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IMPROVED UPPER BOUND OF THIRD ORDER HANKEL

DETERMINANT FOR OZAKI CLOSE–TO–CONVEX FUNCTIONS

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI ∗

Abstract. In this paper we improve the upper bound of the third order Hankel determinant for
the class of Ozaki close-to-convex functions. The sharp bound is conjectured.

1. Introduction and preliminaries

Univalent functions are functions which are analytic, one-on-one and onto on a
certain domain. Their study for more than a century shows that problems are sig-
nificantly more difficult to be solved over the general class instead of its subclasses.
This is also the case for the upper bound of the Hankel determinant, a problem re-
discovered and extensively studied in recent years. Over the class A of functions
f (z) = z+a2z2 +a3z3 + · · · analytic on the unit disk, this determinant is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣
,

where q � 1 and n � 1. The second order Hankel determinants is

H2(2) =
∣∣∣∣ a2 a3

a3 a4

∣∣∣∣ = a2a4−a2
3,

and the third order one is

H3(1) =

∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4−a2
3)−a4(a4−a2a3)+a5(a3−a2

2).

For the general class S of univalent functions in the class A tehre are very
few results concerning the Hankel determinant. The best known for the second order
case is due to Hayman ([5]), saying that |H2(n)| � An1/2 , where A is an absolute
constant, and that this rate of growth is the best possible. Another one is [15], where
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it was proven that |H2(2)| � A , with 1 � A � 11
3 = 3,66 . . . and |H3(1)| � B , with

4
9 � B � 32+

√
285

15 = 3.258796 · · ·.
There are much more results for the subclasses of S . Namely, for starlike func-

tions the upper bounds for the second and the third order Hankel determinant are 1
([7]) and = 0.777987 . . . ([13]), respectively, while for the same bounds for the convex
functions they are 1/8 ([7]) and 4

135 = 0.0296 . . . ([8]). The estimates for the second
order case are sharp, while of the third order are not, but are best known. For the class
R ⊂ A of functions with bounded turning satisfying Re f ′(z) > 0, z ∈ D , we have
sharp estimate |H2(1)| � 4

9 = 0.444 . . . , ([6]) and probably non-sharp |H3(1)| � 207
540 =

0.38333 . . . ([14]). Other related work is published in [9, 10, 11, 17].
In this paper we study two classes introduced by Ozaki.
The first one is the class of Ozaki close-to-convex functions

F = { f ∈ A : Re

[
1+

z f ′′(z)
f ′(z)

]
> −1

2
, z ∈ D}

introduced by Ozaki in 1941 ([16]) and it is a subclass of the class of close-to-convex
functions. For this class the non-sharp estiamtes are known |H2(2)| � 21

64 ([12]) and

|H3(1)| � 180+69
√

15
32

√
15

= 3.6086187 . . . ([1]). We will significantly improve the second
estimate to the value 0.1375 . . .. More about this class one can find in [21, Sect. 9.5].

The other class that we will be considered is

G = { f ∈ A : Re

[
1+

z f ′′(z)
f ′(z)

]
<

3
2
, z ∈ D},

Ozaki in [16] introduced this class and proved that it is subclass of S . Later, Sakaguchi
in [19] and R. Singh and S. Singh in [20] showed, respectively, that functions in G
are close-to-convex and starlike. Again in [12] it was shown that |H2(2)| � 9

320 =
0.028125 . . .. Here we will give estimate of the third Hankel determinant.

In the studies given in this paper we use approach based on the estimates of the
coefficients of Shwartz function due to Prokhorov and Szynal (Lemma 1 given below).
This approach is essentially different than the commonly used and is the main reason
for the improvement in the estimate for the class F mentioned above. Usually the
research is done using a result on coefficients of Carathéodory functions (functions
from with positive real part on the unit disk) that involves Toeplitz determinants (see
[21, Theorem 3.1.4, p.26] and [4]).

Here is the result of Prokhorov and Szynal that we will need. In more general form
it can be found in [18, Lemma 2].

LEMMA 1. Let ω(z) = c1z+ c2z2 + · · · be a Schwarz function, i.e., be analytic in
the unit disk and |ω(z)| < 1 when z ∈ D and μ and ν be real numbers. If 1

2 � |μ |� 2
and 4

27 (|μ |+1)3− (|μ |+1) � ν � 1 , then
∣∣c3 + μc1c2 + νc3

1

∣∣ � 1.

We will also need the following, almost forgotten result of Carleson ([2]).

LEMMA 2. Let ω(z) = c1z+ c2z2 + · · · be a Schwarz function. Then

|c2| � 1−|c1|2 and |c4| � 1−|c1|2−|c2|2.
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2. Main results

We begin with improvement of the upper bound of the third Hankel determinant
for the class F of Ozaki close-to-convex functions.

THEOREM 1. Let f ∈ F be of the form f (z) = z+a2z2 +a3z3 + · · · . Then

|H3(1)| � 1
8

= 0.125.

Proof. For a function f ∈ F there exists a Schwarz function ω(z) = c1z+c2z2 +
· · · such that

1+
z f ′′(z)
f ′(z)

= −1
2

+
3
2
· 1+ ω(z)
1−ω(z)

, (1)

i.e.,
[z f ′(z)]′ · [1−ω(z)] = [1+2ω(z)] · f ′(z).

By equating the coefficients in the above expression we receive

a2 =
3
2
c1,

a3 =
1
2
(4c2

1 + c2),

a4 =
1
2
(2c3 +13c1c2 +20c3

1),

a5 =
3
40

(2c4 +12c1c3 +46c2
1c2 +40c4

1 +5c2
2).

(2)

Using (2) we have

H3(1) =
1

320

[
4c4

1c2 +8c3
1c3 +4c1c2c3−23c2

1c
2
2−12c2

1c4 +20c3
2−20c2

3 +24c2c4
]

and

320H3(1) = −20

[
c2
3−

1
5
c1c2c3 +

(
1
10

)2

c2
1c

2
2

]
+

1
5
c2
1c

2
2−23c2

1c
2
2

+8c3
1

(
c3 +

1
2
c1c2

)
+20c3

2 +12c4(2c2− c2
1).

From here

320|H3(1)| � 20

∣∣∣∣c3 − 1
10

c1c2

∣∣∣∣
2

+
114
5

|c1|2|c2|2 +8|c1|3
∣∣∣∣c3 +

1
2
c1c2

∣∣∣∣
+20|c2|3 +12

(
2|c2|+ |c1|2

) |c4|.
(3)
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By applying Lemma 1 (with (μ ,ν)= (1/10,0) and (μ ,ν)= (1/2,0)) and Lemma
2, we receive

320|H3(1)| � 20+
114
5

|c1|2|c2|2 +8|c1|3 +20|c2|3

+12
(
2|c2|+ |c1|2

)
(1−|c1|2 −|c2|2)

=
54
5
|c1|2|c2|2 +8|c1|3 −4|c2|3 +24|c2|

−24|c1|2|c2|+12|c1|2 −12|c1|4
= 20+h(|c1|, |c2|),

where

h(x,y) =
54
5

x2y2 +8x3−4y3 +24y−24x2y+12x2−12x4,

0 � x � 1 and 0 � y � 1− x2 .
We continue with finding the maximum of the function h on the region Ω =

{(x,y) : 0 � x � 1,0 � y � 1− x2} .
The function h has no critical points in the interior of Ω because h′y(x,y) =

x2
(

108
5 y−24

)−12y2 +24 = 0 has only one positive solution for x , that is
√

5(2−y2)
10−9y ,

an increasing function of y over (0,∞) with x(0) = 1.
Therefore, we continue studying h on the edges of Ω .
For x = 0, h(0,y) = 24y−4y3 � h(0,1) = 20.
For x = 1, we have y = 0, and h(1,0) = 8.
For y = 0, h(x,0) = x2(−12x2 +8x+12) which can be easily shown to increasing

function on the segment [0,1] , with maximal value h(1,0) = 8.
Finally, g(x) := h(x,1− x2) = 74

5 x6 − 108
5 x4 + 8x3 − 66

5 x2 + 20 is a decreasing
function on the interval [0,1] , since g′(x) = − 12

5 x(1− x)(11 + x + 37x2 + 37x3) and
g′(x) = 0 has no solutions on (0,1) . Thus, h(x,1− x) � g(0) = 20.

The above analysis brings the final conclusion that h has maximal value 20 on Ω ,
i.e.,

|H3(1)| � 1
320

(20+20) =
1
8
. �

The previous result, although significantly improves the one from [1], still is not
sharp, as the following one dealing with the class G .

THEOREM 2. Let f ∈ G and is of the form f (z) = z+a2z2 +a3z3 + · · · . Then

|H3(1)| � 17
1080

= 0.01574 . . . .

Proof. Similarly as in the proof of the previous theorem, for each function f from
G , there exists a function ω(z) = c1z+ c2z2 + · · · , analytic in D , such that |ω(z)| < 1
for all z in D , and

1+
z f ′′(z)
f ′(z)

=
3
2
− 1

2
· 1+ ω(z)
1−ω(z)

, (4)
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i.e.,
[z f ′(z)]′ · [1−ω(z)] = [1−2ω(z)] · f ′(z).

From here, by equating the coefficients we receive

a2 = −1
2
c1,

a3 = −1
6
c2,

a4 = − 1
24

(2c3 + c1c2),

a5 = − 1
120

(6c4 +4c1c3 +3c2
2 +2c2

1c2).

From here, after some calculations we receive

H3(1) =
1

8640

[−60c2
3−132c1c2c3 +72c3

1c3 +36c4(2c2 +3c2
1)

+36c4
1c2 +76c3

2 +3c2
1c

2
2

]
,

i.e.,

8640H3(1) = −60

[
c2
3 +

11
5

c1c2c3 +
(

11
10

)2

c2
1c

2
2

]
+

[
60

(
11
10

)2

+3

]
c2
1c

2
2

+72c3
1

(
c3 +

1
2
c1c2

)
+76c2

2 +36(2c2 +3c2
1)c4

and further

8640|H3(1)| = 60

∣∣∣∣c3 +
11
10

c1c2

∣∣∣∣
2

+
756
10

|c1|2|c2|2 +72|c1|3
∣∣∣∣c3 +

1
2
c1c2

∣∣∣∣
+76|c2|2 +36(2|c2|+3|c1|2)|c4|.

In a similar way as in the proof of the previous theorem, from Lemma 1 (with (μ ,ν) =
(11/10,0) and (μ ,ν) = (1/2,0)) and Lemma 2, we receive

8640|H3(1)| = 60+
756
10

|c1|2|c2|2 +72|c1|3 +76|c2|2

+36(2+ |c1|2)(1−|c1|2−|c2|2)
= 60+h(|c1|, |c2|),

where

h(x,y) =
756
10

x2y2 +72x3 +76y3 +36
(
2+ x2)(

1− x2− y2) ,

(x,y) ∈ {(x,y) : 0 � x � 1,0 � y � 1− x2} =: Ω .
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Since h′x(x,y) = 36
5 x

(
10x(3−2x)+11y2−10

)
, we obtain that h′x(x,y) = 0 has

a positive solution y∗(x) =
√

10
11 (2x2−3x+1) for x ∈ (0,1/2) . Further, h′y(x,y) =

12
5 y

(
33x2 +95y−60

)
and

g(x) = h′y(x,y∗(x))

=
24√
55

√
(x−1)

(
x− 1

2

)[
33x2 +95

√
20
11

√
(x−1)

(
x− 1

2

)
−60

]

on the interval (0,1) , has solutions x1 = 0.5 and x2 = 0.2311 . . . , with y1 = g(x1) =
0.75 and y2 = g(x2) = 0.6130 . . . , respectively. Both, (x1,y1) and (x2,y2) are in Ω , so
are critical points of h in the interior of Ω , such that h(x1,y1) = 69.75 and h(x2,y2) =
62.10899 . . ..

Further, on the edges of Ω we have the following.
For x = 0, h(0,y) = 76y3−72y2 +72 � h(0,1) = 76.
For x = 1, h(0,1) = 72.
For y = 0, h(x,0) = −36x4 +72x3−36x2 +72 � h(0,0) = h(1,0) = 72.

For y = 1− x2 , we have h(x,1− x2) = − 182x6

5 + 204x4

5 + 72x3 − 402x2

5 + 76 � 76
obtained for x = 0.

All the analysis from above leads to the conclusion that h has maximal value 76
on Ω obtained for x = 0 and y = 1, i.e.,

|H3(1)| � 1
8640

(60+76) =
17

1080
= 0.01574 . . . . �

The estimates of the third Hankel determinant given in Theorem 1 and Theorem 2
are probably not sharp. Here is a conjecture of the sharp values.

CONJECTURE 1. Let f ∈ A and is of the form f (z) = z+a2z2 +a3z3 + · · · .
(i) If f ∈ F , then |H3(1)| � 1

16 = 0.0625 ;

(ii) If f ∈ G , then |H3(1)| � 19
2160 = 0.00879 . . ..

Both estimates are sharp with extremal functions 1+2z2

1−z2
and 1

2

(
z
√

1− z2 + arcsinz
)

,

respectively, obtained for ω(z) = z2 in (1) and (4).
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