane, we get
the operator

Q(g)(w) = wg′(w) = q(w).

A similar consideration concerning the Danikas-Ruscheweyh operator results in

S(g)(w) =

∫ w

0

g(u)

u
du = s(w).

Now it is immediately seen that

Q−1(q)(w) =

∫ w

0

q(u)

u
du = S(q)(w) and S−1(s)(w) = ws′(w) = Q(s)(w).

2. Preliminaries and two examples

We remark that if f ∈ S then (z/f(z)) ̸= 0 in D and hence, f can be repre-
sented as Taylor’s series of the form

(2.1) f(z) =
z

1 +
∑∞

n=1 bnz
n
.

According to the well-known Area Theorem [4, Theorem 11 on p.193 of Vol. 2],
for f ∈ S of the form (2.1), one has

(2.2)
∞∑
n=2

(n− 1)|bn|2 ≤ 1

but this condition is not sufficient for the univalence of f . On the other hand, if
f ∈ A of the form (2.1) satisfies the condition

(2.3)
∞∑
n=2

(n− 1)|bn| ≤ 1,

then f ∈ U . The condition (2.3) is also necessary if bn ≥ 0 for n ≥ 1. The
constant 1 is the best possible in the sense that if

∞∑
n=2

(n− 1)|bn| = 1 + ε,
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for some ε > 0, then there exists an f which is not univalent in D.
Let us continue the discussion with two examples. Consider

f1(z) =
z(1− z

2
)

(1− z)2
, and f2(z) = z − z2

2
.

Then f1 ∈ C(−1/2) and f2 ∈ G. Define

Fj(z) = Pfj(z) =
fj(z)

f ′
j(z)

, for j = 1, 2,

so that

F1(z) = z − 3

2
z2 +

1

2
z3 and F2(z) =

z(1− z
2
)

1− z
.

1. We have that

F ′
1(z) =

3

2
z2 − 3z + 1 =

3

2
(z − r+)(z − r−), r± = 1±

√
3

3

and therefore F ′
1(r−) = 0, where r− = 1 −

√
3
3

= 0.4226497 . . .. We claim
that Re (F ′

1(z)) > 0 for |z| < r−. To do this, we observe that

Re (F ′
1(re

iθ)) = 3r2 cos2 θ − 3r cos θ + 1− 3

2
r2,

then it is easy to show that Re (F ′
1(re

iθ)) > 0 for −1 ≤ cos θ ≤ 1 and
0 ≤ r < r−. It means that F1 is univalent in the disc |z| < r−.

2. It is a simple exercise to see that F2 ∈ U . In fact,

z

F2(z)
=

1− z

1− z
2

= 1−
z
2

1− z
2

= 1− z

2
−

∞∑
n=2

bnz
n, bn =

1

2n
,

so that z/F2(z) is non-vanishing in D and thus,

−z

(
z

F2(z)

)′

+
z

F2(z)
− 1 =

(
z

F2(z)

)2

F ′
2(z)− 1 =

( z
2

1− z
2

)2

from which we easily see that |UF2(z)| < 1 for z ∈ D. Indeed, by a direct
computation, we see that the function w = (z/2)/(1 − (z/2)) maps D
onto the disk |w − (1/3)| < 2/3 so that w ∈ D and thus, w2 ∈ D. This
observation gives that |UF2(z)| < 1 in D and hence, F2 ∈ U . Alternately,
using the series expansion for F2, we find that

∞∑
n=2

(n− 1)|bn| =
∞∑
n=2

(n− 1)
1

2n
= 1

and, by the sufficient condition (2.3), it follows that F2 ∈ U .
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3. Main results

Let ω ∈ B. Then by the Schwarz lemma it follows that |ω(z)| ≤ |z| for z ∈ D
and by the Schwarz-Pick lemma we have

(3.1) |ω′(z)| ≤ 1− |ω(z)|2

1− |z|2
for z ∈ D.

Clearly, ω(z)
z

is analytic in D and |ω(z)/z| ≤ 1 in D. The Schwarz-Pick lemma,
namely, (3.1), applied to ω(z)/z shows that

(3.2) |zω′(z)− ω(z)| ≤ |z|2 − |ω(z)|2

1− |z|2
.

These three inequalities will be used frequently in the proof of our main results.

Theorem 3.3. If f ∈ S⋆(β), then Pf ∈ U in the disk |z| < 1/(1 +
√

2(1− β)).

The result is sharp (as for univalence) as the function z/(1− z)2(1−β) shows.

Proof. Each f ∈ S⋆(β) and F = Pf defined by (1.1) can be written as

zf ′(z)

f(z)
=

1 + (1− 2β)ω(z)

1− ω(z)
and F (z) =

z(1− ω(z))

1 + (1− 2β)ω(z)
,

where ω ∈ B. Clearly, ω(z)
z

is analytic in D and |ω(z)/z| ≤ 1 in D. Using the last
two relations, we observe that

(3.4) UF (z) = −z

(
z

F (z)

)′

+
z

F (z)
− 1 =

zf ′(z)

f(z)
− z

(
zf ′(z)

f(z)

)′

− 1

and thus,

UF (z) = 2(1− β)

(
ω(z)

1− ω(z)
− zω′(z)

(1− ω(z))2

)
= 2(1− β)

(
(ω(z)− zω′(z))− ω2(z)

(1− ω(z))2

)
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from which and (3.2), we obtain that

|UF (z)| ≤ 2(1− β)

(
|ω(z)− zω′(z)|
(1− |ω(z)|)2

+
|ω(z)|2

(1− |ω(z)|)2

)

≤ 2(1− β)

 |z|2−|ω(z)|2
1−|z|2

(1− |ω(z)|)2
+

|ω(z)|2

(1− |ω(z)|)2


=

2(1− β)|z|2

1− |z|2

(
1 + |ω(z)|
1− |ω(z)|

)
≤ 2(1− β)|z|2

1− |z|2

(
1 + |z|
1− |z|

)
=

2(1− β)|z|2

(1− |z|)2

which can easily seen to be less than 1 if |z| < 1/(1 +
√
2(1− β)). Thus, F

belongs to U in the disk |z| < 1/(1 +
√
2(1− β)).

To prove the sharpness part, we consider kβ(z) = z/(1− z)2(1−β) and define

Fβ(z) = Pkβ(z) =
kβ(z)

k′
β(z)

.

Then we see that kβ ∈ S∗(β) and

Fβ(z) =
z(1− z)

1 + (1− 2β)z
and

z

Fβ(z)
=

1 + (1− 2β)z

1− z
= 1 + 2(1− β)

∞∑
n=1

zn.

Define Gβ(z) =
1
r
Fβ(rz) and observe that

z

Gβ(z)
= 1 + 2(1− β)

∞∑
n=1

rnzn.

According to (2.3), the function Gβ is in U (and hence is univalent in D) if and
only if

2(1− β)
∞∑
n=2

(n− 1)rn ≤ 1, i.e.
2(1− β)r2

(1− r)2
≤ 1.

The gives the condition 0 < r ≤ r1 = 1/(1 +
√

2(1− β)). Thus, the function
Fβ is univalent in the disk |z| < r1 and not in any larger disk with center at the
origin. Note also that

F ′
β(z) =

1− 2z − (1− 2β)z2

(1 + (1− 2β)z)2

and thus, F ′
β(r1) = 0. Moreover,

UFβ
(z) =

1− 2z − (1− 2β)z2

(1− z)2
− 1
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showing that UFβ
(r1) = −1. Thus, the number r1 is best both for univalence and

also for U . The proof is complete.

Corollary 3.5. If f ∈ S⋆, then Pf ∈ U ∩S⋆ in the disk |z| <
√
2− 1. The result

is sharp (as for univalence) as the Koebe function z/(1− z)2 shows.

Proof. It suffices to prove the starlikeness part since Pf ∈ U follows from The-
orem 3.3 by taking β = 0. Thus, for the proof of the second part, it suffices to
observe by (3.1) that∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣ = ∣∣∣∣− 2zω′(z)

1− ω2(z)

∣∣∣∣ ≤ 2|z| |ω′(z)|
1− |ω(z)|2

≤ 2|z|
1− |z|2

which is again less than 1 provided |z| <
√
2 − 1. In particular, F is starlike in

the disk |z| <
√
2 − 1. Sharpness part follows from the discussion in Theorem

3.3 with β = 0.

Corollary 3.6. If f ∈ S⋆(1/2), then Pf ∈ U ∩ S⋆ in the disk |z| < 1/2. The
result is sharp as the function z/(1− z) shows.

Proof. Choose β = 1/2 in Theorem 3.3 and observe that it suffices to prove the
starlikeness part. As in the proof of Theorem 3.3, for each f ∈ S⋆(1/2), we have

zf ′(z)

f(z)
=

1

1− ω(z)
and F (z) = z(1− ω(z))

for some ω ∈ B. By (3.1) and the fact that |ω(z)| ≤ |z|, we obtain∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣ = ∣∣∣∣−zω′(z)

1− ω(z)

∣∣∣∣ ≤ |z| |ω′(z)|
1− |ω(z)|

≤ |z|(1 + |ω(z)|)
1− |z|2

≤ |z|(1 + |z|)
1− |z|2

=
|z|

1− |z|

which is less than 1 if |z| < 1/2. Note that for f(z) = z/(1 − z), one has
F (z) = z − z2 and thus, |F ′(z) − 1| = 2|z| < 1 for |z| < 1/2 and F ′(1/2) = 0.
Thus, F is univalent in the disk |z| < 1/2 and not in any larger disk with center
at the origin. Also, it is easy to see that F (z) is starlike for |z| < 1/2. The
desired conclusion follows.

Corollary 3.7. If f ∈ S⋆(1/2) such that f ′′(0) = 0, then Pf is starlike in the
disk |z| < r2, where r2 ≈ 0.543689 is the root of the equation ϕ2(r) = 0, where

ϕ2(r) = r3 + r2 + r − 1.
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Proof. Clearly, we just need to apply Corollary 3.6 with |ω(z)| ≤ |z|2. This will
lead to the inequality ∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣ ≤ |z|(1 + |z|2)
1− |z|2

which is clearly less than 1 if |z|3 + |z|2 + |z| − 1 < 0. The result follows.

Corollary 3.8. Let f belong to either S⋆(1/2) or C(−1/2), such that f ′′(0) = 0.
Then F ∈ U in the disk |z| < 1/

√
3.

Proof. It known that [9, p. 68] if C(−1/2) with f ′′(0) = 0, then f ∈ S⋆(1/2). In
view of this result, it suffices to prove the corollary when f belongs to S⋆(1/2)
with f ′′(0) = 0. However, using the proof of Theorem 3.3 with β = 1/2 and
|ω(z)| ≤ |z|2, we easily obtain that

|UF (z)| ≤
|z|2

1− |z|2

(
1 + |ω(z)|
1− |ω(z)|

)
≤ |z|2

(1− |z|2)

(
1 + |z|2

1− |z|2

)
which is less than 1 provided 1 − 3|z|2 > 0 and this gives the disk |z| < 1/

√
3.

The proof is complete.

A locally univalent function f ∈ A is said to belong to G(α), for some α ∈
(0, 1], if it satisfies the condition

(3.9) Re

(
1 +

zf ′′(z)

f ′(z)

)
< 1 +

α

2
, z ∈ D.

Thus, we have G := G(1).

Theorem 3.10. If f ∈ G(α) for some α ∈ (0, 1], then Pf is starlike in the disk

|z| < 1 + α−
√

α(1 + α) .

Proof. Let f ∈ G(α) and F be given by (1.1). Then we have (see eg. [5,
Theorem 1])

zf ′(z)

f(z)
≺ (1 + α)(1− z)

1 + α− z
, z ∈ D,

and thus, we may write

zf ′(z)

f(z)
=

(1 + α)(1− ω(z))

1 + α− ω(z)
and F (z) = Pf =

z(1 + α− ω(z))

(1 + α)(1− ω(z))

for some ω ∈ B. By a computation, we obtain that

zF ′(z)

F (z)
− 1 =

αzω′(z)

(1− ω(z))(1 + α− ω(z))
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and, as before, it follows from the Schwarz-Pick lemma that∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣ ≤ α|z| |ω′(z)|
(1 + α− |ω(z)|)(1− |ω(z)|)

≤ α|z|
(1 + α− |z|)(1− |z|)

which is less than 1 provided ϕ3(|z|) > 0, where ϕ3(r) = r2 − 2(1 + α)r + 1 + α.

Thus, we conclude that Pf is starlike in the disk |z| < r3(α) = 1+α−
√

α(1 + α),
where r3(α) is the root of the equation ϕ3(r) = 0 in the interval (0, 1]. The
theorem follows.

Taking α = 1 gives

Corollary 3.11. If f ∈ G, then Pf is starlike in the disk |z| < 2−
√
2 ≈ 0.585786

.

The same reasoning gives as in Corollary 3.7 the following.

Corollary 3.12. If f ∈ G(α) such that f ′′(0) = 0 and for some α ∈ (0, 1], then
Pf is starlike in |z| < r4(α), where r4(α) is the root in the interval (0, 1] of the
equation ϕ4(r) = 0,

ϕ4(r) = r4 − αr3 − (2 + α)r2 − αr + 1 + α.

Proof. In this case, the corresponding inequality for f ∈ G(α) in Theorem 3.10
becomes∣∣∣∣zF ′(z)

F (z)
− 1

∣∣∣∣ ≤ α|z|
1− |z|2

(
1 + |ω(z)|

1 + α− |ω(z)|

)
≤ α|z|

1− |z|2

(
1 + |z|2

1 + α− |z|2

)
which is less than 1 if ϕ4(|z|) > 0. The result follows.

Setting α = 1 gives

Corollary 3.13. If f ∈ G such that f ′′(0) = 0, then Pf is starlike in |z| < r4,
where r4 ≈ 0.64731 is the root in the interval (0, 1] of the equation r4−r3−3r2−
r + 2 = 0.

Theorem 3.14. If f ∈ G(α) for some α ∈ (0, 1], then F ∈ U in the disk

|z| < r5(α), where r5(α) =

√
−α+

√
(1+α)2+1

2
.

Proof. Let f ∈ G(α) and F = Pf be given by (1.1). Then, following the proof
of Theorem 3.10, one has

z

F (z)
− 1 = − αω(z)

1 + α− ω(z)
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and, using this relation, we find that

UF (z) = − αω(z)

1 + α− ω(z)
+

α(1 + α)zω′(z)

(1 + α− ω(z))2

=
α[(1 + α)(zω′(z)− ω(z)) + ω2(z)]

(1 + α− ω(z))2

so that, by (3.2), we easily have as before that

|UF (z)| ≤ α

(1 + α− |ω(z)|)2

(
(1 + α)

(
|z|2 − |ω(z)|2

1− |z|2

)
+ |ω(z)|2

)
=

α

1− |z|2

(
−(α + |z|2)|ω(z)|2 + (1 + α)|z|2

(1 + α− |ω(z)|)2

)
=

αϕ(t)

1− r2
,

where we put |z| = r, |ω(z)| = t and

ϕ(t) =
−(α + r2)t2 + (1 + α)r2

(1 + α− t)2
, 0 ≤ t ≤ r.

We compute that

ϕ′(t) =
2(1 + α)

(1 + α− t)3
[
−(α + r2)t+ r2

]
,

and it is easy to see that ϕ attains its maximum value ϕ(t0), where t0 = r2

α+r2

and ϕ′′(t0) < 0. A calculation gives

ϕ(t0) =
r2(α + r2)

α(1 + α + r2)

and thus, we have

|UF (z)| ≤
αϕ(t0)

1− r2
=

r2(α + r2)

(1− r2)(1 + α + r2)

which is less than 1 if 2r4 + 2αr2 − (1 + α) < 0. This gives that |UF (z)| < 1 for
0 < r ≤ r5(α), where r5(α) is the root of the equation 2r4 + 2αr2 − (1 + α) = 0,
that lies in the interval (0, 1). The conclusion follows.

The choice α = 1 yields the following.

Corollary 3.15. If f ∈ G, then F belongs to the class U in the disk |z| <√√
5−1
2

≈ 0.78615.
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Theorem 3.16. Let f ∈ S with a2 = f ′′(0)/2!. Then F belongs to U in the disk
|z| < r6(|a2|), where r6(|a2|) is the root of the equation ϕ5(r) = 0 that lies in the
interval (0, 1), where

ϕ5(r) = (a+ 1− 1

4
b2)r10 − (5a+ 5− 5

4
b2)r8 + (19a+ 10− 19

4
b2)r6

+ (9a− 10− 9

4
b2)r4 + 5r2 − 1

with b = |a2| and a = 2π2−12
3

≈ 2.57974.

Proof. Let f ∈ S and following the idea of [6, Theorem 4], we consider

(3.17) log
f(z)

z
=

∞∑
n=1

cn(f)z
n,

where cn(f) (n ≥ 1) denote the logarithmic coefficients of f with c1(f) = a2.
Further, for f ∈ S the following sharp inequality is known from the work of Roth
[13, Theorem 1.1]

∞∑
n=1

(
n

n+ 1

)2

|cn(f)|2 ≤
2π2 − 12

3
= a.

By (3.17), we obtain

zf ′(z)

f(z)
− 1 =

∞∑
n=1

ncn(f)z
n

which by the relation (3.4) gives that

UF (z) = −
∞∑
n=1

n(n− 1)cn(f)z
n

and thus, by the Cauchy-Schwarz inequality, we obtain that

|UF (z)| =

∣∣∣∣∣
∞∑
n=2

n(n− 1)cn(f)z
n

∣∣∣∣∣
≤

(
∞∑
n=2

(
n

n+ 1

)2

|cn(f)|2
) 1

2
(

∞∑
n=2

(n2 − 1)2|z|2n
) 1

2

≤
(
a− 1

4
|c1(f)|2

) 1
2
(
|z|4(|z|6 − 5|z|4 + 19|z|2 + 9)

(1− |z|2)5

) 1
2

which is less than 1 whenever,(
a− 1

4
|c1(f)|2

)
|z|4(|z|6 − 5|z|4 + 19|z|2 + 9) < (1− |z|2)5.
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Values of |a2| values of r6(|a2|) Values of |a2| values of r6(|a2|)
0.25 0.361166 1.25 0.370874
0.5 0.362294 1.5 0.375923
0.75 0.364226 1.75 0.382504
1 0.367042 2 0.391124

Table 1. Values of r6(|a2|) for different values of |a2|

If we put r = |z|, then the last inequality is equivalent to ϕ5(r) := ϕ5(r, |a2|) < 0,
where ϕ5(r) is as in the statement. The desired result follows.

Corollary 3.18. Let f ∈ S with f ′′(0) = 0, and a = 2π2−12
3

. Then F belongs to
U in the disk |z| < r6, where r6 ≈ 0.360794 is the root of the equation

(a+ 1)r10 − 5(a+ 1)r8 + (19a+ 10)r6 + (9a− 10)r4 + 5r2 − 1 = 0,

that lies in the interval (0, 1).

Proof. Set a2 = 0 in Theorem 3.16.

It is a simple exercise to see that the values r6(|a2|), as the roots of the equation
ϕ5(r) = 0, increase with increasing values of |a2| ∈ [0, 2]. For a ready reference,
we included in Table 1 a list of values of r6(|a2|) for certain choices of |a2|. This
observation shows that if f ∈ S, then F ∈ U in the disk |z| < r and the lower
bound for r by Corollary 3.18 is r6 ≈ 0.360794. We end the discussion with a
conjecture that the upper bound for the value of r is

√
2 − 1 which is attained

by the Koebe function.
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