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Abstract The article deals with the family U(λ) of all functions f normalized and
analytic in the unit disk such that

∣
∣
(

z/ f (z)
)2

f ′(z) − 1
∣
∣ < λ for some 0 < λ ≤ 1.

The family U(λ) has been studied extensively in the recent past and functions in this
family are known to be univalent in D. However, the problem of determining sharp
bounds for the second coefficients of functions in this family was solved recently by
Vasudevarao and Yanagihara but the proof was complicated. In this article, we first
present a simpler proof of it. We obtain a number of new subordination results for
this family and their consequences. Also, we obtain sharp estimate for the classical
Fekete–Szegö inequality for functions in U(λ). In addition, we show that the family
U(λ) is preserved under a number of elementary transformations such as rotation,
conjugation, dilation, and omitted-value transformations, but surprisingly this family
is not preserved under the n-th root transformation for any n ≥ 2. This is a basic here
which helps to generate a number of new theorems and in particular provides a way
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for constructions of functions from the family U(λ). Finally, we deal with a radius
problem and the paper ends with a coefficient conjecture.

Keywords Analytic, univalent, and starlike functions · Coefficient estimates ·
Subordination · Schwarz’ lemma · Radius problem · Square-root and n-th root
transformation

Mathematics Subject Classification Primary 30C45

1 Introduction and Basic Properties

Let A be the family of all functions f analytic in the open unit disk D = {z ∈ C :
|z| < 1} with the Taylor series expansion f (z) = z +∑∞

k=2 akz
k . Let S denote the

subset of A consisting of functions that are univalent in D. See [5,8] for the general
theory of univalent functions. For 0 < λ ≤ 1, consider the class

U(λ) = { f ∈ A : |U f (z)| < λ in D},

where U f (z) = (

z/ f (z)
)2

f ′(z) − 1. Set U := U(1), U2(λ) := U(λ) ∩ { f ∈ A :
f ′′(0) = 0} and U2 := U2(1). Because f ′(z)(z/ f (z))2 ( f ∈ U) is bounded, it follows
that (z/ f (z))2 f ′(z) �= 0 in D and thus, each f ∈ U is non-vanishing in D\{0}.
It is well recognized that the set � of meromorphic and univalent functions F on
{ζ : 1 < |ζ | < ∞} of the form F(ζ ) = ζ +∑∞

n=1 bnζ
−n plays an indispensable role

in the study of S. For f (z) = 1/F(1/z), ζ = 1/z, we have the formula

F ′(ζ ) =
(

z

f (z)

)2

f ′(z)

and thus, functions f inU are associated with functions F in� such that |F ′(ζ )−1| <

1 for |ζ | > 1. In [1], it was shown that U � S and hence functions in U(λ), that are
generalizations of U , are univalent in D for 0 < λ ≤ 1. Moreover, if f ∈ S and
1/ f is a concave schlicht function with the pole at the origin, then f ∈ U and this
fact is indicated by Aksentév and Avhadiev in [2]. It follows [6,13,18] that neither
U is included in S� nor includes S�. Here S� denotes the class of starlike functions,
namely, functions f ∈ S such that f (D) is starlike with respect to the origin. In 1995,
among many results for the class U , Obradović [12] proved that if f ∈ U then one has
the subordination result

z

f (z)
≺ (1 + z)2, z ∈ D.

For the definition of subordination, denoted by the symbol ≺, we refer to [5,8].
The class U(λ) has found many interesting properties [13–17,21]. It is a simple

exercise to see that each f ∈ U(λ) has the characterization [15]
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z

f (z)
= 1 − a2z + λz

∫ z

0
ω(t) dt, (1)

for some ω ∈ B, where a2 = f ′′(0)/2, and B denotes the class of functions ω analytic
in D such that |ω(z)| ≤ 1 for z ∈ D. Here is a typical set of functions in U ∩S∗ given
by

L =
{

z,
z

(1 ± z)2
,

z

1 ± z
,

z

1 ± z2
,

z

1 ± z + z2

}

,

where L is exactly the set of functions in S having integral coefficients in the power
series expansion, [7]. Since U � S and the Koebe function z/(1 − z)2 belongs to
U , |a2| ≤ 2 is obvious for f ∈ U . The sharp estimation for the second coefficient of
functions inU(λ)was known only recently in [21]. One of our main aims in this article
is to give a simpler and different proof of this result. More precisely, in Theorem 1,
we present a new proof that if U(λ), then |a2| ≤ 1 + λ holds, and, in Theorem 2, we
show that if |a2| = 1 + λ, then f must be of the form

f (z) = z

1 − a2z + λeiθ z2
(2)

for some θ ∈ [0, 2π ].
It is well known that the class S is preserved under a number of elementary trans-

formations, e.g., conjugation, rotation, dilation, disk automorphisms (i.e., the Koebe
transformations), range, omitted-value, and square-root transformations to say a few.

Lemma 1 The class U(λ) is preserved under rotation, conjugation, dilation, and
omitted-value transformations.

Proof Let f ∈ U(λ) and define g(z) = e−iθ f (zeiθ ), h(z) = f (z), and ψ(z) =
r−1 f (r z). Then we see that g′(z) = f ′(zeiθ ), h′(z) = f ′(z), ψ ′(z) = f ′(r z),

(
z

g(z)

)2

g′(z) − 1 =
(

zeiθ

f (zeiθ )

)2

f ′(zeiθ ) − 1,

(
z

h(z)

)2

h′(z) − 1 =
(

z

f (z)

)2

f ′(z) − 1, and

(
z

ψ(z)

)2

ψ ′(z) − 1 =
(

r z

f (r z)

)2

f ′(r z) − 1.

It follows that g, h, and ψ belong to U(λ).
Finally, if f ∈ U(λ) and f (z) �= c for some c �= 0, then the function F defined by

F(z) = c f (z)

c − f (z)
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1262 M. Obradović et al.

obviously belongs to S. Thus, z/F(z) is non-vanishing inD, and it is a simple exercise
to see that

U f (z) =
(

z

f (z)

)2

f ′(z) − 1 = z

f (z)
− z

(
z

f (z)

)′
− 1, z ∈ D. (3)

Using (3), it is easy to see that UF (z) = U f (z) for z ∈ D. Consequently, F ∈ U(λ).
The proof is complete. ��
Corollary 1 Let f ∈ U(λ) for some 0 < λ ≤ 1 and a2 = f ′′(0)/2. If a2 + μ �= 0 for
some complex number μ with |μ| ≤ 1 − λ, then

− 1

a2 + μ
/∈ f (D).

Proof Let f ∈ U(λ). Suppose that there exists a point z0 ∈ D such that f (z0) =
− 1

a2+μ
. Then

z0
f (z0)

= −(a2 + μ)z0

and thus, according to the representation (1), the last relation implies that

1 + μz0 + λz0

∫ z0

0
ω(t) dt = 0

for some ω ∈ B. But, this is not possible because
∣
∣
∣
∣
1 + μz0 + λz0

∫ z0

0
ω(t) dt

∣
∣
∣
∣
≥ 1 − |μ| |z0| − λ|z0|2

≥ 1 − (1 − λ)|z0| − λ|z0|2
= (1 − |z0|)(1 + λ|z0|) > 0.

We complete the proof. ��
According to Corollary 1, the function F defined by

F(z) = f (z)

1 + (a2 + μ) f (z)

belongs to the class U(λ) whenever f ∈ U(λ) and a2 + μ �= 0 with |μ| ≤ 1 − λ. In
particular,

F(z) = f (z)

1 + (a2 + 1 − λ) f (z)

belongs to the class U(λ) if f ∈ U(λ) and a2 �= λ − 1.
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On the other hand, the class U (and hence, U(λ)) is not preserved under the square-
root transformation. For example, we consider the function

f1(z) = z

1 + (1/2)z + (1/3)z3
.

Then we see that z/ f1(z) is non-vanishing in D, and it is a simple exercise to see that
U f1(z) = −(2/3)z3 showing that f1 ∈ U . In particular, f1 is univalent in D. On the
other hand if we consider g1 defined by

g1(z) =
√

f1(z2) = z

√

f1(z2)

z2

then, because S is preserved under the square-root transformation, it follows that g1
is univalent in D, whereas

(
z

g1(z)

)2

g′
1(z) − 1 =

(
z

f1(z)

)3/2

f ′
1(z) − 1 = 1 − (2/3)z6

√

1 + (1/2)z2 + (1/3)z6
− 1

which approaches the value 5
√
6−3
3 > 1 as z → i . This means that Ug1(D) cannot be

a subset of the unit disk D and hence, the square-root transformation g1 of f1 does not
belong to U .

More generally if we consider

f (z) = z

1 + (1/n)z + (−1)n(1/(n + 1))zn+1

then a computation shows that f ∈ U , whereas the n-th root transformation g of f ,
given by

g(z) = n
√

f (zn) = z n

√

f (zn)

zn
,

does not belong to the class U for each n ≥ 2. Thus, for any n ≥ 2, U is not preserved
under the n-th root transformation unlike the class S.

The remaining part of the article is organized as follows. In Sect. 2, we present a
sharp coefficient bound for the second Taylor coefficient of f ∈ U(λ) and prove, in
particular, several subordination results for z/ f (z) implying growth theorems for the
family U(λ). In Sect. 3, we derive subordination results for functions in the family
U(λ) and in Sect. 4, we present a number of consequences of Lemma 1. Section 5
is dedicated to examples of construction principles for functions in U(λ). The aim
of Sect. 6 is the calculation of a radius r0 such that f (r0z)/r0 belongs to U if f is
univalent in the unit disk.
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1264 M. Obradović et al.

2 Second Coefficient for Functions in U(λ)

First, we present a direct approach and later we shall obtain the following result as a
simple consequence of a subordination result (see Theorems 4 and 5).

Theorem 1 Let f ∈ U(λ) for some 0 < λ ≤ 1. Then |a2| ≤ 1 + λ.

Proof Recall the fact that f (z) = z +∑∞
n=2 anz

n ∈ U(λ) if and only if

z

f (z)
= 1 − a2z + λz

∫ z

0
ω(t) dt �= 0, z ∈ D, (4)

where ω ∈ B.
It suffices to prove that for |a2| > 1 + λ and for any ω ∈ B, there exists a z0 ∈ D

such that

1 − a2z0 + λz0

∫ z0

0
ω(t) dt = 0.

We may now assume that

|a2| = 1 + λ

r
, r ∈ (0, 1), (5)

and prove that the map F defined by

a2F(z) = 1 + λz
∫ z

0
ω(t) dt

is a contracting map of Dr into Dr , where Dr = {z : |z| ≤ r}.
We see that for z ∈ Dr ,

|F(z)| = r

1 + λ

∣
∣
∣
∣
1 + λz

∫ z

0
ω(t) dt

∣
∣
∣
∣
≤ r(1 + λ|z|2)

1 + λ
< r.

Now let z1, z2 ∈ Dr . This gives that

|F(z1) − F(z2)| = λr

1 + λ

∣
∣
∣
∣
z1

∫ z1

0
ω(t) dt + (−z1 + z1 − z2)

∫ z2

0
ω(t) dt

∣
∣
∣
∣

≤ λr

1 + λ

(

|z1|
∣
∣
∣
∣

∫ z1

z2
ω(t) dt

∣
∣
∣
∣
+ |z1 − z2|

∣
∣
∣
∣

∫ z2

0
ω(t) dt

∣
∣
∣
∣

)

≤ λr

1 + λ
(|z1| + |z2|)|z1 − z2|

≤ r2|z1 − z2|.

Thus, F is a contracting map of Dr into Dr . This implies, according to Banach’s fixed
point theorem, that there exists a z0 ∈ Dr such that F(z0) = z0 which contradicts
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Geometric Studies on the Class U(λ) 1265

(4) at z0 ∈ D (and thus, (5) is not true for any r ∈ (0, 1)). Hence, we must have
|a2| ≤ 1 + λ for f ∈ U(λ). ��

Determining the sharp bound for the Taylor coefficients |an| (n ≥ 3), for f ∈ U(λ),
remains an open problem.

Next we deal with the equality case.

Theorem 2 If f ∈ U(λ), and |a2| = 1 + λ, then f must be of the form (2) and
especially,

f (z) = z

1 − (1 + λ)eiφz + λe2iφz2
.

Proof Let f ∈ U(λ). Then f must be of the form (4) for some ω ∈ B. If |a2| = 1+λ,
then we must show that ω in (4) takes the form ω(z) = eiθ for some θ ∈ [0, 2π ] and
all z ∈ D.

Assume on the contrary that ω(0) = a ∈ D and f as in (4). Then, according to
Schwarz–Pick’s Lemma applied to ω ∈ B, we get

∣
∣
∣
∣

a − ω(z)

1 − aω(z)

∣
∣
∣
∣
≤ |z|, z ∈ D,

from which we can immediately obtain that

|ω(z)| ≤ |a| + |z|
1 + |az| , z ∈ D,

and thus, we see that

∣
∣
∣
∣

∫ z

0
ω(t) dt

∣
∣
∣
∣
≤
∫ |z|

0

|a| + s

1 + |a|s ds = |z|
|a| − 1 − |a|2

|a|2 log(1 + |az|)

≤ 1

|a| − 1 − |a|2
|a|2 log(1 + |a|) =: v(|a|) < 1.

Now, we let as in Theorem 1,

F(z) = 1 + λz
∫ z
0 ω(t) dt

a2

and define

1 + λv(|a|)
1 + λ

=: r < 1.

For z ∈ Dr we have

|F(z)| ≤ 1 + λrv(|a|)
1 + λ

< r,
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1266 M. Obradović et al.

and for z1, z2 ∈ Dr we get as above

|F(z1) − F(z2)| = λ

1 + λ

∣
∣
∣
∣
z1

∫ z1

z2
ω(t) dt + (z1 − z2)

∫ z2

0
ω(t) dt

∣
∣
∣
∣

≤ 1

2
(|z1| + |z2|)|z1 − z2| ≤ r |z1 − z2|.

Hence F has a fixed point in Dr which contradicts f ∈ U(λ).
At last, we consider for fixed ϕ,ψ ∈ [0, 2π ] the cases

z

f (z)
= 1 − (1 + λ)eiϕz + λeiψ z2 =: p(ϕ, ψ, z)

and prove that p(ϕ, ψ, z) is non-vanishing in the unit disk if and only if ψ = 2ϕ.
Without restriction of generality we may assume ϕ = 0 and prove that among the

functions p(0, ψ, z) the only one non-vanishing in D is the function p(0, 0, z).
To that end we consider the functions

qψ(z) := (1 + λ)z − λeiψ z2.

Since for z = reiτ , r ∈ [0, 1), τ ∈ [0, 2π ], the inequality

Re q ′
ψ(z) = 1 + λ − 2λr cos(ψ + τ) > 0

is valid, the function qψ is univalent in D. In our case qψ(∂D) is a Jordan curve and
qψ(D) is the simply connected domain bounded by this curve. If we consider the curve
qψ(∂D), we see that

∣
∣
∣qψ

(

eiτ
)
∣
∣
∣ ≥ 1 + λ − λ = 1, τ ∈ [0, 2π ],

and the minimum modulus is attained if and only if eiτ = ei(ψ+2τ), i.e., τ = −ψ .
Hence, 1 /∈ qψ(D), if and only if

Re qψ

(

e−iψ) = (1 + λ) cosψ − λ cosψ = cosψ = 1.

This is satisfied if and only if ψ = 0. Thus, f must be of the form (2). ��

3 Subordination

Theorem 3 Let f ∈ U(λ) for some 0 < λ ≤ 1 and a2 = f ′′(0)/2. Then

z

f (z)
+ a2z ≺ 1 + 2λz + λz2.
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Geometric Studies on the Class U(λ) 1267

Proof From (1), we observe that each f ∈ U(λ) has the form

z

f (z)
= 1 − a2z + λψ(z), ψ(z) = z

∫ z

0
ω(t) dt, (6)

where ω ∈ B. Since |ω(z)| ≤ 1 for z ∈ D and φ(z) = ψ(z)/z has the property that
φ(0) = 0 and |φ(z)| ≤ 1, the classical Schwarz’ lemma shows that |ψ(z)| ≤ |z|2 in
D. Again, because

z2

2
≺ z + z2

2
and |ψ(z)| ≤ |z|2,

it follows that ψ(z) ≺ 2z + z2 in D. The desired conclusion follows from (6). ��
As remarked earlier, our next result includes a proof of Theorem 1 which will be

stated as a corollary below.

Theorem 4 If f ∈ U(λ) for λ ∈ (0, 1], then
f (z)

z
≺ 1

1 + (1 + λ)z + λz2
, z ∈ D, (7)

or equivalently

z

f (z)
≺ 1 + (1 + λ)z + λz2, z ∈ D;

and, for |z| = r,

∣
∣
∣
∣

z

f (z)
− 1

∣
∣
∣
∣
≤ −1 + (1 + λr)(1 + r).

In particular, if f ∈ U then z
f (z) ≺ (1 + z)2 in D.

Proof It suffices to prove the theorem for λ ∈ (0, 1). Assume that f ∈ U(λ) and
s(z) = 1+ (1+ λ)z + λz2. First we observe that s(z) is univalent in D for λ ∈ (0, 1).
Indeed for z1, z2 in the closed unit disk D, we have

∣
∣
∣
∣

s(z1) − s(z2)

z1 − z2

∣
∣
∣
∣
= |1 + λ + λ(z1 + z2)| ≥ 1 + λ − 2λ > 0

(and also Re s′(z) ≥ 1 + λ − 2λ > 0 in D) showing that s(z) is univalent in D.
We need to show that z

f (z) ≺ s(z). Suppose on the contrary that z
f (z) is not subor-

dinated to s(z). As an application of [11, Lemma 1] (see also [10]), there exist points
z0 = r0eiθ0 ∈ D and ζ0 ∈ ∂D such that

z0
f (z0)

= 1 + (1 + λ)ζ0 + λζ 2
0 .
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1268 M. Obradović et al.

On the other hand, we know from [21, Theorem 3.2] that z0
f (z0)

lies in the union of the
images of the disks {z : |z| ≤ r0} under the functions

z

g(z)
= 1 + (1 + λeiτ )z + λeiϕz2 (8)

where one has to consider only those g belonging to U(λ). Hence, for our purposes it
is sufficient to prove that the functions of the type (8), where g is restricted as above,
are subordinated to the function s(z). We observe that functions of the type g given
by (8) belong to U(λ) if and only if

0 �= 1 + (1 + λeiτ )z + λeiϕz2, z ∈ D. (9)

Using the abbreviation

1 + λeiτ = |1 + λeiτ |eiγ

we get

(1 + λeiτ )z + λeiϕz2 = ei(2γ−ϕ)
(

|1 + λeiτ |ei(ϕ−γ )z + λe2i(ϕ−γ )z2
)

.

Hence, (9) is equivalent to

−e−i(2γ−ϕ) �= |1 + λeiτ |u + λu2, u ∈ D.

In the following we let β = ϕ − 2γ and

l = |1 + λeiτ | ∈ [1 − λ, 1 + λ].

For u = eiα and x + iy = leiα + λe2iα, we have

x + λ = cosα(l + 2λ cosα) and y = sin α(l + 2λ cosα). (10)

This is the parametrization of a limaçon with center (−λ, 0) (see Fig. 1 for the
graph of some limaçons parameterized by (10) for various values of λ and l). The
implicit equation of this limaçon derived from the above equations is the following

(

x2 + y2 − λ2
)2 = l2

(

x2 + y2 + λ2 + 2λx
)

.

The intersection points (x, y) of the limaçon and the unit circle can be got from this
equation and

(

1 − λ2
)2 − l2

(

1 + λ2
)

2λl2
= x =: − cosβ1.

Hence, for |β| ≤ β1 the functions g defined by (8) belong to U(λ).
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Fig. 1 The graph of some limaçons parameterized by (10) for certain values of λ and l
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1270 M. Obradović et al.

For l = 1 + λ, the case ϕ = 0 is the only one that produces a member of U(λ) in
(8), whereas for l = 1 − λ all functions g defined by (8) belong to this family.

Now, we turn to our second duty. Since s is injective in D, we have to show that the
image of D under the functions z/g defined by (8) with |β| ≤ β1 is contained in the
domain bounded by the limaçon

1 + (1 + λ)eiα + λe2iα, α ∈ [0, 2π ].

By calculations similar to the above ones, we see that this is equivalent to the assertion
that for |β| ≤ β1 the points

{

lz + λz2 : z ∈ D

}

,

are contained in the set
{

w : w = eiβ
(

(1 + λ)u + λu2
)

, u ∈ D

}

.

This is a simple consequence of the fact that (−1, 0) is the point nearest to the origin
of the limaçon (see Fig. 2)

(1 + λ)eiα + λe2iα, α ∈ [0, 2π ],

and that the point of intersection of this limaçon turned around with angle β1, the unit
disk and the limaçon

leiα + λe2iα, α ∈ [0, 2π ],

is the point e−iβ1 . This completes the proof of (7).
For the proof of the second part, by the definition of subordination, we simply

rewrite (7) as

z

f (z)
= 1 + (1 + λ)ω(z) + λω2(z),

where ω is analytic in D and |ω(z)| ≤ |z|. It follows that from the last equality that

∣
∣
∣
∣

z

f (z)
− 1

∣
∣
∣
∣
≤ −1 + 1 + (1 + λ)|z| + λ|z|2 = −1 + (1 + λ|z|)(1 + |z|)

and the proof is complete. ��
According to Theorem 4, one has the estimate

∣
∣
∣
∣

z

f (z)

∣
∣
∣
∣
≤ (1 + λr)(1 + r) for |z| = r

for f ∈ U(λ), λ ∈ (0, 1].
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Fig. 2 Graph of f (λ) = 1 + (1 + λ)eiα + λe2iα for certain values of λ, where 0 ≤ α ≤ 2π

Remark We remark that Theorem 1 follows from Theorem 4. Indeed, there is nothing
to prove if λ = 1. Thus, if f ∈ U(λ) for some 0 < λ < 1, then we have

z

f (z)
≺ 1 + (1 + λ)z + λz2.

By Rogosinski’s theorem [19] (see also [5, Theorem 6.2]), it follows that

1 + |a2|2 ≤ 1 + (1 + λ)2

which implies that |a2| ≤ 1 + λ for λ ∈ (0, 1).
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Under a mild restriction on f , one could improve the bound |a2| ≤ 1 + λ by
establishing a region of variability of a2. In the next result we deal with this.

Theorem 5 Let f ∈ U(λ) for some 0 < λ ≤ 1, and such that

z

f (z)
�= (1 − λ)(1 + z), z ∈ D. (11)

Then, we have

z

f (z)
− (1 − λ)z ≺ 1 + 2λz + λz2 (12)

and the estimate |a2−(1−λ)| ≤ 2λ holds. In particular, |a2| ≤ 1+λ and the estimate
is sharp as the function fλ(z) = z/((1 + λz)(1 + z)) shows.

Proof Notice that there is nothing to prove if we allow λ = 1. Let f ∈ U(λ) for some
λ ∈ (0, 1). Then, by the assumption (11), the function g is defined by

z

g(z)
= z

f (z)
− (1 − λ) (1 + z), (13)

has the property that z/g(z) is non-vanishing and g′(0) = 1/λ and hence, it is easy
to see that G = λg belongs to U . Consequently, by the last subordination relation in
Theorem 4, we find that

z

G(z)
= 1

λ

(
z

f (z)
− (1 − λ)(1 + z)

)

= 1 − a2 − (1 − λ)

λ
z + · · · ≺ (1 + z)2,

which is obviously equivalent to (12). The coefficient inequality |(a2−(1−λ))/λ| ≤ 2
is a consequence of Rogosinski’s theorem. Thus, |a2 − (1 − λ)| ≤ 2λ holds. ��

It is not clear whether the condition (11) is necessary for a function f to belong to
the family U(λ).

Theorem 6 Suppose that f (z) = z+∑∞
n=2 anz

n belongs to U(λ) for some 0 < λ ≤
1. Then, we have the sharp estimate

|a3 − a22 | ≤ λ.

Proof It is a simple exercise to see that

(
z

f (z)

)2

f ′(z) = 1 +
(

a3 − a22

)

z2 + · · · = 1 + λz2ω(z),

where ω ∈ B, i.e., ω is analytic in D such that |ω(z)| ≤ 1 for z ∈ D. Hence, we must
have |a3−a22 | ≤ λ.Equality is attained if and only ifω(z) = eiθ for some θ ∈ [0, 2π ],
i.e., for functions f ∈ U(λ) of the form
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f (z) = z

1 − a2z − λeiθ z2
. (14)

To get all extremal functions, we consider all those functions, where we may assume
a2 ≥ 0. The condition

1 − a2z − λeiθ z2 �= 0

is equivalent to this condition. It is clear that this is fulfilled if a2 ≤ 1 − λ. For
1−λ < a2 ≤ 1+λwe get by a reasoning similar to that used in the proof of Theorem
4 that the condition is fulfilled if and only if

cos θ ≤
(

1 − λ2
)2 − a22

(

1 + λ2
)

2λa22
. (15)

Hence, the extremal functions are those of the form (14), where in addition (15) is
satisfied. ��

We observe that for λ = 1, the above inequality leads to the well-known estimate
|a3 − a22 | ≤ 1 which holds for f ∈ S and the Koebe function k(z) = z/(1− z)2 gives
the equality.

4 Marx-Type Implication for Functions in U
According to Theorem 4, one has

Re

√

f (z)

z
>

1

2
, z ∈ D,

if f ∈ U . This result is known to be true also for functions in the family S� of
starlike functions in D (see Marx [9]) although the class U neither contains S� nor
is contained in S�. On the other hand, since the structure of the class U allows us to
determine the lower bound for the functional Re

√
f (z)/z, as a function of the second

Taylor coefficient a2, it is natural to solve the problem of finding α = α(|a2|) ≥ 1/2
such that f ∈ U implies that

Re

√

f (z)

z
> α, z ∈ D.

In the next theorem, we present a solution to this problem. Also, in our result below,
we observe that α(2) = 1/2 which is indeed the correct bound as the Koebe function
z/(1− z)2 shows. However, we could not claim that the bound α(|a2|) is best possible.
Theorem 7 Let f ∈ U and a2 = f ′′(0)/2. Then

Re

√

f (z)

z
> α(|a2|) for z ∈ D,
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where

α(x) = 20 + x − √
x2 + 40x + 16

24
, 0 ≤ x ≤ 2. (16)

Proof We recall fromLemma 1 that the familyU is invariant under rotation and thus, it
suffices to prove the theorem for functions f ∈ U such that a2 is real and non-negative
and thus, throughout the proof, we may assume that 0 ≤ a2 ≤ 2. Observe that α(x) is
a decreasing function of x ∈ [0, 2] with α([0, 2]) = [1/2, 2/3]. We now let

√

f (z)

z
= p(z) = 1 + βz + · · · , (17)

where p is analytic in D, p(0) = 1 and a2 is fixed and 0 ≤ β := (a2/2) ≤ 1.
We wish to prove that

p(z) ≺ q(z) := 1 + (1 − 2α)z

1 − z
= 1 + 2(1 − α)z + · · · ,

where α = α(a2) is defined by (16). We prove this by the method of contradiction.
Suppose that p(z) is not subordinate to q(z). Then, according to the result of Miller

and Mocanu [10,11] (see also [4]), there exist points z0 ∈ D and ζ0 ∈ ∂(D)\{1} such
that

p(z0) = q(ζ0) and z0 p
′(z0) = mζ0q

′(ζ0), (18)

where

m ≥ 1 + q ′(0) − β

q ′(0) + β
= 8(1 − α)

4(1 − α) + a2
. (19)

We notice that 0 ≤ β = 1
2a2 ≤ q ′(0) = 2(1 − α). Also, we see that

q(ζ0) = α + (1 − α)
1 + ζ0

1 − ζ0
=: α + iρ, ρ ∈ R, (20)

and a computation gives

ζ0q
′(ζ0) = 2(1 − α)ζ0

(1 − ζ0)2
= −

[

(1 − α)2 + ρ2
]

2(1 − α)
. (21)

Further, using (17) and (3), it follows easily that

U f (z) = 1

p2(z)
+ 2zp′(z)

p3(z)
− 1

123



Geometric Studies on the Class U(λ) 1275

and thus, by (18), we obtain that

U f (z0) = 1

q3(ζ0)

[

q(ζ0) + 2mζ0q
′(ζ0) − q3(ζ0)

]

.

By (20) and (21), we deduce that

|U f (z0)|2 = 1

|q(ζ0)|6
∣
∣
∣q(ζ0) + 2mζ0q

′(ζ0) − q3(ζ0)
∣
∣
∣

2

= 1

(α2 + ρ2)3

∣
∣
∣
∣
∣
α + iρ − m

[

(1 − α)2 + ρ2
]

1 − α
− (α + iρ)3

∣
∣
∣
∣
∣

2

and a calculation shows that |U f (z0)|2 = �(ρ2), where

�(t) = (a + bt)2 + ct (d + t)2

(1 − α)2(α2 + t)3
,

with

t = ρ2, a = (1 − α)2(m − α(1 + α)), b = m − 3α(1 − α),

c = (1 − α)2, d = 1 − 3α2.

Clearly the proof will be completed if we can show that �(t) ≥ 1 for all t ≥ 0 under
the assumption on α = α(a2) given by (16). The inequality �(t) ≥ 1 is equivalent to

At2 + Bt + C ≥ 0, (22)

where t ≥ 0,

A = b2 + 2cd − 3α2(1 − α)2, B = 2ab + cd2 − 3α4(1 − α)2,

C = a2 − α6(1 − α)2.

In order to prove the inequality (22), it suffices to show that A, B,C are non-negative
for α ∈ [1/2, 2/3]. We begin to observe by (19) that

a − α3(1 − α) = (1 − α)2(m − α(1 + α)) − α3(1 − α)

≥ (1 − α)2
(

8(1 − α)

4(1 − α) + a2
− α(1 + α)

)

− α3(1 − α) = 0,

provided

8(1 − α)

4(1 − α) + a2
− α(1 + α) = α3

1 − α
, (23)
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which is the same as 12α2 − α(20 + a2) + 8 = 0. Solving this equation gives the
solution α = α(a2) expressed by (16), and hence, C ≥ 0. It remains to show that
A ≥ 0, B ≥ 0 for α ∈ [1/2, 2/3]. The last inequality shows that a ≥ α3(1 − α) and

b = m − 3α(1 − α)

≥ 8(1 − α)

4(1 − α) + a2
− 3α(1 − α), by (19),

= α

1 − α
− 3α(1 − α), by (23),

= α
[

1 − 3(1 − α)2
]

1 − α
> 0 for α ∈ [1/2, 2/3].

Using these facts, we can prove that A ≥ 0 for α ∈ [1/2, 2/3]. We now find that

A = b2 + 2cd − 3α2(1 − α)2

≥
(

α

1 − α
− 3α(1 − α)

)2

+ 2(1 − α)2(1 − 3α2) − 3α2(1 − α)2

= α2

(1 − α)2
− 6α2 + 2(1 − α)2

= (2α − 1)2(2 − α2)

(1 − α)2

which is non-negative for α ∈ [1/2, 2/3]. Similarly, we have

B = 2ab + cd2 − 3α4(1 − α)2

≥ 2α3(1 − α)

(
α

1 − α
− 3α(1 − α)

)

+ (1 − α)2(1 − 3α2)2 − 3α4(1 − α)2

= (2α − 1)2(1 + 2α − α2)

which is again non-negative for α ∈ [1/2, 2/3].
Finally, we have shown that �(t) ≥ 1, i.e., |U f (z0)| ≥ 1, which is a contradiction

to |U f (z)| < 1 inD and hence to the assumption that p is not subordinate to q. Hence,
we must have p(z) ≺ q(z) in D which is equivalent to the desired result. ��

5 Applications of Elementary Transformations

Because each f ∈ U is non-vanishing in D\{0}, z/ f (z) can be written as

z

f (z)
= 1 +

∞
∑

k=1

bkz
k, z ∈ D. (24)
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One of the sufficient conditions for functions f of this form to belong to the class U
is that (see [13,15])

∞
∑

n=2

(n − 1)|bn| ≤ 1. (25)

Theorem 8 Let f ∈ A and

z

f (z)
= 1 + b1z +

∞
∑

n=2

(−1)nbnz
n,

where bn ≥ 0 for n ≥ 2. Then f ∈ S if and only if
∑∞

n=2(n − 1)bn ≤ 1.

Proof For f ∈ S, by Lemma 1, we have that g(z) = − f (−z) ∈ S. Since

z

− f (−z)
= 1 − b1z +

∞
∑

n=2

bnz
n,

then by the characterization given in [16] (see also the survey article [17]), g ∈ U if
and only if

∑∞
n=2(n − 1)bn ≤ 1 if and only if g ∈ S. The desired conclusion follows.

��
Problem 1 It will be interesting to find necessary and/or sufficient conditions (as in
[16]) for the function f ∈ A of the following form to be univalent in D:

z

f (z)
= 1 + b1z +

∞
∑

n=2

(−1)n−1bnz
n or

z

f (z)
= 1 + b1z −

∞
∑

n=2

bnz
n,

where bn ≥ 0 for n ≥ 2.

A function f analytic in D is called n-fold symmetric (n = 1, 2, . . .) if

f (ei2π/nz) = ei2π/n f (z) for z ∈ D.

In particular, every f ∈ A is onefold symmetric and every odd f is twofold symmetric.
Every n-fold symmetric function f (z) = z +∑∞

k=2 akz
k can be written as

f (z) = z + an+1z
n+1 + a2n+1z

2n+1 + · · · .

Properties of various geometric subclasses of n-fold symmetric functions from S have
been investigated bymany authors [8].We now investigate certain analogous problems
associated with the class U .
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Theorem 9 Let f ∈ U be given by (24). Then for each n ≥ 2, the function fn(z)
defined by

z

fn(z)
= 1 +

∞
∑

k=1

bnkz
nk

also belongs to the class U , whenever z/ fn(z) �= 0 in D. More generally, if f ∈ U(λ)

is given by (24), then fn ∈ U(λ) whenever it is non-vanishing in D.

Proof Let f ∈ U with φ(z) = z/ f (z). Then φ(z) is non-vanishing and analytic in D

and has the form

z

f (z)
= φ(z) = 1 +

∞
∑

k=1

bkz
k .

Now,we define�n by�n(z) = z/ fn(z) andω = ei2π/n . Then, {ωk : k = 1, 2, . . . , n}
is the set of all n n-th roots of unity. It is a simple exercise to see that

�n(z) := 1

n

n
∑

k=1

φ(ωk z) = 1

n

n
∑

k=1

z

ω−k f (ωk z)
= 1 +

∞
∑

k=1

bnkz
nk .

Since f ∈ U , by Lemma 1, for each k, the function Fk(z) defined by Fk(z) =
ω−k f (ωk z) clearly belongs to the class U . By calculation and the relation (3), it
follows that

U fn (z) = 1

n

n
∑

k=1

UFk (z) = 1

n

n
∑

k=1

[(
ωk z

f (ωk z)

)2

f ′(ωk z) − 1

]

and thus, |U fn (z)| < 1 in D for each n ≥ 2. The proof is complete. ��
From the proof of the following corollary, we see that the non-vanishing condition

fn(z) �= 0 in D in the above theorem can be dropped for the case n = 2.

Corollary 2 If f ∈ U , then the odd function f2 defined by

z

f2(z)
= 1

2

(
z

f (z)
+ z

− f (−z)

)

also belongs to the class U . More generally, if f ∈ U(λ), then f2 ∈ U(λ).

Proof Let f ∈ U . Then, by Lemma 1, F defined by F(z) = − f (−z) belongs to U .
Moreover, the condition f (z) − f (−z) �= 0 for z ∈ D \ {0} is satisfied, because if
f (z) = f (−z) for some z ∈ D \ {0}, then, since f is univalent, we have z = −z, i.e.,
z = 0, which is a contradiction. Consequently,

z

f2(z)
= z2

f (z) f (−z)

(
f (z) − f (−z)

2

)
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is non-vanishing in D. Moreover, a calculation gives that if f ∈ U is given by (24),
then f2 takes the form

z

f2(z)
= 1 +

∞
∑

k=1

b2k z
2k

and thus, by Theorem 9, f2 ∈ U . ��
From the proof of Theorem 9, the following general result could be proved easily

and so, we omit its details.

Corollary 3 Let gk ∈ U(λk) for k = 1, 2, . . . , n and μk, λk ∈ [0, 1] for k =
1, 2, . . . , n such that μ1λ1 + · · · + μnλn = 1. If � defined by

�(z) =
n
∑

k=1

μk
z

gk(z)
= z

�(z)

is non-vanishing in D, then the function �(z) = z
�(z) belongs to the class U .

Proof It suffices to observe that

U�(z) =
n
∑

k=1

μkUgk (z)

and the rest follows by taking themodulus on both sides and use the triangle inequality.
��

Corollary 4 Let f ∈ U be given by (24). For θ ∈ [0, 2π), the functions f3 and f4
defined by

z

f3(z)
= 1 +

∞
∑

n=1

bn cos(nθ)zn and
z

f4(z)
= 1 +

∞
∑

n=1

bn sin(nθ)zn

also belong to the class U (whenever z/ f3 and z/ f4 are non-vanishing in D).

Proof Lemma 1 shows that the functions g1(z) = e−iθ f (zeiθ ) and g2(z) =
eiθ f (ze−iθ ) belong to the class U and so does its convex combination (by Corol-
lary 3 with μ1 = μ2 = 1/2 and λ1 = λ2 = 1). Moreover, it follows from the power
series representation of z/ f (z) that

z

f3(z)
= 1

2

(
z

e−iθ f (zeiθ )
+ z

eiθ f (ze−iθ )

)

= 1 +
∞
∑

n=1

bn cos(nθ)zn

from which we conclude that f3 ∈ U , by Corollary 3.
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In order to prove that f4 belongs to U , we first observe that

z

f4(z)
= 1 + 1

2i

(
zeiθ

f (zeiθ )
− ze−iθ

f (ze−iθ )

)

= 1 +
∞
∑

n=1

bn sin(nθ)zn,

and, by a computation, we have

∣
∣U f4(z)

∣
∣ =

∣
∣
∣
∣

1

2i

(

U f (ze
iθ ) −U f (ze

−iθ )
)
∣
∣
∣
∣
≤ 1

2

(

|U f (ze
iθ )| + |U f (ze

−iθ )|
)

< 1,

showing that f4 ∈ U . ��
In particular, if we set θ = π/2, then f3(z) and f4(z) take the forms

z

f3(z)
= 1 − b2z

2 + b4z
4 − · · · and

z

f4(z)
= 1 + b1z − b3z

3 + · · · ,

respectively, and thus, the above corollary provides us with new functions from U .
Theorem 10 Let f ∈ U be given by (24). Then the function g defined by

z

g(z)
= 1 +

∞
∑

k=1

Re {bk}zk,

with z/g(z) �= 0 in D, also belongs to the class U . More generally, if f ∈ U(λ), then
g ∈ U(λ).

Proof Let f ∈ U . Then, by Lemma 1, h(z) = f (z) belongs to U . Now, we observe
that

z

g(z)
= 1

2

⎡

⎣

(

1 +
∞
∑

k=1

bkz
k

)

+
(

1 +
∞
∑

k=1

bkzk
)⎤

⎦ = 1

2

(
z

f (z)
+ z

h(z)

)

and thus, we easily have

Ug(z) = z

g(z)
− z

(
z

g(z)

)′
− 1 = U f (z) +Uh(z)

2
.

Clearly, the last relation implies that g ∈ U . ��
Theorem 11 Let f ∈ U be given by (24). Then the function F defined by

z

F(z)
= 1 +

∞
∑

n=1

b2nz
n (26)

belongs to the class U . More generally, if f ∈ U(λ) is given by (24), then F ∈ U(λ).
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Proof If f ∈ U , then we have the representation

z

f (z)
= 1 + b1z + z

∫ z

0

ω(t)

t2
dt, b1 = −a2, (27)

where ω ∈ B1. Here B1 denotes the class of functions ω analytic in D such that
ω(0) = ω′(0) = 0 and |ω(z)| < 1 for z ∈ D. If we put

ω1(z) =
∫ z

0

ω(t)

t2
dt,

then ω1 is analytic in D, ω1(0) = 0 and |ω1(z)| ≤ |z|. Moreover, |ω′
1(z)| =

|ω(z)/z2| ≤ 1 for every z ∈ D. Consequently, for f ∈ U one has

z

f (z)
= 1 + b1z + zω1(z). (28)

and thus, the function � defined by

�(z) = 1

2

(
z

f (z)
+ −z

f (−z)

)

= 1 + z

2
(ω1(z) − ω1(−z))

is analytic in D and |�(z) − 1| < 1 for z ∈ D. Consequently, �(z) �= 0 in D,

�(z) = 1 +
∞
∑

n=1

b2nz
2n

and observe that F defined by

z

F(z)
= �(

√
z) = 1 − zW (z) := 1 + z

2

(
ω1(

√
z)√

z
− ω1(−√

z)√
z

)

is analytic in D, where W is analytic in D. Next, we observe that

UF (z) = z

F(z)
− z

(
z

F(z)

)′
− 1 = z2W ′(z)

and, in view of the fact that |ω(z)| ≤ |z|2 and |ω′
1(z)| = |ω(z)/z2| ≤ 1, we can easily

see that |z2W ′(z)| < 1 in D, which means that F ∈ U . ��

6 Some Radius Problem

When we say that f ∈ U in |z| < r it means that the inequality |U f (z)| < 1 holds
in the subdisk |z| < r of D, which is indeed same as saying that r−1 f (r z) belongs to
the class U .
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Theorem 12 Let f ∈ S and f be given by (24). Then the function F defined by

z

F(z)
= 1 +

∞
∑

n=1

b2nz
n

belongs to the classU at least in the disk |z| < r0 = 0.778387 (implying F is univalent
in |z| < r0), where r0 ∈ (0, 1) is the root of the equation

r(1 − r2)2

2
log

(
1 + r

1 − r

)

− (4 + r4 − 7r2) = 0. (29)

Proof Assume that f ∈ S and is given by (24). In order to show that F ∈ U in the
disk |z| < r0, we need to prove that the function G defined by G(z) = r−1F(r z)
belongs to U in D for each 0 < r ≤ r0. Thus, we begin to consider the function G
defined by

z

G(z)
= 1 +

∞
∑

n=1

b2nr
nzn,

where 0 < r ≤ 1. To prove G ∈ U , by (25), it suffices to show that

S =:
∞
∑

n=2

(n − 1)|b2n|rn ≤ 1

for 0 < r ≤ r0. To do this, we need to recall first the following inequality, namely, for
f ∈ S, the necessary coefficient inequality ([8, Theorem 11 on p. 193 of Vol. 2])

∞
∑

n=2

(n − 1)|bn|2 ≤ 1.

This in particular gives that
∑∞

n=2(2n − 1)|b2n|2 ≤ 1. Now, we find that

S =
∞
∑

n=2

√
2n − 1|b2n| (n − 1)√

2n − 1
rn

≤
( ∞
∑

n=2

(2n − 1)|b2n|2
) 1

2
( ∞
∑

n=2

(n − 1)2

2n − 1
r2n
) 1

2

≤
( ∞
∑

n=2

(n − 1)2

2n − 1
r2n
) 1

2

.
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By a computation we see that

∞
∑

n=2

(n − 1)2

2n − 1
r2n = 1

2

∞
∑

n=2

(

n − 3

2
+ 1

2(2n − 1)

)

r2n

= 1

2

(
r2

(1 − r2)2
− r2

)

− 3r4

4(1 − r2)
− r2

4
+ r

8
log

(
1 + r

1 − r

)

= r2(3r2 − 1)

4(1 − r2)2
+ r

8
log

(
1 + r

1 − r

)

and thus, S ≤ 1 holds provided

r2(3r2 − 1)

4(1 − r2)2
+ r

8
log

(
1 + r

1 − r

)

≤ 1,

i.e., if 0 < r ≤ r0 = 0.778387, where r0 is the root of the Eq. (29). It means that F is
in the class U in the disk |z| < r0. ��

In [14], as a corollary to a general result, it has been shown that |z| < 1/
√
2 is the

largest disk centered at the origin such that every function in S is included in U . More
precisely (see also [20]),

sup
{

r > 0 : r−1 f (r z) ∈ U for every f ∈ S
}

= 1/
√
2.

In this case, 1/
√
2 is referred to as the U-radius in S. Recently, Ali and Alarifi [3]

investigated U-radius problems for a number of subclasses of analytic functions.
We conclude the paper with the following conjecture.

Conjecture 1 If f ∈ U(λ) for some 0 < λ ≤ 1. Then |an| ≤ ∑n−1
k=0 λk for n > 2.

There is nothing to prove if λ = 1. Also, we have verified the truth of the conjecture
for n = 3.

Acknowledgments The work of the first author was supported by MNZZS Grant, No. ON174017, Serbia.
The second author is currently on leave from Indian Institute of Technology Madras, India.

References

1. Aksentév, L.A.: Sufficient conditions for univalence of regular functions (Russian). Izv. Vysš. Učebn.
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12. Obradović, M.: Starlikeness and certain class of rational functions. Math. Nachr. 175, 263–268 (1995)
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